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BoxCars: Improving Fine-Grained Recognition
of Vehicles using 3D Bounding Boxes

in Traffic Surveillance
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Abstract—In this paper, we focus on fine-grained recognition
of vehicles mainly in traffic surveillance applications. We propose
an approach that is orthogonal to recent advancements in fine-
grained recognition (automatic part discovery, bilinear pooling).
Also, in contrast to other methods focused on fine-grained
recognition of vehicles, we do not limit ourselves to a frontal/rear
viewpoint, but allow the vehicles to be seen from any viewpoint.
Our approach is based on 3D bounding boxes built around the
vehicles. The bounding box can be automatically constructed
from traffic surveillance data. For scenarios where it is not
possible to use precise construction, we propose a method for
an estimation of the 3D bounding box. The 3D bounding box
is used to normalize the image viewpoint by “unpacking” the
image into a plane. We also propose to randomly alter the color
of the image and add a rectangle with random noise to a random
position in the image during the training of Convolutional Neural
Networks. We have collected a large fine-grained vehicle dataset
BoxCars116k, with 116k images of vehicles from various view-
points taken by numerous surveillance cameras. We performed
a number of experiments which show that our proposed method
significantly improves CNN classification accuracy (the accuracy
is increased by up to 12 percentage points and the error is
reduced by up to 50 % compared to CNNs without the proposed
modifications). We also show that our method outperforms state-
of-the-art methods for fine-grained recognition.

I. INTRODUCTION

Fine-grained recognition of vehicles is interesting, both
from the application point of view (surveillance, data retrieval,
etc.) and from the point of view of general fine-grained recog-
nition research applicable in other fields. For example, Gebru
et al. [1] proposed an estimation of demographic statistics
based on fine-grained recognition of vehicles. In this article,
we are presenting methodology which considerably increases
the performance of multiple state-of-the-art CNN architectures
in the task of fine-grained vehicle recognition. We target the
traffic surveillance context, namely images of vehicles taken
from an arbitrary viewpoint – we do not limit ourselves
to frontal/rear viewpoints. As the images are obtained from
surveillance cameras, they have challenging properties – they
are often small and taken from very general viewpoints (high
elevation). We also construct the training and testing sets from
images from different cameras as it is common for surveillance
applications that it is not known a priori under which viewpoint
the camera will be observing the road.
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Fig. 1. Example of automatically obtained 3D bounding box used for
fine-grained vehicle classification. Top left: vehicle with 2D bounding box
annotation, top right: estimated contour, bottom left: estimated directions
to vanishing points, bottom right: 3D bounding box automatically obtained
from surveillance video (green) and our estimated 3D bounding box (red).

Methods focused on the fine-grained recognition of vehi-
cles usually have some limitations – they can be limited to
frontal/rear viewpoints or use 3D CAD models of all the
vehicles. Both these limitations are rather impractical for large
scale deployment. There are also methods for fine-grained
recognition in general which were applied on vehicles. The
methods recently follow several main directions – automatic
discovery of parts [2], [3], bilinear pooling [4], [5], or exploit-
ing structure of fine-grained labels [6], [7]. Our method is not
limited to any particular viewpoint and it does not require 3D
models of vehicles at all.

We propose an orthogonal approach to these methods and
use CNNs with a modified input to achieve better image nor-
malization and data augmentation (therefore, our approach can
be combined with other methods). We use 3D bounding boxes
around vehicles to normalize vehicle image (see Figure 4 for
examples). This work is based on our previous conference
paper [8]; it pushes the performance further and we mainly
propose a new method on how to build the 3D bounding box
without any prior knowledge (see Figure 1). Our input mod-
ifications are able to significantly increase the classification
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accuracy (up to 12 percentage points, classification error is
reduced by up to 50 %).

The key contributions of the paper are:
• Complex and thorough evaluation of our previous

method [8].
• Our novel data augmentation techniques further improve

the results of the fine-grained recognition of vehicles
relative both to our previous method and other state-of-
the-art methods (Section III-C).

• We remove the requirement of the previous method [8] to
know the 3D bounding box by estimating the bounding
box both at training and test time (Section III-D).

• We collected more samples to the BoxCars dataset,
increasing the dataset size almost twice (Section IV).

We will make the collected dataset and source codes for the
proposed algorithm publicly available1 for future reference and
comparison.

II. RELATED WORK

In order to provide context to the proposed method, we
present a summary of existing fine-grained recognition meth-
ods (both general and focused on vehicles).

A. General Fine-Grained Object Recognition

We divide the fine-grained recognition methods from recent
literature into several categories as they usually share some
common traits. Methods exploiting annotated model parts (e.g.
[9], [10]) are not discussed in detail as it is not common in
fine-grained datasets of vehicles to have the parts annotated.

1) Automatic Part Discovery: Parts of classified objects
may be discriminatory and provide lots of information for the
fine-grained classification task. However, it is not practical to
assume that the location of such parts is known a priori as it
requires significantly more annotation work. Therefore, several
papers [2], [3], [11]–[15] have dealt with this problem and
proposed methods how to automatically (during both training
and test time) discover and localize such parts. The methods
differ mainly in the ways in which they are used for the
discovery of discriminative parts. The features extracted from
the parts are usually classified by SVMs.

2) Methods using Bilinear Pooling: Lin et al. [4] use only
convolutional layers from the net for extraction of features
which are classified by a bilinear classifier [16]. Gao et al. [5]
followed the path of bilinear pooling and proposed a method
for Compact Bilinear Pooling getting the same accuracy as
the full bilinear pooling with a significantly lower number of
features.

