
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ 
BRNO UNIVERSITY OF TECHNOLOGY 

 
 
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ 
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ 

FACULTY OF INFORMATION TECHNOLOGY 
DEPARTMENT OF COMPUTER SYSTEMS 

 

 

 

 

EVOLUTIONARY DESIGN OF COLLECTIVE 
COMMUNICATIONS ON WORMHOLE NETWORKS 
 
 
 
 
 

DISERTAČNÍ PRÁCE 
DOCTORAL THESIS 
 
AUTOR PRÁCE                        ING. JIŘÍ JAROŠ 
AUTHOR 

 
 
 
BRNO 2010



VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ 
BRNO UNIVERSITY OF TECHNOLOGY 

 
 
 
 
 
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ 
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ 

FACULTY OF INFORMATION TECHNOLOGY 
DEPARTMENT OF COMPUTER SYSTEMS 

 
 

 
 
 
EVOLUTIONARY DESIGN OF COLLECTIVE 
COMMUNICATIONS ON WORMHOLE NETWORKS 
EVOLUČNÍ NÁVRH KOLEKTIVNÍCH KOMUNIKACÍ NA ČERVÍCH SÍTÍCH 

DISERTAČNÍ PRÁCE 
DOCTORAL THESIS 
 
AUTOR PRÁCE    Ing. JIŘÍ JAROŠ 
AUTHOR 

 

VEDOUCÍ PRÁCE   Doc. Ing. JOSEF SCHWARZ, CSc. 
SUPERVISOR 

 
 
BRNO 2010



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Abstract 

This thesis describes the technique of the evolutionary design aimed at scheduling of collective 
communications on interconnection networks of parallel computers. In order to avoid contention for 
links and associated delays, collective communications proceed in synchronized steps. A minimum 
number of steps is sought for the given network topology, wormhole (pipelined) switching, 
minimum routing and given sets of sender and/or receiver nodes. The proposed technique is not 
only able to re-invent optimum schedules for known symmetric topologies like hypercubes, but it 
can find schedules even for any asymmetric, irregular, multistage and fat topologies in case of 
general many-to-many collective communications. In most cases, the number of steps reaches the 
theoretical lower bound for the given communication pattern; if it does not, non-minimum routing 
can provide further improvement. Optimal schedules may serve for writing high-performance 
communication routines for application-specific networks on chip or for the development of 
communication libraries in the case of general-purpose interconnection networks. 
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Abstrakt 

Tato práce popisuje biologií inspirovanou metodu návrhu optimálních (minimálních) plánů 
kolektivních komunikací pro propojovací sítě paralelních počítačů. Pro každou propojovací síť 
a komunikační vzor lze na základě parametrů této sítě, použité techniky červího přepínání, 
minimálního směrování a prostorového rozmístění vysílacích a přijímacích uzlů odhadnout dolní 
mez časové složitosti v počtu komunikačních kroků. Navržená metoda je schopna nejen 
znovuobjevit známe optimální komunikační plány pro běžně používané propojovací sítě jako např. 
hyperkostka, ale rovněž vytvářet inovativní řešení pro libovolné asymetrické, iregulární, 
vícestupňové či tlusté propojovací sítě. Tato metoda navíc není omezena prostorovou distribucí 
komunikujících uzlů a může tedy optimalizovat komunikaci pro obecné komunikační vzory typu 
many-to-many. Experimentální výsledky prokazují schopnost navržené metody produkovat 
optimální čí téměř optimální komunikační plány pro dané komunikační vzory. V určitých případech 
lze využitím neminimálního směrování dosáhnout dalšího vylepšení. Navržené komunikační plány 
mohou posloužit při tvorbě vysoce výkonných komunikačních knihoven pro aplikačně specifické 
sítě na čipu.  

 

 

Klíčová slova 

Evoluční návrh, propojovací sítě, červí směrování, kolektivní komunikace, plánování, hyperkostka, 
mřížka, torus, tlusté topologie, vícestupňové topologie, odolnost proti poruchám, SoC, NoC. 

 

 

 

 

 

Bibliografická Citace 

Jiří Jaroš: Evolutionary Design of Collective Communications on Wormhole Networks, Disertační 
práce, Ústav počítačových systémů, FIT VUT, Brno, CZ, 2010. 



 
 

Acknowledgment 

I would like to thank my supervisor Josef Schwarz who has been a permanent source of stimulation 
and encouragement through my research. His advice and constructive criticism have helped me to 
progress towards the successful completion of my research work. I am also grateful to Václav 
Dvořák for his inspiration and productive discussions. Special thanks must go to Lukáš Sekanina for 
a lot of helpful suggestions and comments to my research work. I am particularly grateful to 
Kenneth Froehling for his high-quality proof-reading. I would also like to thank my colleagues 
Michal Bidlo and Zbyšek Gajda for many discussions and ideas we shared. I would like to thank to 
all the other members of the Department of Computer System, Faculty of Information Technology, 
Brno University of Technology which I have had the pleasure to work with.  

My heartfelt appreciation must go to my dear parents Jiřina Jarošová and Bohuslav Jaroš for 
their endless encouragement and steadfast support in all my endeavors and for believing in me. 
I would also like to thank my sweetheart Alena Komárková for her love, patience and sacrificing 
much of our leisure time. Last but not least I would like to thank all my friends from the Marshal 
band for keeping me sane and providing welcome distractions.  

This work has been partially supported by:  

• Security-Oriented Research in Information Technology, Research Plan MSM 0021630528, 
CEZ MŠMT, 2007-2013. 

• Natural Computing on Unconventional Platforms, GP103/10/1517, Czech Science 
Foundation, 2010-2013. 

• Safety and security of networked embedded system applications, GA102/08/1429, Czech 
Science Foundation, 2008-10. 

• Design and hardware implementation of a patent-invention machine, GA 102/07/0850, 
Czech Science Foundation, 2007-2009. 

• Architectures of Embedded Systems Networks, GA 102/05/0467, Czech Science Foundation, 
2005-2007. 

• Integrated approach to education of PhD students in the area of parallel and distributed 

systems, GD102/05/H050, Czech Science Foundation, 2005-2008. 

• EDA Evolutionary Design of Group Communication Schedules, FRVS 2983/2006/G1, 
MŠMT, 2006. 

 

 

 

 

 



 
 

Prohlášení 

Prohlašuji, že jsem tuto disertační práci vypracoval samostatně pod vedením Doc. Ing. Josefa 
Schwarze, CSc. Další informace mi poskytl Prof. Ing. Václav Dvořák, DrSc. Uvedl jsem všechny 
literární prameny a publikace, ze kterých jsem čerpal. 
 
 
 
 

…………………… 
Jiří Jaroš 

1. března 2010 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© Jiří Jaroš, 2010. 
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě informačních 

technologií. Práce je chráněna autorským zákonem a její užití bez udělení oprávnění autorem je 

nezákonné, s výjimkou zákonem definovaných případů. 

 



 
 
 

1 

Contents 

1 Introduction.................................................................................................................................. 10 
1.1 Thesis Structure ................................................................................................................... 12 

2 Interconnection Networks ............................................................................................................ 14 
2.1 Network Basics .................................................................................................................... 15 
2.2 Topology.............................................................................................................................. 15 

2.2.1 Channels and nodes ................................................................................................... 16 
2.2.2 Direct and indirect networks...................................................................................... 17 
2.2.3 Cuts and bisection...................................................................................................... 18 
2.2.4 Paths .......................................................................................................................... 18 
2.2.5 Symmetry .................................................................................................................. 18 

2.3 Switching ............................................................................................................................. 19 
2.3.1 Messages, packets, flits and piths .............................................................................. 19 
2.3.2 Circuit switching........................................................................................................ 20 
2.3.3 Store-and-forward switching ..................................................................................... 21 
2.3.4 Virtual cut-through switching.................................................................................... 22 
2.3.5 Wormhole switching.................................................................................................. 23 

2.4 Routing................................................................................................................................. 24 
2.4.1 Deterministic routing................................................................................................. 24 
2.4.2 Oblivious routing....................................................................................................... 25 
2.4.3 Adaptive routing........................................................................................................ 26 
2.4.4 Deadlock and livelock ............................................................................................... 28 

3 Collective Communications in Wormhole Networks .................................................................. 30 
3.1 Model of Communication.................................................................................................... 31 
3.2 Classification of Collective Communications...................................................................... 32 
3.3 One-to-All and All-to-One Communications ...................................................................... 33 

3.3.1 Broadcast and reduce communications ..................................................................... 33 
3.3.2 Scatter and gather communications........................................................................... 34 

3.4 All-to-All Communications ................................................................................................. 36 
3.4.1 All-to-all broadcast communication .......................................................................... 36 
3.4.2 All-to-all scatter communications.............................................................................. 37 

3.5 General Many-to-Many Communications ........................................................................... 39 
3.5.1 Overlapping many-to-many communications ........................................................... 39 
3.5.2 Many-to-many communications with R⊂T ............................................................... 40 
3.5.3 Many-to-many communications with T⊂R ............................................................... 40 
3.5.4 More complicated many-to-many communications .................................................. 41 
3.5.5 Example calculation of lower bounds........................................................................ 41 

4 Scheduling of Wormhole Collective Communications................................................................ 42 
4.1 Interconnection Networks.................................................................................................... 43 

4.1.1 The most popular interconnection networks.............................................................. 43 
4.1.2 Optimal diameter-degree networks............................................................................ 44 
4.1.3 Novel network architectures ...................................................................................... 45 

 
 



 
 
 

2 

4.2 Scheduling of Collective Communications ......................................................................... 47 
4.2.1 OAS scheduling......................................................................................................... 48 
4.2.2 AAS scheduling......................................................................................................... 48 
4.2.3 OAB scheduling ........................................................................................................ 49 
4.2.4 AAB scheduling ........................................................................................................ 52 

4.3 Conclusions and Outstanding Problems .............................................................................. 53 

5 Evolutionary Algorithms.............................................................................................................. 55 
5.1 Genetic Algorithms.............................................................................................................. 56 

5.1.1 Encoding issue........................................................................................................... 57 
5.1.2 Genetic operators....................................................................................................... 59 
5.1.3 Selection and replacement mechanisms .................................................................... 61 
5.1.4 Creation of initial population..................................................................................... 63 
5.1.5 Fitness function.......................................................................................................... 63 
5.1.6 Values for the parameters of GA............................................................................... 63 

5.2 Estimation of Distribution Algorithms ................................................................................ 63 
5.2.1 EDA with no interactions .......................................................................................... 64 
5.2.2 EDA with pairwise interactions................................................................................. 65 
5.2.3 EDA with multivariate interactions........................................................................... 66 

6 Evolutionary Design of Collective Communications................................................................... 68 
6.1 Input Data Structure and Preprocessing............................................................................... 69 

6.1.1 Input data preprocessing............................................................................................ 70 
6.2 Scatter Encoding .................................................................................................................. 71 

6.2.1 Definition of scatter encoding ................................................................................... 71 
6.2.2 Features of scatter encoding ...................................................................................... 72 
6.2.3 Graphic visualization of a scatter chromosome......................................................... 72 

6.3 Broadcast Encoding ............................................................................................................. 73 
6.3.1 Definition of broadcast encoding............................................................................... 73 
6.3.2 Features of broadcast encoding ................................................................................. 74 
6.3.3 Graphic visualization of a broadcast chromosome .................................................... 75 

6.4 Fitness Function Definition.................................................................................................. 76 
6.4.1 Formal definition of the fitness function ................................................................... 76 
6.4.2 Graphic visualization of the fitness function ............................................................. 77 

6.5 Acceleration and Restoration Heuristics.............................................................................. 78 
6.5.1 Port based acceleration heuristic ............................................................................... 78 
6.5.2 Transfer swap heuristic.............................................................................................. 79 
6.5.3 Restoration of broadcast chromosomes ..................................................................... 80 
6.5.4 Initial population building heuristic........................................................................... 81 
6.5.5 Restricted surrounding heuristic ................................................................................ 81 

6.6 Mutation Operator................................................................................................................ 82 

7 Optimization Tools and Parameters Adjustments........................................................................ 84 
7.1 Optimization Tools .............................................................................................................. 85 

7.1.1 Standard genetic algorithm........................................................................................ 85 
7.1.2 Mixed Bayesian optimization algorithm ................................................................... 85 
7.1.3 Univarite marginal distribution algorithm................................................................. 86 

7.2 Experimental Comparison of Optimization Quality ............................................................ 87 
7.2.1 Optimization quality of SGA..................................................................................... 87 
7.2.2 Optimization quality of MBOA................................................................................. 89 
7.2.3 Optimization quality of UMDA ................................................................................ 90 
7.2.4 Summary.................................................................................................................... 92 

7.3 Experimental Comparison of Optimization Speed .............................................................. 92 
 



 
 
 

3 

7.4 Experimental Comparison of Optimization Scalability ....................................................... 94 
7.4.1 Scalability of scatter based communications............................................................. 94 
7.4.2 Scalability of broadcast based communications ........................................................ 96 
7.4.3 Summary.................................................................................................................... 97 

7.5 Conclusions.......................................................................................................................... 98 

8 Experimental Results of the Quest for High Quality Schedules .................................................. 99 
8.1 Common Interconnection Topologies................................................................................ 100 

8.1.1 Hypercubes .............................................................................................................. 100 
8.1.2 Rings........................................................................................................................ 102 
8.1.3 Meshes and tori........................................................................................................ 104 

8.2 Optimal Diameter-Degree Topologies............................................................................... 106 
8.3 Novel Network Architectures ............................................................................................ 108 
8.4 Multistage Topologies ....................................................................................................... 110 
8.5 Fat Topologies ................................................................................................................... 113 
8.6 Faulty Topologies .............................................................................................................. 115 
8.7 Many-to-Many Communications....................................................................................... 117 
8.8 Summary............................................................................................................................ 118 

9 Conclusions................................................................................................................................ 120 
9.1 Contributions of the Thesis................................................................................................ 122 
9.2 Future work........................................................................................................................ 123 

References ....................................................................................................................................... 124 

Author’s Publications...................................................................................................................... 137 

Author’s Curriculum Vitae.............................................................................................................. 139 

Appendix......................................................................................................................................... 140 

 

 



 
 
 

