
Telecommun Syst
DOI 10.1007/s11235-011-9585-2

On formal reachability analysis in networks with dynamic
behavior

Gayan de Silva · Ondřej Ryšavý · Petr Matoušek ·
Miroslav Švéda

© Springer Science+Business Media, LLC 2011

Abstract Recently, several researches have suggested an
application of formal methods for identifying configuration
errors, unveiling design problems and predicting network
behavior. In this paper, we contribute to this research area
by defining a method able to efficiently check reachability
properties in dynamically routed networks. We define a no-
tion of network state that captures different network condi-
tions. Each network state represents a unique combination
of link availability. The naive enumeration of network states
leads quickly to intractability even for small networks as the
number of possible combinations grows exponentially. In-
stead, we enumerate all available paths and, for each path,
we search for state aggregation, in which this path is active.

Keywords Formal modeling and analysis · Network
service reachability · Dynamic routing · Configuration
validation

1 Introduction

Modern computer networks are large, complex and expected
to provide a numerous kind of demanded services. Design-
ing, implementing and maintaining such a network is diffi-
cult task. Rarely occurred situations, which happened as the
effect of a certain combination of device and/or link fail-
ures can be hard to troubleshoot. As the networks are often

G. de Silva · O. Ryšavý (�) · P. Matoušek · M. Švéda
Faculty of Information Technology, Brno University
of Technology, Brno, Czech Republic
e-mail: rysavy@fit.vutbr.cz

M. Švéda
e-mail: sveda@fit.vutbr.cz

required to deliver a high-level of availability, early detec-
tion or prevention of unwanted situations is desirable. On-
line techniques, such as monitoring, logging and triggered
notifications help administrators be aware of occurrences of
disaster events. To mimics consequences of service outages
network designs usually incorporate various failure over-
coming techniques, which are implemented, e.g., by dupli-
cating critical network paths or devices. Redundant links or
active network devices if they are properly configured can
provide an increased level of reliability.

In this paper, we focus on the effect of link (crash) fail-
ures to network reliability. Even an isolated link failure in
a small network segment can theoretically be propagated
to other network segments by dynamic routing protocols.
Thus, it is sometimes difficult to predict an overall contri-
bution of any single failure. Harder than that is the impact
analysis of multiple failures. It is practically impossible to
check all network conditions simulating every link failure in
a real network. Instead, a method based on network analysis
of topology and configurations can be employed to compute
all possible network behavior.

Firewalls are deployed in networks to prevent unwanted
communications. Data delivery and thus service availability
depends on the behavior of a network. Essentially, this is de-
termined by two factors, namely, routing and filtering. While
routing implemented by dynamic routing protocols attempts
to find any possible path to deliver the data to its target, the
role of filtering is to drop packets that do not match the net-
work security policy. In this sense, certain configurations of
routing and filtering may lead to an unexpected network be-
havior. It is possible that there are some network states that
violate either requirements on service availability or a se-
curity policy. Finding these incorrect states is difficult using
conventional tools, such as ping or traceroute. Static analysis
of configuration files seems to be a more viable option. By

mailto:rysavy@fit.vutbr.cz
mailto:sveda@fit.vutbr.cz

G. de Silva et al.

creating a model for network behavior by analysis of con-
tents of configuration files it is possible to validate configu-
rations against the defined set of requirements.

1.1 Related work

Research in the area of network security and vulnerability
detection has been conducted since the beginning of the In-
ternet. Recently, formal approach has found its role in this
area aiming primarily at the verification of security proper-
ties and network designs.

The detection of hosts vulnerability and their protection
against network attacks is elaborated by Tidwell et al. [24],
Zakeri et al. [22, 28]. Ou et al. in [26] introduce an automatic
method for inferring required network security and imple-
ment it using Prolog language. The authors define reasoning
rules that express semantics of different kinds of exploits.
The rules are automatically extracted from the OVAL scan-
ner and the CVE database [17].

Bartal et al. in [3] introduce the tool for automatic gen-
eration of network protection in form of firewall rules.
First, the security policy is modeled using Model Defini-
tion Language. Then, a model of network topology is trans-
lated into firewall-specific configurations. These configura-
tion files can be immediately loaded into real devices (fire-
walls).

Ritchey and Ammann in [20] explain how model check-
ing can be used to analyze network vulnerabilities. They
build a network security model of hosts, connections, and
attackers. Exploits and security properties are described by
temporal logics and verified using the SMV model checker.
They are able to verify if network hosts are vulnerable to
attacks.

In 1997, Guttman defined a formal method to compute
a set of filters for individual devices given a global secu-
rity policy [10]. To achieve a feasibility, the network is ab-
stracted such that only network areas and border routers oc-
cur in the model. This decision reflects a real situation as
internal routers usually do not participate in data filtering.
Similarly, data flow model is defined in terms of abstract
packets, which are described by abstract source and desti-
nation addresses and service type. An algorithm computes a
feasibility set of packets that can pass all filtering rules along
the path. The rectangle abstraction of packet representation
makes the procedure practical and efficient.

Yan et al. have developed a tool called FIREMAN [27],
which allows them to detect misconfigurations in firewall
settings. The tool performs symbolic model checking of fire-
wall configurations for all possible IP packets and along
all possible data paths. The underlaying implementation de-
pends on a Binary Decision Diagram (BDD) library, which
efficiently models firewall rules. This tool can reveal intra-
firewall inconsistencies as well as misconfigurations that

lead to errors at inter-firewall level. The tool can analyze
Access Control List (ACL) series on all paths for end-to-
end connection thus offering network-wide firewall security
verification.

Jeffrey and Samak in [13] aims at analysis of firewall
configurations using bounded model-checking approach.
They focus on reachability and cyclicity properties. To
check reachability, it means to find for each rule r a packet p

that causes r to fire. To detect cyclicity of a firewall config-
uration, it means to find a packet p which is not matched by
any rule of the firewall ruleset. They implemented an anal-
ysis algorithm by translating the problem to SAT instance
and showed that this approach is efficient and comparable
to tools based on BDD representation. Similar result was
achieved by Pozo, Ceballos and Gasca [19] who provided a
consistency checking algorithm that can reveal four consis-
tency problems, namely, shadowing, generalization, corre-
lation and independence.