3) Other Methods: Xie et al. [6] proposed to use a hyper-
class for data augmentation and regularization of fine-grained
deep learning. Zhou et al. [7] use CNN with Bipartite Graph
Labeling to achieve better accuracy by exploiting the fine-
grained annotations and coarse body type (e.g. Sedan, SUV).
Lin et al. [17] use three neural networks for simultaneous
localization, alignment and classification of images. Each of
these three networks does one of the three tasks and they are

1https://medusa.fit.vutbr.cz/traffic

connected into one bigger network. Yao et al. [13] proposed an
approach which uses responses to random templates obtained
from images and classifies merged representations of the re-
sponse maps by SVM. Zhang et al. [18] use pose normalization
kernels and their responses warped into a feature vector.
Chai et al. [19] propose to use segmentation for fine-grained
recognition to obtain the foreground parts of an image. A
similar approach was also proposed by Li et al. [20]; however,
the authors use a segmentation algorithm which is optimized
and fine-tuned for the purpose of fine-grained recognition.
Finally, Gavves et al. [21] propose to use object proposals
to obtain the foreground mask and unsupervised alignment to
improve fine-grained classification accuracy.

B. Fine-Grained Recognition of Vehicles
The goal of fine-grained recognition of vehicles is to

identify the exact type of the vehicle, that is its make,
model, submodel, and model year. The recognition system
focused only on vehicles (in relation to general fine-grained
classification of birds, dogs, etc.) can benefit from that the
vehicles are rigid, have some distinguishable landmarks (e.g.
license plates), and rigorous models (e.g. 3D CAD models)
can be available.

1) Methods Limited to Frontal/Rear Images of Vehicles:
There is a multitude of papers [22]–[29] using a common ap-
proach: they detect the license plate (as a common landmark)
on the vehicle and extract features from the area around the
license plate as the front/rear parts of vehicles are usually
discriminative.

There are also papers [30]–[35] directly extracting features
from frontal images of vehicles by different methods and
optionally exploiting the standard structure of parts on the
frontal mask of car (e.g. headlights).

2) Methods based on 3D CAD Models: There were several
approaches on how to deal with viewpoint variance using
synthetic 3D models of vehicles. Lin et al. [36] propose to
jointly optimize 3D model fitting and fine-grained classifi-
cation, Hsiao et al. [37] use detected contour and align the
3D model using 3D chamfer matching. Krause et al. [38]
propose to use synthetic data to train geometry and viewpoint
classifiers for the 3D model and 2D image alignment. Prokaj
et al. [39] propose to detect SIFT features on the vehicle
image and on every 3D model seen from a set of discretized
viewpoints.

3) Other Methods: Gu et al. [40] propose extracting the
center of a vehicle and roughly estimate the viewpoint from
the bounding box aspect ratio. Then, they use different Active
Shape Models for alignment of data taken from different
viewpoints and use segmentation for background removal.

Stark et al. [41] propose using an extension of Deformable
Parts Model (DPM) [42] to be able to handle multi-class
recognition. The model is represented by latent linear multi-
class SVM with HOG [43] features. The authors show that
the system outperforms different methods based on Locally-
constrained Linear Coding [44] and HOG. The recognized
vehicles are used for eye-level camera calibration.

Liu et al. [45] use deep relative distance trained on a
vehicle re-identification task and propose training the neural

https://medusa.fit.vutbr.cz/traffic
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net with Coupled Clusters Loss instead of triplet loss. Boonsim
et al. [46] propose a method for fine-grained recognition of
vehicles at night. The authors use relative position and shape of
features visible at night (e.g. lights, license plates) to identify
the make&model of a vehicle, which is visible from the rear
side.

Fang et al. [47] propose using an approach based on detected
parts. The parts are obtained in an unsupervised manner as
high activations in a mean response across channels of the
last convolutional layer of used CNN. The authors in [48]
introduce spatially weighted pooling of convolutional features
in CNNs to extract important features from the image.

4) Summary of Existing Methods: Existing methods for the
fine-grained classification of vehicles usually have significant
limitations. They are either limited to frontal/rear viewpoints
[22]–[35] or require some knowledge about 3D models of the
vehicles [36]–[39] which can be impractical when new models
of vehicles emerge.

Our proposed method does not have such limitations. The
method works with arbitrary viewpoints and we require only
3D bounding boxes of vehicles. The 3D bounding boxes
can either be automatically constructed from traffic video
surveillance data [49], [50] or we propose a method on how
to estimate the 3D bounding boxes both at training and test
time from single images (see Section III-D).

C. Datasets for Fine-Grained Recognition of Vehicles

There is a large number of datasets of vehicles (e.g [51],
[52]) which are usable mainly for vehicle detection, pose
estimation, and other tasks. However, these datasets do not
contain annotations of the precise vehicles’ make and model.

When it comes to the fine-grained recognition datasets, there
are some [33], [36], [38], [41] which are relatively small in
number of samples or classes. Therefore, they are impractical
for the training of CNN and deployment of real world traffic
surveillance applications.

Yang et al. [53] published a large dataset CompCars. The
dataset consists of a web-nature part, made of 136k of vehicles
from 1 600 classes taken from different viewpoints. It also
contains a surveillance-nature part with 50k frontal images of
vehicles taken from surveillance cameras.

