
�����������������������������
�����������������������������

��������������������������������
����������������������������

���������������������������������
���������������������������������

�������������������������
��������������������������������

����������������
����������

����������� �����������
������

���������

�����������������������������
�����������������������������

��������������������������������
����������������������������

���������������������������������
���������������������������������

�������������������������
��������������������������������
��

����������������
����������

����������� ����������������
������

�������� �����������������������������
����������

���������

Abstract

In this thesis, we introduce two original approaches to formal verification of hardware
designs. In particular, we aim at model checking of circuits with multiple clocks and
verification of parametrized hardware designs. Considering the former contribution,
we introduce four methods which we use for modelling the clock domain crossing of
a circuit. Models derived in such a way can then be model checked as usual while
possible problems stemming from the synchronization within a circuit are implicitly
covered. Four proposed ways of modelling a data transfer differ in their precision
and the incurred verification cost. In the latter contribution, our proposed approach
of verification is based on a translation of parametrized hardware designs to counter
automata and on exploiting the recent advances achieved in the area of their auto-
mated formal verification. A parametrized hardware design translated to a counter
automaton can be verified for all possible values of parameters at once.

Abstrakt

V disertačnı́ práci jsou prezentovány dva originálnı́ přı́stupy k formálnı́ verifikaci
návrhů hardware. Konkrétně se věnujeme metodě model checking systémů s vı́ce
hodinovými signály a verifikaci parametrických návrhů hardware. Co se týče prvnı́ho
přı́nosu, v práci jsou představeny čtyři metody, které jsou použity pro modelovánı́
křı́ženı́ časových domén digitálnı́ho obvodu. Na modelech, které jsou zı́skány navrho-
vaným způsobem, může být aplikován model checking obvyklým způsobem, přičemž
problémy plynoucı́ ze synchronizace dat digitálnı́ho obvodu zůstávajı́ pokryty. Čtyři
navrhované metody se lišı́ v přesnosti a v nárocı́ch na formálnı́ verifikaci. Dalšı́
přı́nos disertačnı́ práce je založen na překladu parametrických návrhů hardware do
čı́tačových automatů přičemž využı́vá současných úspěšných výsledků v oblasti je-
jich automatické formálnı́ verifikace. Parametrický návrh hardware přeložen do čı́ta-
čového automatu potom může být jednorázově verifikován pro všechny možné hod-
noty parametrů.

Key Words

Formal verification, modelling hardware design, clock domain crossing, parametrized
hardware design, counter automata.

Klı́čová slova

Formálnı́ verifikace, modelovánı́ návrhů hardware, křı́ženı́ časových domén, paramet-
rický návrh hardware, čı́tačové automaty.

Aleš Smrčka, Brno, 2010

Acknowledgement

First and foremost I would like to thank my supervisor doc. Tomáš Vojnar for his
guidance, advice, and constructive criticism which have greatly helped me to progress
towards the successful completion of this work. I would also like to thank prof. Milan
Češka for his moral, professional, and financial support. I also have to express my
deepest thanks to my wife Lucie for her infinite patience and endless support without
which I would never finish my dissertation.

The work presented in this thesis was supported by the Czech Ministry of Edu-
cation (project no. MSM 0021630528) and the Czech Science Foundation (project
no. GP103/10/0306).

Contents

1 Introduction 1
1.1 Formal Analysis and Verification 2
1.2 Challenges in Formal Verification 5
1.3 Goal of the Thesis . 6
1.4 Structure of the Thesis . 7

2 Background 8
2.1 Hardware Design . 8

2.1.1 Hardware Design in RTL 10
2.1.2 Syntax and Semantics of VHDL 10
2.1.3 Synthesisable Hardware 13
2.1.4 Transparent and Synchronous Mode 16

2.2 Model Checking Hardware Designs 18
2.2.1 Modelling Signal Propagation 19
2.2.2 Modelling Environment 20

3 Verifying Hardware Designs with Multiple Clocks 22
3.1 Related Work . 22
3.2 Problems in Circuits with Multiple Clocks 23

3.2.1 Transient Behaviour . 23
3.2.2 Clock Domain Crossing 24

3.3 Modelling Asynchronous Behaviour 27
3.3.1 The Basic Idea . 28
3.3.2 Definitions . 29
3.3.3 Extending All Critical Input Ports 31
3.3.4 Extending Critical Paths 42
3.3.5 Modelling with One-step Destabilizers 48
3.3.6 Delaying the Clock Domain Output 55

3.4 Algorithms of Finding Critical Ports 58
3.5 A Comparison of Modelling Methods 61

ii

3.5.1 A Methodology of Formal Verification of Asynchronous Sys-
tems . 65

4 Verifying Parametrized Hardware Designs via Counter Automata 67
4.1 Related Work . 68
4.2 Counter Automata . 68
4.3 Preprocessing Hardware for Translation to Counter Automata 69

4.3.1 The Considered Features of VHDL 69
4.3.2 Simplifying VHDL Code 75
4.3.3 A Normalization of Conditional Assignment Statements . . 79
4.3.4 Handling VHDL Integer Variables in Counter Automata . . 84

4.4 An Intermediate Behavioural Model 84
4.4.1 A Definition of the Intermediate Behavioural Model 84
4.4.2 Extracting Behavioural Rules from the Source Code 86
4.4.3 Adjustments of Behavioural Rules 87

4.5 Generating Counter Automata . 89
4.5.1 Counters, Control Locations, and Initialization 89
4.5.2 The Transition Relation 91

4.6 Experiments . 93
4.7 Summary of the Translation . 96

5 Conclusion and Future Research 97
5.1 Verifying Clock Domain Crossings 97

5.1.1 Future Directions in Verifying CDC 98
5.2 Verifying Parametrized Systems 98

5.2.1 Future Research of Parametrized Systems 99
5.3 Other Work of the Author . 99

5.3.1 A Methodology of High-level Modelling and Analysis of Hard-
ware Designs . 99

5.3.2 Proving CRC Algorithm Properties 100

A An Example of the Implementation of the Destabilizer 109

B Simple Handshake Synchronization Protocol 113

C Examples of Abstractions of Bit-wise Operations in VHDL 116

iii

Chapter 1

Introduction

It is widely agreed that our everyday life is increasingly supported by computer-based
systems. The most important attribute of them, particularly when used in critical ap-
plications, is reliability. The complexity of modern computer systems, including
the complexity of modern circuits, is rapidly rising. It has been observed that ver-
ification becomes a major bottleneck in hardware design development, up to 80%
of the overall development cost or time [1, 2]. There are two approaches that are
widely used in the verification phase of the development cycle of hardware systems:
(i) simulation and testing, and (ii) formal analysis and verification.

Although simulation and testing can be seen as old-fashioned techniques, they
are still quite effective, especially in the early stages of debugging. Both of them
are used on two independent levels, namely, software simulation of HDL designs
(the approach is very similar to testing of software) and testing of the real hard-
ware, implemented using ASIC or FPGA technology. The testing of the real hard-
ware benefits from the speed (testing is performed in real-time) and allows to cover
the impact of the technology used to physically implement the circuit. HDL soft-
ware simulation on the other hand allows the user to verify important parts of the
design a component-wise in a very user-friendly manner before the circuit is actually
physically assembled. Simulators provides excellent control over the analysis and
the cost of verification via software simulation is low. One of the main attributes of
using simulation-based verification, that allows an acceleration of the verification by
it in a systematic way, is the so-called coverage measuring how much of the design
has already been verified [82]. Simulation tools which are usually used by indus-
trial companies are, e.g., Modelsim1, Synopsys VCS2, or, from the open-source area,
GHDL3. There are also many coverage-based simulators that automatically generate

1www.model.com
2www.synopsys.com/tools/verification/functionalverification/pages/vcs.aspx
3ghdl.free.fr

1

tests, monitors, and functional models—MPSim4, Specman5, and inFact6.

1.1 Formal Analysis and Verification

The second approach is formal analysis and verification. This thesis contributes to
the field of formal verification, therefore we will discuss the technique in more de-
tails. The main idea of formal verification is to prove the functional correctness of
a design instead of performing some random test cases, i.e., in a language of sim-
ulation experts, to exhaustively verify all possible test cases. Different techniques
for the proof process have been proposed during last decades. We will not discuss
all of them, instead, we will shortly introduce the techniques that various industrial
companies and organizations proved to be effective in finding faults in a system.

Static analysis is a technique that analyses the source code of a design without
actually executing it. In hardware development, static analysis is, e.g., often used to
check that an HDL design meets preconditions of a correct use of particular compo-
nents it is composed of. In particular, static analysis is often performed on compo-
nents like counters, well-known synchronisers, standard bus controllers, etc., to check
their proper connection to the rest of the circuit or to check the timing settings. Once
the static analyser finds out that the some part of a circuit is connected against the pre-
defined rules, it provides the user with the location within the HDL source code that
causes the problem. We have to note that such a violation does not necessarily mean
that the design is incorrect, in particular, special-purpose circuits often optimize the
solution against standard rules. In a case of an optimized circuit with more than a mil-
lion gates, static analysis often concludes with a great number of false warnings. On
the other hand, the main advantage of the approach is that it can be performed fully
automatically. Also the amount of time needed for the verification is short, no matter
how large the verified circuit is (in comparison to other approaches). Examples of
commercial static analysers include MCDV7, 0-In CDC8 [54], and WCET9.

Equivalence checking aims at proving the equivalence of two similar circuit de-
scriptions. The description might be provided on different levels of abstraction, such
as the register transfer level or gate-level, and in different formats (languages) or
formalisms. To prove equivalence or inequivalence, the checker translates both de-
signs to a unified internal format, and establishes the correspondence between them in
a matching phase [5, 6]. In case of inequivalence, a counter-example is generated and
provided to the user. Due to a need of two circuit descriptions, equivalence checkers,

4www.athdl.com/mpsim.html
5www.cadence.com/products/fv/enterprise_specman_elite/
6www.mentor.com/products/fv/infact/
7www.athdl.com/mcdv.html
8www.mentor.com/products/fv/0-in-cdc/
9www.rapitasystems.com/WCET-Static-Analysis

2

like FormalPro10, Conformal11, and Formality12, are suitable for the regression test-
ing phase of the hardware development cycle, i.e., to check that no additional error is
introduced in a new version of a circuit description.

When verifying a complex hardware design, it is often impossible to fully au-
tomate the verification process. As a result, the hardware design must be broken
down into smaller pieces, either following the structure or partitioning the input data
space [49] in a similar way as domain decomposition methods to solve a boundary
value problems. Such a decomposition is made manually, thus there is a need to
ensure that no mistakes are made in the partitioning process and that no verification
conditions are forgotten. A proof of the correct partitioning can be achieved by the-
orem proving. Theorem proving is an approach of deducing mathematical theorems
about the examined system. Such a reasoning is performed using computer programs
called theorem provers [13] (like HOL Light13, Forte14 [11, 49, 12], or ACL215 [50]),
which are aware of the so-far deduced facts about the system and are equipped with
inference rules allowing to deduce new facts from the already known ones. Most
of theorem provers require a manual guidance from an expert to prove the desired
properties of a given system, but there is also an effort of developing theorem provers
to be fully automatic yielding the so-called decision procedures, which are then used
within more complex theorem provers or also within approaches to formal verifica-
tion (such as model checkers where decision procedures are important in automatic
abstraction [52]).

Model checking [14] consists in verifying that a model of a system (or sometimes
the system itself) satisfies a given property by exhaustively exploring the state space.
A model checker automatically searches the state space of the system for behaviours
that violate the given property. Since the number of states grows exponentially with
the size of a system, model checking greatly suffers from state space explosion prob-
lem. However, even when the state space is too large or even infinite, applying model
checking can still be useful—it may be unable to prove that the given property is
satisfied, but it can still find a fault that violates the property. If a violation is found,
a model checker provides the user with a counter-example showing the case when the
property does not hold. The properties to be checked are often expressed by formulas
of some temporal logic (e.g., CTL or LTL [14]) or in some specialized property spec-
ification language, typically inheriting temporal aspects from temporal logics (e.g.,
PSL [15] or FQL [16, 17]). Typical representatives of commercial model checkers of

10www.mentor.com/products/fv/formalpro/
11www.cadence.com/products/ld/equivalence_checker
12www.synopsys.com/tools/verification/formalequivalence/
13www.cl.cam.ac.uk/˜jrh13/hol-light/
14www.comlab.ox.ac.uk/tom.melham/res/forte.html
15userweb.cs.utexas.edu/users/moore/acl2/

3

hardware designs are Mentor’s 0-In16 or RuleBase 17 from IBM. Tools available for
academic purposes are, e.g., Cadence SMV18 or NuSMV19.

Although model checkers are automatic tools, the cost of their integration into
the verification phase of development can be very significant. This is due to several
facts: (i) an environment of a system to be verified must be modelled manually, (ii)
to cope with the state space explosion problem, some modification of the model of
a system is usually required (e.g., abstracting away some details, restricting the scope
of the analysis, etc.), and (iii) to properly encode properties of the system in formal
temporal logic, a user with an expertise in the field of system specification is needed.
The research of the last decades tries to lower these costs, in particular, to reduce
a need of manual modifications of a model by automatically reducing the state space
of the system being verified. Different techniques have proven to be useful in this
task:

• Symbolic methods represent the state space of a system symbolically to avoid
explicitly enumerating each individual variable value. The most popular repre-
sentation is based on binary decision diagrams (BDDs) [7, 8, 9].

• Bounded model checking (BMC) [18] is model checking that considers counter-
examples of a maximal length k. This restriction allows to unroll the model
a given number of steps and to encode it via an instance of SAT problem
(and to benefit from the advances in the technology of SAT solvers). Usually,
the process of bounded model checking is performed in an iterative way while
incrementing k until all possible violations are covered until some predefined
limit is reached.

• Partial order reduction [14] analyses dependencies between concurrent pro-
cesses to avoid exploring equivalent interleavings of independent operations.
This is based on the principle that if two concurrent operations are indepen-
dent, then it does not matter in which order they are executed. For a hardware
design, partial order reduction contributes especially in verifying systems like
controller units or components implementing some sort of communication pro-
tocol.

• Abstraction methods simplify a system before verifying it (we refer to a sim-
plified system as an abstract model). The term abstraction represents a tech-
nique which generally consists in ignoring some aspects of the model of a sys-
tem [47]. The most common technique is the abstraction by restriction [3],

16www.mentor.com/products/fv/0-in_fv/
17www.research.ibm.com/haifa/projects/verification/RB_Homepage/
18www.kenmcmil.com/smv.html
19nusmv.irst.itc.it/

4

which is used in proving that the system satisfies the formula under some cir-
cumstances. Such an abstraction under-approximates the system by forbidding
some behaviours wrt. given circumstances (e.g., the clock signal abstraction
which we discuss in the next chapter). If a violation of the property is found in
an abstract model, it is also violated in the original system. If the property is
proven to be true in an abstract model, it is not guaranteed that it is true in all
circumstances.

To keep the proof to be sound, the abstraction is also required to be sound—we
say that an abstraction over-approximates the system behaviour. This could
be achieved in two ways: (i) via abstraction based on state merging and (ii)
abstraction on variables [3]. State merging reduces the number of states while
creating more general states of the system. Abstraction on variables reduces
or omits constraints over the system variables (variables which usually repre-
sent the “data” part of the system). The over-approximation is not complete
(it introduces false alarms), thus if a violation of some property is detected
on an abstract system, it should be verified in the original, not approximated,
model. In case a false alarm is detected, it is desirable to be able to automati-
cally refine the abstraction and repeat the verification—this yields the so called
CEGAR loops [48, 19]. Examples of tools that implement CEGAR for ver-
ification of hardware include, e.g., VCEGAR [20] and BAT [27]. The most
common used abstraction technique in CEGAR loop is predicate abstraction
in which the abstract model is constructed using a given set of predicates on
a data [22]. The technique has proven to be successful mainly in software do-
main [23, 24, 25, 26], but there is also an effort to apply predicate abstraction
in hardware [21, 48, 20]. The results achieved in hardware are not so emphatic
as in software mainly because the hardware is often designed in a low-level
containing ubiquitous bit-wise operations. Bit-wise operations (such as over-
flow detection, data coding, etc.) do not fit to predicate abstraction which often
aims at arithmetic and relational operations over real or integer numbers.

1.2 Challenges in Formal Verification

Even though model checking is successfully applied and has become the state-of-the-
art in many design flows, still many problems remain. In this section, the list of some
problems is given. Note that the list is not complete in the sense that all difficulties are
covered, but we mention some important representatives including those that inspired
the work presented in this thesis.

Complexity. Rising requirements on computer-based systems cause rising complex-
ity of the designed systems. Model checking works best on the module level (for sim-
ple components like FIFO channels, simple bus or memory controllers, or logic units
of microprocessors), but is unable to verify the entire system which integrates such

5

components into a large block. Many development workflows deal with this prob-
lem by combining several verification approaches, and the developers create their
own methodology of verification, while a significant amount of work has to be done
manually.

Diagnosis and automatic synthesis. After a fault has been identified and a model
checker generates a counter-example, the next step is to identify the root cause of
the discovered fault and remove it. Usually, the fix is performed manually, but there
exist efforts to automatically synthesize the design from a formal specification di-
rectly [29, 30]. Unfortunately, such techniques are purpose specific and lack a generic
usage.

Arithmetic. Industrial practice has shown that model checking has difficulties with
floating-point arithmetic circuits, like multipliers or dividers [49, 50, 51]. Even
though reasoning at a higher level of abstraction has gone through significant im-
provements (e.g., results achieved by using SMT paradigm over bit vectors [10]), it
is often difficult to integrate these abstraction methods to a fully automatic verifica-
tion process.

Multiple clocks. Model checking algorithms assume that the circuit is purely digital,
but in a real circuit, the data is transferred via analog signals. A problem arises when
verifying circuits with multiple clock domains, since if the model of such a circuit is
digitalized in an improper way, errors due to delays of a real circuit may be missed.
Hence, the model checking is unsound.

Generic designs. Modern HDL languages allow the developer to reuse the code
describing a part of a circuit via the so called parametric description. Parametrization
is widely used, e.g., when creating libraries of re-usable hardware components. If
the circuit is described in a modular way, the parametric description is often related
to generic modules. Usually, the number of different configurations of such modules
is unbound. When verifying a generic module for all possible cases, the state space
is infinite, but the current model checkers used in a hardware design flow work on
a finite state space basis.

1.3 Goal of the Thesis

The goal of the thesis is to advance the current state of the art in two areas of hardware
verification—namely, (a) model checking of designs with multiple clocks and (2)
formal verification of parametrized designs.

As for what concerns dealing with designs with multiple clocks, we concentrate
on clock domain crossing signals. We aim at proposing verification approaches ca-
pable of revealing errors related to clock domain crossing signals. These approaches
should be fully automated, i.e., not requiring the users to understand. Current meth-
ods of modelling a system to be verified are unsuitable for model checking of clock

6

domain crossings as they hide the transient responses of a circuit. To deal with this,
we provide four approaches to extend the model of a system with transient behaviour
such that subsequent model checking is able to automatically reveal the synchroniza-
tion faults.

The second aim of the thesis is to facilitate formal verification of parametrized
designs. Currently, verification of generic modules includes verification of various
concrete instances of the modules. In our approach, we were motivated by the recent
advances in formal verification of a counter automata. The thesis provides the method
how to transform a generic HDL design to a counter automaton to allow verification
of all possible configurations of a design at once.

1.4 Structure of the Thesis

The rest of the thesis is organized as follows. Chapter 2 introduces the reader to
the basics of hardware design HDL languages, and to the current techniques used for
modelling such designs for their subsequent model checking.

Chapters 3 and 4 discuss both of the original contributions of the thesis. In both
cases, we start with an explanation of the problem and the basic principles of the pre-
sented solution. We also provide the related work in the given area. Subsequently,
a detailed description of the proposed techniques is provided. The chapters con-
clude with some remarks based on our experiments. In particular, Chapter 3 deals
with verification of designs with multiple clocks and provides four approaches for
model checking such designs. In Chapter 4, we discuss the area of verification of
parametrized hardware designs via transformation of an HDL design to a counter
automaton.

In Chapter 5, we conclude the thesis by a general summary of the discussed
methods and provide directions of possible future research.

Moreover, to provide the reader with a better illustration of the contribution, some
examples of applications of the introduced techniques are discussed in the appen-
dices. In particular, Appendix A describes, on an example, an application of one of
the method proposed in the thesis. Appendix B contains the details of a synchroniza-
tion protocol used in our experiments. Finally, Appendix C describes one of the ideas
of future research on a simple example.

7

Chapter 2

Background

In the following, we will introduce the reader to the field of hardware development
based on modern HDL languages. To better understand the problems described in
the following chapters, the notion of a basic syntax of well-known hardware descrip-
tion language is presented, together with the common methods of modelling a circuit
for the purpose of model checking.

2.1 Hardware Design

The term hardware is in general meant for any electronic circuit used in informa-
tion technology (digital or analog). Since digital circuit design comprises most of
electronic circuit design, in this section further, we consider a hardware as a digital
circuit.

There are several ways of how to deal with hardware design, each of them uses
different abstraction of a description. More abstract levels make the design very easy
to understand, on the other hand, low-levels of hardware design allow the developers
to control the optimization of the circuit (e.g., the number of used electronic compo-
nents, low-power consumption, or the calculation speed of the circuit). Even though
more and more of the effort is given to the area of the abstract hardware development
(such as the algorithmic level of a description via ANSI C/C++/SystemC language),
hardware developers still use less abstract level of a hardware description—register
transfer level (RTL). In RTL, a hardware is designed at the level low enough for
the possibility of optimizations and abstract enough for better understanding and for
simple reuse of the code to create more complex circuit.

There are several languages for RTL abstraction, also known as hardware de-
scription languages (HDL), out of which the most widely used are VHDL and Ver-
ilog [28, 65]. A design specified in such a language is an input for hardware synthesis
tool, hardware simulation, or formal verification (cf. Figure 2.1). A process called
synthesis transforms a generic RTL description of a system to the gate-level descrip-

8

tion. The hardware description at this level is adjusted for a concrete electronic cir-
cuit capabilities, e.g., a set of available components of specified type of FPGA chip.
The design described at a gate-level represents the logical structure of a hardware
(an interconnection of hardware primitives). To obtain graphical representation of
the circuit board (placed components and wires drawn between them) or the layout
within FPGA, the process place&route must be performed.

RTL design

hardware

logic synthesis

place & route

simulation testing
formal

verification

circuit layout /
FPGA configuration

production / upload

gate-level design
flat netlist /

Figure 2.1: The integrated circuit design cycle aiming the development of a printed
circuit board or a hardware based on programmable field array. The dashed parts of
a flow represent validation stages which consist of formal verification, simulation,
and testing. The term “simulation” is sometimes called as the testing process, and
the testing itself as the testing on a real hardware.

Considering the validation back loop, there are several approaches of validation
processes in HW design, each of them is suitable for different kind of checked proper-
ties. As for formal verification or simulation, the behavioural specification is verified.
For the testing, the physical specification and the properties related to a real hardware
is validated, such as thermal performance or the load on a real traffic. The logical
choice of the design level at which we want to perform the formal verification is
the logic structure of a design, i.e., the gate-level design1. The testing on the other

1For the case of formal verification of a generic hardware design, RTL design, instead of gate-level
design, must be considered (we will discuss the problem in more details in Chapter 4).

9

hand must be performed on a real hardware. Such a design development cycle is
well-known and used in most of the hardware projects.

2.1.1 Hardware Design in RTL

In register transfer level, the design is based on the connection of registers, logic
gates, and data transfer between them. A register is a hardware element which is
able to hold data—a bit or a bit-vector value. The source code of a design includes
a declaration of communication channels of a bit or a bit-vector type (these will
be the wires in a circuit), logic gates which provide a computation function, and
the registers for holding the current state of a running circuit.

The most frequently used approach to a hardware design is a component-based
design. In register transfer level, it is based on a definition of components which are
connected together via communication channels. A component is a digital circuit
which implements the specific operation (e.g., an arithmetic or a logic unit, queues,
buffers, controllers, etc.) and communicates with its environment via input/output
ports. The RTL design describes a hardware by encapsulating the basic functions
into components, and by specifying a dataflow relation between them. Most of RTL
languages offer the re-usability of a component description, thus the developer is able
to use the code of a component several times without unnecessary reimplementing
it. We call a template or a pattern of the component as an entity and the concrete
representation of it (the instance of an entity) as the component itself.

In the present, there are two well-known and widely used languages of RTL
design—VHDL and Verilog. Although VHDL and Verilog are different languages,
their main expressive means are quite similar from our point of view of either verify-
ing designs with multiple clocks or verifying parametrized designs. Since the VHDL
language has more intuitive support for parametrized designs, we will discuss only
the VHDL language.

2.1.2 Syntax and Semantics of VHDL

In this paper, we will not introduce full syntax of rich VHDL language, only the struc-
ture of VHDL source code will be described. The VHDL language is similar to other
structural programming languages and the syntax is easy to understand even from ex-
amples. More detailed information can be found in VHDL tutorials or in the VHDL
standard [73].

In VHDL, a hardware system is specified by an entity with input and output ports
for communication with an environment. An example of a component is a USB
stick with four I/O port pins or a computer adaptor card with ports of a PCIe slot.
A more complex hardware system is described in a modular way using smaller and
simpler components—e.g., a graphics processing unit can be designed by creating

10

and integrating the simplest components like binary data transformation units (adder,
multiplier, binary-gray code translator) or data transfer controllers.

For the introduction to the VHDL syntax, we will not explain the whole VHDL,
instead we will go through two simple entity examples (Figures 2.2 and 2.3). The first
example implements the entity of the transformation of a natural number in a binary
code to a number in the Gray code, the other is the example of a simple arithmetic
unit for 64 bit numbers. Although the examples below is not complete wrt. syntax of
VHDL, we rather put the emphasis to the demonstration purpose.

1 entity reg_gray is
2 generic(N: integer);
3 port(
4 bin: in bit_vector(1 to N);
5 asyn: in bit;
6 clk: in bit;
7 gray: out bit_vector(1 to N);
8);
9 end entity adder;

10 architecture behavioural of adder is
11 signal bin2gray: bit_vector(1 to N);
12 begin

13 bin2gray(N) <= bin(N);
14 for i in 0 to N-1 loop
15 bin2gray(i) <= bin(i) xor bin(i+1);
16 end loop;

17 process(reset, clk)
18 begin
19 if (asyn = ’1’) then
20 gray <= bin2gray;
21 elsif (clk’event and clk = ’1’) then
22 gray <= bin2gray;
23 end if;
24 end process;

25 end architecture;

Figure 2.2: VHDL design of a component that transforms an integer number in two’s
complement code to the number in the Gray code.

In VHDL, an entity is described by a definition of its interface and its body.
The interface of an entity defines parameters and input/output ports. For the ref-
erence to the examples, the interface of the entity in Figure 2.2 is defined at lines

11

1 entity arith_unit64 is
2 port(
3 opcode: in bit_vector(0 to 1);
4 a, b: in bit_vector(0 to 63);
5 c: out bit_vector(0 to 63)
6);
7 end entity arith_unit64;
8 architecture my_unit of arith_unit64 is
9 signal a1, a2, n1, n2: bit_vector(0 to 63);

10 begin
11 add: entity adder
12 generic map(N => 64);
13 port map(i1 => a, i2 => b, o => a1);
14 neg_a: entity negation
15 generic map(N => 64);
16 port map(i => a, o => n1);
17 neg_b: entity negation
18 generic map(N => 64);
19 port map(i => b, o => n2);
20 sub: entity adder
21 generic map(N => 64);
22 port map(i1 => a, i2 => n2, o => a2);
23 with opcode select
24 c <= a1 when ’00’,
25 n1 when ’01’,
26 a2 when ’10’,
27 (others => ’0’) when others;
28 end architecture;

Figure 2.3: VHDL design of a simple 64 bit arithmetic unit. The structural descrip-
tion consists of four instances of adder and negation subcomponents. The dataflow
description controls the output of a unit.

1–9, the interface of the entity in Figure 2.3 is defined at lines 1–7. The param-
eters allows a generic description of the entity (the entity in Figure 2.2 is a generic
entity—it describes a Gray converter for any width of a bit-vector). The ports identify
the communication channels between the entity and its environment. Communication
channels within the entity are called signals. The body of an entity, in VHDL known
as the architecture (lines 10–25 in the example 2.2 or lines 8–28 in the example 2.3),
specifies the dataflow, the structural, and the behavioural description of the entity.
Every type of a description specifies the relation between communication channels
in a different way.