Liu et al. developed a method for formal verification
and testing of (distributed) firewall rules (see [14] and [9])
against user provided properties. They represent firewall
rules in a structure called firewall decision diagram (FDD),
which is processed by a verification algorithm. A property
rule, which describes a property that is checked, e.g. descrip-
tion of a set of packets that should pass the firewall is verified
by a single traversing an FDD from the root to a leave.

Xie et al. reports in [25] on their extensive work on static
analysis of IP networks. They define a framework able to
determine lower and upper approximations on a network
reachability considering filtering rules, dynamic routing and
packet transformations. The method computes a set of pack-
ets that can be carried by each link. By combination of these
sets along all possible paths between two end-points, it is
possible to determine the end-to-end reachability. The up-
per approximation determines the set of packets that could
potentially be delivered by the network, while the lower ap-
proximation determines the set of packets that could be de-
livered under all possible forwarding states. In their paper,
the authors also present a refinement of both upper and lower
approximations by considering the effect of dynamic rout-
ing.

Bera, Dasgupta and Ghosh (see [5] and [4]) define a ver-
ification framework for filtering rules that allows one to
check the correctness of distributed ACL implementations
against the given global security policy and also to check
reliability (or fault tolerance) of services in a network. To
check the correctness, the filtering rules are translated to
assertions in the form of first order logical formulas. They
are together with logical description of global security pol-
icy sent to SAT solver that mechanically checks the satisfi-
ability. In the case of an inconsistency, the SAT solver pro-
duces a counter example that helps debugging ACL rules.
To check the reliability, the framework accepts a descrip-
tion of a global security policy, a collection of ACL rules

On formal reachability analysis in networks with dynamic behavior

and a network description and computes whether the rules
are consistent with the given policy. Policy is understood as
a description of service availability with respect to defined
network zones. The method used computes first a network
access model, which is a directed graph with ACLs assigned
to its edges. Next, the service flow graphs (SFG) are gener-
ated for all services in the interest, e.g. SFG for ssh traf-
fic. An SFG is a subgraph of the network access graph. The
fault analysis is performed by computing minimum cuts in
all SFGs. These values then represent how many link fail-
ures can be tolerated.

Gan and Helvik in [8] employee probabilistic methods
to reduce the space of possible network states. They use
stochastic activity networks to describe the failures and re-
pairs of network components and other dynamic issues of
the network. This restricts the state space to the subset of
the most probable situations.

Another algorithmic framework based on probabilistic
calculations is discussed by Menth et al. in [16]. They
present a framework for the analysis of ingress-egress un-
availability and link congestion. The framework is able to
deal with link and device failure, changes of user behavior,
and rerouting.

1.2 Contribution

This paper introduces a method dealing with the problem
of exponential grow of states that have to be enumerated
when exhaustively checking end-to-end reachability. Instead
of checking every single state, the method collects all avail-
able paths first, and then for each path the set of associated
states is determined. Because of using a compact state repre-
sentation, this set is represented by a finite and usually small
number of representative elements.

For network description, we use a unified model defined
in [25], but employ a different approach during the analysis.
Unlike [15], the analysis does not precompute all routing ta-
bles in order to verify network reachability. The probabilis-
tic data are not used in our analysis as suggested in [8] and
[16].

The present paper is the extension of work published in
[23]. The main difference to that paper is a simplification
of the presented method and the definition of a reachability
analysis method.

1.3 Organization of the paper

In Sect. 2, we define preliminary information needed for the
development presented in the paper. In Sect. 3, we introduce
the notion of the Modified Topology Table (MTT), which
is the key data and functional structure for compact state
space representation and source of information of analysis
method. In Sect. 4, we explain the reachability analysis pro-
cess which can be automatized in a software tool. In Sect. 5,
we draw the conclusions and discuss the future work.

Fig. 1 Dynamic network—devices, links and ACLs

2 Preliminaries

In this section, we introduce basic definitions used in further
development. We will use a simple network topology shown
in Fig. 1 as a running example.

2.1 Network model

A network topology is modeled as a graph N = 〈R,L〉,
where R is a set of network devices, and L ⊆ R × R is a set
of communication channels between adjacent devices. For
every physical link between two adjacent devices Ri and Rj

there is a pair of channels lij = 〈Ri,Rj 〉 and lj,i = 〈Rj ,Ri〉,
such that li,j ∈ L and lj,i ∈ L.

Modeling a single physical link as a pair of communi-
cation channels simplifies assignment of filters to links and
computation of path costs. Further, the employed algorithm
enumerating available paths expects directed graphs being
its input.

Links have associated costs whose metrics depend on the
configured routing protocol, e.g., RIP uses hop-count while
OSPF uses values proportional to available link bandwidth.
We define a cost function CT (l) for every routing protocol
T , e.g., CRIP (l) = 1 for every l ∈ L.

A proposed analysis method performs packet-based
reachability checking. Consider P be a set of packet descrip-
tions, each communication channel can be assigned a filter
fi,j = {p ∈ P : p is permitted by access control lists Ai

i,j ,

A
j
i,j }. A filter defines a largest set of packets that are per-

mitted by access control lists Ai
i,j and A

j
i,j . ACL Ai

i,j is
configured at router Ri and it is active for the outgoing traf-
fic on the interface connecting router Ri with neighboring
router Rj . ACL A

j
i,j is configured at router Rj and it is

active for the incoming traffic on the interface connecting
router Rj with neighboring router Ri .

G. de Silva et al.

Methods dealing with efficient representation of access
control lists can be found, for instance, in [15] or [11], and
the brief overview is given in Sect. 4.