Liu et al. [54] published dataset VeRi-776 for the vehicle
re-identification task. The dataset contains over 50k images of
776 vehicles captured by 20 cameras covering an 1.0 km2 area
in 24 hours. Each vehicle is captured by 2 ∼ 18 cameras under
different viewpoints, illuminations, resolutions and occlusions.
The dataset also provides various attributes, such as bounding
boxes, vehicle types, and colors.

D. Vehicle Detection

In traffic surveillance applications, it is common that prior
fine-grained vehicle classification is necessary to detect ve-
hicles; therefore, we include a brief overview of existing
methods for vehicle detection. It is possible to use standard
object detectors – either based on convolutional neural net-
works [55], [56], AdaBoost [57], Deformable Part Models
[42], [58] or Hough Transformation [59]. There were also

A
B

C

D

E
F

G

H

Fig. 2. 3D bounding box construction process. Each set of lines with the same
color intersects in one vanishing point. See the original paper for full details
[49]. The image was adopted from the paper with the authors’ permission.
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Fig. 3. 3D bounding box and its unpacked version.

attempts to improve specifically vehicle detection based on
geometric information [60], during night [61], or to increase
the accuracy of localization of occluded vehicles [62].

III. PROPOSED METHODOLOGY FOR FINE-GRAINED
RECOGNITION OF VEHICLES

In agreement with recent progress in the Convolutional Neu-
ral Networks [63]–[65], we use CNN for both classification
and verification (determining whether a pair of vehicles has
the same type). However, we propose to use several data
normalization and augmentation techniques to significantly
boost the classification performance (up to 50% error reduc-
tion compared to base net). We utilize information about 3D
bounding boxes obtained from traffic surveillance camera [49].
Finally, in order to increase the applicability of our method
to scenarios where the 3D bounding box is not known, we
propose an algorithm for bounding box estimation both at
training and test time.

A. Image Normalization by Unpacking the 3D Bounding Box

We based our work on 3D bounding boxes proposed by [49]
(Fig. 4) which can be automatically obtained for each vehicle
seen by a surveillance camera (see Figure 2 for schematic
3D bounding box construction process or the original paper
[49] for further details). These boxes allow us to identify the
side, roof, and front (or rear) side of vehicles in addition to
other information about the vehicles. We use these localized
segments to normalize the image of the observed vehicles
(considerably boosting the recognition performance).

The normalization is done by unpacking the image into
a plane. The plane contains rectified versions of the front/rear
(F), side (S), and roof (R). These parts are adjacent to each
other (Fig. 3) and they are organized into the final matrix U:

U =

(
0 R
F S

)
(1)

The unpacking itself is done by obtaining homography
between points bi (Fig. 3) and perspective warping parts of
the original image. The left top submatrix is filled with zeros.
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Fig. 4. Examples of data normalization and auxiliary data fed to nets. Left
to right: vehicle with 2D bounding box, computed 3D bounding box, vectors
encoding viewpoints on the vehicle (View), unpacked image of the vehicle
(Unpack), and rasterized 3D bounding box fed to the net (Rast).

Fig. 5. Examples of proposed data augmentation techniques. Left most image
contains the original cropped image of the vehicle and other images contains
augmented versions of the image (Top – Color, Bottom – ImageDrop).

This unpacked version of the vehicle is used instead of the
original image to feed the net. The unpacking is beneficial as
it localizes parts of the vehicles, normalizes their position in
the image and it does all that without the necessity of using
DPM or other algorithms for part localization. Later in the
text, we will refer to this normalization method as Unpack.

B. Extended Input to the Neural Nets

It it possible to infer additional information about the
vehicle from the 3D bounding box and we found out that these
data slightly improve the classification and verification perfor-
mance. One piece of this auxiliary information is the encoded
viewpoint (direction from which the vehicle is observed). We
also add a rasterized 3D bounding box as an additional input
to the CNNs. Compared to our previously proposed auxiliary
data fed to the net [8], we handle frontal and rear vehicle sides
differently.

View. The viewpoint is extracted from the orientation of the
3D bounding box – Fig. 4. We encode the viewpoint as three
2D vectors vi, where i ∈ {f, s, r} (front/rear, side, roof ) and
pass them to the net. Vectors vi are connecting the center of the
bounding box with the centers of the box’s faces. Therefore,
it can be computed as vi =

−−−→
CcCi. Point Cc is the center of

the bounding box and it can be obtained as the intersection of
diagonals

←→
b2b4 and

←→
b5b3. Points Ci for i ∈ {f, s, r} denote the

centers of each face, again computed as intersections of face
diagonals. In contrast to our previous approach [8], which did
not take the direction of the vehicle into account; instead, we
encode the information about the vehicle direction (d = 1 for
vehicles going to camera, d = 0 for vehicles going from the
camera), in order to determine which side of the bounding box
is the frontal one. The vectors are normalized to have a unit
size; storing them with a different normalization (e.g. the front

one normalized, the other in the proper ratio) did not improve
the results.

Rast. Another way of encoding the viewpoint and also
the relative dimensions of vehicles is to rasterize the 3D
bounding box and use it as an additional input to the net. The
rasterization is done separately for all sides, each filled by one
color. The final rasterized bounding box is then a four-channel
image containing each visible face rasterized in a different
channel. Formally, point p of the rasterized bounding box T
is obtained as

Tp =


(1, 0, 0, 0) p ∈ b0b1b4b5 and d = 1
(0, 1, 0, 0) p ∈ b0b1b4b5 and d = 0
(0, 0, 1, 0) p ∈ b1b2b5b6
(0, 0, 0, 1) p ∈ b0b1b2b3
(0, 0, 0, 0) otherwise

(2)

where b0b1b4b5 denotes the quadrilateral defined by points
b0, b1, b4 and b5 in Figure 3.