The dataflow description (lines 13–16 in Figure 2.2 or lines 23–27 in Figure 2.3)
specifies the relation between ports or signals by predefined arithmetic, logic, or con-

12

ditional connectors. The syntax and the semantics of dataflow VHDL constructs and
expression operators are shown in Table 2.1 and 2.2.

In structural description (Figure 2.3, lines 11–22), the hardware is designed in
a hierarchical structure, i.e., the high-level unit is described via lower-level compo-
nents, which are specified with interconnection of a circuit elements. We see all the
units and primitive elements simply as components. A component is an instantiation
of the entity. An instance of the entity is made if the mapping of signals to ports
is provided. If the entity is a generic entity, the instantiation is only possible if all
its parameters are assigned with particular values. For the reference, cf. Figure 2.3
where the generic entity adder is instantiated for width of 64 bits and its input/output
ports (i1, i2, o) are connected to signals of the architecture (a, b, a1).

The behavioural description (Figure 2.2, lines 17–24) consists of processes run-
ning simultaneously. Each process specifies the behavioural characteristics of a hard-
ware it represents. The behaviour of the process is described by sequential statements
like assignment, loop cycle, or condition. We have to, however, note that sequential
statements in VHDL processes have a different meaning than in typical programming
languages—the sequence they are based on is not the execution sequence, but rather
a sequence of preferences of how to proceed to the considered output values. We will
discuss it a bit more in Chapter 4.

Since there is no way how to efficiently synthesize a hardware design from com-
plex behavioural requirements, the behavioural and the dataflow description is widely
used for a low-level description of parts of a system (e.g., logic functions, simple reg-
isters, counters), while the structural description is used for building more complex
components or the entire system.

Generic entities

As we mentioned before, the entities of an RTL design can be generic. Such a lan-
guage feature allows us to write the code with the same properties within one generic
code—we can think of the entity as the template of a component. The entity is generic
if the interface declaration (more precisely the generic section within the entity
declaration) includes one or more parameters. Such parameters statically control
structural, dataflow, or behavioural characteristics of an entity. Once the entity is
ready to use, the instantiation of it is done by mapping of parameters to specific
constants and input/output ports to appropriate signals. The component is then con-
structed specifically according to parameter values.

2.1.3 Synthesisable Hardware

In our models which we use for the formal verification, we come out from the RTL
description and from the gate-level design. To properly model a circuit, we need to
understand the internals of the logic synthesis process.

13

Syntax Semantics

stmt ::= sig <= expr

an assignment of the symbolic name sig to the output
of the expression expr. The sig can be the name of
a signal, the item of an array (e.g., arrname(5)),
the field of a record (e.g., recname.field), or the
combination (e.g., rec.fld(0)).

expr ::= signal out ≡ value of signal (bit or bit-vector type)
expr ::= signal (i) out ≡ value of i−th bit of bit-vector signal

expr ::= signal (i to j)
out ≡ value of slice, i.e., the bit-vector from i- j bits
of the signal bit-vector)

expr ::= 0 | 1 | ’(0|1)+’ out ≡ bit value, or constant bit-vector

expr ::= expr1 and expr2 out ≡ expr1∧ expr2 outexpr1

expr2

expr ::= expr1 or expr2 out ≡ expr1∨ expr2 outexpr1

expr2

expr ::= expr1 xor expr2 out ≡ ¬(expr1 = expr2) outexpr1

expr2

expr ::= expr1 nand expr2 out ≡ ¬(expr1∧ expr2) outexpr1

expr2

expr ::= expr1 nor expr2 out ≡ ¬(expr1∨ expr2) outexpr1

expr2

expr ::= expr1 xnor expr2 out ≡ expr1 = expr2 out

expr2

expr1

expr ::= not expr out ≡ ¬expr outexpr

Table 2.1: VHDL constructs for dataflow description. Bitwise operations like and,
or, or not over bit-vectors (out, expr1 and expr2 must have the same width) repre-
sent several bit-per-bit logic operations working in parallel, i.e., for the expression
a1 . . .an ◦b1 . . .bn, the resulting vector c1 . . .cn is defined by ci = ai ◦bi, 1≤ i≤ n.

14

Syntax Semantics

expr ::= expr

sll
slr
sal
sar
rol
ror

n

out ≡ expr ◦ n, where expr
is a bit-vector, ◦ is left/right
shift, arithmetic shift, or ro-
tate operation, and n≥ 0, e.g.,
expr sar 2 (where expr is
4-bit vector):

out(3)

out(2)

out(1)

out(0)

expr(3)

expr(2)

expr(1)

expr(0)

stmt ::= with sel select
out <= expr0 when ’00’,

expr1 when ’01’,
expr2 when ’10’,
expr3 when others

choice one-from-many.
Value of bit-vector sel
selects which input value
will be propagated to the
signal (number of inputs =
2width of sel).

MX

out

expr(0)

expr(1)

expr(2)

expr(3)

sel

stmt ::= for i in range
loop

dataflow statements
end loop

The dataflow statements to be processed repeatedly.
Within the dataflow statements, the loop parameter i
is a constant of a base type of range.

Table 2.2: Another VHDL constructs for dataflow description. Note that iterated loop
cycle is often used for the dataflow description of a bit-vector (cf. Figure 2.2, lines
13–16).

The VHDL language apart from syntax described above also include the con-
structions for programming automatic test-benches, simulation, read/write operation
over files, etc. These constructions are important for the hardware development pro-
cess but insignificant for the logic synthesis process. The goal of the synthesis pro-
cess is to create a hardware design ready to use for the implementation. For this
purpose, there exist several fully-automated tools which translate the RTL design to
the gate-level design, e.g., Design Compiler2, Encounter RTL Compiler3, Leonardo
Spectrum and Precision4, and Symplify Premier5. The design in a gate-level is repre-
sented by a structural description using real-life components only, such as registers,
logic gates, multiplexers, address decoders, etc. The problem of the logic synthesis
of an entity architecture is the problem of transforming every part of a VHDL de-
scription (dataflow, structural, and behavioural) to a gate-level structural description.

2www.synopsys.com/products/logic/design_compiler.html
3www.cadence.com/products/digital_ic/rtl_compiler/index.aspx
4www.mentor.com/products/fpga_pld/synthesis/
5www.synplicity.com/products/synplifypremier/index.html

15

For the dataflow description, the logic synthesis process is easy to understand. It
it based on the translation of predefined operators to the gates as depicted in Table 2.1
and 2.2. Note that in the phase of synthesis, every parameter represents a constant
value. Such an assignment (constant to a parameter) allows us to unfold every loop
to obtain a dataflow description without any loop.

The behavioural description is not so easy to transform. The behavioural de-
scription is composed of so-called processes running in parallel. The process is de-
scribed by sequential statements which represent the proper function. An important
note here is that the process is not implemented as a sequence of operations per-
formed one by one, instead, a logic synthesis tool analyses the code of the process
and results with an appropriate circuit (hardware elements connected together) which
represents the behaviour of the process. The synthesis of an arbitrary process is much
more complicated than the synthesis of dataflow description. To synthesize an arbi-
trary behavioural description properly, complex techniques must be performed (SAT
solvers or genetic algorithms could be involved) to find an appropriate replacement
of the behavioural code in the form of gate components connected together. Such
an approach of universal code analysis is not supported by logic synthesis tools. In-
stead, tools only support predefined templates of constructions of sequential state-
ments. Such templates of behavioural code represent particular gate components.
The only “programmable” parts of the behavioural description is a dataflow defined
within the sequential statements (for instance, an assignment of logic expression to
a variable), which is transformed as described above.

The structural description consists of entity instances. The synthesis of a struc-
tural description can be simply interpreted as a transformation of each of such instan-
tiations. Note that a subcomponent (an entity instance) can also include behavioural,
dataflow, or further structural descriptions. The synthesis which transforms the sub-
component to the desired form, translates its behavioural or dataflow descriptions as
described above. For the case of structural description, the same procedure is per-
formed recursively, but, in addition to that, some care must be taken to the signal
names in order to preserve unambiguous signal identification in the whole hardware
design. This can be achieved for example by a simple renaming of all subcompo-
nent signals, more precisely by giving a unique name in the whole design to every
subcomponent signal.

2.1.4 Transparent and Synchronous Mode

In the approaches of modelling the circuit, we also distinguish the behaviour of gates
which work in the transparent or in the synchronous mode. These modes substan-
tially influence the output of a gate.

For example, let us have two gates connected in a cascade. If both gates work
in the transparent mode and the input changes its value, the first gate instantly prop-
agates the input to the output (the input of the second gate), and the same value

16

process(enable, input)
begin
if enable = ’1’ then
output <= input;

end if;
end;

(a)

MX
outputinput

enable

1 3

enable

input

output

2

(b) (c)

Figure 2.4: A latch is a circuit with the ability of holding a value. A latch works in
a transparent mode and it is sensitive on the value of an enabling signal. The RTL
design (a) consists of one process with conditional assignment (there is an implicit
else section with the semantics output <= output;). The circuit (b) can be imple-
mented via multiplexer with a back-loop (to hold a value, if the enabling signal is not
set). The example of a timing diagram depicted in (c) includes three phases: holding
a value, transparently setting a new value, and holding the last value from the time of
a transparent mode.

propagation happens at the second gate. The result of the transparent mode is that
the change of the input of the first gate instantly changes the value of the output of
the second gate.6 The gate working in transparent mode only is called a latch—its
design, implementation, and timing diagram is depicted in Figure 2.4.

Conversely, if both gates work in the synchronous mode (such gates are known
as flip-flops, cf. Figure 2.5), they propagate their inputs to the output one step at
a time—the change of the input values of the first gate changes its output after one
clock period, but this still does not immediately influence the output of the second
gate (its output is changed only after another clock period). Such a behaviour takes
an advantage from the propagation delays such that the time, when a clock edge is
detected and both gates are triggered for an action, is earlier than the input value of
the first gate manages to propagate to the output. Finally, let us add that some gates

6According to physical latency called a propagation delay (which is a delay of a gate to propa-
gate input signal to the output), the change is not so “instant”, but wrt. clock period of a circuit it is
insignificant.

17

may be operated both in transparent and synchronous mode depending on some of
their control inputs.

process(clk, input)
begin
if clk’event and clk = ’1’ then
output <= input;

end if;
end;

(a)

input

clk

output

1

output

clk

2 3

en

input

en

(b) (c)

Figure 2.5: A flip-flop is sensitive on the edge of the enabling signal, thus it is work-
ing in a synchronous mode. Such an enabling signal is called a clock and it is often
used for controlling of every component in a hardware. The RTL design of a flip-flop
(a) is similar to a latch (cf. Figure 2.4) except for the enabling condition includes the
expression of an edge-detection. The scheme of a flip-flop (b) differs from the scheme
of a latch in the semantically depicted edge detection by two logic gates (clk and
not clk). The timing diagram (c) shows that signal output is set by a rising edge
of signal clk in the second phase. The short peak of signal en (momentary enabled
signal) is caused by propagation delays of the edge-detection circuit.

2.2 Model Checking Hardware Designs

Before a hardware design can be verified, one typically needs to create or automat-
ically derive its model. Depending on circumstances, the model can be closer or
farther from the actual system, but there are at least two issues that deserve a closer
attention here: namely, modelling of the signal propagation in the circuits and mod-
elling of its environment.

18

2.2.1 Modelling Signal Propagation

When designing a new digital hardware, developers consider the circuit under con-
struction to be digital, but the real signals and logic operations are analog. In most
cases, typically when dealing with synchronous hardware, the digital view on a cir-
cuit during the design is not a problem, since there exist automated methods and
tools which are able to detect problems possibly caused by settings unachievable by
real, analog circuits. But beyond these cases, e.g., when dealing with asynchronous
circuits, there is no universal method how to model a system such that further ver-
ification of the model is able to reveal problems caused by wrong assumptions of
an analog implementation of the digital design. Therefore, the modelling step is
crucial—it is the task best performed by qualified engineers enlightened with a good
grasp of both the physical reality and the mathematical models.

There exist methods that automatically model a digital circuit by an under-ap-
proximation, but, as we mentioned in Chapter 1.1, an under-approximation is not
sound. In this section, we will discuss three of such modelling methods:

• Modelling synchronous circuits (as described in [14]) is the most common
modelling method of digital circuits since most of them are synchronous, i.e.,
every gate in a system is controlled by the same clock signal. Verification of
such models proves that the logic of the circuit function meets its specification,
thus only the logic effect (not side effect) is relevant. In this case, one needs
not to represent the clock signal in the states. Successive states are obtained
by computing new values of all state variables from the current values, using
the combinational logic of the circuit.

• Zero-delay modelling considers with the stable states of a circuit only. Briefly,
the stable state of a circuit is the state that the circuit holds until an external
event occurs. On the other hand, unstable states arise due to transition and
propagation delays of real gates changing their stable states (cf. Figure 2.6)—
we will discuss this in more detail in the next chapter. The zero-delay mod-
elling is suitable for verification of circuits with multiple clock signals since
the state of the circuit evaluates both common signals and the clock signals.
Zero-delay modelling deals with binary values only. It is unable to model tri-
state logic functions or the value of an input port of a component which is
not connected. Further in the text, we call the model obtained by zero-delay
modelling as the zero-delay model.

• Modelling of transient behaviour counts with propagation delays of gates.
A logic signal in a real circuit is not restricted to binary values only, the mod-
elling include states of a signal, e.g., rising edge, falling edge, metastable,
strong/weak values, high impedance (in particular, IEEE standard [79] defines
7 possible values of each of signal). To create a model reflecting such states,

19

the electrical properties (the timing properties and voltage thresholds in partic-
ular) must be taken into account. The sequence of states in such a model re-
flects the real time-line of a circuit. We need to mention that such a modelling
method is not suitable as an input for formal verification since non-binary val-
ues of every state variable of the system greatly increase the state explosion
problem. Models taking into account the transient behaviour are suitable for
a detailed analysis of the circuit via software simulation.

process (clk)
begin

if (clk’event and clk=’1’) then
x <= a or b;

end if;
end process;

(a)

�
�

�
�

�
�

!!
!!
!!

,
,
,
,

e
e
e
e

((((
((((

((((
((

a

b

x

clk

0

10

0

0

1

1

0

0

0

0

1

unstablestable
(b)

Figure 2.6: (a) The source code of a simple flip-flop component and (b) an example of
a timed diagram of its behaviour illustrating the notion of stable and unstable states.
Note that unstable states cover periods of time when one or more signals change their
values.

2.2.2 Modelling Environment

When model checking a system, it is desirable to verify that the specification holds
in all circumstances caused by the environment of a system. To cover all possible
runs of a system, the specification of the environment should be such that it includes
every situation that can actually happen. This can often be approximated by allow-
ing a purely random behaviour of the environment. For example, in Cadence SMV,
the random value of the signal clk in the next state of the system may be defined by
the assignment statement:

next(clk) := {0,1};

The operator next on the left side of the assignment means that the statement
defines the future/next value of the variable clk. The right side of the assignment

20

{0,1} represents a non-deterministic choice of values 0 and 1. Such a statement
provides the variable clk with a random value in every step of a system execution.

The randomness of all clock signals allows the model to represent all possible
frequency ratios and phase shifts between any two clocks. However, modelling all
possible variations of clock signals is undesired in most cases since it does not repre-
sent a real scenario and complicates state space exploration (e.g., we should exclude
from the model the behaviour in which the clock signal never changes). This can
be easily achieved by using fairness assumptions expressed, e.g., in temporal logic
formulae (for instance, (G F clk)∧ (G F ¬clk)7 specifies that the clock is alive, i.e.,
it is not possible to stop the function of a circuit).

In the thesis, we use the zero-delay modelling, in which clock signals are defined
as external signals (their values are retrieved from the environment of the component
being verified). In the case of a property which refers to a clock event, the event
must be expressed explicitly: we use (¬clk∧ X clk) for a rising edge of the signal
clk and (clk∧ X ¬clk) for a falling edge. Such an explicit definition complicates
specification of the properties to be checked, e.g., the property that ‘the signal s is
always set just for one clock period’, looks like:

G ((¬clk∧ (X clk)∧X s)→ X (

(s∧¬(¬clk∧ X clk)) U (s∧¬clk∧ (X clk)∧ X ¬s)))

Just for the comparison with the model of a synchronous circuit where a sequence of
states reflects a sequence of clock events, the same property looks much easier:

G (s→ X ¬s)

7We will not describe temporal logics, instead, we only briefly introduce some of temporal operators
and refer the reader to other publications for detailed description [31, 14, 3, 4]. The linear-time temporal
logic (LTL) understands every execution of the system as a sequences of states. An LTL formula
representing a property of the system must hold in every execution of the system. LTL formula consists
of atomic propositions connected with usual logic connectives (¬, ∨, ∧,→) and the following temporal
operators: temporal operator G in the formula G f means that LTL formula f holds in the current state
and in every future state, the formula F f means that f eventually holds some time in the future, formula
X f means that f holds in the next state, and finally f1U f2 means, that f1 holds in all subsequent
states until f2 holds. Computation tree logic (CTL) is, unlike LTL, a branching time logic in which all
executions of a system may be represented with a computation tree (a tree of states starting in the initial
state). The branching structure in the computation tree is described with CTL path quantifiers (A and E)
which can occur only in pairs with temporal operators (and conversely, every temporal operator must be
preceded by a path quantifier): AX, EG, A(f1U f2), etc., where Aπ (or Eπ) means that, in a particular
state, through all executions (or some executions respectively) starting at that state, π must hold.

21

Chapter 3

Verifying Hardware Designs with
Multiple Clocks

During the process of hardware design, synchronization problems are sometimes un-
derestimated (especially when optimizing the circuit) which results to an invalid cir-
cuit. In this chapter, we aim at verification of data transfer between two mutually
asynchronous clock domains. We start with a summary of related work in this area
and we provide a description of possible synchronization problems. Then, we aim at
eliminating the need of manual verification of synchronization solutions by providing
an automatic method for deriving a model of the transient behaviour that can manifest
in a given design. A design composed with such a model can then be model checked
as usual while possible problems stemming from the synchronization are implicitly
covered. Four different ways of modelling the transient behaviour, differing in their
precision and the incurred verification cost, are in particular proposed. Two of these
methods were originally published in [92]. The two other ones have not yet been
published, they will be submitted for publication soon.

3.1 Related Work

There have appeared multiple papers in the area of verification of asynchronous sys-
tems or systems with multiple clock domains in the past two decades. We will refer-
ence the reader to the main papers only.

Solutions of a proper data transfer within the circuit or between separate circuits
(so-called synchronization problem) begin with the analysis of the impact of the tran-
sition delay [44]. Several solutions have been proposed: the simple one-wire solu-
tion via a two-flip-flop synchronizer [32], a dual-clock FIFO synchronization chan-
nel [33], or predictive synchronizers [37] for periodic clock domains. In [39] and
[34], possible problems of a synchronization are discussed and verification methods
of some of presented problems are introduced. The methods include several areas

22

of verification using static analysis [35, 36], using simulation-based verification with
System Verilog assertions [55], or using automatic formal verification [38].

We have to note that all of these verification methods try to cover well-known
methods of synchronization, but there is no universal verification method for an ar-
bitrary synchronization. In [39], synchronization problems and their verification are
discussed. However, for the verification of a handshake protocol, the authors ad-
mit that “the check involves intense user intervention, because automatic analysis
of signals involved in a handshake protocol is not trivial.”. This chapter proposes
several automatic methods of verification of synchronization subsystems, including
transaction-based protocols.

3.2 Problems in Circuits with Multiple Clocks

Data transfer within a circuit controlled by multiple clocks requires a synchroniza-
tion. Failures due to incorrect synchronization are difficult to detect and developing
verification methods in this area requires in-depth understanding of so-called clock
domain crossing. Before addressing clock domain crossing, we introduce the princi-
ple of data transfer within digital circuit.

3.2.1 Transient Behaviour

As digital circuits are implemented using electric circuits working in analog domain,
one must consider how digital data are transferred within a circuit. Here we aim at
transient behaviour, i.e., how the binary signals propagate through the circuit.

Transition Time

When dealing with the transient behaviour, we have to take into account what hap-
pens when a signal changes between two adjacent states, e.g., on a rising edge
(the signal changes from the low level to the high level), or on a falling edge (from
the high level to the low level). In real circuits, changes of a signal take a non-zero
time. The amount of time that the output of a logical circuit requires to change its
state is called the transition time, which is dependent on parameters of circuits such
as transistor technology, capacitive loads, and voltage thresholds.

Figure 3.1 shows transition times, i.e. the rise time tr and the fall time t f of a sig-
nal in a logical circuit. The values VL and VH indicate the voltages for the LOW and
HIGH values of a signal, VHmin and VLmax are the maximum and minimal thresholds
for which the signal is recognized at LOW and HIGH values. If the signal level is
between VHmin and VLmax, it is understood as metastable, i.e., has an undefined value.

For further analysis, we take into account that a signal, when changing its value,

23

tr t f

VHmin

VLmax

VH

VL

voltage

timetime

voltage

VL

VH

(a) (b)

Figure 3.1: An example of (a) an ideal and (b) the real transition graph of a signal.

has an undefined value for a short period of time tr f
1.

Propagation Delay

If we focus on logic gates, we have to consider another type of delay which can
cause synchronization problems. If the input of a logic gate changes its value so that
this event will invoke the change of the output signal, it takes some time to prop-
agate the input to the output (see Figure 3.2). Such a delay is called propagation
delay representing the time needed for an input to be propagated through the gate to
the output. It is usual that different types of logic gates have different propagation
delays, whose value depends on the voltage settings, temperature of the environment,
and used technology of the circuit being manufactured. For example, some combi-
national logic gates have smaller propagation delay than tr f , which is smaller than
propagation delay of sequential gates [40, 41].

The consequence of propagation delay in the system is that, for a short period
of time, the signal values may lead to inconsistent state. For example, the xor gate
behaviour depicted in Figure 3.2b shows that, in a time between the events e1 and
e1 + ∆xor, there can be the configuration such that in1 = 0, in2 = 1, and out = 0,
which is inconsistent with the xor logic function.

3.2.2 Clock Domain Crossing

The design of a multiple clocks system can be decomposed to several clock domains.
A clock domain is a set of flip-flops and logic gates which are controlled by the same
synchronization signal (clock signal).

The problematic point of data transfer in a multiple clocks system is the so-called
clock domain crossing (CDC). CDC denotes a situation when information from one

1As for most of circuits, tr ∼= t f , we use tr f to represent the time of both the rising and the falling
edge of a signal.

24

�
�

�
�

�
� @

@

in2

in1
out

in1

in2

out out

in2

in1

e1 e2

(b)(a)

e2e1

∆xor ∆xor

Figure 3.2: An ideal and approximated timing diagram of a xor logic gate. The bev-
elled edges represent the transition time of the rising and the falling edge of a signal.
In the ideal model (a), the output signal reflects the event e1 or e2 in no time, while
in the real system (b), the response takes the time ∆xor.

part of a design controlled by one synchronization clock (the source clock domain) is
transferred to a part controlled by a different clock signal (the destination clock do-
main). As these two parts of a design are physically connected by wires and possibly
by logic gates, such a connection “crosses” two clock domains. Until there are no
constraints about phase shift of clock signals (i.e., the source clock is multiple-times
slower or faster than the destination clock and one clock depends on another), the time
between two clock signals fire the execution of flip-flops can be arbitrary small. In
such a case, the synchronization problem appears when both of the clock signals fire
very closely causing that the source clock domain starts changing its flip-flop outputs
which are read, at that exact moment, by logic gates of the destination clock domain.
The destination clock domain can then obtain metastable or inconsistent values of
transferred signals.

Metastability

The main problem of synchronous data transfer is metastability. If a logic gate reads
input signal which, at the moment, has a metastable value, i.e., it is neither true
nor false, the metastability of the input can be propagated to the gate outputs, thus
they are also considered as metastable. Under some circumstances (design unsafe
wrt. metastability, a bad choice of the clock frequency, setup and hold time re-

25

quirements of flip-flops or latches are not met, etc.), a metastable value can spread
through the whole system. There have been proposed several methods how to keep
metastability away from a design. It is widely considered that the two-stage synchro-
nization circuit [28] is a general solution preventing metastability from propagating
through a system. However, there exist automatic verification methods which check
that the design uses proper metastability prevention [34, 35]. For instance, advanced
EDA tools [81, 45, 46] warn the developer that designed system has a problem with
metastability. That is why, in the following, we assume that the designs we are deal-
ing with are metastable proof and we do not take metastability into account any more.
In other words, we assume that the gate input always receives the signal value stabi-
lized to either 0 or 1.

Inconsistent State

Even though the design is metastable proof, there is a risk of inconsistency in a given
system. If the source clock domain sends a stable binary value, which is read by
the destination clock domain as metastable and then stabilized with a proper stabi-
lization mechanism, the resulting stable value can be inconsistent with the sending
value (cf. Figure 3.3). For this purpose, the designer must enhance the design with
a proper synchronization method2.

Considering synchronous systems, if the data consistency specification is pro-
vided (in some sort of safety properties of a given system), a simple way how to ver-
ify inconsistency of data transfer is model checking the zero-delay model of a system.
For an asynchronous system, such a method is unsound as the zero-delay model does
not cover the transitional behaviour between stable states and hides the possibility
of receiving random (inconsistent) values. Currently, to the best of our knowledge,
the designers of RTL systems with multiple clocks solve the synchronization prob-
lem by using well-known synchronizers (FIFO queues, Gray-coded counter values,
. . .), or by introducing a new data transfer protocol (e.g., a hand-shake protocol) fit
for their particular design. The advantage of the use of a well-known synchronizer is
that the verification of a proper synchronization can be done by simple static analysis,
i.e., by checking that the synchronizer is connected properly between two clock do-
mains. Although this approach is suitable for the most of designs communicating via
a standard interface (e.g., a computer bus), for designs where the size and efficiency
are a top priority, applying universal synchronizers may be a too heavy solution. In-
stead, a solution with some kind of a hand-shake protocol could be more practical.
The only and main disadvantage is that it involves a lot of non-trivial user interven-

2On the contrary, this is not the case if the information transferred between two clock domains is
a one-bit value only. In such a case, either (i) the signal does not change, a metastability does not
occur, thus the destination receives stable value, or (ii) the one-bit value is changing and the destination
randomly chooses between 0 and 1, the destination receives the previous or the new stable signal value
(which is in conformity with the source and the destination clock phase shift consequence).

26

�
�A

A�
�

A
A �

� A
A

�
� A

A �
� A

A �
� A

A

�
� A

A �
�

c2

c1

a

b

∆X∆X ∆X

b =?b = 0
a = 1 a =? !

c
r

a

b
s1

s2

c2

X

c1

Y

Figure 3.3: An example of inconsistency caused by clock domain crossing (signals
c1 and c2 are clocks, a and b are data transfer signals, and ∆X is the propagation delay
of gate X). Let us say that the circuit is in a consistent state if ↑c2→ a = ¬b holds
(the expression ↑c means that signal c is at the end of a rising edge). A problem
occurs if the clock signal c2 fires sooner at time ∆X after the time of firing of c1.
In such a case, the values of a and b are randomly chosen which violates the state
consistency assumption.

tion [39] because transmit-receive protocols may differ wrt. their particular use in
a system. Since such solutions may be quite tricky, a proper verification is desirable.

3.3 Modelling Asynchronous Behaviour

In this section, we provide four methods how to model a system in a way which ex-
poses possible data inconsistency flaws caused by a wrong synchronization in the sys-
tem. Each of the methods focuses on modelling the rising and falling edges of binary
signals enabling detection of possible flaws in the synchronization. We model the sys-
tem using the zero-delay abstraction described in Section 2.2 and enhance the model
at places which may produce inconsistent states. Further in the chapter, we call such
an enhancements as the model extension.

All four proposed methods differ mainly in their efficiency. The first method (ex-
tending all critical input ports) is quite precise in a matter of modelling possible syn-
chronization faults, but it rapidly increases the size of a model. The second method
(extending critical signal paths) tries to lower these costs with an over-approximation
of asynchronous data transfer. Both of methods has been published in [92], the next
two methods are new. The third method (modelling with one-step destabilizer) is
inspired by its predecessors but model inconsistent states in a more efficient way.
The fourth method (extending clock domain outputs) aims at false alarms caused by

27

a coarse over-approximation of presented methods and provides a more refined model
of a given system.