4 

List of Figures 

Figure 1. Examples of network topologies........................................................................................ 15 
Figure 2. Generic router model. ........................................................................................................ 16 
Figure 3. Direct, indirect and random network topologies................................................................ 17 
Figure 4. Vertex and edge symmetric networks................................................................................ 19 
Figure 5. Units of resource allocation. .............................................................................................. 20 
Figure 6. Time-space diagram showing circuit switching under congestion. ................................... 21 
Figure 7. Time space diagram showing store-and-forward switching without 

congestion. ....................................................................................................................... 22 
Figure 8. Time-space diagram of VCT switching under congestion................................................. 22 
Figure 9. Time-space diagram of wormhole switching under contention......................................... 23 
Figure 10. An example of dimension-ordered routing in 4-ary 2-cube (4×4 tori). ........................... 25 
Figure 11. An example of randomized routing (Valiant’s algorithm) on 4-ary 2-cube 

(4×4 torus). ...................................................................................................................... 26 
Figure 12. Minimal oblivious routing on 4-ary 2-cube (4×4 torus). ................................................. 26 
Figure 13. An example of minimal adaptive routing. ....................................................................... 27 
Figure 14. An example of fully adaptive routing. ............................................................................. 27 
Figure 15. Deadlock in communication with four transfers.............................................................. 28 
Figure 16. An example of livelock.................................................................................................... 29 
Figure 17. Port models for 3-regular networks. ................................................................................ 32 
Figure 18. The basic idea of one-to-all broadcast. ............................................................................ 33 
Figure 19. An example of optimal OAB schedule on the bidirectional 8-node ring 

topology. .......................................................................................................................... 34 
Figure 20. The basic idea of one-to-all scatter. ................................................................................. 35 
Figure 21. An example of optimal OAS schedule on the bidirectional 8-node ring 

topology. .......................................................................................................................... 35 
Figure 22. The basic idea of all-to-all broadcast. .............................................................................. 36 
Figure 23. An example of optimal AAB schedule on the 8-nodes AMP topology........................... 37 
Figure 24. The basic idea of all-to-all scatter.................................................................................... 37 
Figure 25. An example of optimal AAS schedule on the 8-nodes AMP topology. .......................... 38 
Figure 26. General M-to-N communication (a) T ⊄ R and R ⊄ T, (b) R ⊂ T, (c) T ⊂ R.. ................. 39 
Figure 27. Nine-to-eleven broadcast/scatter communication............................................................ 41 
Figure 28. An example of a Midimew topology. .............................................................................. 44 
Figure 29. Interesting almost optimal diameter-degree networks. .................................................... 45 
Figure 30. Two K-Rings of size 15 and K = 2. ................................................................................. 46 
Figure 31. Two examples of spidergon networks ............................................................................. 46 
Figure 32. The 8-node AMP topology. ............................................................................................. 47 
Figure 33. Direct pairwise exchange on 2D mesh............................................................................. 49 
Figure 34. An illustration of (a) dominating sets and (b) extended dominating sets in 

the 5×5 torus. ................................................................................................................... 50 
Figure 35. A generic schema of recursive doubling used in OAB on one-port WH 

meshes. ............................................................................................................................ 50 
Figure 36. 2-round OAB on the all-port 4D WH hypercube............................................................. 51 
Figure 37. The optimal HO-KAO algorithm on the all-port 7D hypercube...................................... 52 
Figure 38. Two different Time-Arc-Disjoint Trees for AAB communications. ............................... 53 
Figure 39. Flowchart of a standard genetic algorithm....................................................................... 56 
Figure 40. Infeasibility and illegality. ............................................................................................... 58 



 
 
 

5 

Figure 41. One-point crossover. ........................................................................................................ 60 
Figure 42. A graphical model with no interactions displayed as a Bayesian network. ..................... 64 
Figure 43. Graphical models with pairwise interactions in form of (a) chain, (b) tree, or 

(c) forest displayed as Bayesian networks. ...................................................................... 66 
Figure 44. Graphical models with multivariate interactions displayed as a Bayesian 

network. ........................................................................................................................... 67 
Figure 45. Description of an input file containing the 4×4 mesh topology with a many-

to-many communication. ................................................................................................. 69 
Figure 46. Construction of the shortest paths list from node no. 0 to node no. 6 in the 

4×4 2D mesh topology..................................................................................................... 70 
Figure 47. The structure of an AAS chromosome............................................................................. 72 
Figure 48. The structure of MNS chromosome following the distribution of 

transmitters and receivers illustrated in Figure 45........................................................... 73 
Figure 49. The structure of an AAB chromosome. ........................................................................... 75 
Figure 50. Two point-to-point communications illustrating the conflict-free condition................... 77 
Figure 51. Illustration of the fitness function evaluation concept. .................................................... 78 
Figure 52. Illustration of port number limitation. ............................................................................. 79 
Figure 53. The concept of port based heuristic using a channel utilization histogram. .................... 79 
Figure 54. The concept of the transfer swap heuristic. ..................................................................... 80 
Figure 55. Restoration of the broadcast tree...................................................................................... 81 
Figure 56. Illustration of surrounding of r = 1. ................................................................................. 82 
Figure 57. The influence of the population size, and the mutation and crossover 

probability on the solution quality: (a) - (c) AAS benchmark; (d) - (f) AAB 
benchmark; SGA algorithm. ............................................................................................ 88 

Figure 58. The influence of the population size and the mutation probability on the 
solution quality: (a) and (b) AAS benchmark; (c) and (d) AAB benchmark; 
MBOA algorithm............................................................................................................. 90 

Figure 59. The influence of the population size and the mutation probability on the 
solution quality: (a) and (b) AAS benchmark; (c) and (d) AAB benchmark; 
UMDA algorithm............................................................................................................. 91 

Figure 60. The comparison of achieved solution quality by different optimization tools................. 92 
Figure 61. The performance of investigated optimization tools with the near optimal 

parameter setups: (a) and (b) AAS benchmark; (c) and (d) AAB benchmark................. 93 
Figure 62. The scalability of investigated optimization tools - the numbers of fitness 

functions evaluations to reach global optima of scatter CCs with optimal 
parameter setups. ............................................................................................................. 95 

Figure 63. The scalability of investigated optimization tools - the numbers of fitness 
functions evaluations to reach global optima of broadcast CCs with optimal 
parameter setups. ............................................................................................................. 96 

Figure 64. Optimal OAS schedule with the usage of non-minimal routing.................................... 105 
Figure 65. Illustration of the 8-node Omega and Butterfly networks. ............................................ 110 
Figure 66. General form of the Clos network and Fat tree topology. ............................................. 111 
Figure 67. Illustration of the all-port slim 8-node spidergon and one-port 2-fat 8-node 

spidergon........................................................................................................................ 113 
Figure 68. Isolation of faulty node no. 10. ...................................................................................... 115 



 
 
 

6 

List of Tables 

Table 1. Lower complexity bounds of selected CCs......................................................................... 32 
Table 2. The size of graphs and digraphs with degree d = 3 and diameter D. .................................. 45 
Table 3. The success rate with increasing benchmark instances; OAS benchmark. ......................... 95 
Table 4. The success rate with increasing benchmark instances; AAS benchmark. ......................... 95 
Table 5. The success rate with increasing benchmark instances; OAB benchmark.......................... 97 
Table 6. The success rate with increasing benchmark instances; AAB benchmark.......................... 97 
Table 7. Time complexity of the evolved schedules for all-port hypercubes. ................................ 100 
Table 8. Optimal OAS and OAB schedules on the 8-node all-port hypercube............................... 101 
Table 9. Optimal AAS schedule on the 8-node all-port hypercube. ............................................... 101 
Table 10. Optimal AAB schedule on the 8-node all-port hypercube. ............................................. 102 
Table 11. Time complexity of the evolved schedules for bidirectional and 

unidirectional rings. ....................................................................................................... 103 
Table 12. Optimal OAS and OAB schedules on the 8-node unidirectional ring............................. 103 
Table 13. Optimal AAS and AAB schedules on the 8-node bidirectional all-port ring.................. 104 
Table 14. Time complexity of the evolved schedules for 2D meshes............................................. 105 
Table 15. Optimal OAB schedule on the 4×4 mesh; node 0 which is situated in the left 

corner is the root. ........................................................................................................... 106 
Table 16. Time complexity of the evolved schedules for ODD networks. ..................................... 107 
Table 17. Optimal AAS schedule in 7 steps and AAB schedule in 4 steps on the 

oriented Kautz-12 network. ........................................................................................... 107 
Table 18. Time complexity of the evolved schedules for some novel networks............................. 109 
Table 19. Optimal AAS schedule on the 8-node all-port spidergon. .............................................. 109 
Table 20. Time complexity of the evolved schedules for unidirectional and 

bidirectional MINs......................................................................................................... 112 
Table 21. Optimal AAS schedule on the 8-node fat tree................................................................. 112 
Table 22. Time complexity of the evolved schedules for one-port bidirectional fat 

hypercubes and spidergons with 2 terminal nodes per switch....................................... 114 
Table 23. Optimal AAB schedule on the 2-fat-hypercube-4........................................................... 114 
Table 24. Performance of the Kautz12 network with a single faulty link....................................... 116 
Table 25. Performance of the 4×4 2D mesh network with a single faulty link............................... 116 
Table 26. Performance of the 4×4 2D mesh network with a single faulty node. ............................ 117 
Table 27. Time complexity of the evolved schedules for the 8-node hypercube and 

spidergon for a few M-to-N CC patterns. ...................................................................... 117 
Table 28. Optimal MNS schedule within the left side of the 8-node all-port spidergon................. 118 
Table 29. Execution times of UMDA in seconds, minutes, hours and days. .................................. 119 



 
 
 

7 

List of Abbreviation 

AAB All-to-All Broadcast 
AAG All-to-All Gather 
AAR All-to-All Reduce 
AAS All-to-All Scatter 
ACO Ant Colony Optimization 
AMP A Minimum Path topology 
AOG All-to-One Gather 
AOR All-to-One Reduction 
BD Bayesian-Dyrichlet Metric 
BFS Breadth-First Search algorithm 
BIC Bayesian Information Criterion 
BMDA Bivariate Marginal Distribution Algorithm 
BOA Bayesian Optimization Algorithm 
CC Collective Communication 
cGA Compact Genetic Algorithm 
COMMIT Combining Optimizers with Mutual Information Trees 
CPU  Central Processing Unit 
CS Circuit Switching 
CX Cycle Crossover 
DMA Direct Memory Access 
DT Double Tree algorithm 
EA Evolutionary Algorithm 
ECGA Extended Compact Genetic Algorithm 
EDA Estimation of Distribution Algorithm 
EDN Extended Dominating Node 
EP Evolutionary Programming 
ES Evolutionary Strategies 
FD Full Duplex link 
FDA Factorized Distribution Algorithm 
FFT Fast Fourier Transform 
FIFO First In First Out 
GA Genetic Algorithm 
GCR General Cordal Ring 
GP Genetic Programming 
HCwL Hill Climbing with Learning 
HD Half Duplex link 
HKA Ho-Kao Algorithm 
HPC High Performance Computing 
HW HardWare 
IDEA Iterated Density Estimation Algorithm 
IUMDA Incremental Univariate Marginal Distribution Algorithm 
LC Link Controller 
MBOA Mixed Bayesian Distribution Algorithm 
MC MultiCast 
MDL Minimum Description Length Metric 
MILP Mixed Integer Linear Programming 
MIMIC Mutual Information Maximizing Input Clustering 



 
 
 

8 

MIN Multistage Interconnection Network 
MMB Many-to-Many Broadcast 
MNS Many-to-Many Scatter 
MPI Message Passing Interface 
MPP Massive parallel Processor 
NE Number of Evaluations to reach global optima 
NoC Network on a Chip 
OAB One-to-All Broadcast 
OAS One-to-All Scatter 
ODD Optimal Diameter-Degree topology 
OX Ordered Crossover 
PBIL Population Based Incremental Learning 
PE Processing Element 
PMBGA Probabilistic Model Building Genetic Algorithm 
PMX Partially Mapped Crossover 
PSO Particle Swarm Optimization  
SBT Spatial Binomial Tree 
SE Switching Element 
SF Store-and-Forward switching 
SGA Standard Genetic Algorithm 
SoC System on a Chip 
SR Success Rate of the global optima discovery 
ST Sequential Tree algorithm 
SW SoftWare 
TADT Time-Arc-Disjoint Tree 
TFLOP Tera FLoating point operations per second  
TSG Transmission SubGraph 
TSP Traveling Salesman Problem 
UMDA Univariate Marginal Distribution Algorithm 
VCT Virtual Cut-Through switching 
WH WormHole switching 

 



 
 
 

9 

List of Symbols 

∆∆∆∆ Number of messages that cross the bisection twice 
λλλλCC Link utilization 
B Link frequency 
BC Bisection width 
c Channel 
C Set of channels 
C(x,y) Cut of network 
COMM Set of communications 
D Network diameter 
d Node degree 
dc Destination node of the channel c 
E Multiset covering all shared channels within CC 
Ea,b Set covering all shared channels between transfers a and b 

Es Multiset covering all shared channels within a step s 

h Hop count  
H(x,y) Hop count of minimal path between x and y 

k Number of internal ports 
l Path 
m Message length 
M Number of transmitters 
MSG Set of messages 
N Number of receivers 
P  Number of terminal nodes 
Q Number of nodes operating simultaneously as transmitter and receiver 
r Restricted surrounding radius 

R Set of receivers 
R’x,y Set of all paths between x and y 
Rx,y Set of minimal paths between x and y 
s Communication step 
S Set of communication steps 
sc Source node of the channel c 
SS Same Step Relation 
T Set of transmitters 
tr Routing delay 
ts Switching delay 
tw Propagation delay 
V Set of terminal nodes 
V* Set of nodes 
W Channel width 
x Source node 
y Destination node 
Σ Cumulative inter-nodes distance 
τCC Lower bound of communication complexity 
τ
CC Upper (reached) bound of communication complexity 

 

 



   

 
 
 

10 

Chapter 1  

Introduction 

A recent trend in high performance computing (HPC) has been towards the use of parallel 
processing to solve computationally-intensive problems. Several parallel architectures, which offer 
corresponding increases in performance as the number of processors is increased, have been 
designed in the last few years. Nowadays, with the enormous transistor budgets of 45-nm and 32-
nm technologies on a silicon die, it is feasible to place large CPU clusters on a single chip (System 
on Chip, SoC) allowing both large local memories and the high bandwidth of on-chip 
interconnection. Using this chip-scale multiprocessing, the number of processors on a chip may in 
the near future scale to dozens or hundreds, depending on their complexity. The basic requirement 
for building such a SoC turned out to be the low power consumption, in order that system parts 
could be close together and communication time would be thus minimized. For the same reason, the 
CPU cores should be simple and processing nodes should be interconnected as effectively as 
possible. 