Finally, the 3D rasterized bounding box is cropped by the
2D bounding box of the vehicle. For an example, see Figure 4,
showing rasterized bounding boxes for different vehicles taken
from different viewpoints.

C. Additional Training Data Augmentation

In order to increase the diversity of the training data, we
propose additional data augmentation techniques. The first one
(denoted as Color) deals with the fact that for fine-grained
recognition of vehicles (and some other objects), their color
is irrelevant. The other method (ImageDrop) deals with some
potentially missing parts of the vehicle. Examples of the data
augmentation are shown in Figure 5. Both these augmentation
techniques are done only with predefined probability during
training, otherwise they are not modified. During testing, we
do not modify the images at all.

The results presented in Section V-E show that both these
modifications improve the classification accuracy both in com-
bination with other presented techniques or by themselves.

Color. In order to increase training samples color variability,
we propose to randomly alternate the color of the image. The
alternation is done in the HSV color space by adding the same
random values to each pixel in the image (each HSV channel
is processed separately).

ImageDrop. Inspired by Zeiler et al. [66], who evaluated
the influence of covering a part of the input image on the
probability of the ground truth class, we take this a step further
and in order to deal with missing parts on the vehicles, we take
a random rectangle in the image and fill it with random noise,
effectively dropping any information contained in that part of
the image.

D. Estimation of 3D Bounding Box from a Single Image

As the results (Section V) show, the most important part
of the proposed algorithm is Unpack followed by Color and
ImageDrop. However, the 3D bounding box is required for
unpacking the vehicles and we acknowledge that there may
be scenarios when such information is not available. For these
cases, we propose a method on how to estimate the 3D
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Fig. 6. Estimation of 3D bounding box. Left to right: image with vehicle
2D bounding box, output of contour object detector [67], our constructed
contour, estimated directions towards vanishing points, ground truth (green)
and estimated (red) 3D bounding box.
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Fig. 7. Used CNN for estimation of directions towards vanishing points.
The vehicle image is fed to ResNet50 with 3 separate outputs which predict
probabilities for directions of vanishing points as probabilities in a quantized
angle space (60 bins from −90◦ to 90◦).

bounding box for both training and test time when only limited
information is available.

As proposed by [49], the vehicle’s contour and vanishing
points are required for the bounding box construction. There-
fore, it is necessary to estimate the contour and vanishing
points for the vehicle. For estimating the vehicle contour, we
use Fully Convolutional Encoder-Decoder network designed
by Yang et al. [67] for general object contour detection and
masks with probabilities of vehicles contours for each image
pixel. To obtain the final contour, we search for global maxima
along line segments from 2D bounding box centers to edge
points of the 2D bounding box (see Figure 6 for examples).

We found out that the exact position of the vanishing point
is not required for 3D bounding box construction, but the
directions to the vanishing points are much more important.
Therefore, we use regression to obtain the directions towards
the vanishing points and then assume that the vanishing points
are in infinity.

Following the work by Rothe et al. [68], we formulated
the regression of the direction towards the vanishing points as
a classification task into bins corresponding to angles and we
used ResNet50 [69] with three classification outputs. We found
this approach more robust than a direct regression. We added
three separate fully connected layers with softmax activation
(one for each vanishing point) after the last average pooling
in the ResNet50 (see Figure 7). Each of these layers generates
probabilities for each vanishing point belonging to the specific
direction bin (represented as angles). We quantized the angle
space by bins of 3◦ from −90◦ to 90◦ (60 bins per vanishing
point in total).

As the training data for the regression we used Box-
Cars116k dataset (Section IV) with the test samples omitted.
The direction to vanishing points were obtained by method
[49], [50]; however, the quality of the ground truth bounding
boxes was manually verified during annotation of the dataset

and imprecise samples were removed by the annotators. To
construct the lines on which the vanishing points are, we use
the center of the 2D bounding box. Even though there is bias
in the direction of the training data (some bins have very low
number of samples), it is highly unlikely that for example, the
first vanishing point direction will be close to horizontal.

With all this estimated information it is then possible to
construct the 3D bounding box in both training and test time.
It is important to note that by using this 3D bounding box
estimation, it is possible to use this method outside the scope
of traffic surveillance. It is only necessary to train the regressor
of vanishing points directions. For the training of such a
regressor, it is possible to use either the directions themselves
or viewpoints on the vehicle and focal lengths of the images.

Using this estimated bounding box, it is possible to unpack
the vehicle image in test time without any additional informa-
tion required. This enables the usage of the method when the
traffic surveillance data are not available. The results in Section
V-C show that by using this estimated 3D bounding boxes,
our method still significantly outperforms other convolutional
neural networks without input modification.

IV. BOXCARS116K DATASET

We collected and annotated a new dataset BoxCars116k.
The dataset is focused on images taken from surveillance
cameras as it is meant to be useful for traffic surveillance
applications. We do not restrict that the vehicles are taken
from the frontal side (Fig. 8). We used surveillance cameras
mounted near streets and tracked passing vehicles. The cam-
eras were placed on various locations around Brno, Czech
Republic and recorded the passing traffic from an arbitrary
(reasonable) surveillance viewpoint. Each correctly detected
vehicle (by Faster-RCNN [55] trained on COD20k dataset
[70]) is captured in multiple images, as it passes by the camera;
therefore, we have more visual information about each vehicle.