The description of each method starts with an explanation of principles of a given
extension. Then the implementation details are discussed and a justification of a so-
lution is provided. Concerning the implementation, we provide a solution for Ca-
dence SMV model checker [56]. We provide a source code of a model extension, in
which we reference to the current and the next values of a state variable. Since most
of BDD-based model checkers provide such a feature, it is also possible to apply our
approach in other verification engines, such as NuSMV or Rulebase.

3.3.1 The Basic Idea

The basic idea of all methods is in generating a random phase to the propagation of
a signal through a critical signal path whenever a signal changes. The fact that we
make the propagation random stems from the reality where a signal does not sharply
change from 0 to 1 (or vice versa) but goes through some rising (or falling) edge.
When the signal is sensed by some gate on such an edge, one cannot predict its value.
Each method of extending a model introduce the random phase on different parts of
a circuit and with different lengths of phase. In general, the proposed approach is
based on two assumptions:

1. clock signals are random all the time (cf. Section 2.2.2), and

2. model checking analyses all possible behaviours including all clock phase
shifts.

Theoretically, in an extended model, when a source clock domain changes a signal
propagating to another clock domain, a model checker examines all possible scenar-
ios which include the following three cases:

1. The destination clock domain reads a signal before its change,

2. a signal is sensed within a random phase representing a rising or a falling edge
of a signal, and

3. a signal is read after it is stabilized.

If a signal is sensed by the destination clock domain before or after the random phase,
such situations clearly justify stable behaviour of a system. Reading of a random
value simulates the case that the destination clock domain reads the signal exactly at
time when the signal is changing.

28

3.3.2 Definitions

A Hardware Design

In order to precisely define the notion of gates, signals, ports, and critical signal
paths, we view a particular RTL hardware design in an abstract way as a tuple H =
(S,C,P,G,M) where:

• S is a finite set of signals.

• C is a finite set of clock signals, C∩ S = /0. In order to obtain a more regular
description, we introduce a special clock signal ⊥ 6∈ C∪ S that we associate
with combinational gates. We denote C⊥ = C∪{⊥}.

• P is a finite set of gate ports.

• G⊆C⊥×2P×2P is a finite set of gates (combinational logic gates, flip-flops,
or latches). A gate—we use the notation g = (c, I,O)∈G in the text below—is
represented as a tuple consisting of its clock signal c (which is ⊥ for combina-
tional gates), a set of input ports I ⊆ P, and a set of output ports O ⊆ P such
that I∩O = /0.

• M : P→ S is a signal interconnection function.

A hardware design H = (S,C,P,G,M) is valid iff:

1. no port is shared by two or more gates, i.e., ∀g1 =(c1, I1,O1),g2 =(c2, I2,O2)∈
G, g1 6= g2 : (I1∪O1)∩ (I2∪O2) = /0,

2. every signal is set by one output only, i.e., for a signal s ∈ S and gates g1 =
(c1, I1,O1),g2 = (c2, I2,O2)∈G, if output ports p1 ∈O1 and p2 ∈O2, M(p1) =
M(p2) = s, then p1 = p2, and

3. every port is connected with some signal, i.e., M is a total function.

Further in the text, we implicitly suppose that a hardware design is valid.

Signal Path

A signal path π is a string of gates and their I/O ports interleaved by signals con-
necting the ports (. . . , gate, output port, signal, input port, gate, . . .). Formally, for
a hardware design H = (S,C,P,G,M), a signal path

π = 〈g1o1s1i2g2o2s2i3g3 . . .gn−1on−1sn−1ingn〉 of length n > 1

is a connected sequence of gates, ports, and signals such that

∀ j ∈ {1, ...,n−1} : g j = (c j, I j,O j) ∈ G ∧ g j+1 = (c j+1, I j+1,O j+1) ∈ G ∧

29

o j ∈ O j ∧ i j+1 ∈ I j+1 ∧ s j ∈ S ∧ (o j,s j) ∈M ∧ (i j+1,s j) ∈M

For a signal path π = 〈g1o1s1i2g2o2s2i3g3 . . .gn−1on−1sn−1ingn〉, we denote:

• Γ(π) = {g1, . . . ,gn} the set of all the gates which appear in the signal path,

• i(π) = {i2, . . . , in} the set of all the input ports in the signal path,

• ii(π) = i2 the source port of the signal path,

• io(π) = in the destination port which the signal path leads to,

• o(π) = {o2, . . . ,on−1} the set of all the output ports in the signal path,

• Σ(π) = {s1, . . . ,sn−1} the set of all signals in π,

• γi(π) = g1 the input gate,

• γo(π) = gn the output gate,

• σi(π) = s1 the input signal,

• σo(π) = sn−1 the output signal.

We also denote Π(H) the set of all signal paths of H.

A Clock Domain

We partition the set of gates G of a hardware design H = (S,C,P,G,M) into subsets
called clock domains that contain gates driven by the same clock signal. For c ∈C⊥,
the clock domain is Dc = G∩ ({c}× 2P× 2P). A special clock domain D⊥ stands
for the set of gates which are driven by no clock signal (obviously, it is the set of all
combinational logic gates).

Critical Input Ports

The set ιc of input ports critical wrt. a domain Dc, c ∈ C, is the set of input ports
which occur on signal paths that start in a different domain and lead to Dc and that
are connected to the gates in Dc via combinational gates only. Equivalently, for a do-
main Dc, critical input ports are all the input ports on the signal paths that start by
a sequential gate lying in a different clock domain and lead via combinational gates
to a sequential gate in Dc. Formally, for a hardware design H = (S,C,P,G,M),

ιc = {p ∈ i(π) | π ∈Π(H), Γ(π) = {g1, . . . ,gn},n > 1 : g1, . . . ,gn−1 /∈Dc∧gn ∈Dc}

The set ι(H) of critical input ports of H is then simply the union of all the input ports
critical wrt. the particular domains of H, i.e., ι(H) =

S
c∈C ιc.

30

A Critical Signal Path

Finally, a critical signal path of length n > 1 in a hardware design H = (S,C,P,G,M)
is a signal path

ρ = 〈g1o1s1i2g2o2s2i3g3 . . .gn−1on−1sn−1ingn〉 ∈Π(H)

that consists of critical input ports, i.e., ∀ j ∈ {2, ...,n−1} : i j ∈ ι(H), and goes from
one clock domain to another one, i.e.,

g1 ∈ Dc1 ,g2 . . .gn−1 ∈ D⊥,gn ∈ Dc2 ,c1 6= c2,c1 6=⊥,c2 6=⊥.

We denote ρ(H) the set of all critical signal paths in H. In the sections below, we will
also use [ρ] as the set of critical signal paths of sharing the same destination port, i.e.,

[ρ] = {ρ′ | ρ′ ∈ ρ(H), io(ρ′) = io(ρ)}.

3.3.3 Extending All Critical Input Ports

We now discuss in detail the approach when we extend the zero-delay behaviour of
every connection of a signal and an input port on critical signal path to make its value
random for a single verification step (a step in the execution of a model) whenever
there is a change of the stable value. We have to note that since we introduce a one
step delay before every critical input port, there is a specific case of accumulated
delay in signal path intersection which requires further consideration. In the follow-
ing, we present the basic idea, we then optimize it for a BDD-based model checker.
Finally, we describe the procedure of the enhancement of the model with proposed
additional behaviour, we examine signal path intersection, and provide a justification
of a construction.

Delayed Input

The principle of the transformation is the following. To model the impact of rising
and falling edges in a critical input port, we replace every connection of a signal to
a critical input port by a new gate. The new gate delays the original signal value
before propagating it to the original input—we call the new gate a delayed input (cf.
gate ∆ in Figure 3.5a put between s and i2). Formally, we change critical signal
path ρ = 〈g1o1s1i2g2o2s2i3g3 . . .gn−1on−1sn−1ingn〉 ∈ Π(H), for n > 1, by inserting
the extra delayed input ∆ before every critical input port of i(ρ) such that new critical
signal path will be

ρ
′ = 〈g1o1s1i∆2∆2o∆2s∆2 i2g2 . . .gn−1on−1sn−1i∆n∆no∆ns∆n ingn〉.

That is, every connection of signal and input port . . .s j−1i j . . . in signal path ρ is
transformed to . . .s j−1i∆ j ∆ jo∆ j s∆ j i j . . . in signal path ρ′ where, for j ∈ {2, . . . ,n}, i∆ j

31

and o∆ j are the input and output ports of the ∆ j delayed input gate, and s∆ j is the new
signal which connects the new gate with the original input port i j.

We introduce the behaviour of ∆ j by the finite automaton in Figure 3.4. The val-
ues which label the arcs represent values of signal s j−1, the control states identify
values of output s∆ j−1 .

"!

R

"!

F "!

"!

1

0

0

1
1

0
1

0

1

0

Figure 3.4: The finite automaton describing a delayed input value with rising and
falling edges of signals.

Further, as digital gates are designed to handle only 0 and 1 values, we model
the R and F values as a random choice between 0 and 1 in the final model (which
we denote as the so-called x-value in the following). As we intend to verify the
data inconsistency using exhaustive state space search, it is sufficient to implement
the x-value as a non-deterministic choice between 0 and 1—non-determinism is im-
plicitly handled such that every possible value is considered when computing the set
of reachable states.

We illustrate the use of a delayed input on an example shown in Figure 3.5a
where the delay is inserted behind an inverter with a non-temporal function o = ¬a.
Here, when the delayed input is s∆ = 0 and the original signal value changes to s = 1,
the automaton goes to R, and the delayed input becomes R (i.e. “rising”). Only then,
provided the original signal value does not change, it transfers to 1. Similarly, for
a change of the original signal value from 1 to 0, the delayed input goes from 1 to F
(“falling”) and then changes to 0.

As an example, let us consider two gates in different clock domains Dc1 and Dc2

connected via signals a and b (cf. the circuit in Figure 3.6a). Let us say that the circuit
is in consistent state if x 6= y holds when firing the clock domain Dc2

3. An example
of the behaviour of the system under the zero-delayed model is depicted in timing
diagram in Figure 3.6a. We can see that the inconsistencies which arise at time terr are

3The event of firing the clock domain Dc by a rising edge of the clock c is expressed by a state in
which the LTL formula ¬c∧X c holds.

32

o1
s

NOT

∆
s∆i1 i2

(a)

i1 s s∆ s′
∆

0 1 0 R
0 1 R 1
0 1 1 1
0 1 F R
1 0 0 0
1 0 R F
1 0 1 F
1 0 F 0

(b)

Figure 3.5: (a) An example of the delayed input (dashed part of an image) connected
between the original connection of an inverter and a critical input port i2 (i.e., M(i2) =
s), (b) the transition table of the delayed input (the signal value s represents the input
tape of the finite automaton in Figure 3.4, the signal value s∆ represents the current
control state and s′

∆
the future control state).

hidden here. On the other hand, if we add the delayed input gates before every critical
input, the inconsistencies appears (see x-values depicted as crosses in Figure 3.6b).

An Optimization of the Delayed Input

Concerning the state space explosion problem of an exhaustive state space explo-
ration, one of the important properties of a model is the number of its state variables.
An implementation of the finite automaton of a delayed input described above con-
sists of four control states, which means that every delayed input adds to a model
two bit variables representing its current state. Here, we will show that only one bit
variable is necessary to obtain the same behaviour. This fact comes from two prop-
erties: (i) in a BDD-based model checker (which we intend to use), when specifying
the future value of a state variable, it is possible to refer to the current and the future
values of state variables, and (ii) only 2 state values are considered on the output of
the delayed input gate (either 0 or 1).

The rising or the falling edge of a signal is zero-delay modelled as an immediate
transition from 0 to 1 or vice versa. In such a case, when the current value at the input
of a delayed input gate differs from the next value, a delayed input provides a non-
deterministic choice of binary values in its output. Otherwise, when the current and
the future value of the input do not change, a delayed input holds the same value on
the output.

Such a behaviour is represented by the finite automaton in Figure 3.7. The label

33

c1 10 0 0 0 01 1 1 1 1 1

terrorterror

(b)(a)

c2 0 0 0 0 1 111 1 1 11

a 0 0 1 0 1 10 11 0 01

b 1 01 1 1 1 10 0 0 0 0

y 1 01 1 1 1 10 0 0 0 0

c2 0 0 0 0 1 1111111

@
@

�
�

@
@ �

� @
@�

�y 11 0 0 1 1 0 01

a 0 0 1 0 1 10 11 0 01

@
@
�
�

@
@�
� @

@
�
��

� @
@ �

�x 0 0 1 1 0 0 1 10

b 1 01 1 1 1 10 0 0 0 0

x 0 0 1 0 1 10 11 0 01

c1 c2

b

a

y

x

c1 0 0 0 0 01 1 11 1 11

c1 c2

y

x
a

b
∆

∆

Figure 3.6: An example of two gates in different clock domains Dc1 and Dc2 as (a)
a zero-delayed model, and (b) model extended with delayed inputs.

s j 6= s′j represents the case that the input changes in its current and the next state.
Similarly, the label s j = s′j represents the case that the input holds its value. Control
states define the values of the output of an optimized delayed input. Here, the state
s j produces the value which corresponds to the value at the input, and the state x
produces the x-value—a non-deterministic choice between 0 and 1.

To proof that the automaton in Figure 3.7 is equivalent to basic, not optimized
automaton in Figure 3.4, we construct the transition table of two subsequent transi-
tions. The construction is performed as follows: for every two subsequent transitions
q0

l1→ q1 (the transition from the state q0 to the state q1 labelled with l1) and q1
l2→ q2

"!

"!

s j x

s j = s′j

s j = s′j

s j 6= s′j

s j 6= s′j

Figure 3.7: The automaton of an optimized delayed input gate.

34

row no. q0 l1 l2 q2

1 0 0 0 0
2 0 0 1 R
3 0 1 0 F
4 0 1 1 1
5 R 0 0 0
6 R 0 1 R
7 R 1 0 F
8 R 1 1 1

(a)

row no. q0 l1 l2 q2

9 1 0 0 0
10 1 0 1 R
11 1 1 0 F
12 1 1 1 1
13 F 0 0 0
14 F 0 1 R
15 F 1 0 F
16 F 1 1 1

(b)

Table 3.1: A transition table of a delayed input. Each row depicts two transitions at
once, where q0 and q2 are control states connected with two subsequent transitions
with labels l1 and l2.

in automaton in Figure 3.4, we create a row in a transition table which contains q0, l1,
l2, and q2. In the original automaton, there are four states, each of them has two in-
coming and two outgoing transitions, that is, there are 16 couples of two subsequent
transitions. Table 3.1 depicts the constructed transition table.

In the transition table, for every q0, if both l1 and l2 differ, the control state q2 is
either R or F (rows 2, 3, 6, 7, 10, 11, 14, and 15), which is identified in the automaton
in Figure 3.7 by the control state x with incoming transitions s j 6= s′j where s j = l1 and
s′j = l2. Similarly, if both l1 and l2 have the same value, the resulting state produces
the value of the label l1 or l2 (rows 1, 4, 5, 8, 9, 13, and 16), which is identified by
the control state s j with incoming transitions s j = s′j.

Implementing Delayed Inputs in Cadence SMV

We now have a look at how to apply the method of extending a model in Cadence
SMV, thus the following text discusses implementation details of proposed model
extension. We use the feature of several synthesizers being able to create the zero-
delayed model of an RTL design, we then extend such a model on all critical input
ports with delayed inputs defined above. The syntax of the source codes below con-
forms to Cadence SMV input language, which specification can be found in [56] or
in [57].

We start with a description of extending combinational logic gates. Recall the zero-
delayed model of a given design described in Section 2.2. In such a model, circuits
of combinational logic gates (NOT, AND, OR, NAND, NOR, etc.) are translated to

35

SMV simply in the form of logic expressions. Now, we have to:

1. implement a delayed input module which delays a signal before propagating it
to another gate input,

2. transform logic expressions of combinational logic of a circuit to a structural
description, and

3. instantiate delayed input modules (one instance for each critical input port).

In the following, we will describe these steps in detail.

1. Implementing a delayed input module. In SMV, we create a common module
delayed input which will be instantiated several times. For comparison purposes,
we start with the implementation of the basic, not optimized proposal of the delayed
input (cf. Figure 3.8).

1 module delay_input(signal, delayed)
2 {
3 input signal : boolean;
4 output delayed : boolean;
5 state : {q0, qR, q1, qF};
6

7 -- an initialization phase
8 init(state) := signal ? q1 : q0;
9 -- state control

10 next(state) := switch(state) {
11 q0 : next(signal) ? qR : q0;
12 qR : next(signal) ? q1 : qF;
13 q1 : next(signal) ? q1 : qF;
14 qF : next(signal) ? qR : q0;
15 };
16

17 -- output generation
18 delayed := switch(state) {
19 q0 : 0;
20 qR : {0,1};
21 q1 : 1;
22 qF : {0,1};
23 };
24 }

Figure 3.8: A source code of a delayed input module in Cadence SMV.

By comparing the implementation with the automaton in Figure 3.4 on page 32,
we believe that the construction is straightforward. The module has a binary input

36

1 module delay_input(signal, delayed)
2 {
3 input signal : boolean;
4 output delayed : boolean;
5

6 -- an initialization phase
7 init(delayed) := signal;
8 if (signal = next(signal))
9 -- the signal value is stable

10 next(delayed) := signal;
11 else
12 -- value changes, output the x-value
13 next(delayed) := {0, 1};
14 }

Figure 3.9: A source code of an optimized delayed input module.

(signal), a binary output (delayed), and an internal state. The variable state is
a state variable4, which increases the size of a model being verified. To make the
picture complete, we need to define the initial value of the control state, which we
simply choose as the stable value of the module input. Note that the initial state of
the model strongly depends on the specification used within the verified property and
it is commonly assumed that the initial state represents some consistent and stable
state.

In the following, the optimized delayed input implementation is presented. Note
that there is no internal variable representing the current control state. Instead, the one-
bit output variable delayed is a state variable delaying the input value. If we look at
the automaton in Figure 3.7, the state x is represented as non-deterministic choice of
output values (line 13) under the condition that the current input signal value differs
from the next value (line 8). Otherwise, the output is defined as stable (control state
{0,1}), that is, the value is either 0 or 1 depending on the value of input signal (line
10).

2. Transforming logic expression. We transform each logic expression based on
a signal appearing in a critical signal path to an appropriate structural description
using modules. We create a module for every basic logic operator used within the ex-
pressions. Such a logic operator is implemented in the destination architecture as
one gate only (typically NOT, AND, and OR). We than transform the logic expres-
sion to a structural description such that every use of an operator is substituted with

4State variables in SMV can be simply identified by their definition (the left side of an assignment)
via the init() or the next() operators (cf. line 8 and 10).

37

1 module and(out, in1, in2)
2 {
3 input in1 : boolean;
4 input in2 : boolean;
5 output out : boolean;
6

7 out := in1 & in2;
8 }

Figure 3.10: A SMV module representing an AND gate with two inputs.

an instance of binary logic module. An example of an AND module is provided in
Figure 3.10, other basic logic expression modules are very similar and conceptually
differ at line 7 only.

In Figure 3.11, we give an example of transformation of an assignment of the value
of a logic expression to a structural description. We believe that such a modification
is straightforward and thus further explanation is unnecessary.

1 z : boolean;
2 w : boolean;
3 x : boolean;
4 y : boolean;
5

6 z := w | ˜(x & y);

−→

1 z : boolean;
2 w : boolean;
3 x : boolean;
4 y : boolean;
5 s1 : boolean;
6 s2 : boolean;
7

8 g1 : and(s1, x, y);
9 g2 : not(s2, s1);

10 g3 : or(z, w, s2);

Figure 3.11: Transforming logic expressions to a structural description.

3. Instantiation of delayed input modules. At last, we create instances of delayed
input modules between critical input ports and signals connected to them. For any
gates g1,g2 ∈ G and a signal s connecting some output o of g1 with some critical
input port i of g2—meaning that there is a signal path g1osig2 ∈ Π(H), we create
one instance of the delayed input module ∆ and a declaration of an auxiliary variable
s∆. We then reconnect signals of the circuit in a way that conforms to signal path
g1osi∆∆o∆s∆ig2 where i∆ and o∆ are input and output ports of the delayed input gate.

To continue with our example in Figure 3.11, let us say that there is a critical
signal path g1o1s1i2g2o2s2i3g3 where i2 and i3 are critical input ports. In particular,
the second port of the not module instance g2 and the third port of the or module

38

instance g3 are critical. The model extension contains the signal path

g1o1s1i∆1∆1o∆1s∆1 i2g2o2s2i∆2∆2o∆2s∆1 i3g3,

so we create two instances of the delayed input module and two auxiliary variables
representing signals s∆1 and s∆2 (cf. Figure 3.12).

1 z : boolean;
2 w : boolean;
3 x : boolean;
4 y : boolean;
5 s1 : boolean;
6 s2 : boolean;
7 s_delta1 : boolean; -- a new signal
8 s_delta2 : boolean; -- a new signal
9

10 g1 : and(s1, x, y);
11 delta1 : delayed_input(s1, s_delta1); -- delaying s1
12 g2 : not(s2, s_delta1); -- s1 is replaced by s_delta1
13 delta2 : delayed_input(s2, s_delta2); -- delaying s2
14 g3 : or(z, w, s_delta2); -- t1 is replaced bys_delta2

Figure 3.12: An example of an instantiation of delayed modules.

Signal Path Intersection

A problem with the above extension by delayed inputs arises when there exist two
signal paths sharing one or more gate inputs and only one of the paths is a critical
path. Formally, there exist signal paths

π1 = 〈g1,1o1,1s1,1i1,2 . . .o1,n1−1s1,n1−1i1,n1g1,n1〉 ∈Π(H)

and
π2 = 〈g2,1o2,1s2,1i2,2 . . .o2,n2−1s2,n2−1i2,n2g2,n2〉 ∈Π(H)

of a hardware design H = (S,C,P,G,M) for n1,n2 > 1 and some domains

c1,c2,c3 ∈C, c1 6= c3, c2 6= c3

such that
g1,1,g1,n1 ∈ Dc1 , g2,1 ∈ Dc2 , g2,n2 ∈ Dc3

∀ j ∈ {1,2} ∀k ∈ {2, . . . ,n j−1} : g j,k ∈ D⊥, and i(π1)∩ i(π2) 6= /0. (3.1)

In such a situation, delayed inputs in critical signal path π2 would influence
the behaviour of π1 which is supposed to be zero-delayed. A problem arises due

39

tc1

c2

π1

π2

g2∆ ∆ g3 g4∆g1 g5

g6

s4
s3

s2s1

Figure 3.13: An illustration of signal path intersection. Critical input ports to be
extended with delayed inputs are depicted using ∆ gate.

to unconstrained clock signals (cf. Section 3.3.1 where we assume a clock to be
random all the time) since it is possible for the clock domain Dc1 to be fired again
after two verification steps. Signals originating from and leading to the same clock
domain should be stable at firing event. If a delay introduced by delayed inputs in
π1 accumulates in more than one verification step, i.e., |i(π1)∩ i(π2)|> 1, this could
lead to generating false alarms.

To prevent this false behaviour, before adding the delaying gates as described
above, we pre-process the circuit by modifying π1 into a new signal path π′1 which by-
pass signal path π2 and preserves the original behaviour. In such a case, a new signal
path π′1 will not contain critical input ports, thus it will be zero-delayed. The signal
path π1 is constructed by replacing shared parts of signal paths π1 and π2 (the gates
shared by both signal paths, with their input and output ports, and signals connected
to them) by newly created (duplicated) gates, ports, and signals with the same be-
haviour as the original. As the modification is simple, we explain the problem on
an example depicted in Figure 3.14 based on the example in Figure 3.13.

More precisely, to modify π1 into π′1, (i) we create new variables representing
signals set by combinational gates shared by both signal paths (cf. Figure 3.14, sig-
nals s′2 and s′3 represent signals s2 and s3 set by g2 and g3), (ii) we duplicate such
gates by newly created instances (gates g′2 and g′3 conforming to g2 and g3—in SMV,
such a duplication can be done by duplicating the instance statement of the original
gate and by renaming newly created module instance), and (iii) we reconnect shared
signals (s2 and s3) connected to duplicated gates by previously created signals (s′2 and
s′3). Moreover, the duplication of a gate may violate the validity of a model (a valid
model is defined on page 29) by duplicating an output port connection to some signal
(in particular, to a signal not included in π1 or π2). In such a case, we regain the va-
lidity by substituting duplicated signal connection with an output port connection to
newly created dummy variable.

40

tc1

c2
π2

g2∆ ∆ g4∆g1 g5

g6

s4s2

g′2

g3

g′3

s3
s1

s′2

s′3

π′1

Figure 3.14: An illustration of gate and signal duplication.

For a hardware design H and for all π1,π2 ∈ Π(H) which intersect each other,
we modify π1 to π′1 as described above to get a new hardware design in which π′1 and
π2 do not intersect. We repeat this step on a new hardware design until we receive
a hardware design which does not contain signal path intersection conforming to
formula 3.1. Performing the model extension with delayed inputs on such a design
does not introduce false alarms caused by signal path intersection.

A Justification of the Construction.

The extension of all critical input ports is justified by our assumption that common
RTL development tools are used to check that in all single clock domains, all sig-
nals have always enough time to stabilize before being sensed by sequential gates.
Moreover, we assume that input and output signals of the entire checked design will
be used, by another design, within the same clock domain as the gates which gener-
ate/consume these signals respectively.

As for the extension of critical inputs, the modification makes their values ran-
dom for a single verification step if the changed input would lead to a value change.
If this change is permanent, the extension is clearly justified because when the signal
is rising from 0 to 1 or falling from 1 to 0, it can be sensed in an unpredictable way
by the adjacent logic. On the other hand, when there is no change on the output, no
extension is needed. An interesting situation is when there is a change on the output,
but a temporary one only (the so-called hazard)—i.e. there is a rising and immedi-
ately a falling edge (or vice versa) [58]. In such a case, our approach introduces two
random phases, which is again justified for most common-life cases as it is difficult to
guarantee that the generated glitch in the signal would never be sensed (in any case,
a design that would depend on this, would not be very clean).

The above justification is, however, valid only from the point of view of moni-
toring a single signal. When we look at reachable combinations of multiple signal

41

values, the length of the random phase (the phase with x-value(s)) is also important.
We make it uniformly one verification step long which requires some further consid-
erations. In fact, in general, such an approach can introduce an under-approximation
or over-approximation though it does not happen in most practical situations (and it
can be statically checked whether such a situation arises or not). In particular, such
cases can arise when the involved gates significantly differ in their delays.

Let us consider the case of two critical paths with a different length (a general-
ization to more such paths is straightforward). Suppose we have two critical paths
ρ1,ρ2 of lengths n1,n2 such that n1 < n2. If the accumulated delay of the gates in
ρ1 is smaller than in ρ2, clearly the output of ρ1 will stabilize before the output of
ρ2, which corresponds to our model. On the other hand, if the accumulated delay of
the gates in ρ1 is equal or greater than in ρ2, we need to be able to obtain the desirable
combination of two x-values at the ends of both paths. That is, in our model, the sig-
nal at the output of the longer signal path ρ2 must provide either the new stabilized
value, or the x-value, at the time when ρ1 is also providing the new stabilized value,
or the x-value before its stabilization. Considering that the delayed input providing
the x-value, which is a random choice between 0 and 1, also represents zero or one
step of propagation delay5 (cf. Figure 3.15), the model without regard to the length
of signal path ρ1 simulates all possible scenarios of propagation delays on ρ1 (0 up to
n1 steps of delay). More precisely, in our model, there is possible a case in which the
shorter and slower signal path ρ1 provides the old stabilized value (delayed by one
on more of its delayed inputs) and the longer and faster signal path ρ2 propagates the
new stabilized value through all of its delayed inputs (which do not delay the signal).
Moreover, there is a case, in which both critical signal paths delay the signal just for
a single step (e.g., for both signal paths, all but one delayed input model the propaga-
tion as zero-delay). Thus, there is a time in which ρ1 and ρ2 are providing the x-value
on the outputs.