Buses and point-to-point connections are the main means to connect the components. Buses can 
efficiently connect 3-10 communication partners but they do not scale to higher numbers. Even 
worse‚ they behave very unpredictably, as seen from an individual component‚ because many other 
components also use them. A second problem comes from the physics of deep submicron 
technology. Long‚ global wires and buses become undesirable due to tight timing constraints and 
skew control‚ high power consumption and noise phenomenon [86], [96]. 

As a consequence‚ in 1999 several research groups started to investigate systematic approaches 
to the design of the communication part of SoCs. This research area has been called Network on 
Chip (NoC). A NoC [38], [81], [110] is constructed from multiple point-to-point data links 
interconnected by switches (routers), so that messages can be relayed from any source module to 
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any destination module over several links by making routing decisions at the switches. Although 
NoCs can borrow concepts and techniques from the well-established domain of computer 
networking, it is impractical to blindly reuse features of "classical" computer networks and 
symmetric multiprocessors. In particular, NoC switches should be small, energy-efficient, and fast. 
The routing algorithms should be implemented by a simple logic, and the number of data buffers 
should be minimal. These requirements have converged on the use of pipelined, distance-insensitive 
wormhole (WH) [146] message switching and source-based routing algorithms [39]. 

There are several examples of NoCs that have found applications in the commercial sphere at 
the present time. One of the leaders in this area is Tilera Corporation that has introduced Tilera Tile-
Gx processor family with 16 to 100 full-featured processing cores interconnected by a 2D mesh 
[199]. Other compact high performance systems were produced by SiCortex, Inc. This vendor has 
offered highly compacted systems based on unidirectional Kautz networks and scalable up to 5832 
cores with only 20kW of power consumption [184]. Also IBM has brought its solution called IBM 
Cell broadband engine on the market. This multimedia chip integrates a Power PC processor and 
8 SPE elements interconnected by a ring NoC called Element Interconnection Bus. The chip has 
found many commercial applications not only in the gaming industry (Sony Playstation 3) [186], 
but also in the second most powerful supercomputer in the world called Roadrunner [202]. 
Similarly, Intel is working on its own NoC solution under the project Intel Tera-scale research 
program (Larabee). The goal of the project is to design a NoC with 1TFLOP performance 
composed of about 80 cores interconnected by either a mesh topology or a hierarchical ring 
topology [94]. The small scale system can be also based on common AMD Opteron and Intel 
Nehalem architecture processors. The Network on Board is then created using HyperTransport or 
QuickPath links into bidirectional rings (Intel Nehalem Ex) [93] or hypercubes (AMD Direct 
Connect Interconnection [4]). And this is only the beginning of the NoC area. Many other 
implementations will certainly come into existence in the next years.  

In order to be able to utilize the performance of such a SoC, the parallel programming 
paradigms have to be taken into account. Provided that computation times of executed tasks are 
known, as is usually true in case of application-specific systems, the only thing that matters in 
obtaining the highest performance are durations of various collective communications. Some 
embedded parallel applications, such as network or media processors, are characterized by 
independent data streams or by a small amount of inter-process communications [98]. However, 
many general-purpose parallel applications display a bulk-synchronous behavior: the processing 
nodes access the network according to a global, structured communication pattern. Examples of 
collective communication (CC) patterns include broadcast, in which a message is sent from one 
process to all the other processes in a group; global combine, in which a global operation, such as 
maximum or sum, is performed on a distributed set of data items; and barrier synchronization, in 
which every member of a set of processes must reach a given point in its execution before any 
member can proceed [111]. The growing interest in the use of collective routines is evidenced by 
their inclusion in the Message Passing Interface (MPI) standard [131] and by their increasing role in 
supporting data-parallel languages [83]. Many existing SoCs do not support collective operations in 
hardware. In these environments, collective operations must be supported in software by sending 
multiple point-to-point messages. Such implementations are termed unicast-based [130] and 
typically are implemented as a sequence of synchronized steps, each of which involves the sending 
of one or more messages among processes. However, in situations where many messages exist in 
the network concurrently, a large internode distance can lead to contention among messages. 
Therefore, unicast-based collective operations, which typically involve many messages, should be 
designed so that they not only minimize the number of message-passing steps, but also minimize or 
eliminate contention among the constituent messages [129]. The achievement of this goal depends 
on additional architectural characteristics which is the main goal of this thesis. 

At present, many different universal topologies of interconnection networks are in use and other 
application-specific ones can be created on demand. While the time complexity of certain 
communication patterns has a lower bound given by a particular interconnection, finding a sequence 
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of communication steps (a schedule) approaching this limit is more difficult, and in some cases, 
such schedules are not known as of yet. 

Naturally, many projects have addressed the design of fast collective communication algorithms 
for wormhole-switched systems in recent years. Since any data loss is not acceptable in NoC, the 
deadlocks, livelocks and starvations, even links/node overloads, have to be prevented in such 
schedules. Hence, many approaches have analysed the structure and properties of underlying NoC 
topology and communication pattern with the aim of designing contention-free communication 
schedules that attain the lower bound of time complexity of given CC patterns [14], [120], [174]. 
Unfortunately, these schedules are not general at all, and only work for a few regular topologies like 
hypercube or square mesh/tours even then in only a couple of possible instances. Another idea is to 
design some families of parameterized algorithms that can be tuned to perform well on different 
architectures under various system conditions [15]. Unfortunately, this kind of CC schedules is not 
optimal in most cases, and moreover they are restricted by other parameters of the NoC such as port 
model, minimal routing strategy, symmetry of the network and so on.  

With an increasing number of novel NoC topologies (e.g. spidergon, Kautz, fat topologies) 
a hunger for a general technique capable to produce optimal or near optimal schedules for an 
arbitrary network topology and a given CC pattern steadily grows. The designed schedules could 
serve for writing high-performance communication functions for a concrete topology. 
Consequently, these functions could be included into, for example, a well-known OpenMPI library 
[92] to accelerate given CCs and prevent data losses. 

Due to the complexity of this task, evolutionary algorithms (EA) are employed in this work. 
Since EAs were introduced in 1960s [87], several researchers have demonstrated that EAs are 
effective and robust in handling a wide range of difficult real-world problems such as optimization, 
decomposition, scheduling and design [25], [33], [65], [122].  

This thesis deals with the experimental confirmation of this hypothesis: Evolutionary design is 

able to produce optimal or almost optimal communication schedules comparable or even better 

than which have been obtained by a conventional design for the networks sizes of interest. 

Moreover, evolutionary design will reduce many drawbacks of present techniques and invent still 

unknown schedules for an arbitrary topology and scatter/broadcast communication patterns.  

1.1 Thesis Structure 

This thesis describes the universal technique that is able to design optimal or near optimal 
communication schedules for an arbitrary network topology and an arbitrary distribution of 
communicating nodes. Moreover, this technique will overcome many bottlenecks of traditional 
techniques like port-model restriction, minimal routing restriction, regularity and symmetry of the 
network. Thereupon, it will be able to design schedules for general many-to-many communication 
patterns, fat and multistage networks and even deal with the problem of the faulty topologies.  

The thesis is structured into nine chapters describing the theoretical background, the analysis of 
the state of the art, the description of the proposed method, the experimental validation of the 
method and the contributions of the thesis.  

Chapter 2 describes the interconnection networks basis. The chapter starts with the description 
of the graph structure and the parameters of NoC topologies. Then, the switching techniques and 
their influences on the network performance are discussed. Next, the chapter summarizes the 
principles of routing mechanisms used in NoCs. Finally, the problems of deadlock and livelock are 
introduced. 

Chapter 3 deals with the definition of collective communications in wormhole networks. First, 
the model of communication is introduced, and then, the CCs are classified into several classes 
according to the distribution of transmitters and receivers. The estimation of the lower bounds on 
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time complexity and examples of optimal schedules are given for investigated CC patterns. Finally, 
the general many-to-many CC are examined.  

Chapter 4 explores in depth the state of the art in the area of NoC and collective communication 
scheduling. There are several promising NoC architectures described in the first subsection. The rest 
of the chapter addresses the issue of optimal CC scheduling. The best known approaches are 
introduced for all communication patterns, and their pros and cons are then discussed. The 
knowledge in the area is concluded and the outstanding problems are identified at the end of the 
chapter. 

Chapter 5 provides the detailed description of principles of evolutionary algorithm, their 
classification, capabilities and drawbacks. In addition, all the parts of evolutionary algorithms are 
examined in depth and designers’ hints are provided.  

The technique of evolutionary design of CCs on wormhole networks is introduced in chapter 6. 
First, the input data structure and their preprocessing are described. Then, the structure of schedules 
encodings into chromosomes is introduced. The mathematical definitions are completed by simple 
graphic visualizations for both scatter and broadcast based CCs. The definition of the fitness 
function follows in succession. Next, the acceleration and restoration heuristics are investigated. 
These heuristics exploit the search space restriction and take the evolution into more promising 
areas. On the other hand, the restorations heuristic repair the illegal solutions and allow evolution to 
operate in the strongly restricted search space of broadcast based CCs. 

The goal of chapter 7 is the selection of the most suitable evolutionary optimization tool. Three 
potential candidates are chosen and their optimal parameters are searched for in the first part of the 
chapter. Next, the quality of obtained solutions is investigated and compared with each other. The 
comparisons of optimization speed and optimization scalability for given tools follow. Finally, the 
most suitable optimization tool is declared as the most powerful and is used for other work.  

Chapter 8 provides a comprehensive study of the capabilities of the proposed technique. The 
technique is applied to many kinds of interconnection networks and the time complexities of the 
evolved schedules are compared with the mathematically derived lower bounds. Moreover, the most 
interesting schedules are provided in the tabular form. The networks of interest in this chapter cover 
common topologies such as hypercube, ring, mesh and torus, special diameter degree networks and 
novel application-specific networks. Another effort is devoted to the multistage, fat and faulty 
topologies that have not been studied before. Finally, the basic results for general many-to-many 
communications are given. 

Chapter 9 concludes the thesis, identifies the main contributions of the proposed technique and 
outlines the most promising direction for future work. 
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Chapter 2  

Interconnection Networks 

Digital electronic systems of all types are rapidly becoming communication limited. Movement of 
data, not arithmetic or control logic, is the factor limiting cost, performance, size and power in these 
systems. At the same time, buses, long the mainstay of system interconnect, are unable to keep up 
with increasing performance requirements.  

Interconnection networks offer an attractive solution to this communication crisis and are 
becoming pervasive in digital systems. A well-designed interconnection network makes efficient 
use of scarce communication resources - providing high-bandwidth, low-latency communication 
between clients with a minimum of cost and energy [98]. 

Historically used only in high-end supercomputers and telecom switches, interconnection 
networks are now found in digital systems of all sizes and types. They are used in systems ranging 
from large supercomputers to small embedded systems-on-a-chip (SoC) [3] and in applications 
including inter-processor communications, processor-memory interconnect, input/output and 
storage switches, router fabrics, and to replace dedicated wiring.  

Indeed, as system complexity and integration continues to increase, many designers are finding 
it more efficient to route packets, not wires [38]. Using an interconnection network rather than 
dedicated wiring allows scarce bandwidth to be shared so it can be used efficiently with a high duty 
factor. In contrast, dedicated wiring is idle much of the time. Using a network also enforces 
a regular, structured use of communication resources, making the system easier to design, debug, 
and optimize. 
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2.1 Network Basics 

In order to meet the performance specifications of a particular application, the network designer 
must work within topology constraints to implement the topology, routing and flow control of the 
network. A key to the efficiency of interconnection networks comes from the fact that 
communication resources are shared. Instead of creating a dedicated channel between each terminal 
pair, the interconnection network is implemented with a collection of shared router nodes connected 
by shared channels. The connection pattern of these nodes defines the network’s topology. 
A message is then delivered between terminals by making several hops across the shared channels 
and nodes from its source to its destination terminal.  

Once a topology has been chosen, there can be many possible paths (sequences of nodes and 
channels) that a message could take through the network to reach its destination. Routing 
determines which of these possible paths a message actually takes. A good choice of paths 
minimizes their length, usually measured as the number of nodes or channels visited (hops), while 
balancing the demand placed on the shared resources of the network. The length of a path obviously 
influences the latency of a message through the network, and the demand or load on a resource is 
a measure of how often that resource is being utilized. If one resource becomes over-utilized while 
another sits idle, known as a load imbalance, the total bandwidth of messages being delivered by the 
network is reduced. 

Flow control dictates which messages get access to particular network resources over time. This 
influence of flow control becomes more critical as the utilization of resource increases and good 
flow control forwards packets with minimum delay and avoids idling resources under high loads. 

2.2 Topology 

Network topology refers to the static arrangement of channels and nodes in an interconnection 
network - the roads over which packets travel. Selecting the network topology is the first step on 
designing a network because the routing strategy and flow-control method depend heavily on the 
topology.  
 

 

Figure 1. Examples of network topologies. 

(a) 2D torus (b) 4D hypercube

(c) chordal ring   (d) hierarchical of rings   
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Selecting a good topology is largely a job of fitting the requirements of the network into the 
available packing technology. We can choose a topology based on its cost and performance. The 
cost is determined by the number and complexity of the chips required to realize the network, and 
the density and length of interconnections between these chips on boards or over cables. 
Performance has two components: bandwidth and latency. Both of these measures are determined 
by factors other than topology (flow control, routing strategy and traffic pattern). In order to 
evaluate just the topology we develop measures, such as bisection bandwidth, channel load, and 
path delay. They reflect the impact of the topology on performance. 

Figure 1 shows the basic interconnection network topologies: (a) and (b) show 16 nodes 
orthogonal topologies, 2D torus [223] and 4D hypercube [222] while (c) and (d) show another 
commonly used network topologies based on ring, chordal ring known also as K-Ring [112] and 
hierarchical rings [94]. 

2.2.1 Channels and nodes 

The topology of an interconnection network is specified by a set of nodes V* connected by a set of 
channels C. Messages originate and terminate in a set of terminal nodes V where *VV ⊆ . In 
networks where all nodes are terminals, we simply refer to the set of nodes as V. Each channel 
c = (x, y) ∈ C connects a source node x to a destination node y, where x, y ∈ V*. We denote the 
source node of a channel c as sc and the destination as dc. This definition of a topology is equivalent 
to a directed graph [211]. Not surprisingly, much of the terminology used to describe a topology 
borrows heavily from graph theory. Note that each link (edge) can consist of two unidirectional 
channels considering full-duplex links or only one channel in the case of half-duplex or simplex 
link. 
 