A. Dataset Acquisition

The dataset is formed by two parts. The first part consists of
data from BoxCars21k dataset [8] which were cleaned up and
some imprecise annotations were then corrected (e.g. missing
model years for some uncommon vehicle types).

We also collected other data from videos relevant to our
previous work [49], [50], [71]. We detected all vehicles,
tracked them and for each track collected images of the
respective vehicle. We downsampled the framerate to ∼ 12.5
FPS to avoid collecting multiple and almost identical images
of the same vehicle.

The new dataset was annotated by multiple human anno-
tators with an interest in vehicles and sufficient knowledge
about vehicle types and models. The annotators were assigned
to clean up the processed data from invalid detections and
assign exact vehicle type (make, model, submodel, year) for
each obtained track. While preparing the dataset for annota-
tion, 3D bounding boxes were constructed for each detected
vehicle using the method proposed by [49]. Invalid detections
were then distinguished by the annotators based on these
constructed 3D bounding boxes. In the cases when all 3D
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Fig. 8. Collate of random samples from the BoxCars116k dataset.
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Fig. 9. BoxCars116k dataset statistics – top left: 2D bounding box di-
mensions, top right: number of fine-grained types samples, bottom left:
azimuth distribution (0◦ denotes frontal viewpoint), bottom right: elevation
distribution.

bounding boxes were not constructed precisely, the whole
track was invalidated.

Vehicle type annotation reliability is guaranteed by provid-
ing multiple annotations for each valid track (∼ 4 annotations
per vehicle). The annotation of a vehicle type is considered
as correct in the case of at least three identical annotations.
Uncertain cases were authoritatively annotated by the authors.

The tracks in BoxCars21k dataset consist of exactly 3
images per track. In the new part of the dataset, we collect an
arbitrary number of images per track (usually more than 3).

B. Dataset Statistics

The dataset contains 27 496 vehicles (116 286 images) of
45 different makes with 693 fine-grained classes (make &
model & submodel & model year) collected from 137 dif-
ferent cameras with a large variation of viewpoints. Detailed
statistics about the dataset can be found in Figure 9 and the
supplementary material. The distribution of types in the dataset
is shown in Figure 9 (top right) and samples from the dataset
are in Figure 8. The dataset also includes information about
the 3D bounding box [49] for each vehicle and an image with
a foreground mask extracted by background subtraction [72],
[73]. The dataset has been made publicly available2 for future
reference and evaluation.

Compared to “web-based” datasets, the new BoxCars116k
dataset contains images of vehicles relevant to traffic surveil-
lance which have specific viewpoints (high elevation), usually
small images, etc. Compared to other fine-grained surveillance
datasets, our dataset provides data with a high variation of
viewpoints (see Figure 9 and 3D plots in the supplementary
material).

2https://medusa.fit.vutbr.cz/traffic

C. Training & Test Splits

Our task is to provide a dataset for fine-grained recognition
in traffic surveillance without any viewpoint constraint. There-
fore, we have constructed the splits for training and evaluation
in a way which reflects the fact that it is not usually known
beforehand from which viewpoints the vehicles will be seen
by the surveillance camera.

Thus, for the construction of the splits, we randomly se-
lected cameras and used all tracks from these cameras for
training and vehicles from the rest of the cameras for testing.
In this way, we are testing the classification algorithms on
images of vehicles from previously unseen cameras (view-
points). This splits selection process implies that some of the
vehicles from the test set may be taken under slightly different
viewpoints from the ones that are in the training set.

We constructed two splits. In the first one (hard), we are
interested in recognizing the precise type, including the model
year. In the other one (medium), we omit the difference
in model years and all vehicles of the same subtype (and
potentially different model years) are present in the same
class. We selected only types which have at least 15 tracks
in the training set and at least one track in the testing set.
The hard split contains 107 fine-grained classes with 11 653
tracks (51 691 images) for training and 11 125 tracks (39 149
images) for testing. Detailed split statistics can be found in
the supplementary material.

V. EXPERIMENTS

We thoroughly evaluated our proposed algorithm on the
BoxCars116k dataset. First, we evaluated how these methods
improved classification accuracy with different nets, compared
them to the state of the art, and analyzed how using approx-
imate 3D bounding boxes influence the achieved accuracy.
Then, we searched for the main source of improvements,
analyzed improvements of different modifications separately,
and also evaluated the usability of features from the trained
nets for the task of vehicle type identity verification.

In order to show that our modifications improve the accu-
racy independently on the used nets, we use several of them:

• AlexNet [64]
• VGG16, VGG19 [74]
• ResNet50, ResNet101, ResNet152 [69]
• CNNs with Compact Bilinear Pooling layer [5] in com-

bination with VGG nets denoted as VGG16+CBL and
VGG19+CBL.

As there are several options how to use the proposed
modifications of input data and add additional auxiliary data,
we define several labels which we will use:

https://medusa.fit.vutbr.cz/traffic
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TABLE I
SUMMARY STATISTICS OF IMPROVEMENTS BY OUR PROPOSED

MODIFICATIONS FOR DIFFERENT CNNS. THE IMPROVEMENTS OVER
BASELINE CNNS ARE REPORTED AS SINGLE SAMPLE ACCURACY/TRACK

ACCURACY IN PERCENTAGE POINTS. WE ALSO PRESENT CLASSIFICATION
ERROR REDUCTION IN THE SAME FORMAT. THE RAW NUMBERS CAN BE

FOUND IN THE SUPPLEMENTARY MATERIAL.