3.3.4 Extending Critical Paths

The previous section provides a method of modelling the progressive delay of a criti-
cal signal propagation (and of the associated random phases when its value is chang-
ing) via an extension of every critical input. This method is rather precise but may
cause a significant state-space explosion due to the number of newly introduced state
variables. Below, we try to avoid this explosion by introducing a less precise, approx-
imate model that can, according to our experience, be still sufficient in some practical

5For example, let us assume some signal has the waveform 011 (in the first state, the signal has
value 0, then it rises to 1, and holds it in the next state). Its delayed form will have the waveform
0x1 where x represents two possible values caused by randomized delayed input, i.e., the delayed input
generates two possible waveforms, either 011 or 001. The first waveform represents a zero-delayed
signal propagation. The latter waveform simulates a one step delay of the signal value (1 appears after
the second state, 0 remains a little longer). Similarly, the same representation of x-value holds for
a falling edge.

42

i

o

∆

i o i

o

case (a): zero-delay case (b): one-step delay

Figure 3.15: An illustration of two traces which are both possible when model check-
ing a design consisting the delayed input ∆. Note that when n delayed inputs are
connected in a cascade (they belongs to a critical signal path of the length n), model
checking considers 2n traces with different scenarios of a signal propagation includ-
ing propagation delays of zero and n steps.

cases. In this approach, we do not extend every single critical input port, but instead,
we put a special new gate called a destabilizer on every output of a critical signal
path.

As a basis which we try to over-approximate in the new approach, let us summa-
rize how the process of stabilization of a signal σo(ρ) in a critical signal path ρ looks
like in the previous approach when we extend every critical input by the delaying and
randomising phase. In that case, a critical input port can be viewed as a generator
of stable and unstable values. If more critical input ports are sequentially connected
(they all appear in the same critical signal path ρ), the unstable values are propagated
through all critical input ports on the path. A new value of the signal σi(ρ) thus influ-
ences signal σo(ρ) after the delay equal to the sum of delays of all delayed inputs on
ρ. When σi(ρ) changes its value, it can cause a temporary instability—the adjacent
gates switch their output value through rising or falling edges and the undefined value
is propagated to further gates. Due to modelling the delay of one gate as one step,
it takes L steps to influence σo(ρ) by σi(ρ) where L = |i(ρ)|, i.e., unstable values
of signal σo(ρ) can occur in at most L steps. We discuss the justification of such
an approach below.

A Destabilizer

The principle of the approximate approach we propose is to replace the progressive
generation of unstable signals by having a single new gate called a destabilizer which
will generate all possible combinations of x-values of a signal for a period of L steps.
The destabilizer will be connected to the destination port of a critical signal path
(io(ρ)) where x-values can become visible. We create one destabilizer for every set
of critical signal paths having the same destination port. The destabilizer starts to
generate x-values if one of the input signals of considered signal paths changes its
value.

43

t
t

α ω

δρ

.

.

. i1

in

.

.

.

sωσo(ρ)σi(ρ)

σi(ρ′)

ρ

ρ′

io(ρ)

Figure 3.16: A schematic connection of a destabilizer to critical signal paths.

Formally, for a design H = (S,C,P,G,M), a destabilizer over critical signal paths
[ρ]6, ρ ∈ ρ(H) is a gate

δρ = (⊥, {i1, . . . , in, α}, {ω})

where I′ = {i1, . . . , in, α,ω} is a set of new ports, i.e., I′∩P = /0, for which n = |[ρ]| is
the number of critical signal paths with the same output signal. Apart from introduc-
ing δρ, we have to insert the destabilizer to the hardware design H. We reconnect the
original output signal σo(ρ) of the given critical path ρ (and of the adjoining paths
[ρ]) to input port α. To properly connect the output of the destabilizer with destination
port io(ρ), we create a new signal s′ and connect it to ports ω and io(ρ). Finally, since
the destabilizer needs to monitor the input signals of [ρ], we connect input signals of
ρ and of the adjoining paths to i1, . . . , in (cf. Figure 3.16).

In particular, by adding the destabilizer for a signal path ρ to the hardware design
H = (S,C,P,G,M), we change H to H ′ = (S′,C,P′,G′,M′) where:

• S′ = S∪{sω}, sω /∈ S, is the set of signals containing new signal connecting
the destabilizer with the destination port of ρ,

• P′ = P∪ Iρ ∪{α,ω}, Iρ = {iρ′ | ρ′ ∈ [ρ]}, (Iρ ∪{α,ω})∩P = /0, is the set of
ports with the new ports of δρ,

• G′ = G∪{δρ} is the set of gates with the destabilizer
δρ = (⊥, Iδ∪{α}, {ω}) /∈ G, and

• M′=(M\{(io(ρ),σo(ρ))})∪Mδ is the port–signal mapping where (io(ρ),σo(ρ))
is the original connection of output signal with destination port of ρ, and Mδ is
the destabilizer connection, Mδ = {(α,σo(ρ)),(ω,sω),(io(ρ),sω)}∪ f , where:

– α is connected to the original zero-delayed output of ρ,

– the new signal sω connects output ω of the destabilizer with the destina-
tion port of ρ,

6Note that [ρ] represents the set of all critical signal paths with the same destination port.

44

"!

"!

D X

cnt = L

cnt < L,

cnt := 1

cnt := 1
cnt := cnt +1

v(I) 6= v′(I),

v(I) = v′(I),

v(I) 6= v′(I),

v(I) = v′(I),
v(I) = v′(I)

Figure 3.17: The automaton describing the behaviour of a destabilizer

– and f is a mapping of destabilizer’s monitored input ports to input signals
of [ρ] such that f = {(iρ′ ,σi(ρ′)) | ρ′ ∈ [ρ]}.

The behaviour of a destabilizer δρ is defined by the finite automaton shown
in Figure 3.17—for brevity, the automaton is described with one bounded counter
whose possible values are not included directly in the state-transition control. Let
ν(I) 6= ν′(I) for a set of monitored inputs I denote that some input in I is changing its
value (i.e., its current value differs from the value in the next step). If the destabilizer
is in the D state—when it has a defined value (in particular, σo(ρ)) on its output—and
one of the monitored signals changes its value, the destabilizer switches to the X state
and produces on its output the x-value, i.e., randomly 0 or 1. The destabilizer will
hold in the X state for a period of L steps where L is the number of critical input ports
in the longest critical signal path of [ρ] which the destabilizer is connected to, that is

L = max({|i(ρ′)| | ρ
′ ∈ [ρ]}) (3.2)

Implementation of a Destabilizer

Let us consider a general destabilizer for n critical signal paths with L being the length
of the longest of these paths. In SMV, we can implement the destabilizer as the fol-
lowing module with input signals in 1,...,in n to be connected to the monitored
inputs of the covered critical paths, input port alpha (the original output to be de-
layed), and the new output port omega. As the counter of steps of random values on
the output ranges from 1 to L, we extend its range to 0 to L claiming that value 0
represents the D control state of the destabilizer. The code of a module is depicted in
Figure 3.18.

A simple illustration of how a destabilizer is connected to the rest of a modelled
design can be found in Appendix A.

45

1 module Destabilizer(in_1, ..., in_n, alpha, omega) {
2 input in_1 : boolean;
3 ...
4 input in_n : boolean;
5 input alpha : boolean;
6 output omega : boolean;
7 cnt : 0..L;
8 -- L is a constant value obtained from formula (3.2)
9

10 init(cnt) := 0;
11 next(cnt) := case {
12

13 -- one of the monitored signals is changing
14 ((in_1!=next(in_1)) |
15 ... |
16 (in_n!=next(in_n))) : 1; -- to state X
17

18 -- the counter reaches the maximum and
19 -- all monitored signals hold
20 cnt=L : 0; -- to state D
21

22 -- the counter is in (0;L) and
23 -- all monitored signals hold
24 cnt>0 & cnt<L : cnt+1; -- remain in X
25

26 -- all monitored signals are stable
27 1 : 0; -- remain in D
28 }
29

30 omega := case {
31 cnt=0 : alpha;
32 -- state D: propagate a defined value
33

34 cnt>0 : {0,1};
35 -- state X: output the x-value
36 }
37 }

Figure 3.18: The code of the module of a destabilizer in Cadence SMV. We believe
that the function is clear from the definition of a destabilizer.

46

A Justification of the Construction

Modelling Capabilities. We are interested in checking that no dangerous stable
combination of signals is reachable even though there is a possibility that some un-
defined signal values on critical signal paths will be sensed and registered. Therefore
a method which over-approximates the influence of working with undefined signal
values on the reachable stable combinations of signals is a sound solution.

A destabilizer is connected to the output of several critical paths. In the previ-
ously described method based on extending all critical input ports, it takes at most
L = |i(ρ)| steps to stabilize the output signal if the input signal of any critical path
changes (provided ρ is the longest path of [ρ]). A destabilizer produces x-values for
L steps if any of the input signals changes. Thus, the destabilizer will generate all
the combinations of signals to be sensed and become stable as in the method based
on extending all critical input ports and may be even more. Therefore, it is a safe
over-approximation of the extension of all gates in critical signal paths.

However, if a model checker returns a counter-example in a model using desta-
bilizers, we cannot be sure, due to the over-approximation, if it reflects a possible
behaviour of the real system. In such a case, one must examine the counter-example
manually or a more precise modelling method is required, e.g., we can use a model
based on the extension of all critical gates and perform the verification once again.
One could also think of performing the check only on the given path and possibly
using the extension of all critical gates only on this path. A proper investigation of
such an approach is a part of the future work.

Efficiency of the Method. We said that destabilizers often save a number of state
variables compared to the method of extending all critical input ports. Let us examine
when this approach is efficient wrt. the number of state variables. The method based
on extending all critical input ports creates one new binary state variable per a critical
input, i.e., |ι(H)| new state variables where ι(H) is the set of all critical input ports
in a design H. The method using destabilizers also introduces new state variables.
However, note that one destabilizer can replace the extension of all critical input ports
that is needed in the first method on more than one critical signal paths. Let L[ρ], for
ρ ∈ ρ(H), represent the maximum number of input ports of critical signal paths [ρ]
as defined by formula 3.2. Every destabilizer for [ρ] adds to the system a counter of
unstable values of the range [0;L[ρ]], i.e., the size of the counter is dlog2(L[ρ] + 1)e
bits. In order to get the number of new state variables for the whole hardware design
H, we need to summarize newly added variables for all the sets of critical signal
paths. For such a purpose, we define R = {[ρ] | ρ ∈ ρ(H)} being the sets of critical
signal paths sharing the same destination port. Then, the number of state variables
added to the design by the destabilizer method is ∑[ρ]∈Rdlog2(L[ρ] +1)e. Finally, we
can say that the method of extending critical signal paths is more efficient than the
method of extending all critical input ports if

47

∑
[ρ]∈R
dlog2(L[ρ] +1)e < |ι(H)| (3.3)

This typically fits for a design with long critical signal paths (delayed inputs con-
nected in cascade are reduced) or with a lot of critical signal paths leading to the same
input port (one destabilizer substitutes a number of delayed inputs). Our experiments
(described in detail in Section 3.5) show that, when dealing with real-life component
of asynchronous FIFO, the method of destabilizers gains this advantage.

3.3.5 Modelling with One-step Destabilizers

In the third method of modelling data transfer between two clock domain, we focus
on the number of random outputs generated by the destabilizer described above. Our
goal is to show that only one step of generating random values is sufficient for most
hardware designs. In this section, we present a method of modelling using a destabi-
lizer providing a random value for a single step only. We will justify our construction
by showing that one step of random values on the output of critical signal path is
sufficient to reveal inconsistencies caused by design faults in clock domain crossing.

Clock Constraint

When modelling the environment as described in Section 2.2, it is possible that clock
signals are being random all the time. In such a case, the interval between two rising
edges of a clock signal may be two verification steps at least (at first step, the clock
signal changes its value from low to high; in the next step, the value falls down).
Both methods of handling asynchronicity that we proposed delay the signal value
at the destination of a critical signal path before its propagation to another clock
domain for L verification steps at most where L is the length of the critical signal
path. If L > 2, it is possible for the destination clock domain, to read the inputs from
the signal path during its stabilization phase more than once (in particular, n-times
where 1≤ n≤ dL/2e).

For most hardware designs, it is uncommon that the delay of a propagation of
a stable value through a signal path is greater than a short interval of two clock ticks.
In such a case, proposed methods may introduce false alarms as they unnecessarily
over-approximate the model. Moreover, such an over-approximation may complicate
the reachability analysis by a need to explore runs infeasible in the real system.

It is possible to remove infeasible behaviour by providing only a single step of
randomizing the value of critical signal path such that the signal leading to a desti-
nation clock domain is stabilized within two verification steps. We now concentrate
on optimizing our methods for those hardware designs in which every critical signal
path propagates a new signal within a delay less than a clock period of a destination

48

clock domain. Knowing the frequency and electric parameters of the technology that
is used, it is possible to determine the validity of such a condition [42, 43, 44].

A One-step Destabilizer

In the following, we describe an modification of the model with destabilizers that pro-
duces random outputs for only one verification step—we call them one-step desta-
bilizers. The extension of a zero-delayed model is performed in a similar way as
described in the previous section dealing with extension of critical paths.

As before, a one-step destabilizer added to the output of a critical signal path
ρ ∈ ρ(H) randomizes the output shared with critical signal paths [ρ] (the behaviour
of a one-step destabilizer will be described later). We define a one-step destabilizer
as a gate:

δ1 = ({⊥},{i1, . . . , in,α},{ω})

where I′ = {i1, . . . , in}, I′ ∩P = /0, is the set of new ports of monitored inputs, α is
a new port port sensing the zero-delayed output of ρ, and ω is a new port which
delays the input for a single step.

rr

c1

domain Dc2domain Dc1

α

i1, . . . , in

ω

Destination clockSource clock Critical signal paths One-step destabilizer

δ1

c2

Figure 3.19: A schematic connection of a one-step destabilizer to critical signal
path(s).

A symbolic scheme of one-step destabilizer is depicted in Figure 3.19. Like
in the case of using plain destabilizer, we add a one-step destabilizer to every set of
critical signal paths sharing the same destination port. The modification of a hardware
design is the same, we introduce it only for a complete picture: For a set of critical
signal paths with the same destination port [ρ], we change the hardware design H =
(S,C,P,G,M) to H ′ = (S′,C,P′,G′,M′) where:

• S′ = S∪{sω}, sω /∈ S, is the set of signals containing new signal connecting
the one-step destabilizer with the destination port of ρ,

49

• P′ = P∪ Iρ ∪{α,ω}, Iρ = {iρ′ | ρ′ ∈ [ρ]}, (Iρ ∪{α,ω})∩P = /0, is the set of
ports with the new ports of δ1,

• G′ = G∪{δ1} is the set of gates with the one-step destabilizer
δ1 = (⊥, Iδ∪{α}, {ω}) /∈ G, and

• M′=(M\{(io(ρ),σo(ρ))})∪Mδ is the port–signal mapping where (io(ρ),σo(ρ))
is the original connection of output signal with the destination port of ρ, and Mδ

is the one-step destabilizer connection, Mδ = {(α,σo(ρ)),(ω,sω),(io(ρ),sω)}∪
f , where:

– α is connected to the original zero-delayed output of ρ,

– the new signal sω connects output ω of the one-step destabilizer with
the destination port of ρ,

– and f is a mapping of one-step destabilizer’s monitored input ports to
input signals of [ρ] such that f = {(iρ′ ,σi(ρ′)) | ρ′ ∈ [ρ]}.

The behaviour of a one-step destabilizer is defined by the automaton depicted in
Figure 3.20. The states of the automaton represent the next value of output ω. Let
I = {i1, . . . , i2}, the expression v(I) = v′(I) then stands for a constraint that there is no
change of values of any of the monitored input ports. On the other hand, v(I) 6= v′(I)
means that one or more monitored signals connected to the input ports I change. In
a stable state, a one-step destabilizer produces the α value—the input of a one-step
destabilizer and a value of the output signal of a critical signal path. If at least one
of the monitored inputs changes, the one-step destabilizer produces a random output
and the destination clock domain is able to receive either 0 or 1. If this change is
caused by a single clock domain, the one-step destabilizer produces a random phase
for a single verification step—a change of signals of a source clock domain is caused
by rising (or falling) edge; the rising (or the falling respectively) edge cannot happen
immediately in the next step, thus the monitored signals hold their value and the one-
step destabilizer switches back to a stable state.

"!

"!

{0,1}α

v(I) = v′(I) v(I) 6= v′(I)

v(I) = v′(I)

v(I) 6= v′(I)

Figure 3.20: The automaton controlling the output of a one-step destabilizer.

50

1 module OnestepDestabilizer(i_1, ..., i_n, clk, alpha, omega) {
2 input i_1 : boolean;
3 ...
4 input i_n : boolean;
5 input clk : boolean;
6 input alpha : boolean;
7 output omega : boolean;
8

9 init(omega) := alpha;
10

11 next(omega) := case {
12

13 -- one of the monitored signals is changing
14 ((i_1 != next(i_1) |
15 ...
16 (i_n != next(i_n)) : {0,1};
17

18 -- otherwise output the stable input
19 1 : alpha;
20 }
21 }

Figure 3.21: The code of the module of a one-step destabilizer.

Implementation of One-step Destabilizers

We believe that the implementation of one-step destabilizer in Figure 3.21 is straight-
forward for the reader. Compared to a plain destabilizer, it introduces a new one-bit
state variable representing output ω of the finite automaton in Figure 3.20.

An example of how to include one-step destabilizer into a design would be very
similar to the example of using destabilizer, which is shown in Appendix A, and here
we do not repeat the exercise.

A Justification of the Construction

In the next paragraphs, we provide a justification of the method of extending model
with one-step destabilizers. We aim at modelling capabilities and at a case when
the method is more efficient wrt. previously proposed method of plain destabilizers.
Just for a complete picture of the construction, we discuss the differences between
one-step destabilizers and delayed inputs.

Modelling Capabilities. The extension using one-step destabilizers is justified by
our assumption that a propagation delay of any critical signal path of a circuit is less

51

than the clock period of a destination clock domain. This means that we assume that
unstable values caused by a change due to a single event of a source clock domain
(rising or falling edge of a clock) can be sensed by a destination clock domain once
only for that event (such an assumption can be checked for a specific hardware design
by calculating a propagation delay using the specification of the technology).

The proposed modification of a model makes the destination port of a critical
signal path random if a change is sensed at the source of a critical signal path. In
a circuit, if a change is generated at the source of a critical signal path, an unstable
value caused by propagating this change through a path may be sensed by a desti-
nation clock domain. In such a case, a one-step destabilizer will provide the x-value
at a destination port of a critical signal path, which simulates reading of an unstable
value by a destination clock domain.

A random phase of one-step destabilizer is produced as long as the inputs change
(cf. Figure 3.20). The length of a random phase needs some further consideration.
If a design includes an intersection of critical signal paths described on page 39, we
must ensure that a change caused by a source clock domain cannot generate unstable
value readable also by the same clock domain in its next clock event. In an extended
model, if a change is caused by a single critical signal path, the responsible one-step
destabilizer produces a random value for a single verification step since the event
that causes such changes cannot happen again immediately in the next step, and the
one-step destabilizer stabilizes its output because no other change is sensed. Thus,
a destination port will be already stabilized in the next clock event. On the other
hand, a random phase of a one-step destabilizer may last more verification steps.
This can happen only if it monitors signals from more source clock domains and one
clock domain changes its signals one step after another clock domain did so. In such
a case, a longer random phase is also justified as a one-step destabilizer produces an
unstable value leading to a clock domain that did not invoke the change.

We have shown that a model extended with one-step destabilizers is a safe over-
approximation. This over-approximation is also the main disadvantage of the method
because it may produce false alarms. Thus, one must examine every counter-example
which can be done in a similar way discussed in the method of extending critical
signal paths with plain destabilizers.

Efficiency of the Method. Each instance of a one-step destabilizer creates a new
one-bit state variable. The number of instances of a one-step destabilizer, i.e., the num-
ber of introduced state variables in the hardware design H is |R|7. Since the method
of extending critical signal path (with plain destabilizers) has very similar modelling
capabilities (plain destabilizers just produce more random scenarios as the duration
of a random phase is longer), we discuss the case when the proposed method is more

7Remember that R = {[ρ] | ρ ∈ ρ(H)} includes all sets of critical signal paths sharing the same
destination port.

52

efficient in a number of introduced variables. From the formula 3.3, we can state that
the method of one-step destabilizer is more efficient if:

∑
[ρ]∈R
dlog2(L[ρ] +1)e > |R|

From the definition of a critical signal path (here, note that every critical signal has at
least one critical input port), we modify the condition into the form:

∃r ∈ R : dlog2(Lr +1)e > 1

that is ∃r ∈ R : Lr > 1, which can be even simplified as:

∃ρ ∈ ρ(H) : |i(ρ)|> 1 (3.4)

This means that the method of one-step destabilizer is more efficient on a hardware
design which contains at least one critical signal path with two or more input ports.
Since every critical signal path contains one input port at its destination, more inputs
are the part of a combinational logic. That is, the new method is more efficient if
a critical signal path contains one or more combinational gates.

Delayed Input (∆) versus One-step Destabilizer (δ1). Since both modules of a de-
layed input gate and a one-step destabilizer are very similar, one can wonder why the
delayed input gate cannot be used at the end of a critical signal path instead of a one-
step destabilizer. Both gates delay its input by a precisely one step during which
a random output is produced. The main difference is when the delay (or a random
phase) is generated. A one-step destabilizer produces a random output whenever any
of sources of the critical signal paths it represents changes, but a delayed input gate is
restricted only to the change of the gate on its input. Next, we show a simple example
where there is a difference between the behaviour of the design extended by a single
delayed input gate and a one-step destabilizer.

Consider two critical signal paths starting with input signals a and b, and sharing
the same destination port connected to a signal d. The function of the logic circuit
is described in an RTL design by logic equations c = ¬b, d = a∧ c, x = d, and is
schematically depicted in Figure 3.22.

A real logic circuit produces a short glitch on signal d if the value of signals a
and b changes from 0 to 1 at the same time. Just for simplicity of an explanation,
we consider that the propagation delays of all gates are equal. The hardware state of
the circuit in time t is then described by equations:

ct = ¬bt−1, dt = at−1∧ ct−1, xt = dt

Next, consider a scenario with the initial state a0 = 0, b0 = 0, c0 = 1, d0 = 0, and
at = bt = 1 for t > 0. The signal d will hold value 1 for a while due to the propagation
delay of the NOT gate:

53

t
h

a
d

c2

g1

x

g2

c1

g3

b
c

HH
H

��
�

Figure 3.22: A simple example of two signal paths of the clock domain crossing.

t = 0 : a0 = 0 b0 = 0 c0 = 1 d0 = 0 x0 = 0 stable
t = 1 : a1 = 1 b1 = 1 c1 = 1 d1 = 0 x1 = 0 unstable
t = 2 : a2 = 1 b2 = 1 c2 = 0 d2 = 1 x2 = 1 unstable
t = 3 : a3 = 1 b3 = 1 c3 = 0 d3 = 0 x3 = 0 stable

The zero-delay model of such a circuit changes the logic a bit:

ct = ¬bt , dt = at ∧ ct , xt = dt

so signal d holds value 0 all the time. A single delayed input connected between
signal d and input port x senses no change on d, thus produces a non-randomized
sequence of zeros:

t = 0 : a0 = 0 b0 = 0 c0 = 1 d0 = 0 x0 = 0 stable
t = 1 : a1 = 1 b1 = 1 c1 = 0 d1 = 0 x1 = 0 stable

(just for a complete picture, if the delayed-input gates were connected also to signals
b and c, a random value would be produced).

On the other hand, a one-step destabilizer is sensitive on inputs of the critical
signal paths it represents, i.e., to signals a and b too. Thus, the one-step destabilizer
will output a random value at time t = 1 (at time t = 0, the one-step destabilizer
senses a change of signal a, so the next value of its output x1 will be random). Then,
the output will be immediately in the next state stabilized at value 0 (for time t >
0, the one-step destabilizer senses no change on monitored input and thus provides
stable output xt+1 = 0):

t = 0 : a0 = 0 b0 = 0 c0 = 1 d0 = 0 x0 = 0 stable
t = 1 : a1 = 1 b1 = 1 c1 = 0 d1 = 0 x1 ∈ {0,1} unstable
t = 2 : a2 = 1 b2 = 1 c2 = 0 d2 = 0 x2 = 0 stable

The non-determinism at time t = 1 provides two possible traces, one of which reveals
a glitch on input port x. Both traces do not equal to the trace of a hardware state of
the circuit, but as we are interested only in possible values of input x of the destination
clock domain, the traces conform to scenario possible in the circuit.

54

3.3.6 Delaying the Clock Domain Output

When comparing the use of one-step destabilizers with the other methods, its main
advantage is that it dramatically reduces the number of new state variables—just
one state variable per the output of a group of critical signal paths is introduced.
The disadvantage is that it introduces false alarms. These false alarms make troubles
especially when verifying a synchronization implemented by a combinational logic
changing one signal value at a time. More precisely, the problem appears in critical
signal paths with the same destination port holding its value even if some source
ports of the signal paths sense a value change8. In such a case, a one-step destabilizer
senses the change on the monitored inputs and produces a (false) signal change at
the destination port.

In this section, we provide our fourth method of describing clock domain cross-
ing circuits. The method is similar to using one-step destabilizers in the number of
the introduced state variables, but has more precise modelling capabilities. The main
idea is based on one-step destabilizers but differs in the critical parts of the design
the method extends. In the method of one-step destabilizers, only critical input ports
at the end of critical signal paths are extended. A one-step destabilizer then gener-
ates random values on the input of the destination clock domain each time the source
signals change, i.e., a one-step destabilizer assumes that a change of a signal orig-
inating from a different source clock domain could lead to a change of the desti-
nation port. However, randomizing the destination whenever the source changes
is a very coarse over-approximation of the system behaviour. In particular, such
an over-approximation complicates verification of circuits consisting combinational
logic designed such that they “consume” the change of a signal, i.e., logic gates that
do not propagate the change to the destination clock domain.

To refine such a model, we use the logic of the combinational gates to restrict
the randomness. A natural way to do so is to use zero-delayed model of the combi-
national logic at critical signal paths and to randomize its inputs only (in contrast to
extending the zero-delay behaviour of the outputs at the method of one-step destabi-
lizers). More precisely, we let every source port of every critical signal path random
every time it changes its value and we let this random value be sensed by the rest of
the combinational logic of the critical signal path. If the combinational logic is de-
signed such that it does not propagate a change further to the system, the destination
port of the critical signal path does not sense the change.

To produce random values on the output of clock domains, we can use the delayed
input gate (see Section 3.3.3). Conceptually, the delayed input differs from a one-

8A typical example of such a logic is the transfer of a binary counter value from one clock domain
to another using the Gray code—a binary code of an integer number in which the Hamming distance
of two adjacent numbers equals to one. The transfer of an incremented or decremented counter value
causes a change on one signal only, and so this, from the definition of clock domain crossing, does not
imply synchronization problems.

55

step destabilizer in the set of the monitored inputs. In case of delaying a signal just
at the source of a critical signal path, a delayed input and a one-step destabilizer
represent the same behaviour. In the following, we will call the delayed input gate as
a delaying gate since it can be simply misunderstood as it is connected to the output
of a clock domain.

The schematic idea of the method is depicted in Figure 3.23 (compare it with
the schematic use of a one-step destabilizer in Figure 3.19). As we extend the model
with delaying gates at places which transmit data out from a clock domain, we call
the method as delaying the output of a clock domain.

rr

'

&

$

%

'

&

$

%

c1

domain Dc2domain Dc1

A destination clockA source clock

c2

Delaying gates Combinational logic

Figure 3.23: The idea of delaying clock domain output with delaying gates. Delaying
gates are connected the source ports of critical signal paths, i.e., to the output of
a source clock domain.

Formally, for every critical signal path ρ ∈ ρ(H) of a hardware design H =
(S,C,P,G,M), we transform H to H ′ = (S′,C,P′,G′,M′) by adding a delaying gate ∆

as follows:

• S′ = S∪{s′},s′ /∈ S, is the set of signals containing a new signal connecting
the delaying gate with the extended input port.

• P′ = P∪{i′,o′}, i′,o′ /∈ P, is the set of ports extended by input i′ and output o′

port of the delaying gate that we are adding.

• G′= G∪{∆}, is the set of gates with the new delaying input ∆ =(⊥,{i′},{o′}) /∈
G.