 

Figure 2. Generic router model (LC = link controller). 
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A channel c = (x, y) is characterized by its width wc or wxy, the number of parallel signals it 
contains; its fc or fxy, the rate at which bits are transported on each signal; and its latency tc or txy, the 
time required for a bit to travel from x to y. 

Each switch node x has a channel set OxIxx CCC ∪= , where }|{ xdCcC cIx =∈=  is the input 

channel set and }|{ xsCcC cOx =∈=  is the output channel set. The degree of x is d = |Cx| which is 

the sum of the in degree, dIx = |CIx| and the out degree dOx = |COx|. In the case of links we, we drop 
the subscript and denote degree by d = dIx = dOx. If all nodes have the same degree d, the network is 
referred to as regular. 

In direct networks, besides external channels (simply called channels) connecting particular 
switches/routers, we also introduce internal channels (simply called ports, denoted by k) to connect 
local processor/memory to the switch. Although it is common to provide only one port (one pair of 
internal channel, k = 1), some systems use more ports (k ≤ d) in order to avoid a communication 
bottleneck between the local processor/memory and the switch [22]. The architecture of a generic 
router is shown in Figure 2. 

2.2.2 Direct and indirect networks 

A network node can be a terminal node that acts as a source and destination for packets, a switch 
node that forwards packets from input ports to output ports, or both. In a direct network [146], such 
as the 2D mesh in Figure 3a, every node in the network includes both a terminal and 
a switch/router. On the other hand, in an indirect network, such as the 2D coated mesh in Figure 3b, 
a node can be either a terminal (rectangular nodes) or a switch (round nodes). It cannot serve both 
functions. In direct networks, packets are forwarded directly between terminal nodes, while in an 
indirect network they are forwarded indirectly by means of dedicated switch nodes. Some networks, 
like the random network in Figure 3c, are neither direct nor indirect. Every direct network can be 
redrawn as an indirect network by splitting each node into separate terminal and switch nodes. The 
distinction between direct and indirect networks is largely academic with such networks.  
 

 

 

Figure 3. Direct, indirect and random network topologies. 

  

(a) random network 

(a) direct network (b) indirect network 
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One potential advantage of a direct network is that resources of a terminal (which usually 
include a computer) are available to each switch. In some early networks, the switching function 
was implemented in software running on the terminal CPU, and buffering was performed using the 
terminal computer’s memory [181]. Software switching is, however, both very slow and demanding 
of the terminal’s resources. Thus, it is rarely used today.  

2.2.3 Cuts and bisection 

A cut of network C(V1, V2) is a set of channels that partitions the set of all nodes V* into two disjoint 
sets, V1 and V2. Each element of C(V1, V2) is a channel with a source in V1 and destination in V2, or 
vice versa. The number of channels in the cut is |C(V1, V2) |. 

A bisection of a network is a cut that partitions the entire network nearly in half, so that 

1212 +≤≤ VVV , and also partitions the terminal nodes nearly in half, so that 

1212 +∩≤∩≤∩ VVVVVV . The channel bisection of a network BC is the minimum channel 

count over all bisections of the network  

|),(|min 21
sec

VVCB
tionbi

C = . (2.1) 

2.2.4 Paths 

A path in a network is an ordered set of channels l = {c1, c2,..., cL}, where 
1+

=
ii cc sd for i = 1...L –1. 

Paths are also referred to as routes. The source of a path is sl =sc1. Similarly, the destination of 
a path is dl = dcL. The length or hop count of a path is h = |l|. If, for a particular network and its 
routing function, at least one path exists between all source-destination pairs, it is said to be 
connected.  

The minimal (shortest) path from node x to node y is a path with the smallest hop count 
connecting these two nodes. The set of all minimal paths from node x to node y is denoted Rx,y. 
H(x, y) is the hop count of minimal path between x and y. The diameter of a network D is the 
largest, the minimal hop count over all pairs of terminal nodes in the network being 

Vyx

yxHD
∈

=
,

),(max . (2.2) 

A network with multiple shortest paths between most pairs of nodes, |Rx,y| > 1 for most 
Vyx ∈, is more robust than a network with only a single route from node to node |Rx,y| = 1. This 

property, which is called path diversity, adds to the robustness of our network by balancing across 
channels and allowing the network to tolerate faulty channels and nodes. 

2.2.5 Symmetry 

The symmetry of a topology plays an important role in load-balance and routing. A network is 
vertex-symmetric, as in Figure 4a, if there exists an automorphism that maps any node x into another 
node y. Informally, in a vertex-symmetric network, the topology looks the same from the point-of-
view of all the nodes. This can simplify routing because all nodes share the same roadmap of the 
network and, therefore, can use the same directions to route to the same relative position. 

In an edge-symmetric network, as in Figure 4b, there exists an automorphism that maps any 
channel a into another channel b. Edge symmetry can improve load balance across the channels of 
the network since there is no reason to favor one channel over another.  
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Figure 4. Vertex and edge symmetric networks. 

2.3 Switching 

Inter-processor communication can be viewed as a hierarchy of services starting from the physical 
layer that synchronizes the transfer of bit streams to higher-level protocol layers that perform 
functions such as packetization, data encryption, data compression, etc. We find it useful to 
distinguish between three layers in the operation of the interconnection networks: the routing layer, 
the switching layer and the physical layer [95]. The physical layer refers to link-level protocols for 
transferring messages and otherwise managing the physical channels between adjacent 
switches/routers. The switching layer utilizes these physical layer protocols to implement 
mechanisms for forwarding messages through the network. Finally, the routing layer makes 
decisions to determine candidate output channels at the intermediate router node and, thereby, 
establish the path through the network. The design of routing protocols and their properties (e.g. 
deadlock and livelock freedom) are largely determined by the services provided by the switching 
layer. 

Switching techniques employed in multiprocessor networks initially followed those techniques 
employed in local and wide-area networks. However, as the application of multiprocessor systems 
spread into increasingly compute-intensive domains, the traditional layered communication designs 
borrowed from LANs became a limiting performance bottleneck. New switching techniques and 
implementations evolved that were better suited to the low latency demands of parallel programs. 

In order to traverse an interconnection network, a message must be allocated resources: channel 
bandwidth, buffer capacity, and control state. In order to improve efficiency of this resource 
allocation, we divide a message into packets for the allocation of control state and into flow control 
digits (flits) for the allocation of channel bandwidth and buffer capacity.  

2.3.1 Messages, packets, flits and piths 

Figure 5 shows the units in which network resources are allocated [113]. At the top level, a message 
is a logically contiguous group of bits that are delivered from a source terminal to a destination 
terminal. Because messages can be arbitrarily long, it is necessary to break them into one or more 
packets that have a restricted maximum length.  

A packet is a basic unit of routing and sequencing. A packet consists of a segment of a message 
to which a packet header is pretended to exist. The packet header includes routing information and, 
if needed, a sequence number. The routing information is used to determine the route taken by the 
packet from source to destination. The sequence number is needed to reorder the packets of 
a message if they can get out of order in transit (transmitting via different paths).  

     (a) vertex-symmetric                (b) edge-symmetric 
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Figure 5. Units of resource allocation. 

A packet can be further divided into flow control digits or flits. A flit is the basic unit of 
bandwidth and storage allocation used by most flow control (switching) techniques. Flits carry no 
routing and sequencing information and thus must follow the same path and remain in order. The 
position of a flit in packet determines whether it is a head flit, body flit, tail flit, or a combination of 
these. A head flit is the first flit of a packet and carries the packet’s routing information. A head flit 
is followed by zero or more body flits and a tail flit. In a very short packet, there can be no body 
flits, and in the extreme case where a packet is a single flit, the head can also be a tail flit. As the 
packet traverses the network, the head flit allocates a channel state for the packet and the tail flit 
deallocates it.  

A flit is itself subdivides into one or more physical transfer digits or phits. A phit is the unit of 
information that is transferred across a channel in a single clock cycle. Although no resources are 
allocated in units of phits, a link level protocol must interpret the phits on the channel to find the 
boundaries between flits. 

For purposes of comparison, for each switching technique we will consider the computation of 
the base latency of an m-bit message in the absence of any traffic. The pith size and the flit size are 
assumed to be equivalent and equal to the physical data channel width of W bits. The routing header 
is assumed to be 1 flit; thus the message size is m + W bits. A router can make a routing decision in 
tr seconds. The physical channel between two routers operates at B Hz: that is, the physical channel 
bandwidth is B·W bits per second. In this work, we assumed that channel wires are short enough to 
complete a transmission in one clock cycle. Therefore, the propagation delay across this channel is 

denoted by 
B

tw

1
= . Once a path has been set up through the router, the intra-router delay or 

switching delay is denoted by ts. The source and destination terminal nodes are assumed to be h link 
apart. 

2.3.2 Circuit switching 

In circuit switching (CS), a physical path is reserved from source to destination before the 
transmission. A header of the message is injected into the network, and when it reaches the 
destination, the complete path has been set up and an acknowledgment is sent back to source so that 
message contents may be transmitted at the full bandwidth of the hardware path (telephone system). 
The circuit may be released by the destination or by the last few bits of the message [187].  

Circuit switching is advantageous when messages are infrequent and long (i.e. when the 
transmission time is long compared to the path setup time). On the other hand, the physical path is 
reserved for the duration of the message and can block other messages.  

message 
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 tail flit  body flit 
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The base latency of a circuit-switched message is determined by the time to set up a path and 
the subsequent time the path is busy transmitting data. For circuit-switching we can write an 
expression for the base latency of a message as follows: 

tcircuit = tsetup + tdata 

tsetup = h [tr + 2(ts + tw)] (2.3) 






=
W

m

B
tdata

1
    . 

Actual latencies clearly depend on a myriad of implementation details. In particular, it is 
assumed that once the circuit has been established, propagation delay through the entire circuit is 
negligible compared to clock cycle. Hence, tdata does not depend on that delay. The factor of 2 in the 
setup cost represents the time for the forward progress of the header and the return of the 
acknowledgement. The use of B Hz as the channel speed represents the transition across 
a hardwired path from source to destination.  

Figure 6 represents time-space diagram showing transmission of one 4-flit packet over 5-hop 
using circuit switching under congestion (blocked channel 3).  
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Figure 6. Time-space diagram showing circuit switching under congestion 
(R - request, A - acknowledgement, B - body flit, T - tail flit). 

2.3.3 Store-and-forward switching 

If the size of the message is not much greater than the size of the routing header, it becomes 
advantageous to partition and transmit the message as fixed-length packets. The first few bytes of 
a packet contain routing and control information stored in packet header. Each packet is 
individually routed from source to destination. This is the reason why this switching technique is 
called as store-and-forward switching (SF) [180]. The header information is extracted by the 
intermediate router and used to determine the output link over which the packet is to be forwarded. 
A time-space diagram is shown in Figure 7. From this figure we can see that the latency 
experienced by the packet is proportional to the distance between the source and destination nodes.  

Store-and-forward switching is advantageous when messages are short and more frequent, so 
that full utilization of the communication link can be realized. Many packets belonging to 
a message can be in the network simultaneously, even if the first packet has not arrived to the 
destination yet. In this switching mechanism each node must buffer every incoming packet, 
consuming memory space. In multidimensional, point-to-point networks it is evident that the 
storage requirements at the individual router nodes can become extensive if packets can become 
large and multiple packets must be buffered at a node. 
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Figure 7. Time space diagram showing store-and-forward switching without congestion  
(H - Head flit, B - body flit, T - tail flit). 

The base latency of a store-and-forward and other packet switched messages can be computed 
as follows: 
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This expression follows the router model in Figure 2 and, as a result, includes a factor to represent 
the time for the transfer of a packet of length m + W bits across the channel (tw) as well as from the 
input buffer of the router to the output buffer (ts). The important point to note is that the latency is 
directly proportional to the distance (hop count) h between the source and destination node. 

2.3.4 Virtual cut-through switching 

In order to decrease the amount of time spent transmitting data and full buffer requirement, a virtual 

cut-through method [45] is introduced in which a packet is stored at an intermediate node, only if 
the next required channel is busy. As soon as enough information is available in the intermediate 
nodes, forwarding begins even before the entire message is received. At high network loads virtual 
cut-through (VCT) behaves like packet switching.  

Figure 8 illustrates a time-space diagram of a message transferred using VCT switching where 
the message is blocked after the first link waiting for an output channel to become free. In this case 
we can see that the complete packet has to be transferred to the first router where it remains blocked 
waiting for the free output port. However, from the figure we can see that the message is successful 
in cutting through the second router and across the third link. 
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Figure 8. Time-space diagram of VCT switching under congestion 
(H- Head flit, B - body flit, T - tail flit). 
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The based latency of a message that successfully cuts-through each intermediate router can be 
computed as follows: 
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As we can see from this formula, the first addend is not a function of the message size and the 
transmition delay is not a function of the hop count. Considering, tr, ts and tw are insignificant and 
no congestion, the virtual cut-through is often distinguished as distance insensitive. 

2.3.5 Wormhole switching 

Wormhole switching (WH) [146] is a special case of cut-through switching. Instead of storing 
a packet completely in a node and then transmitting it to the next node, wormhole switching 
operates by advancing the head of a packet directly from incoming to outgoing channels of the 
routing chip. A packet is divided into a number of flits (flow control digits) for transmission. The 
size of a flit depends on system parameters, in particular, the channel width W. The header flit (or 
flits) governs the route. As soon as a node examines the header flit(s) of a message, it selects the 
next channel on the route and begins forwarding flits down that channel. As the header advances 
along the specified route, the remaining flits follow in a pipeline fashion. Because most flits contain 
no routing information, the flits in a message must remain in contiguous channels of the network 
and cannot be interleaved with the flits of other messages. The time-space diagram of wormhole-
switched message is shown in Figure 9 
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Figure 9. Time-space diagram of wormhole switching under contention  
(H - Head flit, B - body flit, T - tail flit). 

Wormhole switching avoids memory bandwidth in the nodes through which messages are 
routed. Only a small FIFO (First-In-First-Out) flit buffer can be used. It also makes the network 
latency largely insensitive to path length. The blocking characteristics are very different from VCT. 
If the required output channel is busy, the message is blocked “in place”. The particular flits of 
a blocked message are stored along a part of a path from the source to the blocking node. In order to 
reduce the effect of message blocking, physical channels can be split into virtual channels and these 
will be used to increase the total throughput of the physical channel [37]. Virtual channels are 
logical entities associated with a physical link used to distinguish multiple data streams traversing 
the same physical channel. They are multiplexed over a physical channel in a demand-driven 
manner, with bandwidth allocated to each virtual channel as needed. 