2.2 Computing available paths

Different routing protocols use different algorithms for se-
lecting the shortest path. Routing protocols cannot establish
virtual paths without a physical connection. Therefore, as
the first step, we enumerate all available physical paths in the
network. Then according to the routing protocol configured,
the specified path selection criteria are used to identify the
best paths for communication. We tested the approach using
Rubin’s algorithm [21] for enumerating all simple paths1 in
a graph. The efficient implementation encodes vertices and
edges occurring in a path using bit vectors. The pseudocode
of the algorithm appears as Algorithm 1. This algorithm re-
quires N3 matrix operations.

A path π is a sequence of links and devices along the
available physical connection between a source and a desti-
nation. Let R0 be the source, and Rn be the destination of
path π , then the k-th existing path between R0 and Rn is
defined as follows:

πk
〈R0,Rn〉 = R0l1R1 . . .Ri−1liRi . . .Rn−1lnRn,

such that ∀i, li ∈ L,Ri ∈ R and 〈Ri−1,Ri〉 = li . A path
may be compactly represented by a path descriptor d(pk) =
(v, e), where v is a vertex vector and e is an edge vector.
Vertex vector v for a set of vertices R has 1 in position i for
all i such that ri ∈ R and 0 in all other positions. Similarly,
edge vector e for a set of vertices L has 1 in position i for
all i such that li ∈ L and 0 in all other positions.

A cost of path π represented as a path descriptor d(π) =
(v, e) can be computed by counting weight of the edge cost
vector. An edge cost vector is obtained by replacing 1 in the
edge vector by the corresponding link costs.

A filter of path π is fπ = fl1 ∩ fl2 ∩ · · · ∩ fln , where
l1, l2, . . . , ln ∈ π . Intersection naturally describes the fact
that the packet can be carried by the path only if it is per-
mitted by all access control lists along the path.

2.3 Cost function for RIP, OSPF and EIGRP

The proposed approach for modeling and analysis does not
depend on the type of dynamic routing protocol in use. Only
the computation of the cost function differs for each protocol
as shown below. In our example, we have considered the
OSPF as the configured protocol.

1. RIP [7]—RIP has default link cost of value one and hence
for any link l, C(l) = 1. Therefore the shortest path has
the lowest hop count.

1The path is called simple if all of the vertex of the path are distinct.

Algorithm 1 Rubin’s algorithm enumerates all simple paths
in a graph
Require: List of edges (i, j) ∈ E for graph G = (V ,E).
Ensure: Matrix D whose cells D(i, j) contain all paths

from i to j .

for every (i, j) ∈ E do
D(i, j) = [d(i, j)]

end for

for j = 1 . . .N do
for i = 1 . . .N do

for k = 1 . . .N do
for every (v, e) ∈ D(i, j) and (w,f) ∈ D(j, k)

do
if v · w · Ij = 0 then

append (v + w,e + f) to D(i, k)

end if
end for

end for
end for

end for

The following notation is used in the algorithm:

– d(i, j) = (v, e) is a path descriptor consisting of vertex
vector v, which has set only bits i and j , and edge vec-
tor, which has set only bit corresponding to index of edge
(i, j) in E.

– Operations x · y and x + y are Boolean vector AND and
OR, respectively.

– Ij is a vector of size N which has 0 in position j and 1 in
all other positions.

2. OSFP [18]—OSPF requires the bandwidth function
(BW) to compute the cost function, BW(li) : L → N ,
where BW(l) is the bandwidth of the link l. The cost
function for a link is defined by Cisco [1] as C(l) =
[108/BW(l)]. The cost of the path C(π) has the accu-
mulated link costs along the path and least cost path will
be used for the communication.

3. EIGRP [12]—EIGRP uses delay and bandwidth of the
whole path to calculate the cost function of the path.
Delay function D is D(li) : L → N . The delay func-
tion for the path is defined as D(π) = D(l0) + D(l1) +
· · ·+D(ln), where l0, l1, . . . , ln ∈ π . Bandwidth function
BW is BW(li) : L → N . The bandwidth function for
the path is defined as BW(π) = BW(li) where ∀li , lj ∈
π,BW(li) ≤ BW(lj). Then the cost function for the path
π is given by C(π) = [108/BW(π) + D(π)].

On formal reachability analysis in networks with dynamic behavior

3 Modified topology table

Individual routing information tables maintained by for-
warding devices are searched during packet forwarding for
the best available information. Content of these tables re-
flects the actual network condition, which is determined
from availability of links and devices. In this work we as-
sume only availability of links, which can be expressed us-
ing two values, e.g., down and up.

To get the global view on the network, it is possible to ap-
proximate contents of individual routing tables by comput-
ing all available paths and select paths that would be most
probably used in a given network states for data delivery.

To check the end-point reachability in a certain network
state one needs to compute the best path from a source net-
work to a target network in this state and verify that a set of
desired packets is included in a set of permitted packets for
this path.

Attempting to find all network states, in which the reach-
ability is guaranteed using a naive approach would mean to
enumerate and verify the reachability in all network states.
This soon leads to a problem known as state explosion, as
there are 2|L| possible states considering only two-valued
link condition representation.

Therefore as a solution to this problem, we design a struc-
ture called the modified topology table (MTT) which is cal-
culated for given network and allows to quickly determine
the best path for any network state. Using the MTT, it is
easy to derive an actual connectivity for any network state,
a routing table for any network state, available paths for any
network state, available paths from any source to any desti-
nation, filters applied for any path, costs of paths, and critical
links.

Features of the Modified Topology Table are summarized
as follows:

– Topology for any network state
– Routing table for any device
– Set of all available paths for any network state
– Set of all path between two end points
– Set of similar network states
– Set of filter applied in any network state
– Series of filters applied to any path
– Overall costs of any path
– Set of critical links

The idea behind MTT is not to enumerate network states,
but instead to find all paths and assign sets of corresponding
network states to these paths. The approach is summarized
as follows:

– To enumerate all possible simple paths for a network state
with all links in state up. This is the maximal set of simple
paths possible in the network at any state. Computation
can be performed using Rubin’s algorithm as discussed in
the previous section.