• M′ = (M \ {(i2,s1)})∪M∆ is the new mapping of ports to signals where i2 =
ii(ρ) is the source port of the path ρ and s1 is the signal connected to it, i.e., ρ =
〈g1o1s1i2g2 . . . ingn〉, and M∆ = {(i′,s1),(o′,s′),(i2,s′)} is the interconnection
of the ports and signals around the delaying gate (cf. Figure 3.24).

56

s′s1

g1 ∆ g2 gn

o1 i′ o′ i2 in

ρ = 〈g1o1s1i2g2 . . . ingn〉

c1 c2

Figure 3.24: A schematic description of the interconnection of a delaying gate to
a critical signal path. The dashed part is being added to the design and represents
the delaying gate including the new signal.

A Justification of the Construction.

In the following, we will justify our construction on the modelling capabilities. We
will not discuss the length of a random phase (the delay of a propagation of a signal)
since it has the same effect as in the method using one-step destabilizers.

Modelling capabilities. The proposed method extends the zero-delay model of
a hardware design in which the transitional effect during which a signal can change
its value is lost. Since we let most of the logic of a critical signal path zero-delayed,
we build our justification on the assumption that the examined hardware design is
hazard free (i.e., there is no static or dynamic hazard) [59]. That means that delaying
clock domain output does not necessarily produce random values which are caused
by transitional glitches in a combinational logic.

Hazard free critical signal paths with the same destination port produce a change
on their output if and only if a change is sensed on one or more of their inputs. If
only one critical signal path changes its input, a delaying gate connected to its source
port produces a random value for a single verification step. Such a delay then makes
the transitional effect of a change visible for the destination clock domain.

An interesting situation is when two critical signal paths ρ1 and ρ2 sharing
the same destination port, [ρ1] = [ρ2], change their inputs at the same time t (a gen-
eralization to more paths is straightforward). In such a case, a combinational logic of
both paths may produce an output which corresponds to four different configurations
on their inputs:

1. (ıti(ρ1), ıti(ρ2)),

2. (ıt+1
i (ρ1), ıti(ρ2)),

3. (ıti(ρ1), ıt+1
i (ρ2)), and

4. (ıt+1
i (ρ1), ıt+1

i (ρ2))

57

where iti(π) represents a value of the source port of the path π at time t and it+1
i (π)

represents a value in the next step. Both delaying gates connected to sources of paths
ρ1 and ρ2 will produce random values on their outputs, thus all four configurations are
reachable. Therefore, it is a safe over-approximation which is similar to the method
using one-step destabilizers.

On the other hand, an over-approximation of the method of delaying clock do-
main output is not so coarse as in the previously proposed method. The method of
delaying the output of a clock domain models in a more refined way a design con-
taining a critical signal path which consumes a change on its input, i.e., no change
is sensed on its output. Since the combinational logic of a path is modelled using
the zero-delay abstraction, a random value produced by a delaying gate is hidden by
the combinational logic. Comparing to the previous method, a one-step destabilizer
always produces a random value on the destination port of a critical signal path.

3.4 Algorithms of Finding Critical Ports

Every proposed modelling method has been described as an extension of a critical
signal path or a part of it. The implementations of all the methods require finding
all critical signal paths of a design and finding their critical input ports. In the next
section, we provide an algorithm for finding critical input ports. Then, we describe
how we can filter the set of critical input port to be used in every modelling method
(e.g., to search for critical input ports at the source or at the destination of critical
signal paths) with no need to find critical signal paths.

Before specifying the set of critical input ports, we introduce some definitions
which give us the better notion of the structure of a hardware design H =(S,C,P,G,M):

• Let PI =
S

(c,I,O)∈G I denote the set of all input ports.

• Let S : 2P → 2S represent a mapping which signals are connected to a subset
of ports, i.e., S(Ports) =

S
p∈Ports{M(p)}.

• Further we define Pred : S→ 2S as a function that returns for a signal s the set
of signals which are connected to the inputs of a gate that sets signal s, i.e., for
s ∈ S : Pred(s) = {s′ ∈ S(I) | ∃(c, I,O) ∈ G : s ∈ S(O)}.

• We also define Succ : P→ 2P as a function of successors of an input port.
Successors of input port p of gate g are input ports to which g is connected
with its outputs, i.e., for p ∈ PI : Succ(p) = {p′ ∈ PI | ∃(c, I,O) ∈ G : p ∈
I ∧M(p′) ∈ S(O)}. An example of predecessors and successors are depicted
in Figure 3.25.

Next, we calculate a mapping SC : S→ 2C⊥ which describes, for a signal s, which
clock signals influence the next value of s. We also define a mapping SC0 ⊆ SC which

58

t i2
i3

i4

s2

i1c1

c2

s3

c3

c4

s1

s4

Pred(s3) = {s1,s2}
Succ(i1) = {i2, i3, i4}
SC(s3) = {c3,c4}
SC0(s1) = SCo(s2) = SC0(s3) = /0

SC0(s4) = {c2}
PC(i1) = {c3,c4}

Figure 3.25: An example of predecessors of a signal, successors of an input port, and
an influence of signals, clock signals, and input ports.

represents, by a clock signal reference, for a signal s which clock domain includes
a gate defining a value of the signal s, i.e., for g = (c, I,O) ∈ G and s ∈ S(O) :
SC0(s) = {c} \ {⊥}. The calculation of SC is a bit complicated and is described
by Algorithm 3.1.

Similarly to SC, we calculate a mapping PC : PI → 2C⊥ which represents, by
a set of clock signals, for an input port p, which clock domains can sense a value
change of p. The calculation is similar to the calculation of SC and is described by
Algorithm 3.2. For an illustration of mappings SC, SC0, and PC see Figure 3.25.

Algorithm 3.1
Input: A set of signals S and mappings S , SC0, and Pred.
Output: The mapping SC.

1 CombOut put := { s ∈ S | SC0(s) = /0 }
2 SC := /0

3 SC′ := SC0
4 while SC 6= SC′ do
5 SC := SC′

6 for all s ∈ CombOut put do
7 for all s′ ∈ Pred(s) do
8 SC′(s) := SC′(s) ∪ SC′(s′)
9 end for

10 end for
11 end while

Description: When searching for clock signals that may influence a value of a sig-
nal, we go backward to the propagation of a signal using the mapping Pred. Since
every signal that directly outputs from a synchronous gate preserves its mapping SC
from the initial one SC0 (only one gate may set a value of a signal and if the gate is
synchronous, the signal is triggered by a clock of that gate only), it is required to cal-
culate the mapping SC for signals set by combinational gates only. For that purpose,
we create a set of signals CombOut put (line 1) over which we calculate the mapping

59

SC. The calculation is performed by finding a transitive closure of SC in an iterative
way (lines 4–11) starting from the initial mapping SC0 (lines 2–3) such that there
is no combinational gate whose inputs and outputs are sensitive on different sets of
clock signals (lines 7–9).

Algorithm 3.2
Input: A set of gates G, a set of input ports PI , and a mapping Succ.
Output: The mapping PC.

1 for all g = (c, I, O) ∈ G do
2 for all p ∈ I do
3 PC0(p) := {c} \ {⊥}
4

5 CombPorts := { p ∈ PI | PC0(p) = /0 }
6 PC := /0

7 PC′ := PC0
8 while PC 6= PC′ do
9 PC := PC′

10 for all p ∈ CombPorts do
11 for all p′ ∈ Succ(s) do
12 PC′(s) := PC′(s) ∪ PC′(s′)
13 end for
14 end for
15 end while

Description: The algorithm is very similar to Algorithm 3.1. Instead of using
the mapping SC0, we calculate an initial mapping PC0 (lines 1–3) which represents,
for an input port p of a synchronous gate, which clock signal triggers reading of
a value of p. We than calculate a transitive closure of the mapping PC (lines 6–15)
by forward searching for the destination clock domain using the mapping Succ. We
calculate the mapping over a set of input ports of combinational gates only (lines 7
and 10) since PC(p) for the port p of a synchronous gate equals to PC0(p).

Finally, we generate the set of all critical input ports. We can define a criti-
cal input port using mappings PC and SC as follows: If more clock domains are
sensitive on a value of an input port p ∈ PI , i.e., |PC(p)| > 1, the port p is clearly
critical. If just one clock domain is sensitive on a value of the port p and the signal
connected to the port p is not influenced by this clock domain only, i.e., |PC(p)| =
1∧PC(p) 6= SC(M(p)), the port is critical since it lays on a critical signal path lead-
ing from the clock domain of PC(p) and to a clock domain of SC(M(p)) different
from PC(p). Thus, we construct a set of all critical input ports

CriticalPorts = {p ∈ PI | |PC(p)|> 1∨ (|PC(p)|= 1∧PC(p) 6= SC(M(p)))}

Each proposed modelling method selects a different subset of the critical input
ports computed as described above:

60

• Extending all critical input ports simply uses every input port from the set
CriticalPorts and creates an instance of a delayed input connected to the port.

• Extending critical paths uses the set of critical destination ports. A destination
port is a critical input port that belongs to a synchronous gate:
CriticalDestinationPorts = {p ∈CriticalPorts | ∃(c, I,O) ∈G : p ∈ I,c 6=⊥},
i.e., all critical input ports of a gate whose clock domain is different from ⊥.
The method also needs to know the length of the longest critical signal path
the destabilizer represents. The number of gates in the longest critical signal
path can be simply calculated by backtracking on critical signal paths from
the destination port to different clock domains using the Pred function and
the mapping SC0 identifying which signals are directly set by a gate of a clock
domain different from ⊥.

• Modelling with one-step destabilizers, similarly to the method of extending
critical paths, extends the destination critical ports and so the same set of crit-
ical input ports is used—CriticalDestinationPorts. Moreover, each one-step
destabilizer requires the set of monitored inputs to be connected to. A sim-
ple way to obtain such a set is to compute it in a similar way to calculating
the length of the critical signal path, i.e., by backtracking on all critical sig-
nal paths with the same destination port, with the exception that we do not
calculate the number of critical input ports on signal paths, but search for last
predecessors (i.e., search for source ports of critical signal paths).

• Delaying clock domain output connects a delaying gate to the source port of
each critical signal path. A source port is a critical input port which is con-
nected to a signal set by a synchronous gate, i.e., it is connected to a signal
whose initial mapping SC0 is set to any clock signal: CriticalSourcePorts =
{p ∈CriticalPorts | SC0(M(p)) 6= /0}.

3.5 A Comparison of Modelling Methods

In this section, the modelling capabilities of the proposed methods are shown on ex-
periments with models of two different synchronization mechanisms. Further, a rec-
ommended approach to functional verification of asynchronous components is dis-
cussed.

As most hardware designs are component-based, it is common that the synchro-
nization circuit between two or more clock domains is managed by a single syn-
chronization component. The experiments of the proposed methods were performed
on two such components—(i) a synchronization module using a simple handshake
protocol, and (ii) an asynchronous FIFO unit.

We implemented all proposed modelling methods in the tool CDCreveal (avail-
able online in [90]) which uses Cadence SMV as an input language. We successfully

61

used the tool on both asynchronous units. The next tables show the statistics of a ver-
ified model and the size of its state space:

• The first column identifies the used method:

– the row no extension represents the statistics of the original zero-based
model,

– all critical ports stands for the model produced by the method of extend-
ing all critical input ports,

– destabilizers represents the method of extending critical signal paths with
destabilizers,

– one-step destabilizers for modelling critical signal paths using one-step
destabilizers, and

– clock domain outputs for the statistics of model where clock domain out-
puts were extended.

• The column variables shows the number of binary state variables of the model.

• The trans. relation is the number of nodes of the BDD encoded transition rela-
tion.

• The column reach. set represents the number of BDD nodes of the set of reach-
able states.

• Satisfied shows if the verified property was satisfied in a model.

The time spent by model checking of our two examples was below 2 seconds for all
cases (except one special case of asynchronous FIFO discussed below), thus this data
does not carry any useful information.

Details of the simple handshake protocol are described in Appendix B. Briefly
described, it is a component which transmits two binary signals from one clock do-
main to another. For a handshake, the component uses the control signal rdy (data is
ready) coming from a source clock clock domain and the control signal ack (data is
received) coming from a destination clock domain. The component is interesting in
a length of critical signal paths. There are four critical signal paths (a buggy protocol
includes three critical signal paths), each of them has one critical input port only (i.e.,
there is no combinational logic in a clock domain crossing).

The property being verified aims at consistency of a transfer of two-bit data (for
more details see Appendix B). The results for the good version of a handshake pro-
tocol show that the property is satisfied in all experiments. However, when dealing
with buggy handshake protocol, zero-delayed model hides the CDC problem. Here,
when we apply any of the proposed method, the fault will become visible. All of

62

method variables trans. relation reach. set satisfied
no extension 18 194 2251 true
all critical ports 22 226 4255 true
destabilizers 28 266 8431 true
one-step destabilizers 22 226 4255 true
clock domain outputs 22 226 4255 true

(a) A correctly implemented handshake

method variables trans. relation reach. set satisfied
no extension 17 180 1598 true
all critical ports 20 204 4016 false
destabilizers 25 240 7817 false
one-step destabilizers 21 212 4538 false
clock domain outputs 20 204 4016 false

(b) A buggy handshake protocol

Table 3.2: Experimental results with model checking a simple handshake synchro-
nization protocol.

the proposed methods produce the same or very similar models wrt. number of intro-
duced state variable or the size of transition relation (cf. Table 3.2) since the design
contains very simple clock domain crossings.

The asynchronous FIFO is a component from the Liberouter project [80] in which
it is commonly used as a synchronization unit in several designs. The FIFO instan-
tiates a dual-port memory for sending and receiving information items, the control
part of FIFO uses read and write counters (for addressing the memory) and signals
full and empty informing about the state of FIFO. Values of these signals depend
on the result of a comparison of the read and the write counters. Due to different
clocks controlling the value of counters (read clock controls the reading counter,
write clock controls the writing counter), their comparison must be performed in
a synchronized clock domain (signal full is set in the writing clock domain, signal
empty in the reading clock domain). The Gray code is typically used for this purpose.
The correct version of the FIFO circuit implements the Gray code in a proper way,
the other version does not Gray-code a transferred counter value. The only clock
domain crossing is in the part of the design which computes the signals full and
empty.

The property being verified specifies the proper settings of signal full, in par-
ticular, that the FIFO does not notify that it is full if there are at least two non-
allocated items in the FIFO’s memory. The property itself is quite complex—we
refer the reader to the set of tests of the tool CDCreveal for details (the tool and the

63

method variables trans. relation reach. set satisfied
no extension 41 873 32224 true
all critical ports 179 3123 N/A N/A
destabilizers 61 1269 164042 false
one-step destabilizers 43 953 37314 false
clock domain outputs 73 1691 65533 true

(a) A correctly implemented synchronization

method variables trans. relation reach. set satisfied
no extension 41 845 33213 true
all critical ports 179 3111 N/A N/A
destabilizers 61 1241 155346 false
one-step destabilizers 43 925 69823 false
clock domain outputs 73 1659 70134 false

(b) A wrong synchronization of counters

Table 3.3: Experiment results of model checking the asynchronous FIFO.

experiments are available online in [90]).
Considering the results of the property satisfaction in Table 3.3, the zero-delayed

model of the good and the buggy version of the FIFO shows that the property is sat-
isfied. The “not available” (N/A) information in case of extending the model with de-
layed inputs at every critical input port means that the model was so complex that the
Cadence SMV model checker exceeds 4GB memory limit while computing the set
of reachable states. In comparison with the previous synchronization protocol, here,
modelling using destabilizers is more efficient than extending all critical input ports
(because of the length of the signal path of the logic transforming the binary code of
counters to the Gray code). The interesting results provides the method of one-step
destabilizers. For both versions of FIFO, CDCreveal found only two sets of critical
signal paths with the same destination port, thus only two state variables were in-
troduced. Unfortunately, both methods using plain or one-step destabilizers produce
false alarms over the correct version of FIFO. On the other hand, also interesting
is the method of delaying clock domain output. Even though the number of state
variables is almost twice the size the variable number of a model with one-step desta-
bilizers, the overall complexity of the model is held down. Moreover, the property is
satisfied on the correct version of FIFO but the CDC problem is revealed when faulty
synchronization is used.

64

3.5.1 A Methodology of Formal Verification of Asynchronous Systems

Most of the components developed in RTL work in the same clock domain. The com-
munication of two components working in different clock domains is in general
solved either (i) via special asynchronous data transfer component or (ii) using some
kind of data coding or synchronization protocol. In the following, we will propose
the approach to functional verification of both such solutions.

Verifying Asynchronous Components

Formal verification of the first type of clock domain crossing can be performed in
two steps: (1) verify that the asynchronous component itself works properly (using
some of the model extensions to make CDC problem visible in a model), and (2)
verify that the communication of the asynchronous component with the rest of the
design meets its specification. According to the presented experimental results, it
is reasonable to use either one-step destabilizer approach, or to delay clock domain
output. The user must remember that one-step destabilizer method is sound but may
produce false alarms. On the other hand, delaying clock domain output does not pro-
vide false alarms, but it can fail to notice a logic hazard. Therefore, one must take
special care to check whether the logic is hazard-free or not. Moreover, if the prop-
agation delay of some critical signal path is greater than the length of a clock period
of a destination clock domain, neither one-step destabilizers or delaying gates can be
applied. The only methods that reveals CDC problems properly are extending using
plain destabilizers and extending all critical input ports. Extending using destabiliz-
ers is more efficient but over-approximates the original model a lot. Extending all
critical input ports is quite precise modelling method but it may cause the state-space
explosion.

Verifying Asynchronous Communication

Considering a user-defined synchronization protocol (i.e., two synchronous compo-
nents working in different clock domains communicate with each other via some
kind of synchronization protocol), there is no universal approach to verify the syn-
chronization since the communication between two clock domains is user-specific. In
such a case, one must (1) focus on signals of a protocol (i.e., signals on critical signal
paths), (2) specify a property of a consistent data, and (3) specify an environment.
All these steps must be performed manually.

In case of verifying that a component implements properly the transmitting or
receiving part of a synchronization protocol, most likely the most problematic part
of the verification will be the specification of an environment. To properly verify
the communication, one must exemplary model the complement of a synchronization
protocol.

65

If critical signal paths do not include a logic hazard, the reasonable choice of
a method of modelling asynchronicity is delaying clock domain output since it is
quite efficient (in contrast to the method of extending all critical input ports) and
provides more refined models than plain or one-step destabilizers.

66

Chapter 4

Verifying Parametrized Hardware
Designs via Counter Automata

In this chapter, we propose a novel way of verifying parametrized hardware com-
ponents. Namely, inspired by the recent advances in the technology for verification
of counter automata, we propose a translation from (a subset of) VHDL to counter
automata on which formal verification is subsequently performed. The proposal was
originally published in [93]. The subset of VHDL that we consider is restricted in just
a limited way, mostly by excluding constructions that are anyway usually considered
as erroneous, undesirable, and/or not implementable (synthesisable) in hardware.

In the generated counter automata, bit variables are kept track in the control lo-
cations whereas integer variables (including parameters) are mapped to (unbounded)
counters. When generating counter automata from VHDL, we first pre-process the in-
put VHDL specification in order to simplify it (i.e., to reduce the number of the differ-
ent constructions that can appear in it), then we transform it to an intermediate form
of certain behavioural rules describing the behaviour of particular variables that ap-
pear in the given design, and finally we put the behaviour of all the variables together
to form a single counter automaton.

We have implemented a prototype tool performing the proposed translation. De-
spite there is a lot of space for optimising the generated counter automata and despite
the fact that reachability analysis of counter automata is in general undecidable [69],
we have been able to verify several non-trivial properties of parametrized VHDL
components, including a real-life component implementing an asynchronous queue
designed within the Liberouter project [80, 53].

In Section 4.3, we introduce some basics of VHDL, we comment on the VHDL
constructions that we do not support, and explain the way we pre-process VHDL for
the further transformations. We also introduce the notion of counter automata. In
Section 4.4, we provide a translation from (simplified) VHDL to a certain form of
intermediate behavioural rules. In Section 4.5, we present a translation from the in-

67

termediate format to counter automata. In Section 4.6, we discuss our experimental
results, and finally, in Section 4.7, we give a summary of the presented method.

4.1 Related Work

Recently, there have appeared many works on automatic formal verification of counter
automata or programs over integers that can also be considered as a form of counter
automata (see, e.g., [60, 62, 64, 68, 83]). In the area of software model checking,
there have also appeared works that try to exploit the advances in the technology of
verifying counter automata for a verification of programs over more complex struc-
tures, notably recursive structures based on pointers [61, 63, 66, 86].

In this chapter, we get inspired by the spirit of these works and try to apply it in
the area of verifying generic (parametrized) hardware designs. We obtain a novel,
quite general, and highly automated way of verification of such components, which
can exploit the current and future advances in the technology of verifying counter au-
tomata (e.g., in [84], the authors were inspired by our counter automata models). To
the best of our knowledge, there is no approach that provides verification of a generic
HDL module for all of its possible instances1.

4.2 Counter Automata

For an integer arithmetic formula ϕ, let FV (ϕ) denote the set of free variables of
ϕ.2 For a set of variables X , let Φ(X) denote the set of integer arithmetic formulae
with free variables from X ∪X ′ where X ′ = {x′ | x ∈ X} (we assume X ∩X ′ = /0). If
ν : X → Z is a valuation of variables from a set X ⊇ FV (ϕ), we denote by ν |= ϕ the
fact that ν is a satisfying assignment of ϕ.

A counter automaton is a tuple A = 〈X ,Q,q0,ϕ0,→〉 where X is a finite set of
counters, Q is a finite set of control locations, q0 ∈ Q is a designated initial location,
ϕ0 is an arithmetic formula such that FV (ϕ0)⊆ X , describing an initial assignments
of the counters, and→⊆ Q×Φ(X)×Q is a finite set of transition rules. Instead of
(q,ϕ,q′) ∈→, we will normally write q

ϕ−→ q′.

A configuration of a counter automaton is a pair 〈q,ν〉 ∈ Q×{ν′ | ν′ : X → Z}.
The set of all configurations is denoted by C. The transition relation

ϕ−→A ⊆ C×C is

defined such that (q,ν)
ϕ−→A (q′,ν′) iff there exist a transition q

ϕ−→ q′ and a valuation

1An anonymous reviewer of our work in [93] wrote: “...my first reaction was that someone has
probably have done it, but googling ‘vhdl counter automata’ I got only the work of the authors.”

2We do not further restrict the kind of integer arithmetic used. It naturally follows from the integer
operations used in the hardware design being handled, to which our translation adds just an imple-
mentation of the implicit modulo arithmetic used in VHDL—we will get back to this issue in the next
subsection.

68

σ of FV (ϕ) where σ |= ϕ, σ(x) = ν(x) for x ∈ FV (ϕ)∩X , σ(x′) = ν′(x) for x′ ∈
FV (ϕ)∩X ′, and ν(x) = ν′(x) for all variables x ∈ X with x′ /∈ FV (ϕ).

Just for a complete picture of a counter automaton, we denote by −→A the unionS
ϕ∈Φ

ϕ−→A , and by ∗−→A the reflexive and transitive closure of−→A . A run of A is a sequence

of configurations (q0,ν0),(q1,ν1),(q2,ν2) . . . such that (qi,νi)−→A (qi+1,νi+1) for each

i≥ 0 and ν0 |= ϕ0.

4.3 Preprocessing Hardware for Translation to Counter Au-
tomata

Languages like VHDL or Verilog are simple to use for hardware design but they are
very rich languages for direct translation to counter-automata-based model. In this
section, we discuss how to transform a hardware design to a uniform description us-
ing a small set of language constructions. In the following, we will, in particular,
consider the VHDL language. Both VHDL and Verilog have almost the same ex-
pressiveness in the field of RTL design, but VHDL is a very strongly typed language,
thus VHDL designs are somewhat cleaner. Moreover, VHDL is has a rich syntax in
which different constructs have the same semantics (we will discuss this in details
on page 78). As other RTL hardware description languages use constructs similar to
VHDL constructs described in this section, one can easily understand how to apply
the transformation of a model in other RTL language.

In the following, we describe the transformation of all common VHDL con-
structs, namely, parallel process definitions, signal/variable assignments, if-then-else
conditions, select-when/case-when statements, user-defined functions, entity con-
figurations, etc. Note that not all constructs of the VHDL deal with describing
a hardware design. For instance, some constructs like procedure declarations, text
input/output operations, and time delay expressions are used for test-bench specifica-
tions and are ignored in the synthesis phase when constructing the hardware as they
do not have an influence on the behaviour of the hardware. Thus, we also ignore such
construct when translating a hardware design to a counter automaton.

4.3.1 The Considered Features of VHDL

Due to the high complexity of VHDL, we do not cover all forms of VHDL constructs
and all possible behaviours of the designed hardware. However, most of the restric-
tions that we describe below correspond to constructions or behaviour which are in
theory possible, but are usually not used, represent undesirable design practices, or
are often not even synthesisable. In particular, we do not consider cyclic assignments,
processes sensitive on signal edges of two or more signals, or unstable states. More-
over, we restrict a hardware design to be used with some of IEEE library extensions

69

only, the scope of the parameters, and procedural features of VHDL.

Cyclic Assignments

We disallow cyclic assignments in the dataflow description or in the behavioural de-
scription of a latch. A cyclic assignment can be created in the dataflow description as
a direct back-loop (cf. signal q):

q <= set or (switch xor q);

A cyclic conditional assignment within latches (cf. lines 4–5):

1 process(enable, a, b)
2 begin
3 if (enable = ’1’) then
4 a <= b;
5 b <= a;
6 elsif ...
7 end;

The first example describes the hardware in which the wire representing the signal
q is directly connected to the logic which calculates the next value of q. The second
example is similar in the way that the direct back-loop is through signals enable,
a, and b. Such assignments would complicate our constructions significantly, and
in practice, they are anyway undesirable as they lead to a possible oscillation of the
signals (for the first example, this is the case of set equals 0 and switch equals to 1;
for the second example, enable equals to 1 and values of a and b differs). Modern
synthesis tools issue warnings when such constructions are used.

Sensitivity on More Clocks

A behavioural definition of a simple process (a process is a VHDL construct imple-
menting a gate in a hardware design using the behavioural description), may contain
a hierarchical if-then-else statement. A process referencing to an edge of a signal
in an if-then-else statement (such a process is sensitive on an edge of such signal),
would be most likely translated to a flip-flop. Since there is no flip-flop gate sensitive
on two or more clock signals, we do not consider constructs like the following (cf.
lines 3–4):

70

1 process(clk1, clk2)
2 begin
3 if (clk1’event and clk1=’1’) then
4 if (clk2’event and clk2=’1’) then
5 ...
6 elsif ...
7 elsif ...
8 end if; ...
9 end;

Unstable States

We concentrate on analysing reachable stable states of hardware components only
(cf. Figure 2.6), thus we assume zero-delayed models only. In general, even when we
are interested only in stable states, if we do not consider unstable states at all, there
is a risk that we will not capture flaws caused by reading and registering unstable
values. Such a flaw can be caused either (i) by a signal path that is too long wrt.
the clock frequency used, or (ii) by an asynchronous exchange of signals between
two clock domains. However, the need to deal with the former issue is eliminated
simply by taking into account the capabilities of standard synthesis tools. These
tools automatically check that the delay arising in the longest signal path of a given
circuit is safe wrt. the clock frequency used and that checking that a designed system
is in a stable state before a synchronization event happens (such as the rising edge of
a clock signal). The latter issue is a more complicated but we have discussed dealing
with this issue already in Chapter 3. Hence, below, we do not consider unstable states
any further.

IEEE Library Types and Functions

There are several IEEE standards which extend the RTL design in VHDL via VHDL
packages. A VHDL package declares and defines types and functions which can
dramatically improve the design in a specific area in terms of development time. Such
packages can define multi-valued logic types and functions which are suitable for
simulation and test-bench purposes, floating-point types and arithmetic functions for
development of arithmetic units, or mathematical operations which help with generic
designs, e.g., the LOG2 function for calculating the bit vector width.

We do not consider several of the packages and IEEE recommendations such as
floating-point types and arithmetics [70, 71], an extension for building tests [72], ana-
log and mixed-signal extensions [74], constructions for controlling the process [76,
78], and timing specifications in a tabular form [77].