The base latency of a wormhole-switched message can be computed as follows: 
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This expression assumes flit buffers at the router inputs and outputs. Note that in the absence of 
contention, VCT and wormhole switching have the same latency.  
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2.4 Routing 

Routing involves selecting a path from a source node to a destination node in a particular topology. 
The routing algorithm used for a network is critical for several reasons. A good routing algorithm 
balances a load across the network channels, even in the presence of a non-uniform traffic pattern 
such as permutation traffic [205]. The more balanced the channel load, the closer to ideal is the 
throughput of the network.  

A well-designed routing algorithm also keeps path lengths as short as possible, reducing the 
number of hops and the overall latency of a message. Algorithms use only the minimal, or shortest 
paths, from the set of Rx,y are very often referred to as minimal. What might not be immediately 
obvious is that often routing minimally (always choosing a shortest path) is at odds with a balancing 
load and maximizing throughput. In this case, routing functions choose paths from the set of all 
minimal and non-minimal routes R’xy. These algorithms are referred to as non-minimal. [127], [143] 

Another important aspect of a routing algorithm is its ability to work in the presence of faults in 
the network. If a particular algorithm is hardwired into the routers and a link or node fail, the entire 
systems fails. However, if an algorithm can be reprogrammed or adapt to the failure, the system can 
continue to operate with only a slight loss in performance [144]. 

We classify routing algorithms in terms of how they choose between the set of possible paths 
Rx,y from source node x to destination node y. Deterministic routing [114] algorithms always choose 
the same path between x and y, even if there are multiple possible paths (|Rx,y| >1). These algorithms 
ignore path diversity of the underlying topology and hence do a very poor job of balancing load. 
Despite this, they are quite common in practice because they are easy to implement and easy to 
make deadlock-free. Oblivious routing algorithms [205] choose a route without considering any 
information about the network’s present state. For example, random algorithm that uniformly 
distributes traffic across all of the paths in Rx,y is an oblivious algorithm. Adaptive routing 
algorithms [51] adapt to the state of the network using this state information in making routing 
decisions. This information can include the status of a node or channel, length of queries for 
network resources, and historical channel load information. Adaptive routing algorithms can be 
classified as progressive or backtracking. Progressive routing algorithms move the header forward, 
reserving a new channel at each routing operation. Backtracking algorithms allow to the header to 
backtrack, releasing previously reserved channels. 

Routing algorithms can also be classified according to the place where routing decisions are 
taken. Basically, the path can be either established by a centralized controller (centralized routing) 
[161] at the source node prior to packet injection (source routing) [39] or determined in 
a distributed manner while the packet travels across the network (distributed routing) [97].  

Routing algorithms can be implemented in different ways. Many routers use routing tables 
either at the source or at each hop along the route to implement the routing algorithm [26]. With 
a single entry per destination, a table is restricted to deterministic routing, but oblivious and 
adaptive routing can be implemented by providing multiple table entries for each destination. An 
alternative to tables is algorithmic routing [2], in which specialized hardware computes the route or 
next hop of a packet at runtime. However, algorithmic routing is usually restricted to simple routing 
algorithms and regular topologies. 

2.4.1 Deterministic routing 

Deterministic routing algorithms establish the path as a function of destination address, always 
supplying the same path between every pair of nodes. Many earlier network adopted deterministic 
routing because it was simply inexpensive to implement. For some topologies, simple deterministic 
approaches actually load balance as well as other minimal routing algorithms, including adaptive 
ones.  
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Determinist routing is especially used with topologies which can be decomposed into several 
orthogonal dimensions. This is the case for hypercubes, meshes and tori. In these algorithms, it is 
easy to compute the distance between current and destination nodes as the sum of the offsets in all 
of the dimensions. This routing algorithm routes packets by crossing dimensions in strictly 
increasing (or decreasing) order, reducing to zero the offset in one dimension before routing in the 
next one. This routing is known as dimension-ordered routing [172].  

 

 

Figure 10. An example of dimension-ordered routing in 4-ary 2-cube (4×4 tori). A packet is routed from 
node 02 to node 31 by first routing in the x dimension and then in y dimension. 

For n-dimensional meshes and hypercubes, dimension-ordered routing produces deadlock-free 
routing algorithms. These algorithms are very popular and are given several names, like XY routing 
(for 2D meshes) [190] or e-cube (for hypercubes) [44]. Figure 10 shows an example of dimension-
order or the e-cube routing. The digits of the destination address, interpreted as a radix-k number, 
are used one at a time to direct the routing. Each digit is used to select a node in a given dimension. 

2.4.2 Oblivious routing 

Oblivious routing, where packets are routed without regard for the state of the network, is simple to 
implement and analyze. While adding information about network state can potentially improve 
routing performance, it also adds considerable complexity and, if not done carefully, can lead to 
performance degradation.  

The main trade-off with oblivious routing is between locality and load balance. Load can be 
balanced for any traffic pattern on almost any topology using Valiant’s algorithm [216], in which 
a packet sent from x to y is first sent from x to a randomly chosen intermediate terminal node z and 
then from z to y. An arbitrary routing algorithm can be used for each of the two phases, but in 
general a routing algorithm that balances load under uniform traffic works best. So, for tori and 
meshes networks, dimension-order routing is an appropriate choice. However, this load balance 
comes at the expense of destroying any traffic pattern [205]. 

Figure 11 shows an example of using Valiant’s algorithm to deliver a packet from node x = 00 
to node y = 12. The packet is routed via randomly-selected intermediate node z = 21. In the first 
phase, the packet employs dimension-order routing to travel from x to z, taking 3 hops as shown in 
the blue bold arrow. In the second phase, the packet routes from z to y taking an additional 2 hops. 
Randomized routing takes 5 hops to reach the destination that could have been realized in 3 hops by 
a minimal routing algorithm. 
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Figure 11. An example of randomized routing (Valiant’s algorithm) on 4-ary 2-cube (4×4 torus).  

Minimal oblivious routing attempts to achieve the load balance of randomized routing without 
giving up the locality by restricting routes to be minimal (shortest). While a non-minimal oblivious 
routing algorithm can choose any path in R’xy to route a packet form x to y, minimal oblivious 
routing restrict its choice to paths in Rx,y.  

A minimal version of Valiant’s algorithm [169] can be implemented on k-ary n-cube topologies 
by restricting the intermediate node z to lie in the minimal quadrant between x and y. The minimal 
quadrant is the smallest n-dimensional subnetwork that contains x and y as corner nodes. Once the 
minimal quadrant has been identified, an intermediate node z is selected from within the quadrant. 
The packet is then routed from x to z and then from z to y using e-cube routing. 

Figure 12 shows minimal oblivious routing from x = 00 to y = 12. The route is restricted to 
remain within the minimum quadrant (shown shaded). There are ten possible routes, corresponding 
to the six possible intermediate nodes (yellow nodes), with x-first routing or y-first routing. 

 

 

Figure 12. Minimal oblivious routing on 4-ary 2-cube (4×4 torus). 

2.4.3 Adaptive routing 

An adaptive routing algorithm uses information about the network state, typically queue 
occupancies, to select among alternative paths to deliver a packet and therefore should theoretically 
outperform an oblivious routing algorithm with no available information about network state. In 
practice, however, many adaptive routing algorithms give poor worst-case performance. This is 
largely due to the local nature of most practical adaptive routing algorithms [61].  

Almost all adaptive routers use flit-based or packet-based flow control and use the state of the 
flit or packet queues at the present node to estimate congestion on local links. They have no direct 
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information on the state of links elsewhere in the network. On the other hand, routers are able to 
indirectly sense congestion elsewhere in the network through backpressure [51]. When the queues 
on one node fill up, a backpressure signal stops transmission from the preceding node and hence 
cause the queues on that node to fill as well. Backpressure propagates backward through the 
network in the direction opposite traffic flow. However, backpressure propagates only in the 
presence of traffic routing into the congestion. In the absence of traffic, there is no propagation of 
backpressure and hence no information on remote congestion. 

A minimal adaptive routing algorithm chooses among the minimum (shortest) routes from 
source x to destination y, using information about the network state in making the routing decision 
at each hop. At each hop, a routing function identifies which output channels of the current node 
will move the current packet to its destination. Network state, typically queue length, is then used to 
select one of the output channels to the next hop. 

Minimal adaptive routing is good at locally balancing channel load, but poor at a global load 
balance. The route from 00 to 21 in Figure 13 illustrates how local congestion, channel (10, 20) is 
avoided by adaptive routing. As with any minimal routing algorithm, minimal adaptive routing 
algorithms are unable to avoid congestion for a source-destination pair with no minimal path 
diversity (|Rx,y| = 1). This situation is illustrated in the route from 02 to 22 in Figure 13. We can see 
below how non-minimal adaptive routing avoids such bottlenecks. 

 

Figure 13. An example of minimal adaptive routing. 

With non-minimal, or fully adaptive, routing, we no longer restrict packets to travel along the 
shortest path to the destination. Packet can be directed over channels that increase the distance from 
the destination to avoid a congested or failed channel. For example, Figure 14 shows how adaptive 
routing can avoid congestion on the route from 02 to 32 from Figure 13. At node 12, the packet is 
directed to node 13, increasing the distance to the destination from 2 to 3 hops, to avoid a congested 
channel (12, 22). Directing a packet along the channel which increases distance is often called 
misrouting [123].  

 

Figure 14. An example of fully adaptive routing. 
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A typical fully adaptive routing algorithm gives priority to an output channel which does not 
increase the path, so packet are routed toward the destination in the absence of congestion, but 
allows misrouting to increase path diversity. 

While fully adaptive routing provides more additional path diversity than can be used to avoid 
congestion, it can lead to livelock unless measures are taken to guarantee progress. Livelock occurs 
when a packet travels indefinitely in the network without ever reaching its destination (travels along 
a closed loop) [204].  

2.4.4 Deadlock and livelock 

Deadlock occurs in interconnection networks when a group of agents, usually packets, are unable to 
make progress because they are waiting on one another to release resources, usually buffers or 
channels [37]. If a sequence of waiting agents forms a cycle, the network is deadlocked. As a simple 
example, consider the situation shown in Figure 15. There are four diagonal communications (cyclic 
shift over one neighbor) in the figure. The packets cannot advance; queues at all outputs channels 
determined by a routing function are full. However, neither connection can release the channel 
needed by the other until it completes its transmission. The connections are deadlocked and will 
remain in this state until some intervention. Deadlock can occur over various resources. In this 
example, the resource is a physical channel. It can also be a virtual channel or a shared packet 
buffer. 

 

Figure 15. Deadlock in communication with four transfers. 

Deadlock is catastrophic to a network. After a few resources are occupied by the deadlocked 
packet, other packets block these resources, paralyzing network operation. In order to prevent this 
situation, a network must either use deadlock avoidance (methods that guarantee that a network 
cannot deadlock) or deadlock recovery (in which deadlock is detected and corrected) [105]. Almost 
all modern networks use deadlock avoidance, usually by imposing an order on the resources in 
question and insisting that packets acquire these resources in order. 

Unlike deadlock, livelocked packets continue to move through the network, but never reach 
their destination [204]. This is primarily a concern for non-minimal routing algorithms that can 
misroute packets. If there is no guarantee on the maximum number of times a packet can be 
misrouted, the packet can remain in the network indefinitely. Dropping flow control techniques can 
also cause livelock. If a packet is dropped every time it re-enters the network, it can never reach its 
destination. Figure 16 illustrates an example of livelock. A packet from 00 to 30 encounters 
congestion at 20 and is misrouted to 21, where it encounters more congestion and is misrouted again 
to 11. This starts a cycle where the packet takes two steps forward from 11 to 20, followed by two 
steps back, from 20 to 11. 
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Figure 16. An example of livelock. 
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Chapter 3  

Collective Communications 

in Wormhole Networks  

Besides pair-wise communications (unicasts), we often find certain communication patterns in 
many parallel algorithms which are regular in time, space, or in both time and space; by space we 
understand spatial distribution of processes on processors. These communication patterns that 
involve global data movement and global control are known as collective communications (CCs) as 
many processes are collectively involved in performing such operations. As indicated in [54], many 
scientific applications exhibit the need for such communication patterns, and providing collective 
communication services can simplify the programming of multicomputers. Such operations include, 
for example, replication, reduction, segment scan and permutation, etc. Data movement operations 
are often applied to different dimensions of data arrays.  

Collective communication [129] is often also the most efficient way to carry out 
a communication operation on a parallel computer. The reason is that if many nodes need to 
communicate with other nodes at the same point in the algorithm, a specialized communication 
operation in which the nodes cooperatively participate in the communication operation clearly has 
the opportunity for using the communication network more effectively, thus giving higher 
performance. Such specialized collective communication operations can and should thus be written 
so that they cause as little overhead as possible. 
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In this work, we focused only on wormhole (WH) interconnection networks for their advantages 
like distance insensibility, small latency and buffer requirements which predestined them to high-
speed system on chip (SoC) and high-performance multicomputers. 

3.1 Model of Communication 

Performance of CCs is closely related to their time complexity. The simplest time model of point-
to-point communication in direct WH networks takes the communication time composed of a fixed 
start-up time tstartup at the beginning (SW and HW overhead), a serialization delay – transfer time of 
m message units (words or bytes), and of a component that is a function of distance h (the number 
of channels on the route or hops a message has to do), see section 2.3.5: 


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+++=
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tttttht wswsrwormhole ),max()( . (3.1) 

The dependence on h is rather small, so that WH switching is considered distance-insensitive, 
h(tr + ts + tw) ≈ 0. Possible synchronization overhead involved in this communication step, be it 
hardware or software-based, should be included in the start-up time ts. For simplicity, we have 
assumed no contention (and therefore congestion, too) for channels and no associated delays (tw).  

We will also assume that the CC in WH networks proceeds in synchronized steps. In one step of 
CC, a set of simultaneous packet transfers takes place along complete disjointed paths between 
source-destination node pairs. If the source and destination nodes are not adjacent, the messages go 
via some intermediate nodes, but processors in these nodes are not aware of it; the messages are 
routed automatically by the routers attached to the processors.  

Complexity of collective communication will be determined in terms of the number of 

communication steps (time slots) or equivalently by the number of “start-ups”. There are two 
figures - theoretical lower bound τCC(G) and upper bound τCC(G) that can be achieved in a real 
application. These figures of merit do not take into account the message length or its variations from 
one step to another. For example, let a simple CC on the 8-node bidirectional ring requires s = 8 
communication steps. Provided that a message has m = 1024 byte, time per byte t1 = 0.5ns and start-
up time tstartup = 1µs (typical NoC parameters from [82]) and by neglecting insignificant parameters, 
we get the total time: 

smtts startupAAS µτ 1.12)5.010241000(8)( 1 =⋅+⋅=+= . (3.2) 

The port model of the SoC/NoC defines the number k of CPU ports that can be engaged in 
communication simultaneously. This means that there are 2k internal unidirectional (DMA) 
channels, k input and k output channels, connecting each local processor to its router that can 
transfer data simultaneously. Always k ≤ d, where d is a node degree; a one-port model (k=1), and 
an all-port router model (k=d) are most frequently used [215].  