– Depending on the routing protocol employed, the corre-
sponding cost function is used to sort paths in the ascend-
ing order.

– For each path, its covering lattice is found. This lattice
contains all network states, in which the path is selected
by network routers.

3.1 Computing network states

In this section we define a process of computing network
states associated to precomputed paths. Network states are
either aggregated or atomic.

An aggregated network state is a three-valued vector S =
〈c1, c2, . . . , ci, . . . , cn〉, of length n, where ci ∈ {0,1,×}
represents the link state of li ∈ L. Value × expresses that a
link state is invariant in representation of the network state.
An aggregated network state sx defines a lattice with bottom
element sx[0/×] and top element sx[1/×], where s[a/b]
stands for substitution of a for all b in vector s.

An atomic network state is a network state represented as
a vector that contains only 0,1 but no × bits. Given an atomic
state s it is possible to check whether this state belongs to an
aggregated state q , written s ∈ q .

An example of aggregated state is 〈1,×,1,×,0〉. A set
of atomic states that belongs to this state is:

{〈1,1,1,1,0〉, 〈1,0,1,1,0〉, 〈1,1,1,0,0〉, 〈1,0,1,0,0〉}.

Consider �N
i,j be a set of all paths found in network N =

〈R,L〉 from source ri to destination rj , where ri , rj ∈ R. We
define �N

i,j |s to be a subset of paths such that these paths are
available in a state s. Path π = 〈v, e〉 is available in state s if
sx[0/×] · e = e. It means that the path has to be available in
state s if all invariant links of state s are down. Further, we
define an ordering

(�N
i,j |s,≤)

that sorts available paths based on their costs. Paths with the
minimal cost are called active paths at state s.

States associated with found paths are enumerated by
performing the following steps:

1. Take the best path π0 = (v0, e0) and compute its aggre-
gated state, e0[×/0]. This yields to a set of only a single
item, s0 = {e0[×/0]}.

2. Take the second best path π1 = (v1, e2). This path is
active in states e1[×/0] except states s0, which is s1 =
e1[×/0]
 s0.

3. Take the third best path π2 = (v2, e2). This path would
be active in states e2[×/0] except the states e0[×/0] and
e1[×/0], which is s2 = e2[×/0]
 (s0 ∪ s1).

4. Continue until the last path was processed.

G. de Silva et al.

x y x ≺b y

× × ×
× 0 0
× 1 �

1 × 1
1 1 1

x y x �b y

0 1 1
1 0 1
× y ×
x × ×
0 0 0
1 1 0

Operation ≺b can be extended for vectors of length n, such
that x = s ≺ q iff x[i] = s[i] ≺b q[i],1 ≤ i ≤ n. Operation
�b can be extended for vectors of length n, such that x =
s � q iff x[i] = s[i] �b q[i],1 ≤ i ≤ n.

Fig. 2 Definition of operations ≺ and �

Operation s
 R is defined as follows:

s
 R = {x : ∀q, r ∈ R : diff(s, q, x) ∧ disj(x, q)},
where difference relation diff(s, q, x) is defined based on the
bit-wise operation ≺ that finds all possible positions of dif-
ference between individual bits of vectors. The ≺ operator
together with � operator, which is used in disj relation, are
defined in Fig. 2.

Let x = s ≺ q , then the difference relation diff(s, q, xj)

relates all s, q and xj such that the following holds:

– xj is get from x by replacing a single occurrence of � by
0 and all other by ×, and

– vector x has to contain at least one �.

The disj(s, r) is satisfied if s � r contains at least a single
1. Vectors 〈1,1,×,0,×〉, 〈1,0,1,0,1〉 are disjunctive, but
〈1,1,×,×,×〉, 〈1,1,0,1,×〉 are not.

The operator ≺ is undefined for 1 ≺ 0. This reflects the
situation when there is an attempt to find differences for state
s = e[×/0] representing path π = (v, e) to state q such that
π is not available in q .

The algorithmic solution is given in Algorithm 2. In the
rest of the section, we provide an illustrative example to bet-
ter explain this method.

3.2 Example

In Table 1, the whole content of the MTT for example net-
work from Fig. 1 is shown. We show the computation of
several items in the MTT. As required by Algorithm 2, the
input to the method is an ordered list of available paths. We
will demonstrate the calculation for networks B and C, only.

– The initialization step takes the first path, which is
π0 = [l1, l,3 , l6, l7]. Corresponding edge vector is e0 =
〈1,0,1,0,0,1,1,0〉. The aggregated state for this path is
s0 = {〈1,×,1,×,×,1,1,×〉}.

– In the second step, we choose path π1 = [l1, l2, l5, l7].
The edge vector is e1 = 〈1,1,0,0,1,0,1,0〉. Then s1 =

Algorithm 2 Computation of MTT for a single pair of end-
points.

Require: An ordered list of paths L = (�N
i,j |s,≤).

Ensure: A table consisting of n rows, (si , ci,pi, fi).
(v0, e0) := head(L)

L := tail(L)

s0 := {e0[×/0]}
p0 := (v0, e0)

c0 := cost(e0)

f0 := filters(e0)

for i = 1 . . . (n − 1) do
(vi, ei) := head(L)

L := tail(L)

ci := cost(ei)

pi := (vi, ei)

fi := filters(ei)

si := ei[×/0]
 ⋃{sj : 0 ≤ j < i and cj < ci}
end for

〈1,1,×,×,1,×,1,×〉
 s0. This amounts to find differ-
ence states x such that

diff(〈1,1,×,×,1,×,1,×〉, 〈1,×,1,×,×,1,1,×〉, x).

Term 〈1,1,×,×,1,×,1,×〉 ≺ 〈1,×,1,×,×,1,1,×〉
is defined and gives 〈1,1, �,×,1, �,1,×〉. Thus, the
states in which path π1 is active are

s1 = {〈1,1,0,×,1,×,1,×〉, 〈1,1,×,×,1,0,1,×〉}.