In the transformation, we also disallow mathematical packages [75]. Almost all
arithmetic operations used from the mathematical package in the project [80], whose

71

source codes have been used for the case studies in this thesis, are used for calculation
of the precise width of a bit vector. As we show below in the method of generating
a counter automaton (Section 4.5.1), such information is not required.

The IEEE 1164 standard [79] defines non-binary logic types and functions over
these types. Briefly, the std logic and std logic vector types allow developers
to define, tri-state logic circuits using the ’Z’ high-impedance value, the undefined
value ’X’ (zero, one, high-impedance, . . .), etc. Non-binary values of a wire are
needed during simulation and test-bench phases for the analysis to see what is really
happening in a modelled hardware. The place and route tool which maps the design
to a particular hardware elements ignores these types. We also do not consider the
package itself, but as these types are widely used in the RTL design, we abstract these
types to binary types—std logic is understood as bit and std logic vector as
bit vector. Arithmetic and relational operations over vector-typed variables im-
plemented using a for cycle over items of a vector are transformed to their repre-
sentations over base of a vector (mathematical +, −, ∗, unary −, =, 6=, ≥, . . .).
The arithmetic operation abs (the absolute value of a number) is disallowed as it
complicates the transformation. Bit-wise logic operations (such as and, or, not, or
shl) are the only ones which are considered from the IEEE 1164 package in the be-
low transformations3.

Parameters of Generics

VHDL allows developers to write entities declared with parameters (so called gener-
ics) which can be instantiated several times with different values such that different
parameter values cause different hardware representations.

In the transformation and analysis, we restrict integer parameters a bit (floating
parameters are allowed). Namely, we do not allow a bit-wise access to variables
with a parametric range and we do not allow for loops over parametrized variables
(cf. Figure 4.1 and 4.2). Both of these restrictions could be lifted, but they would
further complicate our translation to counter automata and also their analysis (as we
would have to introduce a relatively complicated arithmetic formulae to mask out
the particular bits of the values of particular counters). We let experiments with these
feature for our future research.

Procedures and Functions

In VHDL, a developer can specify some behaviour via sequential statements in pro-
cedures and functions. We do not allow procedures and functions because they com-

3These functions are defined as a bit-wise access over one-bit elements along the whole length
(width) of input vectors. As described bellow, such an access is in some circumstances disallowed, but
their general denial would dramatically limit set of designs that the analysis could handle because it is
common to use such a type of operations.

72

1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.std_logic_arith.all;
4 entity arith_unit is
5 generic (WIDTH : integer = 64);
6 port(
7 clk : in std_logic;
8 reset : in std_logic;
9 opcode: in std_logic_vector(0 to 1);

10 a, b: in signed(0 to WIDTH-1);
11 c: out signed(0 to WIDTH-1);
12 possible_carry : out std_logic;
13);
14 end entity arith_unit;
15 architecture my_unit of arith_unit is
16 signal a1, a2, n1, n2: signed(0 to WIDTH-1);
17 begin
18 a1 <= a + b;
19 a2 <= a - b;
20 n1 <= -a;
21 n2 <= -b;
22 process(reset, clk)
23 begin
24 if (reset = ’1’)
25 c <= (others => ’0’);
26 elsif (clk’event and clk = ’1’) then
27 with opcode select
28 c <= a1 when ’00’,
29 a2 when ’01’,
30 n1 when ’10’,
31 n2 when ’11’;
32 end if;
33 end process;
34 possible_carry <= not opcode(1);
35 end architecture;

Figure 4.1: A VHDL design of a simple parametrized arithmetic unit. The parameter
of the entity is an integer value specifying the width of input/output values. On such
design, our transformation can be applied as there is no loop with a parametric range
or a bit-wise access to signals with a parametrized range. Signal types included from
ieee.std logic 1164 are transformed to binary-value types only.

73

1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.std_logic_arith.all;
4 entity plus_unit is
5 generic (WIDTH : integer = 64);
6 port(
7 clk : in std_logic;
8 reset : in std_logic
9 a, b: in std_logic_vector(0 to WIDTH-1);

10 sum: out std_logic_vector(0 to WIDTH-1);
11 carry : out std_logic;
12);
13 end entity arith_unit;
14 architecture my_unit of arith_unit is
15 signal s: std_logic_vector(0 to WIDTH-1);
16 signal c: std_logic_vector(0 to WIDTH);
17 begin
18 c(WIDTH) <= ’0’;
19 for i in 0 to WIDTH-1 loop
20 s(i) <= a(i) xor b(i) xor c(i+1);
21 c(i) <= a(i) and b(i) or
22 a(i) and c(i+1) or
23 b(i) and c(i+1);
24 end loop;
25 process(reset, clk)
26 begin
27 if (reset = ’1’)
28 sum <= (others => ’0’);
29 carry <= ’0’;
30 elsif (clk’event and clk = ’1’) then
31 sum <= s;
32 carry <= c(0);
33 end if;
34 end process;
35 end architecture;

Figure 4.2: A VHDL design of a simple parametrized arithmetic unit, which is inap-
propriate for the described transformation. The number of circuits generated by the
loop at lines 19–24 is specified by an integer parameter. There is also an access to
particular bits of the parametric signal c at lines 18 and 32.

74

plicate the analysis (use of procedure parameters, local variables, conditional state-
ments, recursive calls, etc.). In the hardware represented by such a description, the
statements are not evaluated one after another, but the consequence of the whole
block of sequential statements is taken into account only. Widely used synthesis tools
also forbid the use of complicated sequential statement blocks, thus there is a small
number of VHDL sources which use procedure and function statements. They are in
general used in simulation specification.

4.3.2 Simplifying VHDL Code

A developer is able to use VHDL constructs to describe the same hardware design
in different ways. For example, in the low-level, a developer can use either a be-
havioural or a dataflow description to express the same design (cf. Figure 4.3). More
complex cases of equivalent descriptions can be achieved by coding based on func-
tions, variable assignments, conditional assignment statements, more complex typed
signals, etc.4

process(x,y,z)
begin
if x = ’1’ then

a <= ’0’;
elsif y = ’1’ then

a <= z;
else

a <= ’1’;
end if;

end process;

≡
a <= (not x and y and z) or

(not x and not y);

(a) (b)

Figure 4.3: A simple example of two semantically equivalent circuits described us-
ing quite different syntactical means offered by VHDL. Sequential process shown in
Part (a) is sensitive on signals x, y, and z which means that the process is triggered
every time at least one of these signals changes its value. A new value of a is then
calculated immediately. The dataflow description shown in Part (b) is, on the other
hand, constructed using a logic expression. The difference between behavioural and
dataflow description is in the syntax only.

To avoid a complex direct transformation from the VHDL language to counter
automata, we first transform a VHDL source code to a form which is much simpler

4A difference can arise after the synthesis process when two equivalent constructions can lead to
different implementations, thus to different timing characteristics. Fortunately, as we consider stable
states only, timing characteristics are insignificant for us.

75

for all the subsequent transformation steps. The goal of the simplification is to obtain
code consisting of conditional signal assignments only. We will show below that a set
of conditional assignments can be used to replace any other VHDL statements, while
preserving its semantics. The simplification consist of these steps:

1. Transforming structural descriptions to data-flow and behavioural descriptions.

2. Type simplification.

3. Transforming behavioural and dataflow description of a conditional statements
to a uniform statement.

4. Normalization of conditional assignment statements.

We will describe each of steps of simplification in special section.

Transforming Structural Descriptions

The goal of the transformation is to obtain code describing only the behaviour or
data-flow of the verified component.

We remove all structural descriptions of circuits and replace them by the corre-
sponding behavioural description (in the way similar to macro expansion in the C
programming language). This can easily be achieved by unfolding (or flattening)
of the structural description taking into account that a structural description simply
describes:

• from which subcomponents a given component is built of,

• what the values of the parameters of the subcomponents are, and

• how to connect the input/output ports of these subcomponents to the compo-
nent.

The structural description is defined in a hierarchical way. When transforming
a structural description to its behavioural representation, we transform it iteratively
in a bottom-up way (the most nested subcomponent is transformed first). The trans-
formation of a subcomponent (knowing its connection to the superior component) is
done by substituting the instance of a subcomponent with its behavioural description
and by substituting the references to ports of a subcomponent by signals of superior
component connected to the instance of a subcomponent. If the subcomponent is
an instance of a generic entity, its parameters are substituted by the constants from
the subcomponent instantiation5. Also when injecting the behavioural description
of a subcomponent into the component, we need to be beware of collisions of iden-
tifiers of signals. This can be solved by adding a unique prefix or suffix to one of
the identifiers which mutually collide.

5When instantiate generic entities, all parameters must be set.

76

Type Simplification

As we mentioned before, VHDL components contain input/output ports, parameters,
and internal signals and variables. VHDL provides two basic types of signals and
variables: 1-bit (boolean) and arrays (vectors) of bits. Further, there is also a possi-
bility of user-defined structured types, but they are used as a form of syntactic sugar
only. Therefore, before any further steps, we decompose structured signals and vari-
ables to their elements. Similarly, if a bit vector is accessed bit-wise (i.e., there is at
least one statement in the considered code that accesses single bits of the vector at
a time), we replace the vector with its boolean components (cf. Figure 4.4). If we
had not disallowed the bit-wise access to parametrized-size vectors, we would have
had to use a complex arithmetic formula to mask out the particular bits—e.g., to get
a bit value at a position p in the bit vector represented by an integer value n, we
could use the expression (n div 2p) mod 2, but such an expression would compli-
cate the analysis of a counter automaton. The remaining vectors may then easily be
mapped to counters of counter automata (whereas all 1-bit signals will be a part of
their control states).

type data_struct is record
data: bit_vector(0 to 3);
parity: bit;
addr: bit_vector(0 to 7);

end record;
signal pkg: data_struct;
signal addrA:

bit_vector(0 to 7);
...
pkg.parity <= pkg.data(0) xor

pkg.data(1) xor
pkg.data(2) xor
pkg.data(3);

pkg.addr <= addrA;

−→

signal pkg_data_0,
pkg_data_1,
pkg_data_2,
pkg_data_3: bit;

signal pkg_parity: bit;
signal pkg_addr:

bit_vector(0 to 7);
signal addrA:

bit_vector(0 to 7);
...
pkg_parity <= pkg_data_0 xor

pkg_data_1 xor
pkg_data_2 xor
pkg_data_3;

pkg_addr <= addrA;

Figure 4.4: An example of simplification of an array and a structural type. Note that
an array type is simplified only if its items are referenced (compare pkg.data with
pkg.addr).

77

Transforming Behavioural and Dataflow Descriptions

Most of the behavioural code is written inside process statements. A process state-
ment defines an independent sequential process representing the behaviour of some
part of the design—how to change a value of one or more signals in dependence on
other signals

We transform the code of a behavioural description such that the only statements
that will remain (and that we will have to consider in the further steps) are the fol-
lowing:

1. Assignment statements of the form signal <= expression; appearing in
an architecture definition as parallel statements or in a process statement as
sequential statements.

2. Conditional (if) statements appearing in process sections as sequential state-
ments with the following syntax (and the obvious semantics): if cond1 then
stmt1; elsif cond2 then stmt2; ... ; else stmtN; end if;

Hence, one or more assignments and/or conditional statements are to be used to
replace (without a change in the semantics) each occurrence of the following state-
ments:

1. Selected assignments (with-select statements), i.e., a conditioned assign-
ment of several values to one signal (cf. Figure 4.5a). An expression before
the when keyword determines whether a value after the keyword should be
assigned to a signal.

2. Sequential case statements, which are similar to selected assignments but in
contrast to them, they can occur within process statements (cf. Figure 4.5b
where a value of v1 should be assigned to a signal sig if a value of signal sel
equals to c1).

3. Generating for loops, i.e., statements which describe some repetitive parts
of a design in an iterative way. In particular, loop generation statements are
suitable for cases when the same operation has to be performed over an array-
typed variable or signal for specific range of its items.

Given their semantics, the conversion of selected assignments and case state-
ments to equivalent conditional statement is a straightforward exercise (illustrated in
Figure 4.5) and we will omit its lengthy description here. It is also possible to get rid
of the VHDL for loops by a simple loop unfolding mechanism (widely used in com-
piler optimization) since we assume that they cannot be performed over parametric
bit vectors—otherwise, we would have to model their effect by special purpose loops
in our counter automata.

78

with sel select
sig <= v1 when c1,

v2 when c2,
else v3;

(a)

process(...)
begin

case sel is
when c1 => sig <= v1;
when c2 => sig <= v2;
when others => sig <= v3;

end case;
end process;

(b)

process(..)
begin

if (sel = c1) then
sig <= v1;

elsif (sel = c2) then
sig <= v2;

else
sig <= v3;

end if;
end;

(c)

Figure 4.5: A illustration of the conversion of (a) selected signal assignments and (b)
case statements to (c) if statements.

4.3.3 A Normalization of Conditional Assignment Statements

A key issue to be handled within the further transformation of VHDL towards counter
automata is related to processes and the sequences of statements from which they are
built. These statements are not executed sequentially—instead, for each variable,
the last applicable assignment is searched and used, and all the statements preceding
it are ignored. For example, for a sequence:

v <= e1;
if c then

v <= e2;
end if;

if c holds, one performs the v <= e2; assignment, otherwise one performs the as-
signment v <= e1; (we may assume that the processes consist solely of assignemts
and (possibly nested) if statements).

In order to make dealing with the described semantics easier, we first transform
each process into a single nested if statement in which it is clear under which con-
ditions which assignment is to be applied. In particular, the example we mentioned
above will be transformed to the statement:

if c then
v <= e2;

else
v <= e1;

end if;

More precisely, for each sequential process and each variable v assigned by that
process, we do the following steps (we ignore all assignments to other variables when

79

handling v):

1. We add an empty else branch to each if statement of the given process that
does not have such a branch.

2. Till there is some assignment or if statement s1 in the given process that is just
before an if statement s2 (i.e., s1 and s2 are on the same level of nesting of
if statements), we move s1 to the beginning of the else branch of s2, i.e., we
nest s1 into the else branch of s2 and put it just before the statements that are
already in this branch.

3. If there are branches of if statements of the given process that do not contain
any statement (either by ignoring assignments to other variables than v or by
creating an empty else branch), we add the implicit assignment v <= v; to
each of them.

4. We reduce every sequence of statements s1; s2; ...; sn; v <= e; within the
given process to just v <= e;. Here, si for 1 ≤ i ≤ n, n ≥ 1, is a sequence of
assignments or if statements. The fact that at the end of the sequence there is
an assignment statement (and not an if statement) is guaranteed by the trans-
formation done in the previous step.

An example of the application of these steps is depicted in Figure 4.6.

steps 1+2 −→ step 3 −→ step 4 −→

if c2 then if c2 then
if c1 then v <= e2; v <= e2;
v <= e1; else else if c2 then

end if; if c1 then if c1 then v <= e2;
if c2 then v <= e1; v <= e1 else
v <= e2; else else v <= e3;

else v <= v end if;
v <= e3; end if; end if;

end if; v <= e3; v <= e3;
end if; end if;

Figure 4.6: An example of transformations of sequential if-then-else statements.

Removing Variables

Another important issue when dealing with a normalization of conditional assign-
ments are variables. Within a process definition in VHDL, variables and signals

80

have different meanings. Signals most likely (depending on an optimization during
synthesis) represent wires in a circuit. Variables, on the other hand, help a developer
to express complex calculations of a signal value. A variable holds a result obtained
from conditional assignments which can be used within calculations of other vari-
ables or signals. In other words, a variable serves as a temporary data storage for
subsequent calculations of signals. For further analysis, we do not allow variables
in a hardware design, but it is possible to remove them by the following method,
preserving the same behaviour.

For the following description, we assume that previously described modifications
of conditional assignments were applied both on signals and on variables. We will
use syntax trees of such if-then-else statements representing a calculation of a sin-
gle variable or signal. The nodes of a syntax tree denote the boolean expressions of
conditions (i.e., the expressions between if/elsif and then keywords), branches
from a node represent if a condition holds or not, and leaves denote the expressions
on the right side of the assignment statements of a given if-then-else statement.
We will use ϕ(v) to denote an integer or boolean expression that has one or more ref-
erences to a variable v. Further, let ϕ[x/v] denote the expression ϕ(v) in which every
occurrence of v is substituted by x (cf. Figure 4.7a and Figure 4.7b for an illustration
of a syntax tree).

In the following paragraphs, we will describe modifications of conditional as-
signment statements to remove all references to variables. We will perform the mod-
ifications on every sequence of conditional assignments in a top-down way since
the sequential statements of a process is calculated in the same direction. By remov-
ing a variable, we must treat with variable references in two different ways depending
on the place where the references occur: (i) a variable reference occurs within an ex-
pression which is assigned to a target signal, or (ii) a variable is used to express
a condition of an if-then-else statement:

Variable references within assignments. If the variable v occurs in an expression
on the right side of an assignment of some signal s, to get rid of v, we must replace
the reference of v with its calculation. We operate over two syntax trees: the syntax
tree tv of a calculation of v and the syntax tree ts of calculation of s. We substitute
every leaf ϕ(v) of ts with the syntax tree tv in which every leaf e is substituted with
ϕ[e/v]. An example of such a transformation is depicted in Figure 4.7.

Variable references within conditions. If the variable v of the syntax tree tv oc-
curs in a condition of the conditional assignment of signal s of the syntax tree ts,
the substitution is a bit more complex than the previous reference removal. We need
to substitute the whole condition with regard to all possible values of the variable.
We substitute every condition ϕ(v) of ts with

W
φ∈Pv

con jφ. Here, Pv is a set of all
paths of tv from the root node to the leaves. Further, con jφ stands for the conjunction

81

if a then
v := x;

elsif b then
v := y;

else
v := z;

end if;

if c then
s <= phi(v);

else
s <= s;

end if;

−→

if c then
if a then
s <= phi(x);

elsif b then
s <= phi(y);

else
s <= phi(z);

end if;
else
s <= s;

end if;

(a) (d)

����a
����b

y

x

z

����c
s

�
�

S
S

�
�

S
S

�
�

lllF T

ϕ(v)

v := s <=
TF

TF
−→

����c
s ����a
����b

�
�

lll

�
�

S
S

�
�

S
S

s <=
TF

F

TF

T

ϕ[x/v]

ϕ[y/v]ϕ[z/v]

(b) (c)

Figure 4.7: An example of removing variable references from an expression as a
value being assigned to a signal or a variable: (a) original if-then-else statements
setting the variable v and the signal s, (b) syntax tree representing the conditional
assignment statements, (c) syntax tree with substituted references of the variable v,
and (d) syntax tree transformed back to VHDL language.

of all conditions along the path φ and is defined as con jφ =
V

n∈φ e(n) where e(n) is
the boolean expression of the node n defined as follows:

1. If n is a leaf representing some expression x, then e(n) = ϕ[x/v].

2. If n is a node representing some condition c and the next node in the path

82

p follows the right branch of the node n, i.e., meaning that the condition is
satisfied, then e(n) = c.

3. If n is a node representing some condition c and the next node in the path p
follows the left branch of the node n, i.e., meaning that the condition is not
satisfied, then e(n) = ¬c.

An example of the just described modification is depicted in Figure 4.8.

if a then
v := x;

elsif b then
v := y;

else
v := z;

end if;

if phi(v) then
s <= e;

else
s <= s;

end if;

−→

if (a and phi(x)) or
(not a and b and

phi(y)) or
(not a and not b and

c and phi(z)) then
s <= e;

else
s <= s;

end if;

(a) (d)

����a
����b

y

x

z

s e

�� �
�
�

S
S

�
�

S
S

�
�

S
SF T

v := ϕ(v)

TF

F T

s <=

−→

s e

'
&

$
%

�
�

lllTF

(a∧ϕ[x/v])∨

(¬a∧¬b∧ϕ[z/v])
(¬a∧b∧ϕ[y/v]))∨s <=

(b) (c)

Figure 4.8: An example of removing variable reference from boolean expression in
the condition part of if-then-else statement: (a) original if-then-else state-
ments setting the variable v and s, (b) syntax tree representing the conditional as-
signment statements, (c) syntax tree with substituted references of variable v, and (d)
transformed substituted syntax tree to VHDL language.

83

4.3.4 Handling VHDL Integer Variables in Counter Automata

When translating operations on integer variables used in VHDL to operations on
counters, we have to take care of the fact that in VHDL, arithmetical operations over
integers are always implicitly evaluated modulo the range of the appropriate integer
variables. In counter automata, we have to make the modulo computation explicit
(e.g., an assignment v1 <= v2+v3; over integer variables represented on n bits has
to be translated to an assignment of the form v1 := (v2 + v3) mod 2n).

For analysing the generated counter automata, we then, of course, need a tool
that can cope with counter manipulations corresponding both to arithmetical, logical,
and relational operators directly used in the considered VHDL design as well as to
the additional operations stemming from implementing the implicit modulo compu-
tations (and if we add them in the future, then also the bit-wise manipulations on
integer variables). Given a concrete counter automata analyser, the translation may
need to be adjusted to respect the operations that the tool supports. If the tool does
not offer all the needed operations (nor allows their implementation based on other
supported operations), one has to restrict to the case when the appropriate integer
variables have a fixed range (i.e., are not parameters) and can also be recorded as
a part of the control states of counter automata, or, alternatively, try to find some ap-
proximation of the missing operations based on what is available (in the worst case
using purely random operations).

4.4 An Intermediate Behavioural Model

In the previous section, we discussed the syntax and semantics of VHDL construc-
tions that we will consider in the following, together with the notion of counter au-
tomata that we want to use to model (and analyse) these constructions. In order to
make the translation from the simplified VHDL to counter automata smoother, we
implement the translation via an intermediate behavioural model that we will now
present.

4.4.1 A Definition of the Intermediate Behavioural Model

The intermediate behavioural model of a hardware component is defined as a triple
M = (V,T,B) where:

• V is a finite set of variables,

• T : V →{bool,int} is a function that associates every variable with the bool-
ean or the integer type, and

• B is a finite set of behavioural rules that describe the behaviour of a given
hardware component and that have a form which we introduce below.

84

Let Vi ⊆ V be a set of input ports and Vp ⊆ V a set of parameters. We define
V = V ×{last,next,posedge,negedge} to be the set of possible references to the
values of variables from V with the following meaning:

• (v,last)∈V refers to the value of v in the last reached (i.e., current) state—in
expressions, we usually abbreviate it simply to v,

• (v,next) ∈V , abbreviated to v′, denotes the value of v in the next state,

• (v,posedge)∈V , abbreviated to ↑v, has the boolean meaning ↑v =¬v∧v′ and
denotes the positive edge of a 1-bit variable v (for which T (v) = bool),

• (v,negedge)∈V , abbreviated to ↓v, has the boolean meaning ↓v = v∧¬v′ and
denotes the negative edge of a 1-bit variable v (for which T (v) = bool).

Further, let E be the set of all (well-typed) expressions that one can form over V
using arithmetical (+,−,∗, ...), relational (=, 6=,<,>,≤,≥), and logical (¬,∧,∨, ...)
operators, and let C be the subset of E containing all boolean-valued expressions. Let
⊥ ∈ E denote an empty expression (see below).

We can now introduce special conditional assignments that play the role of the
behavioural rules constituting the set B of an intermediate behavioural model. In
particular, B⊆C∗×V ×E. We write a behavioural rule b ∈ B as

c→ v := e

for c ∈C∗ being a list of enabling conditions, v ∈ V the variable set by the rule, and
e ∈ E being an expression defining the new value of v. In other words, a behavioural
rule b with a list of enabling conditions c = c1c2...cn says that if c1∧c2∧ ...∧cn holds
for a given valuation of the variables, v will get a new value obtained by a valuation
of e. If c = ε, we consider it to be always true, and the assignment v := e is always
enabled.

For a behavioural rule b : c→ v := e ∈ B, we denote:

cond(b) = c the enabling condition of b,

var(b) = v the variable to be set,

value(b) = e the expression defining the new value of v.

Further let,

F(e), for e ∈ E ∪C∗, be the set of reference to variables occurring in e, and

B(v) = {b | b ∈ B,var(b) = v} be the set of behavioural rules over a variable v.

85

4.4.2 Extracting Behavioural Rules from the Source Code

The architecture of a VHDL component consists of a set of parallel assignments
and a set of sequential processes. With respect to the simple VHDL transformations
described in Section 4.3.2, we may assume that the sequential processes consists
of a single if statement for every variable set within it. In order to obtain the set
of behavioural rules B from such a description, we extract the rules from VHDL
statements as follows:

1. For each parallel assignment v <= e;, we add a rule ε→ v := e into B.

2. For each sequential process that sets a variable v by a single, possibly nested, if
statement (after the pre-processing, there is no other possibility), we proceed
as follows. For each assignment statement v <= e; that appears on the leaf
level of such a (nested) if statement, we add a rule c′1,c

′
2, ...,c

′
n→ v := e into B

(n≥ 1). Here, c1,c2, ...,cn are all the branching conditions that one tests before
reaching v <= e, and c′i = ci if the condition is supposed to hold (i.e., we are
nesting into an if ci or elsif ci branch) whereas c′i = ¬ci if the condition
is supposed not to hold. An example of such a transformation is shown in
Figure 4.9.

¬c1,c2→ v := e2
¬c1,¬c2,c3,c4→ v := e3
¬c1,¬c2,c3,¬c4,c5→ v := e4
¬c1,¬c2,c3,¬c4,¬c5→ v := v
¬c1,¬c2,¬c3→ v := e5

c1→ v := e1

����
����
����
����

����

 @@

�� @@

c1

e1

e2

c2

c3

e5

c5 e3

e4v

c4
elsif c5 then

elsif c2 then

elsif c3 then

if c1 then

v <= e2;

if c4 then
v <= e3;

v <= e4;

v <= e1;

else

v <= e5;

v <= v;
else

(b)

T

T

T

T

T

F

F

F

F

F

(c)(a)

Figure 4.9: Synthesis of behavioural rules wrt. the conditions passed till a certain
assignment can be fired: (a) a normalized VHDL if statement, (b) the syntax tree
representing the if statement, (c) the set of behavioural rules for the variable v de-
rived from the given if statement.

86

4.4.3 Adjustments of Behavioural Rules

The environment of a component

To be able to model check a component, we need a model of its environment too.
Currently, we model the environment to behave in a completely random way. To
do that, we extend the intermediate behavioural model by adding behavioural rules
for all component inputs. For every such an input v ∈ Vi, we add the following be-
havioural rules:

• If v is a 1-bit variable (i.e., T (v) = bool), we add the rules ε→ v := v and
ε→ v :=¬v to B. In this case, we tolerate that these two rules have a conflicting
enabling condition.

• Otherwise (i.e., T (v) = int), we extend B by the rule ε→ v := random. Here,
random represents a random integer value. Note that we have to adjust the form
of random such that the counter automaton analyser that we want to use un-
derstands it.

Non-state variables

We are only interested in stable states that are defined by the so-called state variables.
In the hardware developers’ jargon, such variables are also known as registers or sig-
nals which save their value. The remaining variables are non-state variables whose
values are not registered and that, from our point of view, represent just a symbolic
name for some expression. From a set of behavioural rules, a non-state variable
can be identified by the fact that its value is set by a rule with the empty enabling
condition (i.e., by an unconditional assignment6). The remaining variables are then
state variables. The only exception are input variables whose values are defined and
held by the environment of the modelled component. Formally, v ∈ V \Vi is a non-
state variable iff cond(b) = ε for the rule b ∈ B such that B(v) = {b}. Let further
Vs = Vi ∪ {v | v ∈ V,cond(b) 6= ε} be the set of state variables. Before generating
counter automata, we change the intermediate behavioural model to use the state
variables only. We remove the non-state variables v defined by rules ε→ v := e
present in B by iteratively searching for references to such variables in enabling con-
ditions and value expressions of the rules in B and by replacing these references by
e.

Behavioural rules over 1-bit variables

Next, for technical reasons allowing us to ease the subsequent construction of a coun-
ter automaton from intermediate behavioural rules, we prefer to have all the manipu-

6Note that as we require the rules not to be in a conflict, this is the only rule that is setting the value
of such a variable.

87

lation of 1-bit state variables in guards of the rules. That is why, we transform every
behavioural rule b : c→ v := e over a 1-bit state variable v ∈ Vs,T (v) = bool, to
the rule bnew : c, v′ = e→ v := e.