Figure 17 shows a one-port and an all-port router in a 3-regular network (e.g. 3D hypercube). In 
a one-port system, a node has to transmit (and/or receive) messages sequentially. Architectures with 
multiple ports alleviate this bottleneck. In an all-port router, every external channel has 
a corresponding port. The port model is important in designing collective operations as it 
determines the number of required start-ups and thus the CC performance. 

Moreover, the CC performance is influenced by the fact on whether or not the nodes can 
combine/extract partial messages with negligible overhead (combining model) or can only re-
transmit/consume original messages (non-combining model) [152]. Finally, the lower bound on 
number of steps τCC(G) depends on a link type and we have to distinguish between unidirectional 
(simplex) links and bi-directional (half-duplex HD, full-duplex FD) links. Typically τCC(G) will be 
twice as large as for HD links than for the FD ones. Later on we will consider only FD channels. 
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Figure 17. Port models for 3-regular networks. 

The lower bounds τCC(G) for the network graph G, depend on node degree d, port model k, the 
number of terminal nodes P, bisection width BC, cumulative inter-nodes distance Σ, and basic CC 
patterns (see following subsections), as shown in Table 1. Let’s note, the lower bound cannot be 
exactly derived for any irregular topologies. It follows from inconstant node degree d. The lower 
bound can only be estimated taking into account the lowest and highest node degree in such 
a topology [111], [212] .  

Table 1. Lower complexity bounds of selected CCs (any regular topology). 

CC WH, k-port, FD links, non-combining model 

OAB/AOR log k+1 P  = (log P)/log ( k+1) 
AAB/AAR max ( log k+1 P , (P – 1)/k ) 
OAS/AOG (P – 1)/k 
AAS/AAG max[ (P2/2+2∆)/BC), Σ/(Pd) ] 

 

3.2 Classification of Collective Communications 

Collective communications involve communication among subsets or among all processors. 
Provided that there is 1:1 mapping between processors (terminal nodes) and processes, we can 
equivalently talk about communicating process groups. Generally we have two process groups:  
T-the subset of transmitters (senders) and R - the subset of receivers. The subsets T and R can be 
overlapping and can be as large as the full set of P processes (P = |V|). We can distinguish three 
classes of CCs: 

(1) T ∩ R = Ø, non-overlapping sets of processes 

(a) One-to-All, | T | = 1, | R | = P – 1, e.g. One-to-All Broadcast (OAB) or One-to-All 
Scatter (OAS). 

(b) One-to-Many, | T | = 1, | R | < P – 1, e.g. Multicast (MC). 

(c) All-to-One, | T | = P – 1, | R | = 1, e.g. All-to-One Gather (AOG) or All-to-One 
Reduce (OAR). 

(d) Many-to-Many, | T | = M, | R | = N; M, N < P, e.g. non-overlapping sets of processes 
such as Many-to-Many Broadcast (MNB) or Many-to-Many scatter (MNS). 

(2) | T ∩ R | ≥ 1, Many-to-Many communication with overlapping sets of processes.  

(3) | T ∩ R | = P, All-to-All communications such as permutation, All-to-All Scatter (AAS), 
Broadcast (AAB), Reduce (AAR), etc. 

local CPU ports local CPU ports 

(a) one-port model (b) all-port model 
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3.3 One-to-All and All-to-One Communications 

In one-to-all communications, one process is identified as a sender (called also the root or initiator), 
and all other processes in the group are receivers. There are some variations. In some designs, the 
root can or cannot be a member of the process group. Also, if the root is a member of the process 
group, it can or cannot be a receiver. Here we assume that the root is a member of the process group 
and itself it is also a receiver, however, the transfer is not done by means of message sending, but 
only by local memory-to-memory copy. There are two distinct services in this category: 

• One-to-All Broadcast. The same message is delivered from the root to all receivers. 

• One-to-All Scatter. The root delivers different messages to different receivers. This is also 
referred to as personalized broadcast. 

In All-to-One communications, all processes in a process group are senders and only one 
process (called the root) is identified as the sole receiver. There are again two distinct services: 

• All-to-One Reduce. Different messages from different senders are combined together to 
form a single message for the receiver (root). The combining operator is usually 
commutative and associative, such as addition, multiplication, maximum, minimum, and the 
logical AND, OR and exclusive OR operators. This service is also referred to as 
personalized combining or global combining. 

• All-to-One Gather. Different messages from different senders are concatenated together for 
the receiver (root). The order of concatenation is usually dependent on the ID of the sender. 

3.3.1 Broadcast and reduce communications 

OAB (One-to-All Broadcast) [10] is a collective communication pattern where the root (initiator) 
distributes the same message to all other processes (nodes) in the interconnection network. If only 
a subset of nodes takes part in communication, we talk about a multicast communication pattern 
(MC). The basic idea of the OAB communication pattern is shown in Figure 18. 

 

 

Figure 18. The basic idea of one-to-all broadcast. 

A naive way how to perform one-to-all broadcast is to sequentially send P–1 messages from the 
root to the other P–1 processes. However, this is inefficient because the root process becomes 
a bottleneck. Moreover, the communication network is underutilized because only a small number 
of channels along the paths between k root-destination pairs is used at anyone time. A better 
broadcast algorithm can be designed based on a technique commonly known as recursive doubling 

[128]. The root process sends the message to other k processes at first. Now, each of these processes 

message to send 

process no. 0   process no. 1  process no. P-1 

 . . . 
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can simultaneously distribute the message to other k processes that are still waiting for the message. 
By continuing this procedure until all the processes have received the data, the message can be 
broadcast in  

τOAB(G) =  logk+1 P (3.3) 

communication steps.  

An optimal OAB communication schedule on the bidirectional 8-node ring topology is shown 
on the left side of the Figure 19. There is a corresponding broadcast tree shown on the right side of 
the figure. The root (node no. 0) is distributing its message to nodes no. 3 and 6 via completely edge 
(channel) disjointed paths during the first communication step (black solid arrows). Since the 
broadcast message is the same for all the processes, these three nodes can become subroots for the 
second step. Consequently, nodes no. 7 and 5 are receiving the message from node no. 6, nodes no. 
2 and 4 form node no. 3, and finally node no. 1 from node no. 0 (red dotted arrows). 

The AOR (All-to-One Reduce) [72] communication pattern is a complementary operation to 
OAB. In AOR, each participating process starts with its own message. The messages of the size of 
m from all processes are combined through an associative operator and accumulated at a single 
destination process (root) into one message with the same size m. AOR can be performed in the 
same way as OAB, but in the opposite path direction, and the reversed sequence of communication 
steps. 

One-to-all broadcast and all-to-one reduction are used in several important parallel algorithms 
including matrix-vector multiplication, Gaussian elimination, vector inner product, etc [214]. 

 

 

Figure 19. An example of optimal OAB schedule on the bidirectional 8-node ring topology. 

3.3.2 Scatter and gather communications 

In the OAS (One-to-All Scatter) [12] collective communication pattern, a single node (root) 
distributes a unique message to each other node. This operation is also known as one-to-all 
personalized communication [125]. OAS differs from OAB in that the root node starts with P−1 
unique messages, one destined for each node. Unlike OAB, OAS does not involve any duplication 
of data (see Figure 20). 
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Figure 20. The basic idea of one-to-all scatter. 

The lower bound of this CC can be formulated as 

τOAS(G) = (P−1)/k (3.4) 

steps, hence the root process can inject into the network no more than k messages in one step. The 
optimal schedule of communication consists of P−1 point-to-point communications packed into the 
lowest number of steps in such a way that there are only edge-disjoint paths in a single step. An 
optimal OAS communication schedule is displayed in Figure 21. In each step, two scattered 
messages are delivered to two different destination nodes. This OAS communication finishes in 
four communication steps. 
 

 

Figure 21. An example of optimal OAS schedule on the bidirectional 8-node ring topology. 

The dual role of OAS is the AOG (All-to-One Gather) communication, in which a single node 
(root) collects unique messages from all nodes. A gather operation is different from an AOR 
operation in that it does not involve any combination or reduction of data, so the same schedule as 
for OAS can be employed [111].  

OAS and AOG communication is often used in Divide-and-Conquer techniques to distribute 
particular tasks and collect their results [198]. 
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3.4 All-to-All Communications 

In all-to-all communication, all processes in a process group perform their own one-to-all or  
all-to-one communication. Thus, each process will receive P messages from P different senders in 
the process group. There are again two distinct services: 

• All-to-All Broadcast. All processes perform their own broadcast. This service is also 
referred to as gossiping or total exchange. 

• All-to-All Scatter. All processes perform their own scatter. This service is also referred to as 
personalized All-to-All broadcast, index, or compete exchange. 

3.4.1 All-to-all broadcast communication 

In AAB (All-to-All Broadcast) [179], all processes have a unique message to share with everyone. 
Usually, P received messages are concatenated together based on the ID of the senders in receiving 
nodes. Thus, all processes have the same set of received messages. This communication is 
illustrated in Figure 22. 

 

 

Figure 22. The basic idea of all-to-all broadcast. 

In the case of AAB communication, since each node has to accept P−1 distinct messages, the 
lower bound can be formulated as  

τAAB(G) = (P−1)/k or τAAB(G) = logk+1 P (3.5) 

communication steps, whichever is greater. The first bound was also applied to OAS 
communication and will be greater in the event that an interconnection network has a low node 
degree, or if only a small number of inner channels k can be employed. On the other hand, the 
second bound, derived from OAB communication, will outbalance it if a network is highly 
connected. 

An example of optimal AAB communication schedule is shown in Figure 23. In the first 
communication step, all nodes inform some of their neighbors. In the second step, the messages are 
propagated further through the network to other nodes, in which the messages have not been 
delivered to yet.  

All-to-all broadcast is used for, example, in matrix operations including matrix multiplication 
and matrix-vector multiplications or barrier synchronizations [214], [72]. 
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Figure 23. An example of optimal AAB schedule on the 8-nodes AMP topology. 

3.4.2 All-to-all scatter communications 

In the AAS (All-to-All Scatter) [171] communication pattern, each P process sends an individual 
message to each of the P–1 partners. This CC is also known as all-to-all personalized broadcast or 
complete exchange [57]. Typically, this operation is used for parallel matrix transposition operation. 
Before AAS, each process keeps one row of the original matrix. During AAS communication all the 
processes exchange their rows elements with each other. Each process only obtains one element 
from each partner. Thus, after the completion of the communication, all processes have a column of 
the transposed matrix. The basic principle of this communication is shown in Figure 24. 
 

 

Figure 24. The basic idea of all-to-all scatter. 

A lower bound for AAS can be obtained considering that one half of the messages from each 
process crosses the bisection and the other half does not. There will be altogether 2(P/2)(P/2) such 
messages in both ways and up to BC messages in one step, where BC is the network bisection width. 
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In cases of full duplex links, BC is taken as (double) the number of (un)directed edges crossed by the 
bisection. However, some ∆ messages originating and terminating in either half of a network cross 
the bisection as well. This gives the bound (P2/2 + 2∆)/BC communication steps, since ∆ messages 
cross the bisection twice. Another bound that concerns AAS is used to be applied to SF routing 
only. If Σ denotes the sum of all shortest paths in a graph (from any source to any destination node) 
and if we can utilize only Pd channels in one step to avoid conflicts, then we cannot schedule AAS 
in less than Σ/Pd steps. We have found that for the many interconnection networks of interest this 
latter bound is sharper, even for WH routing. 

 
    message transfers (src→dest)            message transfers (src→dest)    

                  
step 1                                       step 2 

 
message transfers (src→dest) 

 
            step 3 

Figure 25. An example of optimal AAS schedule on the 8-nodes AMP topology. 
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Finally, we can write the formula for the lower bound of AAS as follows: 
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Let us note this form of the lower bound has not been known up to now. It is one of the 
contributions of the thesis, summarized in the conclusions. 

An example of optimal AAS communication schedule is shown in Figure 25. The optimal 
schedule can be executed in three communication steps.  

The AAS communication is used in a variety of parallel algorithms such as a Fast Fourier 
transform (FFT), matrix transpose, sample sort, and some parallel database join operations [224] .  

3.5 General Many-to-Many Communications  

Many-to-many collective communications are the generalizations of all previously presented CCs. 
The classes of M-to-N broadcast and scatter communication that we are going to analyze are 
represented in Figure 26. The sets of transmitting nodes T and receiving nodes R can be: 

(1) overlapping, T ∩ R = Q ≥ 1, T ∪ R = P. 

(2) some nodes can be only transmitters, | T \ T ∩ R | = M − Q, T = P. 

(3) some nodes can be only receivers | R \ (T ∩ R) | = N − Q, T = P. 

(4) some node can be only receivers, some nodes can be only transmitters, some nodes can act 
in both function and some nodes can be only switches.  

 

 

Figure 26. General M-to-N communication (a) T ⊄ R and R ⊄ T, (b) R ⊂ T, (c) T ⊂ R. 

The lower bounds τCC(G) for M-to-N communications are not known, but can be estimated as 
follows in Figure 26. 

3.5.1 Overlapping many-to-many communications 

First, M-to-N broadcast is limited by OAB or AAB bound from Table 1, whichever is greater: 

τMNB = max (log k+1 N, M/k) (3.7) 

because some nodes have to absorb M (a node is not a transmitter), and not only M−1 (a node is also 
a transmitter) messages as in AAB and some nodes have to distribute N messages using k ports as in 
OAB.  
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Second, M-to-N scatter communication can be divided into four groups of communication that 
have related bisection widths available, see Figure 26a: 

T \ (T ∩ R) → (T ∩ R)                       b1, 

(T ∩ R) → R \ (T ∩ R)                       b2, 

T \ (T ∩ R) → R \ (T ∩ R)            min (b1, b2), 

(T ∩ R) → (T ∩ R)                             b0. (3.8) 

Now the first two groups can proceed simultaneously (overlapped),  

T \ (T ∩ R) → (T ∩ R) || (T ∩ R) → R \ (T ∩ R) (3.9) 

and so could the other two: 

T \ (T ∩ R) → R \ (T ∩ R) || (T ∩ R) → (T ∩ R). (3.10) 

 

Time for communication specified in (3.9) is thus 
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and for communication described in (3.10) is 
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The total lower bound is thus 

τMNS (G) = τ1 + τ2. (3.13) 

3.5.2 Many-to-many communications with R⊂⊂⊂⊂T 

Similarly as in case from Figure 26a for broadcasting we have  

τPNB (G)= max (log k+1 N, (P−1)/k) (3.14) 

and for scatter 
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where b1 is the number of channels from T to R and b0 is a bisection width of sub-network R. 