.

modif. improvement [pp] error reduction [%]
mean best mean best

m
ed

iu
m ALL 7.49/6.29 11.84/10.99 26.83/34.50 36.71/50.32

IMAGE 7.19/6.15 12.09/11.63 27.38/36.21 35.23/49.55
CVPR16 2.99/3.18 5.22/5.65 10.86/17.71 19.76/32.25

ha
rd

ALL 7.00/5.83 11.14/10.85 25.59/33.52 33.40/48.76
IMAGE 6.74/5.81 11.02/10.53 26.12/35.95 33.04/47.33
CVPR16 2.12/2.44 3.56/3.92 7.93/14.57 12.68/24.10

• ALL – All five proposed modifications (Unpack, Color,
ImageDrop, View, Rast).

• IMAGE – Modifications working only on the image level
(Unpack, Color, ImageDrop).

• CVPR16 – Modifications as proposed in our previous
CVPR paper [8] (Unpack, View, Rast – however, the
View and Rast modifications differ from those ones
used in this paper as the original modifications do not
distinguish between the frontal and rear side of vehicles).

A. Improvements for Different CNNs

The first experiment which was done was evaluation how
our modifications have improved classification accuracy for
different CNNs.

All the nets were fine-tuned from models pre-trained on Im-
ageNet [51] for approximately 15 epochs which was sufficient
for the nets to converge. We used the same batch size (except
for ResNet151, where we had to use a smaller batch size
because of GPU memory limitations), the same initial learning
rate and learning rate decay and the same hyperparameters
for every net (initial learning rate 2.5 · 10−3, weight decay
5 · 10−4, quadratic learning rate decay, loss is averaged over
100 iterations). We also used standard data augmentation
techniques as a horizontal flip and randomly moving bounding
box [74]. As ResNets do not use fully connected layers, we
only use IMAGE modifications for them.

For each net and modification we evaluate the accuracy
improvement of the modification in percentage points and also
evaluate the classification error reduction.

The summary results for both medium and hard splits are
shown in Table I and the raw results are in the supplementary
material. As we have correspondences between the samples
in the dataset and know which samples are from the same
track, we are able to use mean probability across track samples
and merge the classification for the whole track. Therefore,
we always report the results in the form of single sample
accuracy/whole track accuracy. As expected, the results for
whole tracks are much better than for single samples. For the
traffic surveillance scenario, we consider to be more important
the whole track accuracy as it is rather common to have a full
track of observations of the same vehicle.

TABLE II
COMPARISON OF DIFFERENT VEHICLE FINE-GRAINED RECOGNITION

METHODS. ACCURACY IS REPORTED AS SINGLE IMAGE
ACCURACY/WHOLE TRACK ACCURACY. PROCESSING SPEED WAS

MEASURED ON A MACHINE WITH GTX1080 AND CUDNN. ∗ FPS
REPORTED BY AUTHORS.

method accuracy [%] speed [FPS]

AlexNet [64] 66.65/77.75 963
VGG16 [74] 77.26/86.71 173
VGG19 [74] 76.74/86.06 146
Resnet50 [69] 75.48/84.61 155
Resnet101 [69] 76.46/85.31 95
Resnet152 [69] 77.68/86.20 66

BCNN (VGG-M) [4] 64.83/72.22 87∗

BCNN (VGG16) [4] 69.64/78.56 10∗

CBL (VGG16) [5] 70.38/80.11 165
CBL (VGG19) [5] 70.69/80.26 141
PCM (AlexNet) [3] 63.24/73.94 15
PCM (VGG19) [3] 75.99/85.24 4

AlexNet + ALL (ours) 77.79/88.60 580
VGG16 + ALL (ours) 84.13/92.27 154
VGG19 + ALL (ours) 84.12/92.00 133
VGG16+CBL + ALL (ours) 75.06/83.42 146
VGG19+CBL + ALL (ours) 75.62/83.76 126
Resnet50 + IMAGE (ours) 82.27/90.79 151
Resnet101 + IMAGE (ours) 83.41/91.59 93
Resnet152 + IMAGE (ours) 83.74/91.71 65

There are several things which should be noted about the
results. The most important one is that our modifications
significantly improve classification accuracy (up to +12 per-
centage points) and reduce classification error (up to 50 %
error reduction). Another important fact is that our new
modifications push the accuracy much further compared to
the original method [8].

The table also shows that the difference between ALL modi-
fications and IMAGE modifications is negligible and therefore
it is reasonable to only use the IMAGE modifications. This
also results in CNNs which just use the Unpack modification
during test time as the other image modifications (Color,
ImageDrop) are used only during fine-tuning of CNNs.

Moreover, the evaluation shows that the results are almost
identical for the hard and medium split; therefore, we will only
report additional results on the hard split, as it is the main
goal to distinguish also the model years. The names for the
splits were chosen to be consistent with the original version
of dataset [8] and the small difference between medium and
hard split accuracies is caused mainly by the size of the new
dataset.