Triggers of behavioural rules

Let V↑↓ = V ∩ (V ×{posedge,negedge}) be the set of edges of the values of vari-
ables from V . We define a mapping R : B→{τ}∪V↑↓ that assigns to each rule either
τ in case the rule models an assignment in the transparent mode or a signal edge
(i.e., a trigger) that activates the rule if it models an assignment in the synchronous
mode. Formally, for b ∈ B, let R(b) = τ iff F(cond(c))∩V↑↓ = /0, and let R(b) = t
iff F(cond(b))∩V↑↓ = {t} for some t ∈V↑↓. Note that this definition is correct since
due to the hardware description principles, there can be at most one positive or neg-
ative edge variable reference in a behavioural rule condition. Designs violating this
requirement are exposed during the synthesis process.

For each rule b ∈ B that works in the transparent mode, i.e., R(b) = τ, we adjust
the condition and assignment part of b such that each variable reference that appears
there refers to the future. This is, we change every variable reference v that appears
in value(b) or cond(b) to v′. The reference to the future assures that the rule is eval-
uated using values of variables that are computed at the same time step as the one
at which we perform the valuation (and not a step before as in the case of the syn-
chronous mode). This is because gates working in the transparent mode immediately
propagate their input values to the output. We can afford to use this transformation
as we excluded the possibility of cyclic dependencies of the values of variables in
the transparent mode. That is why, the variables changing in the transparent mode
can be ordered according to their dependencies and evaluated in the given order start-
ing with variables that are assigned a constant value (which happens, e.g., when the
circuit is being reset) or from variables which are not changing at the given time step.
For an illustration of this behaviour, see Figure 4.10.

We have to do a similar adjustment as above also for the rules modelling the
synchronous mode (cf. Figure 4.11. For simplicity, we consider here the case of
positive edges only. The case of negative edges is analogical. Within each rule b ∈ B
for which R(b) = ↑v for some v ∈ V , cond(b) = c1c2 . . .cn↑vcn+1 . . .cm for some
n,m ∈ N. Note that F(c1c2 . . .cn)∩V↑↓ = /0. In this case, the way our algorithm
for generating behavioural rules works implies that the set of generated behavioural
rules B must also include behavioural rules bτ ∈ B whose condition is built solely of
the conditions c1,c2, . . . ,cn (possibly negated), hence R(bτ) = τ. Due to the order of
the evaluating conditions, the bτ rules have a priority over b. At the same time, they
model the transparent mode, hence they will work with the future values of variables.
That is why, in order to exclude a possible conflict of the rules bτ with b, we have
to replace every variable reference v to v′ in c1,c2, . . . ,cn in b. Then, if some of
the bτ rules is enabled, b is disabled as its enabling condition contains a negation of

88

d

dd d dS
S�
�

�
�

S
S

S
S�
�

v

x

y y=1

x=1

v=0

current nextunstable

y′=¬x′=1

x′=0

v′=1

1
0

c: v =’1’, R(b1) = R(b2) = τ

b1 : c→ y := ¬x

b2 : c→ x := 0

action

data flowD

action trigger

processing y := ¬1 processing y := ¬0

Figure 4.10: A timing diagram illustrating conditional assignments of values to sig-
nals in the transparent mode. Both x and y are controlled by the level of the variable
v, which causes a continuous change of their values (y is set to the negation of x via
b1, y is set to 0 via b2). Due to the propagation delays of hardware which implements
such a behaviour, there are several changes of the values until they are all stabilized,
which we are, however, not interested in. The important thing to notice is that the
resulting value of x is ¬y′ and not ¬y.

some of the enabling conditions of bτ evaluated on the same values of variables. On
the other hand, if this is not the case, the rest of b will work with the current values
of the variables. An illustration of the construction is depicted in Figure 4.12.

4.5 Generating Counter Automata

In previous modifications, we prepared a set of behavioural rules representing the be-
haviour of a generic component and its environment. In the following, we will de-
scribe how to transform these rules into a counter automaton.

4.5.1 Counters, Control Locations, and Initialization

Counters. Let us fix a hardware design with a set of variables V of types T and with
a set of behavioural rules B generated from the design. We start building the counter
automaton A representing the design by defining its set of counters as the set of all
integer-typed state variables from V —formally, wrt. the definition of counter au-
tomata (Section 4.2), X = {v | v ∈Vs, T (v) = int}.

Control locations. Further, we build control locations of A based on all possible
valuations of all control state variables in V , i.e., 1-bit state variables from the set

89

d

d action

data flowD

action trigger

S
S

�
�

S
S

�
�

b1 : c→ y := ¬x

b2 : c→ x := 0

v

x

y

v=0

current nextunstable

x=1

y=1 y′=¬x=0

v′=1

x′=0

1

c: ↑v, R(b1) = R(b2) = ↑v

processing y := ¬1

Figure 4.11: A timing diagram of conditional assignments of values to signals in
the synchronous mode. In synchronous mode, an edge triggers a change of the value
of v, which holds until the next triggering event. In this case, the resulting value of x
is ¬y (and not ¬y′). Note that the expression ↑v is true iff ¬v∧ v′.

Vq = {v ∈Vs | T (v) = bool}. Formally, we define the set of control locations of A as
Q = {q | q : Vq→{0,1}}.

Initialization. The design of a component in VHDL does not include any specifi-
cation of its initial state. In most cases, however, the specification of the component
includes a combination of signals which resets the component to some initial state and
assigns some constants to all its internal variables. For the generation of A, to obtain
these constants and thus define the initial location and the initial constraint on coun-
ters, the user must explicitly specify the resetting signals by providing the appropriate
valuation of input variables that encodes them. By evaluating enabling conditions of
all the rules in B under the given resetting valuation of the input variables, we get a
subset of rules that are initially enabled. Each of such behavioural rules defines an
initial value for one variable—by evaluating the assignment parts of these rules, we
can initialize the variables. The obtained values of control state variables make up
the definition of the initial location q0, the valuation of integer variables allows us to
construct the initial constraint ϕ0 on counters7. If the modelled component has no
resetting signals or the desired initial state is not the reset state, the initialization must
be defined explicitly by the user.

7In fact, this applies only to the counters other than the ones representing parameters—if the possible
values of parameters are also to be constrained somehow, it is up to the user to add the appropriate
constraint into ϕ0.

90

x

z

y �
�

�
�

�
�A
A

y=0 y′=1

x′=1x=0

z=0 z′=0

current next

b1 : x′ = 1→ z := 0

b2 : ¬(x′ = 1),↑y→ z := 1

Figure 4.12: A timing diagram illustrating the interplay between rules working in the trans-
parent and synchronous mode. Assume that the positive edge of y is faster than x, then z
is controlled by the synchronous mode rule b2, but before a stabilization, the high-priority
variable x forces z to be set transparently (wrt. the rule b1).

4.5.2 The Transition Relation

For an expression e∈ E and two locations q1,q2 ∈Q of A, we denote by eq1,q2 the val-
uation of e where for each v ∈Vq, (v, last) is evaluated as q1(v) and (v,next) is eval-
uated as q2(v). We allow the valuation to be partial—if e contains integer variables,
they remain untouched. We construct the transition relation of A by checking for ev-
ery pair of control locations q1,q2 ∈Q, q1 6= q2, whether the intermediate behavioural
model allows us to connect them:8

1. For each b∈B with cond(b) = c1c2 . . .cn for some n∈N, we (as far as possible)
evaluate the enabling condition of b, i.e., we compute

guardq1,q2(b) =
^

1≤i≤n

cq1,q2
i

Further, let

Be = {b | b ∈ B, var(b) ∈Vs, guardq1,q2(b) 6= f alse}

be the set of all (conditionally) enabled behavioural rules setting the value of
state variables.

2. We further one-by-one consider all subsets Bt ⊆ Be such that Bt contains ex-
actly one rule b such that var(b) = v for each state variable v ∈Vs. For each Bt ,
we perform the following steps:

8Note that we cannot have self-loops in A as the control states are stable, and some signal must
change in order a change of the states happens.

91

(a) In each rule b ∈ Bt , we iteratively substitute all references to the future
values of counter variables by the expressions assigned to them within Bt .
This is, we substitute each v′ for v ∈ Vs \Vq by the expression value(bv)
where bv ∈ Bt and var(bv) = v.9 We repeat this step till all references to
future values of counters disappear.

(b) Based on the set of rules Bt , we create a transition q1
ϕ−→ q2 of A where

ϕ = (
^

b∈Bt

guardq1,q2(b))∧ (
^

b∈Bt ,var(b)6∈Vq

α(var(b) := valueq1,q2(b))

and α is a function that transforms an assignment v := e to a formula
v′ = e.

Let us add a few comments to the algorithm. For a given choice of states q1 and
q2, the first step may lead to three situations: (i) If guardq1,q2(b) = f alse, we know
that b does not change the value of var(b). (ii) If guardq1,q2(b) = true, b is allowed
to change the value of var(b). (iii) Finally, if guardq1,q2(b) does not reduce to neither
f alse nor true (i.e., if guard(b) refers to some values of counters in a way that must
be taken into account), we only know that b may be able to change var(b), but subject
to the values of the counters. If there is no (at least conditionally) enabled behavioural
rule for some state variable, i.e., if ∃v ∈Vs,∀b ∈ B(v).guardq1,q2(b) = f alse, no tran-
sition from q1 to q2 will be possible as we are unable to compute the next value of
v in q2—even for preserving the current value of v there is a behavioural rule which
is forbidden by its guard. Otherwise, we have to explore all combinations of (at
least potentially) enabled rules adjusting the value of the particular variables, which
is done in the second step of the algorithm.

Suppose now that, for instance, Vs = {v1,v2,v3,v4} where only v4 is a 1-bit vari-
able, and the first step of the algorithm yields a set of rules:
Be = {

g1→ v1 := f1(v′2),

g2,1→ v2 := f2,1(v′3,v1),

g2,2→ v2 := f2,2(v3),

g3→ v3 := f3(v2),

v′4 = ¬v4→ v4 := ¬v4

9At this point, only the variables representing counters are considered since the references to future
values of control state variables are taken care through the partial valuation of the expressions.

92

}
(the rule for v4 is transformed as we described in Section 4.4). We can find two
subsets Bt that are to be handled by the second step of the algorithm—namely,
Bt,1 = {

g1→ v1 := f1(v′2),

g2,1→ v2 := f2,1(v′3,v1),

g3→ v3 := f3(v2),

v′4 = ¬v4→ v4 := ¬v4

} and
Bt,2 = {

g1→ v1 := f1(v′2),

g2,2→ v2 := f2,2(v3),

g3→ v3 := f3(v2),

v′4 = ¬v4→ v4 := ¬v4.

}

If we apply the steps described above for Bt,1, we obtain two counter-automata tran-
sitions with a formula

g1∧g2,1∧g3∧ v′1 = f1(f2,1(f3(v2),v1))∧ v′2 = f2,1(f3(v2),v1)∧ v′3 = f3(v2)

going between control states q1 and q2 such that q1(v4) =¬q2(v4). Note that the con-
dition v′4 = ¬v4 does not appear in the formula of the transition as its valuation wrt.
q1, q2 yields true.

4.6 Experiments

For our experiments, we implemented in Python a prototype version of the translation
that we proposed here (up to some issues of the VHDL pre-processing mentioned in
Section 4.3), available online in [91]. In particular, we implemented a translation to
counter automata in the input language of the ARMC tool [83] and also to integer
programs in the C programming language for Blast [67]. Both of the tools are based
on predicate abstraction and the CEGAR approach.

93

We have concentrated on verifying of safety properties, i.e., on reachability of
some bad states. To distinguish the bad states, we change a given VHDL specifi-
cation by creating a 1-bit variable whose value is a propositional logic formula rep-
resenting the bad states. The translation then distinguishes states with this bit unset
(the good ones) and set (the bad ones). Transitions to the bad states are controlled by
the formula describing what a bad state is.

To test the proposed counter-automata-based model extraction method, we have
first applied it to two small non-parametric components (having integer variables, but
of a fixed width). Then we applied the method to two more complex parametric com-
ponents, including a real-life, specialized parametric component developed within
the Liberouter project [80].

The first two components (a counter and a register) represent basic elements from
which hardware is built on the RTL level. For the counter, we verified that there is no
overflow possible. For the register, we verified that the data transfer from its input to
the output and the reset of the register function correctly. A more complex case study
that we considered is a synchronous LIFO component which implements a stack
with two operations—push and pop. The generic nature of this component is given
by a parametrization of the number of items the LIFO can save. This component
implements among other signals whether it is empty or full. We verified whether
these signals are always set correctly for any possible size of the LIFO.

The last verified component is an asynchronous queue (FIFO). This specialized
parametric component was built to be used in network monitoring adaptors developed
within the Liberouter project (with a stress on being as efficient as possible). We
successfully verified two properties of the component:

• The queue does not inform that it is full incorrectly. We introduced a counter
of written items (written) for specifying the bad state formula (in VHDL):
bad <= not reset and full and written<size-3; i.e., if a component
is working properly (not reset), then full should not be set if the number
of written items is less than the size of a queue (written<size-3, here, three
items are reserved for a delay of the synchronization between reading and writ-
ing clock domains).

• The queue does not inform that it is empty and full at the same time, i.e.,
bad <= not reset and full and empty;

We have verified the first property on four different configurations of the component
(we modify the configuration of the FIFO by limiting its behaviour via its input sig-
nals). In particular, four configuration includes the case when (i) only the writing part
of the FIFO was enabled (reading clock signal clk_rd set to 0), (ii) the whole FIFO
was enabled, but no data reading was performed (read bit rd set to 0), (iii) the whole
component was active, all operations except the reset was allowed (reset = 0), and
(iv) all possible behaviours of the FIFO was verified.

94

Extraction
Component |Q| |δ| |X | time ARMC Blast
Counter 6 14 2 < 1s < 1s 3.4s
Register 10 44 2 1s < 1s 2.6s
SynLIFO 66 985 2 23s 1.7s 8h
AsFIFO-Full (i) 18 205 7 2s 1s N/A
AsFIFO-Full (ii) 66 838 12 45s 7s N/A
AsFIFO-Full (iii) 66 2628 12 1m3s 1m21s N/A
AsFIFO-Full (iv) 130 4148 12 3m42s 4h6m N/A
AsFIFO-FE 34 612 11 16s 15h29m N/A

Table 4.1: Experiments with extracting from VHDL and with their subsequent reach-
ability analysis using ARMC and Blast.

When verifying the latter property, we also modify the behaviour of an asyn-
chronous FIFO a bit. According to the specification of the FIFO, we must assure
that both clocks (reading and writing) are active all the time and the following holds:
Tslow/Tf ast � Size where Tslow is a period of a slow clock (reading/writing), Tf ast

is a period of a fast clock (writing/reading respectively), and Size is the size of
a queue. Since both tools we have used in our analysis of counter automata do not
support fairness properties, we made the FIFO synchronous by making one clock
signal to be a non-state variable holding a value of another clock signal, in VHDL,
clk_rd <= clk_wr; (thus the whole component is sensitive on clk_wr only).

The results of our experiments are summarized in Table 4.1. The first column
identifies the component and/or the verified property—Counter and Register as the ba-
sic blocks of RTL design, the component of a LIFO queue (SynLIFO), and two safety
properties for asynchronous FIFO, one of which is performed on different configura-
tions of the FIFO (verified properties were satisfied for all the cases). The next col-
umn provides the number of control locations in the counter-automaton model—note
that the number corresponds to 2n +2, which is the number of control locations over
n 1-bit state variables, one location representing an initial state constraining values
of parameters, and one location representing a bad state. Columns 2 and 3 represent
the number of transitions between control locations and the number of used counters
(integer variables). Column 4 represents the time needed for translating the designs
into counter automata by our prototype. Columns 5 and 6 represent times needed
for analysing the generated counter automata in ARMC and Blast (“N/A” means that
the verification did not finish). The experiments were performed on an Intel E6750
processor with 2GB DDR3 memory with single-threaded ARMC version 3.20.05
(2003) and Blast version 1.0 (2003).

95

4.7 Summary of the Translation

The bottleneck of the presented method of translating a VHDL design to a counter
automata is in generating a transition relation. The complexity of the construction
is O(mn2) where m is the number of behavioural rules (in other words, it represents
how complex is the behaviour of a component) and n is the number of one-bit state
variables. The complexity is linear to m and quadratic to n since the construction
deals with every behavioural rule for each pair of control states individually.

The time needed for a verification is influenced both by the verified property and
the tool used for an analysis. The best results were provided with the ARMC checker
since it was able to prove the correctness of every model (the problem is undecidable
in general). The Blast was able to finish on non-complex components only, for others
it reached a 24 hours limit. We also experimented with other counter-automaton
analysers like Fast [62], Faster [87], or ASPIC [88], but the results provided with
these tools were even worse than the results of Blast.

Despite the ARMC was able to finish in all our experiments, applying the method
of verifying parametrized hardware designs proposed in this chapter is reasonable on
small components only. Comparing with traditional simulation-based approaches,
formal analysis of parametrized hardware designs is limited due to the restrictions
of VHDL constructs described in Section 4.3.1 and it also contributes to state-space
explosion problem due to the quadratic increase of the size of an automaton wrt. the
number of bit-state variables. In comparison with formal verification of concrete,
non-parametrized designs, the proposed approach lacks a possibility of uncompli-
cated definition of an environment of verified component (input signals can be either
random or constant for an analysis). On the other hand, the proposed technique al-
lows one to verify (in a limited scope) a parametrized hardware design for all possible
configurations at once.

96

Chapter 5

Conclusion and Future Research

In the thesis, we have introduced two original approaches to formal verification of
hardware designs. We conclude each of the methods in its own section.

5.1 Verifying Clock Domain Crossings

For verifying asynchronous systems with multiple clock domains, we have intro-
duced four original approaches, two of which were published in [92], the two other
ones are going to be published in the near future. All of the approaches refine the
zero-delay modelling of hardware designs with an appropriate description of tran-
sient behaviour of a circuit. Such a refinement allows the quality engineer to perform
a check of clock domain crossings within the functional verification of a circuit with
no need of verifying CDC independently. The proposed approaches differ in their
precision and the incurred verification cost.

The first of the proposed approaches (based on extending all critical input ports)
is quite precise, but may contribute to the state explosion problem in a significant
way since it introduces a number of new state variables. The other approaches are
much more efficient as they are based on an over-approximation of the behaviour
of the clock domain crossing, and hence use less new variables. The methods are,
however, still precise enough to allow one to prove interesting properties on various
hardware designs as we have illustrated by our experiments. Every method is im-
plemented in the prototype tool CDCreveal [90], which uses the input language of
the Cadence SMV model checker. The implementation can be simply modified to be
used with a different model checker.

In summary, the proposed approaches represent a contribution to the state-of-the-
art in verifying hardware by allowing one to deal with asynchronous circuits with no
need of special care of clock domain crossings.

97

5.1.1 Future Directions in Verifying CDC

Because of the over-approximation of the possible behaviour that arises when using
destabilizers, one-step destabilizers, or delaying gates on clock domain outputs, one
cannot be sure if detected problem reflects a possible behaviour of a real system.
Thus, one must verify the reason of such an alarm. This could be done either manu-
ally or by a more precise method (the only precise method proposed in the thesis is
the extension of all critical input ports). Unfortunately, neither is really practical since
manual intervention is undesirable and the extension of all critical input ports suffers
from the state explosion problem. A possible remedy that is worth exploring in the
future is is to analyse each critical signal path to decide if it needs to be modelled
with a more refined approximation of a signal path behaviour. For example, let us
say that a critical signal path, which changes its output in a particular combination of
input values only, is modelled using the one-step destabilizer method. In such a case,
the output of modelled signal path changes every time the input changes, which is an
unnecessary over-approximation and such a path may be modelled by using a more
refined method.

Another possible research direction aims at the state explosion problem of every
proposed extension method. Most of asynchronous hardware designs use some kind
of the synchronization method that has already been verified. An analysis of a correct
synchronizer is unnecessary if the synchronizer is correctly connected to the design
(i.e., the use of the synchronizer conforms to its specification). An interesting idea is
to combine the verification approaches proposed here, based on extension of the mod-
els, with using a library of synchronizers and with some light-weight static checks of
their correct use. Namely, a design would be extended with a model of the transient
behaviour only if the static checks were unable to verify the CDC of a circuit.

5.2 Verifying Parametrized Systems

To deal with parametrized systems, we have presented a new, quite general and au-
tomated, approach to formally verify parametrized VHDL components which was
published in [93]. The approach is based on an automated translation of hardware
components to counter automata and on exploiting constantly improving technol-
ogy for verifying counter automata (or integer programs).1 We have implemented
a translation scheme presented in the thesis in the prototype tool VHD2CA [91]. It
was successfully used together with the ARMC tool [83] for verification of several
interesting properties of parametrized VHDL components, including a real-life com-
ponent developed within the Liberouter project [80].

1The models derived within this thesis are even being used as motivating case studies within some
works aimed at improving the counter-automata analysis methods [85].

98

5.2.1 Future Research of Parametrized Systems

In the future, an effort can be put to lifting some of the restrictions of our initial
approach, e.g., allowing a bit-wise approach to parametrized components by an auto-
mated abstraction of bit-wise operations (more details are described in Appendix C).
Another interesting research direction is to investigate possibilities of reducing the
size of the automata that we generate. The size of the automata can be reduced by
eliminating unfeasible transitions (an unfeasible transition may be distinguished by
an SMT tool), and by eliminating unreachable or irrelevant state locations. The al-
gorithm of generating the transition relation described in Section 4.5.2, step 2b, may
produce an unfeasible transition q1

ϕ−→ q2 for a given choice of states q1 and q2 since

the label ϕ obtained by the conjunction of partially evaluated guards of behavioural
rules may be unrealisable. Since some transitions may be unfeasible, it is possi-
ble that some control locations are unfeasible too and may be safely removed from
generated counter automaton. The size of generated counter automaton can also be
reduced by disallowing a given subset of transitions or state locations in a similar
way as specifying a fairness property, i.e., by specifying which executions of a sys-
tem are valid, thus other executions may be removed from the analysis. Further, we
would like to do more experiments with real-life components using more different
tools for handling counter automata (or integer programs), perhaps even contributing
to their development by thinking of heuristics suitable for counter automata derived
from hardware components.

5.3 Other Work of the Author

Apart from the work presented in the thesis, the author was engaged in two other areas
applying formal verification in hardware. In both of them, the author was motivated
by the work on the Liberouter [80] project. We will briefly describe the contribution
these works in the next sections.

5.3.1 A Methodology of High-level Modelling and Analysis of Hardware
Designs

In [94, 95], we proposed a methodology of modelling and analysis of a hardware
design with the aim to perform a timing analysis of a hardware design by using model
checking. Model checking proves if a given model meets its specification, but is
unable to directly answer to questions like “What is the minimum throughput of
a system?” or “What is the maximum number of items in a buffer?”.

In particular, the work proposes a methodology how to manually create a high-
level model from a specification of a given hardware design and how to analyse it
to get answers to questions similar to the above presented ones. The methodology
is described on an example of the Look-up processor used within the Liberouter

99

project. The model checkers which we chose for the timing analysis were Uppaal2

and TReX3.
Since the high-level specification of a hardware design is component-based, the

modelling methodology proposed in [94, 95] also deals with components of a system.
It propose suitable ways of modelling three different types of components: (i) compo-
nents of buffers or communication channels, (ii) the so-called executive components
dealing with processing or calculations, and (iii) environment components generating
requests and examining answers. The paper provides patterns of timed automata [89]
for every of these types of components.

Considering the timing analysis, a verification methodology based on an iterative
process of model checking is presented. For instance, when dealing with the mini-
mum throughput of a system, the work proposes to repeatedly perform model check-
ing with increased or decreased value of a timing parameter to find a proper setting
when a given system is able to process all incoming requests.

5.3.2 Proving CRC Algorithm Properties

Another work of the author aims at using formal verification to prove some interest-
ing properties of an implementation of the cyclic redundancy check (CRC) algorithm
which is commonly used in digital networks to detect incorrectly transmitted data.
In particular, in [96], we presented a method how to use model checking for vali-
dating a reliability of a given CRC generator polynomial. A generator polynomial
is a bit-vector that controls the way how a CRC hash is generated from an input
message. Since two different messages may share the same hash (we say that they
collide), the reliability of a generator polynomial may be represented as the minimum
Hamming distance of any two input messages.

The work is based on the fact that the CRC algorithm is non-secure, i.e., there is
a quite simple method how to create a colliding message to a given input message.
The method is based on generating so-called error vectors which represent in which
bits two colliding messages differ.

The problem of finding the minimum Hamming distance for a given generator
polynomial is then transformed to the problem of searching an error vector with
the minimal number of ones. This was performed by repeating model checking of
a system which generates error vectors. The property being verified represents if
there exist an error vector with less ones than a number given by the user. If the
property is satisfied, one must decrease the given number and perform model check-
ing again. The minimum Hamming distance of a generator polynomial is defined as
the least number for which the property is not satisfied. The method was demon-
strated on several CRC generator polynomials of the length of 16, 32, and 64 bits
including CRC-ITU-T, CRC-IEEE, and CRC-ECMA.

2www.uppaal.com
3www.liafa.jussieu.fr/˜sighirea/trex/

100

Bibliography

[1] R. Drechsler et al. Advanced Formal Verification. Kluwer Academic Publishers,
Dordrecht, Netherlands, 2004. ISBN: 1-4020-7721-1.

[2] D. L. Perry, H. D. Foster. Applied Formal Verification. McGraw-Hill Profes-
sional. New York, USA. 2005. ISBN: 0-07-144372-X.

[3] B. Bérard et al. System and Software Verification. Model-Checking Techniques
and Tools. Springer Berlin / Heidelberg, 2001. ISBN: 3-540-41523-8.

[4] K. Schneider. Verification of Reactive Systems. Springer Berlin / Heidelberg,
2004. ISBN: 3-540-00296-0.

[5] D. Anastasakis, R. Damiano, H. T. Ma, and T. Stanion. A Practical and Efficient
Method for Compare-Point Matching. In Proceedings of DAC’02, pp. 305-310.
ISBN: 1-58113-461-4.

[6] R. Drechsler. Towards Formal Verification on the System Level. In Proceedings
of RSP’04, pp. 2–5, IEEE Computer Society, 2004. ISBN: 0-7695-2159-2.

[7] K. McMillan. Symbolic Model Checking. 1993. ISBN: 0-7923-9380-5. Avail-
able online on 13 May 2010, <http://www.kenmcmil.com/thesis.html>.

[8] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers, C35(8):677-691, 1986.

[9] R. Drechsler, D. Sieling. Binary Decision Diagrams in Theory and Practice. In-
ternational Journal on Software Tools for Technology Transfer (STTT). Springer
Berlin / Heidelberg, 2001. ISSN: 1433-2787.

[10] R. Bruttomesso, A. Cimatti, A. Franzen, A. Griggio, Z. Hanna, A. Nadel,
A. Palti, and R. Sebastiani. A Lazy and Layered SMT(BV) Solver for Hard
Industrial Verification Problems. In Proceedings of CAV’07, LNCS 4590,
pp. 547–560, Springer Berlin / Heidelberg, 2007.

101

[11] M. Aagaard, R. Jones, R. Kaivola, K. Kohatsu, C.J. Seger. Formal Verification
of Iterative Algorithms in Microprocessors. In Proceedings of DAC’00. ACM,
New York, USA, 2000.

[12] R. Kaivola, M. Aagaard. Divider Circuit Verification with Model Checking and
Theorem Proving. In Proceedings of TPHOLs’00, LNCS 1869, pp. 338–355,
Springer Berlin / Heidelberg, 2000.

[13] J. Harrison. Theorem Proving for Verification. In Proceedings of CAV’08,
LNCS 5123, pp. 11–18, Springer Berlin / Heidelberg, 2008.

[14] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking MIT Press, 1999.
ISBN: 0-262-0327-8.

[15] IEEE Std 1850-2005. IEEE Standard for Property Specification Language
(PSL). Institute of Electrical and Electronics Engineers, NJ, USA. 2005.

[16] Z. Yang, C. Chung, I. Moon. FormalCheck Query Language Compared with
CTL. 1999. Viewed in Jun 2010, <http://vlsi.colorado.edu/personal/
mooni/papers/cav99_2.ps.gz>.

[17] R. P. Kurshan. Evolution of Model Checking into the EDA Industry. In Pro-
ceedings of ATVA’04. LNCS 3299. pp. 2–6, Springer Berlin / Heidelberg, 2004.