3.5.3 Many-to-many communications with T⊂⊂⊂⊂R 

A similar reasoning as in case from Figure 26b gives  

τMPB(G) = max (log k+1 P, M/k) (3.16) 

and  
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where b1 is the number of channels from T to R and b0 is a bisection width of sub-network T.  
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3.5.4 More complicated many-to-many communications 

In cases where | T ∪ R | ≤ P, we cannot use the bisection width any longer. The same situation 
happens if transmitters and receivers are agglomerated in several clusters separated by clusters of 
silent nodes. 

If λCC(l) is the load of link l in CC (i.e. the number of messages using link l), then the lower 
bound is given as 

τMNX = max λCC(l) (3.18) 
over all links l.  

3.5.5 Example calculation of lower bounds 

No we will try to estimate the lower bound for the broadcast and scatter communication. The spatial 
distribution of transmitters and receivers on the 4×4 2D mesh is illustrated in Figure 27.  

There are M = 9 transmitting nodes, N = 11 receiving nodes, and Q = 4 nodes in intersection 
T ∩ R. According to eq. (3.7),  

τMNB = max (log 4+1 11, 9/4) = max (1.48, 2.25) = 3 steps.  

The complexity of scatter communication will be estimated by means of bisections b1 = 4,  
b2 = 6, and b0 = 1. Substituting these parameters into eq. (3.13) we will get 

τMNS(G) = τ1 + τ2 = max (5, 5) + max (7, 6) = 12 steps. 

 

 

Figure 27. Nine-to-eleven broadcast/scatter communication. 
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Chapter 4  

Scheduling of Wormhole 

Collective Communications 

The design of efficient routing algorithms for collective communication is the key issue in message-
passing parallel computers or networks [89], [111], [129]. As we could see in the previous chapter, 
the lower bound on the time complexity of various CCs can be mathematically derived from the 
network parameters and the spatial distribution of communicating processes. Unfortunately, for 
irregular topologies (such as meshes, AMPs, random graphs, etc.) and/or many-to-many CCs we are 
able to obtain only an approximation of the exact lower bound because of varying node’s degree, 
and the spatial distribution of processes on the underlying topology. Some hints on how to 
overcome this problem were given in section 3.5. 

Moreover, as far as this author knows, the concrete forms of congestion-free schedules for 
particular CC patterns, and for the minimal number of steps (time slots) derived from the lower 
bounds are unknown even for many common topologies! This is the main motivation behind this 
work. The goal of this thesis is to design a tool producing (near) optimal communication schedules 
to an arbitrary topology and arbitrary scatter/broadcast based communication service with an 
acceptable time complexity.  

In recent years, many projects have addressed the design of efficient collective communication 
algorithms for wormhole-routed systems. Some of them will be briefly described in section 4.2. 
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Since time complexities of CCs are highly dependent on underlying topology, many researchers 
focus their efforts at optimization of the present topologies and their modification to gain any 
reduction of complexity of a particular CC or to improve any other network parameters. Recent 
studies have demonstrated the significant role that communication architecture plays in determining 
a parallel systems’ overall performance. The following subsection briefly presents several 
interesting network topologies with some special characteristics mainly targeted to newly booming 
networks on chips (NoC) [98]. 

4.1 Interconnection Networks  

Nowadays, there are many different interconnection network topologies for the general purpose 
multiprocessors like clusters of workstations, blade systems, HPC (High Performance Computers), 
MPP (Massive Parallel Processors), Network on Chips (NoC), etc.; but new networks for specific 
parallel applications can be created using combinatorial or evolutional algorithms.  

4.1.1 The most popular interconnection networks 

The simplest interconnection topology often used in parallel systems is a ring topology [39]. It has 
been very popular due to its trivial manufacturing and still good performance for small systems up 
to dozens of nodes. At the present time, there are many application of this topology mainly in NoC 
systems like IBM Cell [91] or ATI Ring bus [1] systems. 

Another famous interconnection topology is a hypercube [170] having many attractive 
properties inducing regularity, symmetry, small logarithmic diameter, strong connectivity, recursive 
construction, partitionability, and relatively small link complexity. Efforts to improve some of these 
properties have lead to the design of many hypercube variants. They include twisted cubes [48], 
cube connected cycles [162], generalized hypercubes [20], banyan-hypercubes [227], and binary 
orthogonal multiprocessors [90]. 

Very popular networks are based on a mesh [76], and torus [23] topology. Mesh topology has 
gained more consideration by designers due to its simplicity of manufacturing where only local and 
very short links are necessary to interconnect the network. The main problem with the mesh 
topology consists in its long diameter that results in the communication latency and a lack of 
regularity and symmetry. Torus topology was proposed to reduce the latency of the mesh and to 
keep its simplicity. The only difference between torus and mesh topology is that the switches on the 
edges are connected to the switches on the opposite edges through wrap-around channels. By these 
wrap-around channels the torus becomes node symmetrical. Although the torus architecture reduces 
the network diameter, the long wrap-around connections can result in excessive delay. Some 
variations of the mesh and torus topologies have been discovered which further improve some of its 
properties (e.g. higher dimensional meshes/torus (3-D mesh) and Midimew [118], etc).  

The Minimal Distance Mesh with wrap-around links (Midimew topology) has the lowest 
diameter and average distance of any regular and symmetric d = 4 graph and can be obtained from 
2D-torus by changing the arrangement of wrap-around links (see Figure 28). Reduced values of D 
and da translate to improved performance in synthetic as well as real loads [1]. 

The increase the efficiency of communication networks often leads to a decrease in its 
reliability. Networks with multistage topologies can offer a small diameter, large bisection width 
and a large number of redundant paths, but they are hard to construct because of the complex wiring 
structure. Examples of the most popular multistage networks which have been widely used recently 
include the Butterfly network [213], the Clos network [34] or Benes network [16]. 
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Figure 28. An example of a Midimew topology. 

4.1.2 Optimal diameter-degree networks 

The Optimal Diameter-Degree (ODD) networks [140] are a highly promising area of 
interconnection network, but not very deeply examined. The size of an ODD network is equal or 
close to upper bounds known for the given node degree and diameter. Simply said, as many nodes P 
as possible are connected by a regular network with a uniform node degree d (a d-regular network), 
with an inter-node distance up to D. Such systems are more compact than others and can support 
faster communications too.  

The upper bounds on the number of P nodes with degree d > 2 that can be connected into an 
undirected graph, shortly graphs (4.1), or directed graph, shortly digraphs (4.2), and with diameter 
D ≥1 are known as Moore bounds [134]: 
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A regular graph of degree d and diameter D whose number of vertices equals the above upper 
bound (4.1) is a Moore graph. If we exclude fully connected graphs with D = 1, there exists only 
a few such graphs: 

• D=2: d = 3, P = 10 (Petersen graph) [88] 

• D=2: d = 7, P = 50 (Hoffman-Singleton graph) [17] 

and no others with the possible exception d = 57 (which is still undecided). There are no Moore 
graphs with D ≥ 3 and no Moore digraphs either (disregarding trivial cases D = 1 or d = 1). 

Whereas all above Moore graphs have the length of the shortest cycle (girth) five, the even girth 
(6, 8 and 12 only) can also be considered which leads to the worse upper bound  

∑
−

=

−≤
1

0

)1(2
D

i

idP  (4.3) 

and to generalized Moore graphs. A few examples follow: 

• D= 2: d = 3, P = 6 (utility graph) [221] 

• D= 3: d = 3, P = 14 (Heawood graph) [220] 

• D= 4: d = 3, P = 30 (Levi graph) [121] 

It is an open problem if there are infinitely many generalized Moore graphs of each degree. 
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Since there are not many known Moore graphs, it is of great interest to find graphs which for 
a given diameter D and maximum degree d have a number of vertices as close as possible to the 
Moore bound. The largest known graphs and digraphs are presented in [140] and [134]. The more 
systematic approach has been used to design “almost” Moore graphs that miss the upper bound by 
a small number [134] or whose number of nodes approximates the upper bounds asymptotically. 
The best networks in the latter case are based on Kautz digraphs with P = d

D 
+ d

D-1 nodes. In Table 
2, all three upper bounds (4.1) - (4.3), the largest known graphs, Kautz digraphs, and generalized 
Moore graphs, all with degree d = 3 are stated. It turns out that the largest known digraphs are Kautz 
digraphs and that digraphs (4.2) are potentially much larger than graphs (4.1). 

Table 2. The size of graphs and digraphs with degree d = 3 and diameter D. 
(* Denotes a generalized Moore graph; digraphs are in bold) 

D 2 3 4 5 6 7 

Bound (4.1) 10 22 46 94 190 382 
Bound (4.2) 13 40 121 364 1093 3280 

Bound (4.3) 6 14 30 62 126 254 
Largest known 10 20 38 70 132 192 

Kautz 12 36 108 324 972 2916 

Moore 10 14* 30* - - - 
 

The most interesting OOD topologies recently used in real multicomputers, are shown in Figure 
29. There are Heawood graph with fourteen nodes, Petersen graph with ten nodes and Kautz 
digraph with twelve nodes. 

 

 
  (a) Heawood graph              (b) Petersen graph            (c) Kautz digraph 

Figure 29. Interesting almost optimal diameter-degree networks. 

4.1.3 Novel network architectures 

In order to alleviate known bottlenecks of commonly used networks and the nescience of ODD 
networks for an arbitrary size, degree and diameter values, many engineers tried to design general-
purpose networks by analyzing graph theory or using combinatorial optimization methods [28]. 

One of the novel architectures with an arbitrary size is the K-Ring topology [112]. Intuitively, 
the K-Ring topology can be seen as a graph built using K>0 rings where each ring goes over all the 
nodes in a different order. The value K is called the dimension. For a given size and a given 
dimension there are many different K-Rings.  

K-Rings are still not well known. There is especially almost no analytic formula for the 
computing of their characteristics. Because of their flexibility it is possible to build a lot of 
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apparently different K-Rings, but we are still not able to determine which of them correspond to the 
same graphs. K-Rings are Caley graphs [154] and they belong to the General Corodal Rings (GCR) 
[19]. Figure 30 shows two examples of K-Rings with dimension K=2 and size 15.  

 

 

Figure 30. Two K-Rings of size 15 and K = 2. 

Spidergon (also referred to as octagon) is also a novel on-chip communication network 
architecture suitable for the aggressive on-chip communication demands of SoCs in several 
application domains and also for networking SoCs [102] (see Figure 31a). In this architecture, eight 
nodes are connected by an octagonal ring and four diagonal links. The delays between any two node 
processors are no more than two hops (through one intermediate node) within the local ring. The 
spidergon network is scalable. If one node processor is used as the bridge node, more spidergon 
networks can be cascaded together, as shown in Figure 31b. This scaling strategy based on bridge 
nodes connecting adjacent Spidergon has a drawback of a very low bisection width BC and therefore 
a poor performance in all-to-all traffic. Another scaling strategy extends the spidergon to the 
multidimensional space by linking corresponding nodes of several spidergons, or simply increasing 
the ring length [176]. 

     
 

      (a) general spidergon network         (b) scalability of spidergon network 

Figure 31. Two examples of spidergon networks 

The AMP topology is a result of genetic graph optimization [28]. A minimum path (AMP) [29] 
configuration is constructed so that the network diameter and the average inter-node distance is 
minimized. This principle is maintained even at the expense of the loss of regularity in the system. 
The AMP networks have been found for node count P = 5, 8, 12, 13, 14, 32, 36, 40, 53, 64, 128, 
256. The 8-node AMP network topology is depicted in Figure 32. The SC node denotes a system 
controller (host computer) that sends input data to processing nodes and collects results. Each 
processing node can communicate simultaneously on four bi-directional full duplex links.  
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Figure 32. The 8-node AMP topology. 

The new area in interconnection network is represented by polymorphic on-chip networks 
[106]. These networks can be configured prior to or during the application runtime, in order to have 
the topology and buffering of arbitrary network designs. Simply said, if the structure of 
communication is known, it is possible to reconfigure the network in runtime in order to afford as 
a good condition as the upcoming communication schedule can exploit. 

4.2 Scheduling of Collective Communications 

Over the last several years, many methods have been described for implementing various CC 
patterns. Among the more common algorithms belong binary/binomial and other tree-based 
algorithms and the pairwise exchange-based algorithms [14], [120], [174] such as recursive-
doubling and halving. Many topology-specific collective communication algorithms have been 
discussed. Papers and [201] focus on SMP-based cluster hierarchy to implement collective 
communication operations. Paper [174] advocates automatically tuned CCs based on network 
topology. The primary focus in these efforts is on other aspects (deadlock freedom, simple routing) 
of the implementation rather than exploitation the network concurrency at the algorithmic level. 
A few papers have used the network concurrency to optimize CCs. Another possible direction is to 
look at generalizations of routing problems, such as scheduling problems. There is a wide range of 
scheduling models. One example is a shop scheduling [183] or exploitation of the concurrency in 
modern networks [200]. 

Although many collective communication algorithms have been designed for specific 
topologies, several researchers have taken a fundamentally different approach. Their idea is to 
design some families of parameterized algorithms that can be tuned to perform well on different 
architectures under various system conditions. For example, the postal model [15] (similar to 
sending a batch of letters through the postal service at one time) demonstrates the ability for 
a sending node to transmit multiple messages before the receiving node receives the first message. 
But for short messages, predominating in cache-coherent NoC, this model is unusable due to 
a dominating overhead of star-up latency over message transportation delay. 

If we restrict the communication model only to a non-combining (also referred as direct) model, 
we can decompose any collective communication into a set COMM of pair-wise communications 
(transfers, messages, paths) 

xi,j = {c1, c2, c3, …, cL}, xi,j ∈ COMM,  (4.4) 

where ci are unidirectional channels along the path from the source to the destination node. In the 
following sections, we will describe basic models for the systematic design of CC in multiport 
wormhole-routed networks. Moreover, some of best known algorithms will be presented. 