B. Comparison with the State of the Art

In order to examine the performance of our method, we
also evaluated other state-of-the-art methods for fine-grained
recognition. We used three different algorithms for general
fine-grained recognition with a published code. We always first
used the code to reproduce the results in respective papers
to ensure that we are using the published work correctly.
All of the methods use CNNs and the used net influences
the accuracy; therefore, the results should be compared with
respective base CNNs.
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TABLE III
COMPARISON OF CLASSIFICATION ACCURACY (PERCENT) ON THE HARD
SPLIT WITH STANDARD NETS WITHOUT ANY MODIFICATIONS, IMAGE

MODIFICATIONS USING 3D BOUNDING BOX FROM SURVEILLANCE DATA,
AND IMAGE MODIFICATIONS USING ESTIMATED 3D BB (SECTION

III-D).

net no modification GT 3D BB estimated 3D BB

AlexNet 66.65/77.75 77.67/88.28 74.81/87.30
VGG16 77.26/86.71 83.79/92.23 80.60/90.59
VGG19 76.74/86.06 83.91/92.17 81.43/91.57
VGG16+CBL 70.38/80.11 75.04/83.16 72.83/82.92
VGG19+CBL 70.69/80.26 75.47/83.56 73.09/83.09
ResNet50 75.48/84.61 82.27/90.79 79.60/90.40
ResNet101 76.46/85.31 83.41/91.59 80.20/90.42
ResNet152 77.68/86.20 83.74/91.71 80.87/90.93

It was impossible to evaluate methods focused only on fine-
grained recognition of vehicles as they are usually limited to
frontal/rear viewpoint or require 3D models of vehicles for
all the types. In the following text we define labels for each
evaluated state-of-the-art method and describe details for the
method separately.

BCNN. Lin et al. [4] proposed to use Bilinear CNN. We
used VGG-M and VGG16 networks in a symmetric setup
(details in the original paper), and trained the nets for 30
epochs (the nets converged around the 20th epoch). We also
used image flipping to augment the training set.

CBL. We modified compatible nets with Compact BiLinear
Pooling proposed by [5] which followed the work of [4] and
reduced the number of output features of the bilinear layers.
We used the Caffe implementation of the layer provided by
the authors and used 8 192 features. We trained the net using
the same hyper-parameters, protocol, and data augmentation
as described in Section V-A.

PCM. Simon et al. [3] propose Part Constellation Models
and use neural activations (see the paper for additional details)
to get the parts of the model. We used AlexNet (BVLC
Caffe reference version) and VGG19 as base nets for the
method. We used the same hyper-parameters as the authors
with the exception of fine-tuning number of iterations which
was increased, and the C parameter of used linear SVM was
cross-validated on the training data.

The results of all comparisons can be found in Table II. As
the table shows, our method significantly outperforms both
standard CNNs [64], [69], [74] and methods for fine-grained
recognition [3]–[5]. The results for fine-grained recognition
methods should be compared with the same used base network
as for different networks, they provide different results. Our
best accuracy (84%) is better by a large margin compared
to all other variants (both standard CNN and fine-grained
methods).

In order to provide approximate information about the
processing efficiency, we measured how many images different
methods are able to process per second (referenced as FPS).
The measurement was done with GTX1080 and CUDNN
whenever possible. In the case of BCNN we reported the
numbers as reported by the authors, as we were forced to save
some intermediate data to disk because we were not able to fit

all the data to memory (∼200 GB). The results are also shown
in Table II; they show that our input modification decreased
the processing speed; however, the speed penalty is small and
the method is still usable for real-time processing.

C. Influence of Using Estimated 3D Bounding Boxes instead
of the Surveillance Ones

We also evaluated how the results will be influenced when,
instead of using the 3D bounding boxes obtained from the
surveillance data (long-time observation of video [49], [50]),
the estimated 3D bounding boxes (Section III-D) would be
used instead.

The classification results are shown in Table III; they show
that the proposed modifications still significantly improve the
accuracy even if only the estimated 3D bounding box – the
less accurate one – is used. This result is fairly important as it
enables to transfer this method to different (non-surveillance)
scenarios. The only additional data which is then required is a
reliable training set of directions towards the vanishing points
(or viewpoints and focal length) from the vehicles (or other
rigid objects).

D. Impact of Training/Testing Viewpoint Difference

We were also interested in finding out the main reason why
the classification accuracy is improved. We have analyzed
several possibilities and found out that the most important
aspect is viewpoint difference.

For every training and testing sample we computed the
viewpoint (unit 3D vector from vehicles’ 3D bounding boxes
centers) and for each testing sample we found one training
sample with the lowest viewpoint difference (see Figure 11).
Then, we divided the testing samples into several bins based
on the difference angle. For each of these bins we computed
the accuracy for the standard nets without any modifications
and nets with the proposed modifications. There is 56%
of the test samples in the first bin (0◦ − 2◦), and in the
middle bins there are 22% and 17% of test data. In the last
bin, there are 5% of the test data. Finally, we obtained an
improvement in percentage points for each modification and
bin, by comparing the net’s performance on the data in the
bin with and without the modification harnessed. The results
are displayed in Figure 10.

There are several facts which should be noted. The first
and most important is that the Unpack modification alone
improves significantly the accuracy for larger viewpoint dif-
ferences (the accuracy is improved by more than 20 percent
points for the last bin). The other important fact, which
should be noted, is that the other modifications (mainly Color
and ImageDrop) improve the accuracy furthermore. This
improvement is independent on the training-testing viewpoint
difference.