– There are two remaining paths with the same cost. These
should be computed in the same context, as they can be
used both, in case of equal cost load balancing, or one
of them is selected arbitrary. Therefore the third step is
to evaluate these paths. Path π2 = [l1, l2, l4, l6, l7] has an
edge vector e2 = 〈1,1,0,1,0,1,1,0〉.

s2 = 〈1,1,×,1,×,1,1,×〉
 (s0 ∪ s1).

The found difference states are:

x1 = 〈1,1,0,1,×,1,1,×〉 with s0

x2 = 〈1,1,0,1,0,1,1,×〉 with s1

Only x2 is considered as a state for path π2 as x1 is not
disjunctive with states in s1.

The last path, π3 = [l1, l3, l4, l5, l7] is evaluated in a
similar manner. Edge vector e3 = 〈1,0,1,1,1,0,1,0〉 is
used in computation of state s2:

s3 = 〈1,×,1,1,1,×,1,×〉
 (s0 ∪ s1).

On formal reachability analysis in networks with dynamic behavior

Table 1 Modified topology table

Filter ACL expression

f1 Permit ip any any

f2 Deny ip 192.168.3.0/24 192.168.2.0/24, permit ip any any

f3 Deny ip any host 192.168.1.5 www, permit ip any any

No Source Destination General Sate Cost Path Filter

1 192.168.1.0/24 192.168.2.0/24 1,1,X,X,X,X,X,1 4 l1l2l8 f1

2 192.168.1.0/24 192.168.2.0/24 1,0,1,1,X,X,X,1 5 l1l3l4l8 f2

3 192.168.1.0/24 192.168.2.0/24 1,0,1,0,1,1,X,1 8 l1l3l6l5l8 f3

4 192.168.1.0/24 192.168.3.0/24 1,X,1,X,X,1,1,X 5 l1l3l6l7 f1

5 192.168.1.0/24 192.168.3.0/24 1,1,0,X,1,X,1,X + 1,1,X,X,1,0,1,X 7 l1l2l5l7 f3

6 192.168.1.0/24 192.168.3.0/24 1,1,0,1,0,1,1,X 8 l1l2l4l6l7 f1

7 192.168.1.0/24 192.168.3.0/24 1,0,1,1,1,0,1,X 8 l1l3l4l5l7 f3 ∨ f2

8 192.168.2.0/24 192.168.1.0/24 1,1,X,X,X,X,X,1 4 l8l2l1 f1

9 192.168.2.0/24 192.168.1.0/24 1,0,1,1,X,X,X,1 5 l8l4l3l1 f2

10 192.168.2.0/24 192.168.1.0/24 1,0,1,0,1,1,X,1 8 l8l5l6l3l1 f3

11 192.168.2.0/24 192.168.3.0/24 X,X,X,X,1,X,1,1 5 l8l5l7 f3

12 192.168.2.0/24 192.168.3.0/24 X,X,X,1,0,1,1,1 6 l8l4l6l7 f2

13 192.168.2.0/24 192.168.3.0/24 X,1,1,0,0,1,1,1 7 l8l2l3l6l7 f1

14 192.168.3.0/24 192.168.1.0/24 1,X,1,X,X,1,1,X 5 l7l6l3l1 f1

15 192.168.3.0/24 192.168.1.0/24 1,1,0,X,1,X,1,X + 1,1,X,X,1,0,1,X 7 l7l5l2l1 f3

16 192.168.3.0/24 192.168.1.0/24 1,1,0,1,0,1,1,X 8 l7l6l4l1 f2

17 192.168.3.0/24 192.168.1.0/24 1,0,1,1,1,0,1,X 8 l7l5l4l3l1 f3 ∨ f2

18 192.168.3.0/24 192.168.2.0/24 X,X,X,X,1,X,1,1 5 l7l5l8 f3

19 192.168.3.0/24 192.168.2.0/24 X,X,X,1,0,1,1,1 6 l7l6l4l8 f2

20 192.168.3.0/24 192.168.2.0/24 X,1,1,0,0,1,1,1 7 l7l6l3l2l8 f1

This state is computed at the same context as state s2 be-
cause these paths π2 and π3 have the same cost. The found
difference states are:

x3 = 〈1,×,1,1,1,0,1,×〉 with s0

x4 = 〈1,0,1,1,1,0,1,×〉 with s1

Again, x3 cannot be considered as a state for π3 because
x3 is not disjunctive to states in s1. Therefore, only x2 is
accepted as a state of π3, that is, s3 = {x3}.

Results of computation for other endpoints in the network is
shown in Table 1.

4 Reachability analysis

In this section, we describe basic principles of reachabil-
ity and security property analysis that can employ the pro-
posed MTT structure. The MTT captures information on
all available paths in the network and states in which these
paths are active. Therefore the analysis that verifies packet-
reachability in a given set of network states can obtain nec-
essary information by querying the MTT.

We assume that analysis begins with a definition of inter-
esting end-point networks. For these networks, all possible
paths can be obtained by selecting rows from the MTT that
correspond to any of these networks.

First, we show how the MTT can be used to obtain some
simple network metrics that assess the network facilities by
their importance for packet reachability.

Then, we define a straightforward method for evaluating
packet reachability by computing a set of packets allowed
by filters assigned to paths that are active in the given set of
states. We give two approximations, namely, the least set of
reachable packets and the greatest set of reachable packets.

4.1 Infrastructure metrics

Based on the collection of paths �T = {π1, . . . , πn} that
connects the set of examined networks T , it is possible to
split the network intermediate devices and network links
into three groups:

1. Group of Critical Facilities (CF) is a subset of interme-
diate devices and communication links which occur at
every path. The links and devices of CF are essential for

G. de Silva et al.

communication. CF can be represented using vertex and
edge vector, πi = (vi, ei), that is

CFT = (v1 · · · · · vn, e1 · · · · · en)

2. Group of Supportive Facilities (SF) is a subset of inter-
mediate devices and communication links which occur
at least along a single path. The links and devices of SF
are not critical for communication. CF can be represented
using vertex and edge vector:

SFT = (v1 + · · · + vn, e1 + · · · + en).