[18] A. Biere, A. Cimatti, E. M. Clarke, Y. Zhu. Symbolic Model Checking with-
out BDDs. In Proceedings of TACAS’99. LNCS 1579, pp. 193–207, Springer
Berlin / Heidelberg, 1999.

[19] Z. S. Andraus, M. H. Liffiton, K. A. Sakallah. CEGAR-Based Formal Hardware
Verification: A Case Study. Technical Report CSE-TR-531-07, University of
Michigan, 2007.

[20] H. Jain, D. Kroening, N. Sharygina, E. Clarke. Word Level Predicate Abstrac-
tion and Refinement for Verifying RTL Verilog. In Proceedings of DAC’05,
pp. 445–450, Anaheim, California, 2005.

[21] M. Bourahla and M. Benmohamed. Predicate Abstraction and Refinement for
Model Checking VHDL State Machines. Electronic Notes in Theoretical Com-
puter Science, Volume 66. Elsevier Science B. V., 2002.

[22] S. Graf and H. Saidi. Construction of Abstract State Graphs in PVS. In Proceed-
ings of CAV’97. LNCS 1254, pp. 72–83, Springer Berlin / Heidelberg, 1997.
ISBN: 3-540-63166-6.

[23] C. Flanagan and S. Qadeer. Predicate Abstraction for Software Verification. In
Proceedings of POPL’02. ACM New York, NY, USA, 2002. ISBN: 1-58113-
450-9.

102

[24] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic Predicate
Abstraction of C Programs. In ACM SIGPLAN Notices. ACM New York, NY,
USA, 2001. ISSN: 0362-1340.

[25] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate Abstraction of
ANSI-C Programs Using SAT. Formal Methods in System Design, Volume 25.
Springer Netherlands, 2004. ISSN 1272-8102.

[26] T. Ball, B. Cook, S. Das, and S. K. Rajamani. Refining Approximations in
Software Predicate Abstraction. In Proccedings of TACAS’04. LNCS 2988, pp.
388–403, Springer Berlin / Heidelberg, 2004.

[27] P. Manolios, S. K. Srinivasan, D. Vroon. Automatic Memory Reductions for
RTL Model Verification. In Proceedings of ICCAD’06, pp. 786–793, San Jose,
California, 2006.

[28] B. Cohen. Real Chip Design and Verification Using Verilog and VHDL. Vhdl-
cohen Pub, 2001. ISBN: 0-970-53942-8.

[29] E. Tronci. Automatic Synthesis of Controllers from Formal Specifications. In
Proceedings of ICFEM’98, p. 134, IEEE Computer Society, 1998. ISBN: 0-
8186-9198-0.

[30] K. Avnit, A. Sowmya, and J. Peddersen. ACS: Automatic Converter Synthesis
for SoC Bus Protocol. In Proceedings of TACAS 2010, LNCS 6015, pp. 343–
348, Springer Berlin / Heilderberg, 2010.

[31] A. Pnueli. The Temporal Logic of Programs. Proceedings of the 18th Annual
Symposium on Foundation of Coputer Science, pp. 46–57. IEEE Computer So-
ciety, 1977. ISSN: 0272-5428.

[32] D. J. Kinniment, A. Bystrov, A. Yakovlev. Synchronization Circuit Perfor-
mance. In IEEE Journal of Solid-State Circuits, Volume 37, pp. 202–209, 2002.

[33] T. Chelcea, S. M. Nowick. Robust Interfaces for Mixed-timing Systems
with Application to Latency-insensitive Protocols. In Proceedings of DAC’01,
pp. 21–26., ACM New York, NY, USA, 2001. ISBN: 1-58113-297-2.

[34] R. Ginosar. Fourteen Ways to Fool Your Synchronizer. In Proceedings of
ASYNC’03, IEEE Computer Society, 2003.

[35] T. Kapschitz, R. Ginosar, and R. Newton. Verifying Synchronization in Multi-
Clock Domain SoC. In Proceedings of DVCon’04, @HDL, Inc., 2004.

[36] T. Kapschitz and R. Ginosar. Formal Verification of Synchronizers. In Proceed-
ings of CHARME’05, LNCS 3725, pp. 359–362, Springer Berlin / Heidelberg,
2005.

103

[37] U. Frank, T. Kapschitz, and R. Ginosar. A Predictive Synchronizer for Periodic
Clock Domains. In Formal Methods in System Design, Volume 28, pp. 171–186,
Springer Netherlands, 2006. ISSN: 1572-8102.

[38] B. Li and C. K. Kwok. Automatic Formal Verification of Clock Domain Cross-
ing Signals. In Proceedings of ASP-DAC’09. IEEE Computer Society Press,
Piscataway, NJ, USA, 2009. ISBN: 978-1-4244-2748-2.

[39] Clock Domain Crossing – Closing the Loop on Clock Domain Functional Im-
plementation Problems. Technical Report, Cadence Design System, 2004.

[40] XILINX. Virtex-5 FPGA Data Sheet: DC and Switching Characteristics. Prod-
uct Specification, XILINX. Viewed on 20 May 2010, <http://www.xilinx.
com/support/documentation/data_sheets/ds202.pdf>.

[41] E. Hörbs, C. Müller-Schloer, and H. Schwärtzel. Design of VLSI Circuits.
Springer-Verlag Berlin, 1987. ISBN: 3-540-17663-2.

[42] N.P. Jouppi. Timing Analysis and Performance Improvement of MOS VLSI
Designs. In IEEE Transactions on Computed-Aided Design, Volume CAD-4,
p. 650-665, 1987.

[43] S. Devadas, K. Keutzer, and S. Malik. Delay Computation in Combinational
Logic Circuits: Theory and Algorithms. In Proceedings of ICCAD 1991,
pp. 176–179, IEEE Computer Society, 1991.

[44] A.I. Kayssi, K.A. Sakallah, and T.N. Mudge. The Impact of Signal Transi-
tion Time on Path Delay Computation. In Circuits and Systems II: Analog and
Digital Signal Processing. IEEE Transactions, Volume 40, Issue 5, 1993.

[45] Mentor Graphics. 0-In Formal Verification Data Sheet, 2006. Viewed in May
2010, available from <http://www.mentor.com/products/fv/0-in_fv/>.

[46] Axiom Design Automation. @HDL Verifier, 2004. Viewed on 7 June 2010,
<http://www.athdl.com/Verifier>.

[47] T. F. Melham. Formalizing Abstraction Mechanisms for Hardware Verification
in Higher Order Logic. Technical Report no. 201, University of Cambridge,
1990.

[48] E. Clark, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided
Abstraction Refinement. In Proceedings of CAV’00, LNCS 1855, pp. 154–169,
Springer Berlin / Heidelberg, 2000.

[49] J. O’Leary, X. Zhao, R. Gerth, and C-J. H. Seger. Formally Verifying IEEE
Compliance of Floating-Point Hardware. Intel Technology Journal, Q1, 1999.

104

[50] D. Russinoff. A Mechanically Checked Proof of IEEE Compliance of the
Floating-Point Multiplication, Division, and Square Root Algorithms of the
AMD-K7 Processor. In London Mathematical Society Journal of Computation
and Mathematics, 1998.

[51] D. Monniaux. The Pitfalls of Verifying Floating-point Computations. In Pro-
ceedings of TOPLAS’08, VOlume 30, Issue 3. ACM New York, NY, USA,
2008. ISSN: 0164-0926.

[52] C. Pasarean, W. Visser. Verification of Java Programs Using Symbolic Ex-
ecution and Invariant Generation. In Proceedings of SPIN’04, LNCS 2989,
Springer Berlin / Heidelberg, 2004.

[53] J. Kořenek, T. Pečenka, and M. Žádnı́k. NetFlow Probe Intended for High-
Speed Networks. In Proceedings of FPL’05. IEEE Computer Society, 2005.

[54] T. Ly, N. Hand, and Ch. Ka kei Kwok. Formally Verifying Clock Domain Cross-
ing Jitter Using Assertion-Based Verification. In Proceedings of DVCon’04.
Verilab, Munich, DE, 2004.

[55] M. Litterick. Pragmatic Simulation-Based Verification of Clock Domain Cross-
ing Signals and Jitter using SystemVerilog Assertings. In Proceedings of DV-
Con’06. Verilab, Munich, DE, 2006.

[56] K.L. McMillan. Cadence SMV. Viewed in May 2010, <http://www.
kenmcmil.com/smv.html>.

[57] K.L. McMillan. Getting Started with SMV. Tutorial to SMV, Cadence Berkeley
Labs, CA, USA. 1999. Viewed in Jul 2010, <http://www.kenmcmil.com/
psdoc.html>.

[58] J. F. Wakerly. Digital Design: Principles and Practices. 4th edition. Prentice-
Hall, India, 2005. ISBN: 8-120-33021-8.

[59] B. Lin and S. Devadas. Synthesis of Hazard-free Multi-level Logic Under
Multiple-input Changes from Binary Decision Diagrams. In Proceedings of
ICAAD’94. IEEE Computer Society Press, Los Alamitos, CA, USA. 1994.
ISBN: 0-89791-690-5.

[60] H. Comon, Y. Jurski. Multiple Counters Automata, Safety Analysis and
Presburger Arithmetic. In Proceedings of CAV’98, LNCS 1427, Springer
Berlin / Heidelberg, 1998.

[61] A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and T. Vojnar.
Programs with Lists are Counter Automata. In Proceedings of CAV’06,
LNCS 4144, Springer Berlin / Heidelberg, 2006.

105

[62] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Fast Acceleration of
Symbolic Transition systems. In Proceedings of CAV’03, LNCS 2725, Springer
Berlin / Heidelberg, 2003.

[63] S. Bardin, A. Finkel, and E. Lozes. From Pointer Systems to Counter Systems
Using Shape Analysis. In Proceedings of AVIS’06, 2006.

[64] S. Chaki, E. Clarke, A. Groce, J. Ouaknine, O. Strichman, and K. Yorav. Effi-
cient Verification of Sequential and Concurrent C Programs. Formal Methods
in System Design, 25(2–3):129–166, 2004.

[65] P.P. Chu. RTL Hardware Design Using VHDL: Coding for Efficiency, Portabil-
ity, and Scalability. John Wiley and Sons, Inc., Hoboken, New Jersey, 2006.

[66] P. Habermehl, R. Iosif, A. Rogalewicz, and T. Vojnar. Proving Termination of
Tree Manipulating Programs. In Proceedings of ATVA’07, LNCS 4762, 2007.
Springer Berlin / Heidelberg, 2007.

[67] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software Verification
with Blast. In Proceedings of SPIN’03, LNCS 2648, Springer Berlin / Heidel-
berg, 2003.

[68] T. Yavuz-Kahveci, C. Bartzis, and T. Bultan. Action Language Verifier, Ex-
tended. In Proceedings of CAV’05, LNCS 3576, Springer Berlin / Heidelberg,
2005.

[69] M. L. Minsky. Computation: Finite and Infinite Machines Prentice-Hall Inter-
national, 1967. ISBN: 0-13-165563-9

[70] IEEE Std 754-1990. Revision of IEEE Std 754, 1985 Edition. IEEE Standard
for Binary Floating-Point Arithmetic. Institute of Electrical and Electronics
Engineers, NJ, USA. 1990.

[71] IEEE Std 854-1994. Revision of IEEE Std 854, 1987 Edition. IEEE Standard
for Radix-Independent Floating-Point Arithmetic. Institute of Electrical and
Electronics Engineers, NJ, USA. 1994. ISBN: 0-7381-1167-8.

[72] IEEE Std 1129.1-1998. IEEE Standard for Waveform and Vector Exchange
(WAVES). Institute of Electrical and Electronics Engineers, NJ, USA. 1998.
ISBN: 0-7381-3032-X.

[73] IEEE Std 1076-2002. IEEE Standard VHDL Language Reference Manual. Re-
vision of IEEE Std 1076, 2000 Edition. Institute of Electrical and Electronics
Engineers, NJ, USA. 2002. Pages 300. 2000. ISBN: 0-7381-3247-0.

106

[74] IEEE Std 1076.1-2007. IEEE Standard VHDL Analog and Mixed-Signal Ex-
tensions. Institute of Electrical and Electronics Engineers, NJ, USA. 2007.
ISBN: 0-7381-5627-2.

[75] IEEE Std 1076.2-1996. IEEE Standard VHDL Mathematical Packages. Insti-
tute of Electrical and Electronics Engineers, NJ, USA. 1996. ISBN: 1-55937-
894-8.

[76] IEEE Std 1076.3-1997. IEEE Standard VHDL Synthesis Packages. Institute of
Electrical and Electronics Engineers, NJ, USA. 1997. ISBN: 1-55937-923-5.

[77] IEEE Std 61691-5-2004. Behavioural Languages - Part 5: VITAL ASIC (Ap-
plication Specific Integrated Circuit) Modeling Specification. Institute of Elec-
trical and Electronics Engineers, NJ, USA. 2004. ISBN: 2-8318-7684-2.

[78] IEEE Std 1076.6-1999. IEEE Standard for VHDL Register-Transfer Level
Synthesis. Institute of Electrical and Electronics Engineers, NJ, USA. 1999.
ISBN: 0-7381-1819-2.

[79] IEEE Std 1164-1993. IEEE Standard Multivalue Logic System for VHDL
Model Interoperability (Std logic 1164). Institute of Electrical and Electron-
ics Engineers, NJ, USA. 1993. ISBN: 0-7381-0991-6.

[80] Liberouter Project Homepage. Viewed on Oct 2009, <http://www.
liberouter.org/>.

[81] Mentor Graphics. Leonardo Spectrum Data Sheet, 2008. Viewed in
May 2010, available from <http://www.mentor.com/products/fpga_pld/
synthesis/leonardo_spectrum>.

[82] M. Litterick. Using SystemVerilog Assertions for Functional Coverage. In
Proceedings of DAC’05. Verilab, Munich, DE, 2005.

[83] A. Podelski, A. Rybalchenko, ARMC: The Logical Choice for Software
Model Checking with Abstraction Refinement. In Proceedings of PADL’07,
LNCS 4354, Springer Berlin / Heidelberg, 2007.

[84] M. Bozga, P. Habermehl, R. Iosif, F. Konečný, and T. Vojnar. Automatic Ver-
ification of Integer Array Programs. In Proceedings of CAV’09, LNCS 5643,
pp. 157–172, Springer Berlin / Heidelberg, 2009.

[85] R. Iosif, M. Bozga, and F. Konečný. Fast Acceleration of Ultimately Periodic
Relations. To appear in Proceedings of Computer Aided Verification 2010.

[86] S. Magill, M.-H. Tsai, P. Lee, Y.-K. Tsay. Automatic Numeric Abstractions for
Heap-Manipulating Programs. In Proceedings of POPL’2010, ACM SIGPLAN
Notices, Volume 45, 2010. ISSN: 0362-1340.

107

[87] S. Bardin, J. Leroux, G. Point. FAST Extended Release. In Proceedings of
CAV’06, LNCS 4144, Springer Berlin / Heidelberg, 2006.

[88] C. Alias, A. Darte, P. Feautrier, and L. Gonnord. Multi-dimensional Rankings,
Program Termination, and Complexity Bounds of Flowchart Programs. Ac-
cepted in Static Analysis Symposium, 2010.

[89] R. Alur. Timed Automata. In Proceedings of CAV’99, LNCS 1633, pp. 8–22,
Springer Berlin / Heidelberg, 1999.

[90] A. Smrčka. CDCreveal: A Tool for Extending Zero-delay Models of Asyn-
chronous Circuits. Project’s homepage. Revised on 25 July 2010, <http:
//www.fit.vutbr.cz/˜smrcka/tools/cdcreveal/>.

[91] A. Smrčka. VHD2CA: A Translator From VHDL to Counter Automata.
Project’s homepage. Revised on 1 Aug. 2010, <http://www.fit.vutbr.cz/
˜smrcka/tools/vhd2ca/>.

[92] A. Smrčka et al. Verifying VHDL Design with Multiple Clocks in SMV. In
Proceedings of FMICS’06, LNCS 4346, pp. 148–164, Springer Berlin / Heidel-
berg, 2007.

[93] A. Smrčka and T. Vojnar. Verifying Parametrised Hardware Designs Via
Counter Automata. In Proceedings of HVC’07, LNCS 4899, pp. 51–68,
Springer Berlin / Heidelberg, 2008.

[94] P. Matoušek, A. Smrčka, and T. Vojnar. High-level Modelling, Analy-
sis, and Verification on FPGA-based Hardware Designs. In Proceedings of
CHARME’05, LNCS 3725, pp. 371–375. Springer Berlin / Heidelberg, 2005.

[95] P. Matoušek, A. Smrčka, and T. Vojnar. High-level Modelling, Analysis, and
Verification on FPGA-based Hardware Designs. CESNET Technical Report no.
8/2005. Viewed in July 2010, <http://www.cesnet.cz/doc/techzpravy/
2005/lup/lup.pdf>.

[96] A. Smrčka et al. Formal Verification of the CRC Algorithm Properties. In
Proceedings of MEMICS’06, pp. 55–65, Mikulov CZ, 2006. ISBN: 80-214-
3287-X.

108

Appendix A

An Example of the
Implementation of the Destabilizer

At this appendix, we will show an example of application of extension of critical sig-
nal paths in Cadence SMV. For the reference, we will use the design which structural
diagram is depicted in Figure A.1.

r

r

a

e

o

p

q

X

c1 Y

r
s t

u

v

d

b

x

y

c2

Z
c

V

U w

Figure A.1: An example of hardware design with multiple clocks.

The zero-delayed model in Cadence SMV of a hardware design described above
would be as depicted in Figure A.2. The hardware design has two clock signals c1
and c2, four critical signal paths:

ρ1 = XoaxZ

ρ2 = X pbuUwcyZ

ρ3 = X pbrVtdvUwcyZ

ρ4 = Y qesVtdvUwcyZ

109

1 -- module definitions
2 module X(clk, o, p) {...}
3 module Y(clk, q) {...}
4 module V(r, s, t) {...}
5 module U(u, v, w) {...}
6 module Z(clk, x, y) {...}
7

8 -- signal declarations
9 c1, c2: boolean;

10 b, c, d, e: boolean;
11

12 -- module instantiations
13 g1: X(c1, a, b);
14 g2: Y(c1, e);
15 g3: V(b, e, d);
16 g4: U(b, d, c);
17 g5: Z(c2, a, c);

Figure A.2: An example of the zero-delayed model. Note that {...} in a module
definition represents a behaviour of a given module.

and two sets of signal paths with the same destination port:

[ρ1] = {ρ1}

[ρ2] = [ρ3] = [ρ4] = {ρ2,ρ3,ρ4}

That is, we need to create two destabilizers δρ1 and δρ2 sensitive for one, i.e.,
{σi(ρ1)}= {a}, and two, i.e., {σi(ρ2),σi(ρ3),σi(ρ4)}= {b,b,e}= {b,e}, input sig-
nals change. The first destabilizer produces the x-value for the length of 1 verification
step, while the latter one destabilizes its output for 3 steps:

max({|i(ρ2)|, |i(ρ3)|, |i(ρ4)|}) = max({2,3,3}) = 3.

Also, two new signals s1 and s2 must be declared to connect destabilizers to given
input ports. The transformed version of the zero-delay model is shown below:

110

1 -- module definitions
2 module X(clk, o, p) {...}
3 module Y(clk, q) {...}
4 module U(u, v, w) {...}
5 module V(r, s, t) {...}
6 module U(u, v, w) {...}
7 module Z(clk, x, y) {...}
8 module Destabilizer1(i1, alpha, omega) {
9 input i1 : boolean;

10 input alpha : boolean;
11 output omega : boolean;
12 cnt : 0..1;
13 init(cnt) := 0;
14 next(cnt) := case {
15 i1!=next(i1) : 1;
16 cnt=1 : 0;
17 cnt>0 & cnt<1 : cnt+1;
18 1 : 0;
19 }
20 omega := case {
21 cnt=0 : alpha;
22 cnt>0 : {0,1};
23 }
24 }
25 module Destabilizer2(i1, i2, alpha, omega) {
26 input i1 : boolean;
27 input i2 : boolean;
28 input alpha : boolean;
29 output omega : boolean;
30 cnt : 0..3;
31 init(cnt) := 0;
32 next(cnt) := case {
33 i1!=next(i1) | i2!=next(i2) : 1;
34 cnt=3 : 0;
35 cnt>0 & cnt<3 : cnt+1;
36 1 : 0;
37 }
38 omega := case {
39 cnt=0 : alpha;
40 cnt>0 : {0,1};
41 }
42 }

111

44 -- signal declarations
45 c1, c2: boolean;
46 a, b, c, d, e: boolean;
47 s1, s2: boolean;
48

49 -- module instantiations
50 g1: X(c1, a, b);
51 g2: Y(c1, e);
52 g3: V(b, e, d);
53 g4: U(b, d, c);
54 d1: Destabilizer1(a, a, s1);
55 d2: Destabilizer2(b, e, c, s2);
56 g5: Z(c2, s1, s2);

112

Appendix B

Simple Handshake
Synchronization Protocol

Here is the source code of a handshake data transfer synchronization protocol. The
core of the synchronization is inspired from four-phase handshake, widely used in
many transactional protocols. The model consists of three modules—module main
which defines an environment of the module transmitter, the control part of the
synchronization, and module fdce which implements a generic flip-flop gate. The
metastability is dealt with two-flip-flops solution, e.g., lines 47-54. The assertion
at line 15 specifies the consistent data (for the same information of two bits on the
transmitter input, the output must be also the same at any time). An example of flaw
in the design is presented at line 68, where the definition of rdy signal (informing the
receiver that new data is ready) does not depend on the receiver acknowledgement.

1 module main()
2 {
3 a: boolean; -- data sent
4 b: boolean; -- the first part of received data
5 c: boolean; -- the second part of received data
6 clk1: boolean;
7 clk2: boolean;
8

9 a := {0,1};
10 clk1 := {0,1};
11 clk2 := {0,1};
12

13 t1: transmitter(a, a, clk1, b, c, clk2);
14

15 data_consistent: assert G(b = c);
16 }

113

17 module transmitter(din_0, din_1, clk_wr, dout_0, dout_1, clk_rd)
18 {
19 input din_0: boolean;
20 input din_1: boolean;
21 input clk_wr: boolean;
22 input clk_rd: boolean;
23 output dout_0: boolean;
24 output dout_1: boolean;
25

26 dlink_0: boolean;
27 dlink_1: boolean;
28 rdy: boolean;
29 ack: boolean;
30

31 -- synchronize cdc signals (metastability) via 2FF
32 c_ack: boolean;
33 s1_s: boolean;
34

35 c_rdy: boolean;
36 s2_s: boolean;
37

38 c_dlink_0: boolean;
39 s3_s: boolean;
40

41 c_dlink_1: boolean;
42 s4_s: boolean;
43

44 pwr: boolean;
45

46 pwr := 1;
47 s1_f1: fdce(s1_s, ack, clk_wr, pwr);
48 s1_f2: fdce(c_ack, s1_s, clk_wr, pwr);
49 s2_f1: fdce(s2_s, rdy, clk_rd, pwr);
50 s2_f2: fdce(c_rdy, s2_s, clk_rd, pwr);
51 s3_f1: fdce(s3_s, dlink_0, clk_rd, pwr);
52 s3_f2: fdce(c_dlink_0, s3_s, clk_rd, pwr);
53 s4_f1: fdce(s4_s, dlink_1, clk_rd, pwr);
54 s4_f2: fdce(c_dlink_1, s4_s, clk_rd, pwr);
55

56 -- implement both parts of transmitter
57 lrdy: boolean;
58 s_ce: boolean;
59 rdy_val: boolean;
60 nack: boolean;
61 nack := ˜c_ack;
62 s_ce := ˜lrdy & nack;
63 reg_lrdy: fdce(lrdy, nack, clk_wr, pwr);

114

64 /********** GOOD **********/
65 rdy_val := (˜rdy & lrdy) | (rdy & nack);
66 reg_rdy: fdce(rdy, rdy_val, clk_wr, pwr);
67 /********** BUG **********/
68 /*rdy := lrdy;*/
69

70 tr1_s0: fdce(dlink_0, din_0, clk_wr, s_ce);
71 tr1_s1: fdce(dlink_1, din_1, clk_wr, s_ce);
72 reg_ack: fdce(ack, c_rdy, clk_rd, pwr);
73 r0: fdce(dout_0, c_dlink_0, clk_rd, c_rdy);
74 r1: fdce(dout_1, c_dlink_1, clk_rd, c_rdy);
75 }
76

77 module fdce(q, d, c, ce)
78 {
79 output q: boolean;
80 input d: boolean;
81 input c: boolean;
82 input ce: boolean;
83

84 init(q) := 0;
85

86 if (ce & ˜c & next(c))
87 next(q) := d;
88 else
89 next(q) := q;
90 }

115

Appendix C

Examples of Abstractions of
Bit-wise Operations in VHDL

In the following, some of ideas of an abstraction of a bit-wise operation is introduced.
We will present the ideas on the example of a simple arithmetic unit in Figure C.1.

The first idea is to reduce the number of one-bit variables by representing multiple
one-bit variables as a counter. The idea aims at the bit-vectors that are accessed via
a bit-vector literals only (cf. Figure C.1, lines 27–32). The proposed method of
transforming the model to the counter automata deals with such a bit-vector as with
two independent one-bit variables. As a result, two more bit variables increase the
size of a counter automaton (in a number of state locations) four times larger. When
representing the bit-vector as a counter, the size of an automaton is dramatically
reduced, but the number transitions slightly rises (the access to a bit-vector/counter
value must be represented by an arithmetic expression). In particular, the bit-vector
opcode can be addressed using a counter if it is accessed by a comparison with an
integer number (cf. Figure C.2).

Another idea aims at a single-bit access of a bit-vector (cf. Figure C.1, line 35).
In particular, we replace a bit-wise access with arithmetic operations over a counter
value. For a example, in Figure C.1, the abstraction of the bit-wise access can be
replaced with the statements depicted in Figure C.3. Note that such an abstraction is
not easy to obtain and needs a great deal of investigation to the roots of the problem.

116

1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.std_logic_arith.all;
4 entity arith_unit is
5 generic (WIDTH : integer = 64);
6 port(
7 clk : in std_logic;
8 reset : in std_logic;
9 opcode: in std_logic_vector(0 to 1);

10 a, b: in signed(0 to WIDTH-1);
11 c: out signed(0 to WIDTH-1);
12 signed : out std_logic
13);
14 end entity arith_unit;
15 architecture my_unit of arith_unit is
16 signal a1, a2, n1, n2: signed(0 to WIDTH-1);
17 begin
18 a1 <= a + b;
19 a2 <= a - b;
20 n1 <= -a;
21 n2 <= -b;
22 process (reset, clk)
23 begin
24 if (reset = ’1’)
25 c <= (others => ’0’);
26 elsif (clk’event and clk = ’1’) then
27 case opcode is
28 when ’00’ => c <= a1;
29 when ’01’ => c <= a2;
30 when ’10’ => c <= n1;
31 when ’11’ => c <= n2;
32 end case;
33 end if;
34 end process;
35 signed <= c(WIDTH-1);
36 end architecture;

Figure C.1: A simple arithmetic unit. Note the unit is defined by a generic entity (cf.
parameter WIDTH) and contains bit-wise operations (bit-wise case statement at lines
27–32 and a bit-wise access to a register value at line 35).

117

27 case opcode is
28 when 0 => c <= a1;
29 when 1 => c <= a2;
30 when 2 => c <= n1;
31 when 3 => c <= n2;
32 end case;

Figure C.2: All literals of bit-vectors are substituted with appropriate positive integer
numbers.

35 case opcode is
36 when 0 => signed <= (a1 < 0) or (a1 >= 2**WIDTH);
37 when 1 => signed <= ((a2 < 0) and (a2 >= -2**WIDTH))
38 or (a2 >= 2**WIDTH);
39 when 2 => signed <= (n1<0);
40 when 3 => signed <= (n2<0);
41 end case;

Figure C.3: A simple bit-wise access signed <= c(WIDTH-1) replaced with rather
complicated statement containing only the reference to a counter values. Note that
the analysis of the left-most bit of a bit-vector c should take into account also the pos-
sible overflow of the arithmetic operations over limited bit-vectors (the expressions
2**WIDTH).

118