E. Impact of Individual Modifications

We were also curious how different modifications by them-
selves help to improve the accuracy. We conducted two
types of experiments which focus on different aspects of the
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Fig. 10. Correlation of improvement relative to CNNs without modification with respect to train-test viewpoint difference. The x-axis contains bins viewpoint
difference bins (in degrees), and the y-axis denotes improvement compared to base net in percent points, see Section V-D for details. The graphs show
that with increasing viewpoint difference, the accuracy improvement of our method increases. Only one representative of each CNN family (AlexNet, VGG,
ResNet, VGG+CBL) is displayed – results for all CNNs are in the supplementary material.

angle: 0.14◦
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angle: 5.28◦

angle: 11.06◦

Fig. 11. Examples of viewpoint difference between the training and testing
sets. Each pair shows a testing sample (left) and its corresponding “nearest”
training sample (right); by “nearest” we mean the sample with the lowest
angle between its viewpoint and the test sample’s viewpoint.

TABLE IV
SUMMARY OF IMPROVEMENTS FOR DIFFERENT NETS AND MODIFICATIONS
COMPUTED AS [base net + modification]− [base net]. THE RAW DATA CAN

BE FOUND IN THE SUPPLEMENTARY MATERIAL.

mean best

Unpack +2.11/+2.55 +3.47/+4.37
View −0.32/−0.35 +0.19/+0.31
Rast −0.03/−0.04 +0.30/+0.72
Color +3.17/+2.03 +4.80/+3.60
ImageDrop +0.70/+0.20 +1.53/+0.96

modifications. The evaluation is not done on ResNets, as we
only use IMAGE level modifications with ResNets; thus, we
cannot evaluate Rast and View modifications with ResNets.

The first experiment is focused on the influence of each
modification by itself. Therefore, we compute the accuracy
improvement (in accuracy percent points) for the modifications
as [base net+modification]− [base net], where [. . .] stands for
the accuracy of the classifier described by its contents. The
results are shown in Table IV. As it can be seen in the table,
the most contributing modifications are Color, Unpack, and
ImageDrop.

The second experiment evaluates how a given modification
contributed to the accuracy improvement when all of the
modifications are used. Thus, the improvement is computed
as [base net + all] − [base net + all − modification]. See
Table V for the results, which confirm the previous findings
and Color, Unpack, and ImageDrop are again the most
positive modifications.

TABLE V
SUMMARY OF IMPROVEMENTS FOR DIFFERENT NETS AND MODIFICATIONS
COMPUTED AS [base net + all]− [base net + all− modification]. THE RAW

DATA CAN BE FOUND IN THE SUPPLEMENTARY MATERIAL.

mean best

Unpack +3.41/+3.48 +6.93/+7.60
View −0.14/−0.15 +0.36/+0.18
Rast −0.03/−0.08 +0.30/+0.20
Color +3.42/+2.43 +6.34/+6.18
ImageDrop +1.32/+0.77 +4.24/+3.54

F. Vehicle Type Verification

Lastly, we evaluated the quality of features extracted from
the last layer of the convolutional nets for the verification
task. Under the term verification, we understand the task to
determine whether a pair of vehicle tracks share the same fine-
grained type or not. In agreement with previous works in the
field [63], we use cosine distance between the features for the
verification.

We collected 5 million random pairs of vehicle tracks from
the test part of BoxCars116k splits and evaluate the verification
on these pairs. As we used tracks which can have a different
number of vehicle images, we used 9 random pairs of images
for each pair of tracks and then used median distance between
these image pairs as the distance between the whole tracks.

Precision-Recall curves and Average Precisions are shown
in Figure 12. As the results show, our modifications sig-
nificantly improve the average precision for each CNN in
the given task. Moreover, as the figure shows, the method
outperforms human performance (black dots in Figure 12), as
reported in the previous paper [8].

VI. CONCLUSION

This article presents and sums up multiple algorithmic mod-
ifications suitable for CNN-based fine-grained recognition of
vehicles. Some of the modifications were originally proposed
in a conference paper [8], while others are results of the
ongoing research. We also propose a method for obtaining
the 3D bounding boxes necessary for the image unpacking
(which has the largest impact on performance improvement)
without observing a surveillance video, but only working with
the individual input image. This considerably increases the
application potential of the proposed methodology (and the
performance for such estimated 3D boxes is only somewhat
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Fig. 12. Precision-Recall curves for verification of fine-grained types. Black dots represent the human performance [8]. Only one representative of each CNN
family (AlexNet, VGG, ResNet, VGG+CBL) is displayed – results for all CNNs are in the supplementary material.

lower than when “proper” bounding boxes are used). We
focused on a thorough evaluation of the methods: we coupled
them with multiple state-of-the-art CNN architectures [69],
[74], and measured the contribution/influence of individual
modifications.

Our method significantly improves the classification accu-
racy (up to +12 percentage points) and reduces the classifi-
cation error (up to 50 % error reduction) compared to the
base CNNs. Also, our method outperforms other state-of-the-
art methods [3]–[5] by 9 percentage points in single image
accuracy and by 7 percentage points in whole track accuracy.

We collected, processed, and annotated a dataset Box-
Cars116k targeted to fine-grained recognition of vehicles in
the surveillance domain. Contrary to a majority of existing
vehicle recognition datasets, the viewpoints are greatly varying
and correspond to surveillance scenarios; the existing datasets
are mostly collected from web images and the vehicles are typ-
ically captured from eye-level positions. This dataset has been
made publicly available for future research and evaluation.
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[71] J. Sochor, R. Juránek, J. Špaňhel, L. Maršı́k, A. Široký, A. Herout, and
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