Here we define operation + to be addition in arithmetical
sense, e.g., 〈0,1,0,1〉 + 〈1,2,1,0〉 = 〈1,3,1,0〉.

3. Group of Redundant Facilities (RF) is a subset of inter-
mediate devices and communication links that do not oc-
cur at any path.

RFT = ¬SFT

Vector CF gives us the information on the critical fa-
cilities of the network for assuring availability of destina-
tion end-points. Vector SF tells us quantitative information
on how each facility is important to provide availability of
destination end-points. From these values, importance ra-
tios can be computed, which is for each device r and link
l, SFT .v[r]/|�T | and SFT .e[l]/|�T |, respectively.

4.2 Packet reachability analysis

Based on the MTT, it is possible to find the greatest set of
packets that are carried between specified networks:

ν(n1, n2) =
⋃

π∈�n1,n2

fπ

Similarly, it is possible to find the smallest set of packets that
are carried between specified networks:

μ(n1, n2) =
⋂

π∈�n1,n2

fπ

These two approximations give lower and upper bounds on
transmittable packets. More refined result is obtained if we
compute sets of transmittable packets in different network
states.

ν(n1, n2, s) =
⋃

π∈�s
n1,n2

fπ

μ(n1, n2, s) =
⋂

π∈�s
n1,n2

fπ

Here, term (�s
n1,n2

) yields to a set of all active paths
in (aggregated) state s. There can be indeed more than

one active path in aggregated state s, e.g., consider state
〈1,×,×,×,×,×,×,1〉 from running example. Two paths,
namely, [l1, l2, l8] and [l1, l3, l4, l8] are active in this ag-
gregated state. In the previous, μ(n1, n2 is the special case
when μ(n1, n2, 〈×, . . . ,×〉).

The role of MTT in the process of computation of
μ(n1, n2, s) and ν(n1, n2, s) sets is following:

– The MTT is used to select all paths that connects n1 and
n2.

– The MTT is queried for selecting a set of paths, (�s
n1,n2

)

for the given aggregated state s. This can be done by test-
ing whether s is in relationship with states qi associated
to path πi :
– if s contains some state qi , then path belongs to �s

n1,n2
,

– if qi contains state s than path πi is the only path in set
�s

n1,n2
,

– otherwise πi does not occur in �s
n1,n2

.

Matching source and destination addresses in the MTT can
be improved by using a method described in [15] which em-
ploys Interval Decision Diagrams [6].

In the next subsection, we review an existing methods
for packet filter representation and develop a simple but ef-
ficient method for capturing the semantics of packet filters.
The logical representation of filters is suitable for efficient
checking of the inclusion of a set of examined packets in
transmittable packets, which is used in reachability verifica-
tion.

4.3 List-based packet filters

A list-based packet filter (firewalls) consists of rules impos-
ing network security policies ordered by the priority, which
depends on the rule’s position within the list. Although there
may be other kinds of packet filters, we assume the most
common case, in which evaluation of packet filters is based
on the first match principle. This means that an action of
the highest priority rule that matches the analyzed packet is
executed.

Each rule is a multidimensional structure. Dimensions
are sets of network fields, e.g., source and destination ad-
dresses, port numbers, protocol type, or an action field, e.g.,
accept, deny, redirection. A typical rule can be formally de-
fined as a tuple 〈src,dst, srv,act〉, where src and dst are set
of addresses, srv is a set of services, and act is an action.

Packet filters can suffer from conflicts and dependencies,
which complicate the analysis. The goal of packet filter pre-
processing is to remove conflicts, redundancies and depen-
dencies such that we avoid the need to evaluate the rules in
the imposed order. If the resulting rule set is completely dis-
joint then it is possible to use a straightforward transforma-
tion into logical representation. First, we discuss a method
to obtain the disjoint rule set from an ordinary rule set.

On formal reachability analysis in networks with dynamic behavior

We discuss the method proposed in [19]. The method
consists of two steps. The first step isolates the possibly con-
flicting rules and figures out their dependencies. Two rules
are potentially conflicting, if both rules have different ac-
tions and one rule is either subsumed by another or there is
an nonempty intersection in one or more dimensions. The
result of the first step is a conflicting graph.

The second step analyses the conflicting graph to identify
a minimal set of rules that generate inconsistencies with an-
other rules. The result is a collection of trees. Each pair of
root and leaf in this trees defines a conflict that needs to be
removed making these rules independent.

The common approach to make the rule independent (dis-
joint) is to split conflicting rules into more rules and remove
conflicting parts. This phase may be followed by merging
process in order to optimize the rule set representation as the
previous splitting may increase the rule set size. A similar
approach is taken also for redundancy elimination as shown
in [2].

4.4 Logical representations of rule sets

Semantics of rule set consisting only of independent rules is
invariant to rule ordering. We will use this property to define
for each rule set its logical representation. This representa-
tion has form of propositional logic formula in disjunctive
normal form.

Recall that filtering rule is a tuple with network fields.
In the simplest case it consists of selectors, namely, source
address set, destination address set, service set, and the ac-
tion. A logical formula that is a translation of a simple rule
r = 〈s, d, v, a〉 consists of a conjunction of all selectors. A
selector is represented by a predicate that extracts required
network fields from some packet p. Thus, for rule r the for-
mula is written as follows:

src_adr(p) ∈ s ∧ dst_adr(p) ∈ d ∧ service(p) ∈ v.

A list of possible selector functions in shown in Table 2
We adapt network-mask convention for representation of

a set of continuous addresses. For instance, it allows us to
consider 147.229.12.0/24 as a set of addresses ranging from
147.229.12.0 to 147.229.12.255. We can use the standard set
operations, e.g., src_adr(p) ∈ 147.229.12.0/24 or

dst_adr(p) ∈ 147.12.28.0/24 ∪ 147.12.30.0/24.

This can be further expanded to

dst_adr(p) ∈ 147.12.28.0/24

∨dst_adr(p) ∈ 147.12.30.0/24,

which allows us to use the network-mask format for canon-
ical address set representation.

Table 2 Network Field Selectors

Function Description

dst_adr(p) Destination address of a packet p

src_adr(p) Source address of a packet p

dst_port(p) Destination port of UDP or TCP datagram carried in
packet p

src_port(p) Source port of UDP or TCP datagram carried in
packet p

service(p) Service of a packet p

Often, rule sets implicitly assume the existence of a de-
fault rule, which has the lowest priority. It matches all pack-
ets that were not hit by the preceding rules. While the pre-
viously described method copes with default rules transpar-
ently, it may cause to split the default rule into a large num-
ber of rules appearing in a disjoint rule set. To overcome this
issue we ignore the default rule in the process of conflicting
rule elimination and consider it again when we compute a
logical representation.

A logical representation can be either positive, represent-
ing all accepted packets or negative representing all denied
packets. The most commonly, we want to compute a posi-
tive representation of rule sets with default deny all rule. In
this case we only select all rules with allow action and calcu-
late the logical representation for these rules. It completely
eliminates the need to explicitly deal with default rule.

5 Conclusions

5.1 Summary

We presented a method for efficient reachability checking in
dynamically routed networks. The method does not require
to calculate routing tables for forwarding device in every
network state. Instead, the number of iterations is reduced
by grouping network states which use the same forward-
ing paths. This can be estimated by computing infrastructure
metrics and explicitly enumerated using a simple algorithm.
If a device or a link is a member of RF set with respect to
the given reachability property it is possible to completely
ignore the effect of a potential failure that these elements
can have on satisfying of the property.

We have shown how the MTT is used to identify the com-
munication paths for combinations of different link failures.
The MTT contains a description of a complete state space in
a compact form and all available communication paths of a
network, therefore it enables us to quickly check end-to-end
reachability, for instance. Considering filters, it is possible
to validate implementations of security policy, as proposed
in [4].

G. de Silva et al.

5.2 Future work

We designed the MTT and proposed the reachability analy-
sis method. The further work is oriented towards extensions
and practical evaluations of the presented approach:

• Routing approximation is considered in the computation
of the MTT. We assume that routing protocols are con-
figured to provide full connectivity. We do not handle the
case in which routing processes can be customized by im-
posing routing update filters, for instance. Also we do not
elaborate on the issue of route selection nor route redistri-
bution.

• The practical aspect of the presented method was only
briefly tested. We would like to find the limits of the
method by exercising it on a collection of real examples.
This involves to implement an experimental tool suite that
allows us to automatize processing of input configurations
and producing adequate results.

• In the present paper, we only deal with security properties
that can be expressed in terms of end-to-end reachability.
The future work should be oriented towards relaxing the
imposed limits on expressiveness of the security proper-
ties specification language, which allows us to define a
broader class of security related properties.

Acknowledgements This project has been carried out with a finan-
cial support from the Czech Republic state budget through the CEZ
MMT project no. MSM0021630528: Security-Oriented Research in
Information Technology, by the Grant Agency of the Czech Republic
through the grant no. GACR 102/08/1429: Safety and Security of Net-
worked Embedded System Applications, and by the Brno University
of Technology, Faculty of Information Technology through the specific
research grant no. FIT-10-S-1: Secured, Reliable and Adaptive Com-
puter Systems. Also, the fourth co-author was supported by the grant
no. FR-TI1/037 of Ministry of Industry and Trade: Automatic Attack
Processing.

References

1. (2006). Ospf design guide. (Tech. rep.) Available at url: http://
www.cisco.com/warp/public/104/1.pdf.

2. Acharya, S., Wang, J., Ge, Z., Znati, T., & Greenberg, A. (2006).
Simulation study of firewalls to aid improved performance. In 39th
annual, simulation symposium, 2006 (p. 8).

3. Bartal, Y., Mayer, A., Nissim, K., & Wool, A. (1999). Fir-
mato: a novel firewall management toolkit. In IEEE symposium
on security and privacy (pp. 17–31). citeseer.ist.psu.edu/article/
bartal99firmato.html.

4. Bera, P., Ghosh, S., & Dasgupta, P. (2009). Formal analysis of
security policy implementations in enterprise networks. Interna-
tional Journal of Computer Networks and Communications, 1(2),
56–73.

5. Bera, P., Ghosh, S., & Dasgupta, P. (2009). Formal verification of
security policy implementations in enterprise networks. In ICISS
’09: Proceedings of the 5th international conference on informa-
tion systems security (pp. 117–131). Berlin: Springer.

6. Christiansen, M., & Fleury, E. (2004). An interval decision dia-
gram based firewall. In 3rd international conference on network-
ing (ICN’04). Los Alamitos: IEEE Comput. Soc.

7. Hedrick, C. L. (1988). Routing information protocol. RFC 1058.
8. Gan, Q., & Helvik, B. (2006). Dependability modelling and anal-

ysis of networks as taking routing and traffic into account. In 2nd
conference on next generation internet design and engineering,
NGI ’06 (pp. 8–32).

9. Gouda, M., Liu, A. X., & Jafry, M. (2008). Verification of dis-
tributed firewalls. In Proceedings of the IEEE global communica-
tions conference (GLOBECOM), New Oreleans, Louisiana.

10. Guttman, J. D. (1997). Filtering postures: local enforcement for
global policies. In Proceedings, 1997 IEEE symposium on secu-
rity and privacy (pp. 120–129). Los Alamitos: IEEE Computer
Society.

11. Guttman, J. D. (1997). Filtering postures: local enforcement for
global policies. In IEEE symposium on security and privacy (pp.
120–129).

12. Doyle, J. (2006). CCIE professional development routing TCP/IP,
vol. 1. Cisco Systems, Inc.

13. Jeffrey, A., & Samak, T. (2009). Model checking firewall policy
configurations. In IEEE international workshop on policies for
distributed systems and networks (pp. 60–67).

14. Liu, A. X. (2008). Formal verification of firewall policies. In Pro-
ceedings of the 2008 IEEE international conference on communi-
cations (ICC), Beijing, China.

15. Matoušek, P., Ráb, J., Ryšavý, O., & Švéda, M. (2008). A formal
model for network-wide security analysis. In 15th IEEE sympo-
sium and workshop on ECBS.

16. Menth, M., Duelli, M., Martin, R., & Milbrandt, J. (2009). Re-
silience analysis of packet-switched communication networks.
IEEE/ACM Transactions on Networking 17(6).

17. Mitre: Common vulnerabilities and exposures database. Available
from http://cve.mitre.org/; accessed on Feb 2008.

18. Moy, J. (1998). OSPF Version 2. RFC 2328.
19. Pozo, S., Ceballos, R., & Gasca, R. (2008). Fast algorithms for

consistency-based diagnosis of firewalls rule sets. In Proceedings
of the 3rd international conference on availability, reliability and
security (ARES).

20. Ritchey, R. W., & Ammann, P. (2000). Using model checking to
analyze network vulnerabilities. In IEEE symposium on security
and privacy, Washington, USA.

21. Rubin, F. (1978). Enumerating all simple paths in a graph. IEEE
Transactions on Circuits and Systems, 25(8), 641–642.

22. Shahriari, H. R., Sadoddin, R., Jalili, R., Zakeri, R., & Omid-
ian, A. R. (2005). Network vulnerability analysis through vulner-
ability take-grant model (VTG). In LNCS: Vol. 3783. Proceed-
ings of 7th international conference on information and commu-
nications security (ICICS2005) (pp. 256–268). Berlin: Springer.
citeseer.ist.psu.edu/749214.html.

23. de Silva, G., Sveda, M., Matousek, P., & Rysavy, O. (2010). For-
mal analysis approach on networks with dynamic behaviours. In
Proceeding of the 2nd international workshop on reliable net-
works design and modeling.

24. Tidwell, T., Larson, R., Fitch, K., & Hale, J. (2001). Modeling
Internet attacks. In Proc. of the IEEE workshop on information
assurance and security, West Point, NY.

25. Xie, G. G., Zhan, J., Maltz, D. A., Zhang, H., Greenberg, A.,
Hjalmtysson, G., & Rexford, J. (2005). On static reachability anal-
ysis of IP networks. In Proc. IEEE INFOCOM.

26. Ou, X., Govindavajhala, S., & Appel, A. W. (2005). MulVAL:
a logic-based network security analyzer. In Proc. of the 14th
USENIX security symposium, Baltimore. citeseer.ist.psu.edu/
article/bartal99firmato.html.

27. Yuan, L., & Chen, H. (2006). Fireman: a toolkit for firewall mod-
eling and analysis. In Proceedings of IEEE symposium on security
and privacy (pp. 199–213).

28. Zakeri, R., Shahriari, H., Jalili, R., & Sadoddin, R. (2005). Mod-
eling TCP/IP networks topology for network vulnerability analy-
sis. In 2nd int. symposium of telecommunications (pp. 653–658).
citeseer.ist.psu.edu/749214.html.

http://www.cisco.com/warp/public/104/1.pdf
http://www.cisco.com/warp/public/104/1.pdf
http://citeseer.ist.psu.edu/article/bartal99firmato.html
http://citeseer.ist.psu.edu/article/bartal99firmato.html
http://cve.mitre.org/
http://citeseer.ist.psu.edu/749214.html
http://citeseer.ist.psu.edu/article/bartal99firmato.html
http://citeseer.ist.psu.edu/article/bartal99firmato.html
http://citeseer.ist.psu.edu/749214.html

On formal reachability analysis in networks with dynamic behavior

Gayan de Silva received his bach-
elor degree (BSc) in Electronics
and Telecommunications Engineer-
ing at University of Moratuwa, Sri
Lanka in 1999 and his master degree
(MSc) in Information Technology
at Keele University, UK in 2005.
He is currently undertaking a PhD
at Brno University of Technology,
Czech Republic in the area of net-
work security. Gayan has 10 years
industrial experience in network-
ing and he is presently employed at
IBM Delivery Centre, Central Eu-
rope.

Ondřej Ryšavý earned his PhD
from Brno University of Technol-
ogy in 2005. Currently he is an as-
sistant professor at Brno University
of Technology. His research interest
includes the field of modeling, de-
sign and verification of embedded
software. He also collaborates on
research of network modeling tech-
niques and analysis methods for val-
idating network designs.

Petr Matoušek completed his PhD
at Brno University of Technology in
2005 and since that he is at the posi-
tion of assistant professor. He spent
several months as a researcher at
LIAFA institution in France during
2003 and as a system administrator
in CERN, Geneva, Switzerland dur-
ing 1997 and 1998. Before that he
also undertook the technical train-
ing at Digital Engineering Ltd. in
Northern Ireland, UK. His research
interests include management, ser-
vices and transmission technologies
of computer networks, network se-

curity, IDS systems, modeling and analyzing network security, and ap-
plication of formal specification and verification techniques.

Miroslav Švéda has been profes-
sor at Brno University of Technol-
ogy since 2002. His research inter-
ests include embedded systems, for-
mal specifications, engineering of
computer-based systems, and en-
gineering computer networks and
communication protocols. Also, he
has published several papers in the
area of security analysis of net-
works. Prof. Sveda is the author
of numerous publications presented
at international conferences and in
journals.

	On formal reachability analysis in networks with dynamic behavior
	Abstract
	Introduction
	Related work
	Contribution
	Organization of the paper

	Preliminaries
	Network model
	Computing available paths
	Cost function for RIP, OSPF and EIGRP

	Modified topology table
	Computing network states
	Example

	Reachability analysis
	Infrastructure metrics
	Packet reachability analysis
	List-based packet filters
	Logical representations of rule sets

	Conclusions
	Summary
	Future work

	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