 SC 
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4.2.1 OAS scheduling 

For OAS and AAS, the set COMM is known in advance, so that the goal of scheduling is to pack 
messages in COMM into the minimum number of groups so that there is no conflict within a group. 
If it is true, the groups are compatible. Compatibility relation γ on set COMM can thus be defined: 

xi,j γ xk,l ≡ ∃!ce {ce∈xi,j and ce∈xk,l}, xi,j, xk,l ∈ COMM. (4.5) 

This relation defines a cover of COMM by maximum-size compatibility classes. A group of 
messages in one compatibility class can start transmission simultaneously, and therefore each such a 
group can be scheduled in one communication step. Obviously we would like to find a minimum 
number of compatibility classes still covering set COMM. The final step is to transform this 
minimum cover of COMM to a partition and compatibility classes to blocks by eliminating 
messages in more than one class and possibly simultaneously balancing the size of classes. 

The most implemented OAS scheme is based on the Sequential Tree (ST), also known as 
separate addressing [147], [13]. In this algorithm, the root sends a separate message to each of the 
other nodes participating in the scatter. The deadlock-free condition is ensured using minimal 
spanning tree of the underlying topology.  

4.2.2 AAS scheduling 

In contrast to OAS, there is not much known about optimal AAS schedules for non-combination 
model, although it has been extensively studied in the past decade. From the theoretical point of 
view, exact solutions of the AAS problem can be obtained by analyzing of compatibility classes as 
in the previous case. This task can be performed by MILP method (Mixed Integer Linear 
Programming) [141], but very long solutions are required for a network size of practical interest. 
The AAS scheduling can also be formulated as a graph colouring problem [99], [55]. Elements of 
COMM can be represented by graph nodes and incompatibility relation (two nodes sharing 
a channel) by graph edges. A minimum number of colours needed to colour the graph gives the 
optimum number of compatibility classes (communication steps); nodes with the same colour 
belong to one compatibility class. MILP, as well as exact or heuristic graph colouring, yield only 
a suboptimal solution. The reason is the existence of multiple minimum paths for most source-
destination pairs; it is not clear which minimum path should be selected for COMM. On the other 
hand, inclusion of all of them could produce more compatibility classes than necessary, aside from 
complex removal of redundant elements. Another approach, recursive division of set COMM 
described in [55], is supposed to be exact, but can be used only for a one-port model. 

From a practical point of view, some research is developed on the cluster-based systems [192]. 
However, most of this research is designed to handle the topological constraints of the underlying 
networks, such as tori [116], [142], [208], meshes [191], [189], hypercubes [179], and multistage 
networks [30].  

Young-Joo and Shin [189] proposed an interesting method with linear time complexity but only 
for combining model and targeted only to tori and meshes. Paper [57] extends the method and 
proposes the conceptually simple and symmetrical AAS algorithm for every message and every 
node so that it can be easily implemented.  

One of the few direct algorithms (non-combining model) targeted to hypercubes [180] or 
meshes [196] achieving the lower bound on time complexity is a complete exchange algorithm. Its 
idea is very simple: they are P−1 communication step; in each step s =1, 2,…P−1, node i sends 
message Mi,j to node j = i xor k and receives message Mj,i from node j. Thus, all communication 
occurs directly between the original source node and the final destination node of that message. For 
communication between non-adjacent nodes only the routers are required to relay the message at 
the intermediate nodes on the path.  
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Figure 33 shows the communication steps of the algorithm for the 2D (2×4) mesh using 
dimension ordered routing. Notice that in steps 2, 3, 6 and 7, messages simultaneously require 
common communication channels, leading to channel contention! Since contention must not occur 
in our model of communication for NoC, the proposed algorithm is also inapplicable. 

 

 

Figure 33. Direct pairwise exchange on 2D mesh [196]. 

Another idea on how to design a fast suboptimal and contention-free algorithm is a sequential 
combination of one-to-all techniques. Tseng [209] used a gather-then-scatter technique and 
enforced shortest paths in routing messages to achieve an asymptotically optimal number of 
communication steps. The proposed scheme consists of a sequence of gathering phases followed by 
a sequence of scattering phases. In the beginning, all nodes will join the communication. After each 
gathering phase, the blocks are concentrated into a smaller number of nodes. On the contrary, blocs 
are distributed to more nodes after each scattering phase. At the end, it is guaranteed that every 
block arrives at its destination.  

4.2.3 OAB scheduling 

The problem with broadcasts is that the set COMM is not known in advance since the informed 
nodes can become distributors for further transfers. For this reason, many novel techniques have 
been developed and used. We will only focus on the basic principles on the OAB communication in 
this subsection. 

Dominating sets. The Extended Dominating Node (EDN) [207] model is based on the notion of 
dominating sets in graph theory. A dominating set D of a graph G is a set of vertices in G such that 
every vertex in G is either in D or is adjacent to at least one vertex in D [58]. By exploiting the 
distance-insensitivity of wormhole routing, the EDN model extends the concept of domination to 
include sets of nodes reachable in a single message-passing step under a given unicast routing 
algorithm. The key issue in applying the EDN model to the development of collective operations 
lies in finding regular and recursive patterns of dominating nodes that can pass messages to other 
sets of nodes while avoiding channel contention. 

message path 

area of contention 

 step 1  step 2  step 3 

 step 4  step 5 step 6 

 step 7 
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Figure 34 illustrates the concept of the node domination on a 2D torus. It presents a set of five 
dominating nodes (blue colored) for the 5×5 torus [206]. As illustrated with arrows, these five nodes 
can distribute a message to 20 remaining nodes in a single step by sending it to appropriate 
neighbors. The basic idea is to build recursively a hierarchy of extended dominating nodes, where 
level-i EDNs are informed from all EDNs of levels j < i.  

 

 

Figure 34. An illustration of (a) dominating sets and (b) extended dominating sets in the 5×5 torus. 

Dimensional broadcast trees. The dimensional broadcast tree algorithm was described by 
Barnett [10]. It exploits a recursive doubling process within each mesh/torus dimension. Figure 35 
illustrates this algorithm’s operation in the 4×4 2D mesh. In each message-passing step, every node 
holding a copy of the message is responsible for a part of a row or column. The node divides its part 
in half and sends a copy of the message to the node in the other half that occupies the same relative 
position. The algorithm thus takes advantage of the pipelining effect of wormhole routing while 
avoiding channel contention. The idea combining a dimensional broadcast tree and recursive 
doubling targeted to torus topology was presented in [153], [160]. 

 

 

Figure 35. A generic schema of recursive doubling used in OAB on one-port WH meshes. 

step 1 step 2 

step 3 step 4 
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Double-tree algorithm. A Double Tree (DT) broadcast algorithm of McKinley and Trefftz 
[128] is designed for multiple port wormhole hypercubes. The authors have demonstrated the 
advantages of this algorithm over the Spanning Binomial Tree (SBT) [10] algorithm using 
a commercial system. The DT algorithm divides the hypercube into two parts by sending a message 
from the source, say S, to its bitwise complement (the opposite node) S’. This message is called 
a diagonal message. In the next step, S and S’ become the roots of partial spanning binomial trees as 
implied in Figure 36. As a result, this algorithm broadcasts a message in P/2 routing steps and is 
more efficient than the SBT algorithm. In addition, it does not require reconstructing the message at 
every destination like in the case of Transmission SubGraph (TSG) [229] that is targeted for 
combinating hypercubes. 

 

 
    (a) establishing the second root             (b) spatial SBTs 

Figure 36. 2-round OAB on the all-port 4D WH hypercube. 

HO-KAO algorithm. A DT algorithm is really approximately twice as fast on real machines 
than the standard SBT algorithm, but it is optimal only for dimension d ≤ 6. An algorithm which is 
optimal up to a small multiplicative constant for d ≥ 7 is called Ho-Kao algorithm (HKA) [84], [85]. 
It is based on the following idea: divide recursively d-dimensional hypercube into sufficiently small 
subcubes of nearly equal size and apply DTA inside these subcubes.  

Figure 37 demonstrates the idea for d = 7. HKA assumes an e-cube routing by checking the bits 
left-to-right and uses ascending dimension-simple paths. Given a sequence of dimension numbers 
0 ≤ i1 <… < ik ≤ d − 1, k ≤ d − 1, an ascending dimension-simple path is any path u0,…, uk of nodes in 
d-dimensional hypercube so that uj is obtained from uj-1 by complementing bit ij. It follows that all d 
paths u0 → uj are pairwise node-disjoint if e-cube WH routing is used, so that u0 can send k packets 
to all these destinations simultaneously. HKA constructs an ascending dimension-simple path u0,…, 
un so that d-dimensional cube can be partitioned into d + 1 disjoint subcubes Si of equal or nearly 
equal size, so that subcube Si contains ui. 

Ho-Kao algorithm finishes in O(n/log(n + 1)) wormhole routing steps and is optimal to within 
a multiplicative constant. Furthermore, the algorithm can be expressed by a few simple recursive 
functions.  
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Figure 37. The optimal HO-KAO algorithm on the all-port 7D hypercube. 

4.2.4 AAB scheduling 

Finally, the basic ideas of AAB schedules will be presented in this subsection. Jung [100] proposes 
a theorem that a necessary and sufficient condition for an all-to-all broadcast in a k-ary  
2-dimensional torus to be optimal is that the number of its data exchange steps between neighbor 
nodes which is equal to its diameter. The obtained algorithms broadcast data under the constraints 
of the shortest paths routing and links load balancing without multiple receptions of identical data. 
The used approach, from its combinatorial optimization characteristic, has allowed it to reveal the 
existence of several families of optimal algorithms. It was proven that there is a family of solutions 
which infer more efficient data switching processes at each node. These solutions are proven easier 
to implement too. Unfortunately, at present, the technique is not applicable on other regular or even 
irregular networks. 

For regular topologies the TAD [212] tree technique could be utilized. For AAB each of the P 
input packets has to be delivered individually to all nodes. Every node u of network G is the root of 
a broadcast spanning tree B(u). Each arc of B(u) is labelled with the number of the round in which 
the broadcast packet passes this arc. An arc with label i is said to be of level i. The height of B(u), 
h(B(u)), is the highest arc label in B(u). Two trees B(u) and B(v) are said to be time-arc-disjoint if 
for any i ∈ {0,…, min(h(B(u)), h(B(v))) – 1}, the sets of arcs at level i in B(u) and B(v) are disjoint. 

The motivation behind these definitions follows from the lock-step assumption: all the nodes 
start their broadcasts at the same time and the broadcasts proceed synchronously along the trees 
with the same speed. At round i, only the arcs at level i are active in all the trees. If broadcast trees 
are time-arc-disjoint, then all these parallel broadcasts are pairwise link-contention-free.  

Under these assumptions, the problem of designing an optimal AAB algorithm reduces the 
problem of designing Time-Arc-Disjoint Trees (TADTs) [18] rooted in every node of the network! 
Here, we can nicely demonstrate how important is the symmetry of the underlying topology for 
solving such a problem. If the topology is vertex-symmetric, we may have a chance to find 
a generic structure of a TADT, independent of the location of its root. This problem has been solved 
for 2-D and 3-D tori, 2-D meshes, hypercubes, and some other Cayley graphs [212]. 
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Figure 38. Two different Time-Arc-Disjoint Trees for AAB communications. 

4.3 Conclusions and Outstanding Problems 

This subsection summarizes the knowledge about scheduling of collective communications 
(designing the communication algorithms). In section 4.1, we described the problem of an 
appropriate choosing of an underlying network which has great impact on time complexity of 
designed CC schedules, on the one hand, and also on the expensiveness of their design, on the other 
hand. From the lower bound, mathematically derived or estimated from interconnection topology, 
and the knowledge of the frequency of particular communications, a suitable topology can be 
selected and employed. If an optimized application has other special requirements on the underlying 
topology, some of combinatorial optimization techniques, like genetic algorithm [28], could be 
utilized to produce an application-specific topology.  

This area covers many outstanding problems like: 

• How to generate easily implementable but powerful networks with low energy 
consumption? 

• How to ensure high fault-tolerance? 

• How to estimate lower bounds for irregular networks with non-constants degree? 

• Can dynamic reconfiguration decrease the latency and increase the throughput of a network, 
and if it can, when should it be done? 

If a suitable topology has been chosen and implemented, the routing strategy for CC has to be 
determined. Section 4.2 introduces the basic concepts of CCs scheduling and briefly describes the 
state of the methods in this area. We can conclude the problem by making several statements: 

• The OAS problem can be solved very simply by implementing the ST tree. 

• On the contrary, in case of AAS, the theoretical and empirical techniques fail. Of course, the 
MIPL [141] or graph coloring [55] can be used, but the optimal schedule does not have to be 
discovered during some limitation like deterministic routing or time limitation. 

• The problem with broadcasts is that the set COMM is not known in advance. Optimal 
algorithms reaching the theoretical lower bound of steps are not known even for familiar 
hyper-cubes of higher dimensions (d > 7). But for more complex topologies than simple 
meshes/tori or low dimensional hypercubes, it is still an outstanding problem. 

• For AAB, the number of steps is limited by k messages that can be absorbed by any node in 
one step. Therefore, we can inform only adjacent nodes in one step and still develop 
optimum scheduling. The task is easier in symmetric networks: it is sufficient to find the 
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TADT, which translated to all source nodes, creates no conflicts in any step of AAB 
communication. However, for asymmetric, irregular (non-constant k) or networks, no 
similar systematic approaches exist. 

• Many of the described methods are restricted by other limitations. We can mention, for 
example, port-model limitation, deterministic routing, slim nodes regularity of underlying 
network etc.  

Up to now, we have considered only one-to-all or all-to-all communications. What about many-
to-many communications? This area is completely unexplored, perhaps except for one-to-many 
broadcast more often referred to as multicast. The importance of many-to-many communication 
expresses in huge parallel systems with thousands of processing nodes, where many tasks are 
executed simultaneously and each task utilizes only a subset of these nodes.  There are many 
opened problems related to many-to-many CC scheduling:  

• Many-to-many communication patterns are insolvable by most proposed techniques, 
because from the wormhole point-of-view. They transform the topology into an irregular 
form. 

• Only nodes belonging to a given task can participate in a CC schedule and help, for 
example, with the distribution of messages; other nodes in the topology are not aware of it. 

• Any fault in NoC transforms the topology into an irregular form, thus it is not solvable by 
presented techniques. 

• Any fat topology transforms the both one-to-all and all-to-all CCs into the many-to-many 
communication patterns. 

• A separated task closely related to this problem is how to spatially distribute processes onto 
nodes to ensure the best performance.  

Finally, as we could see, the systematic approach, applicable to an arbitrary topology to obtain 
an optimal or near optimal schedule for any scatter or broadcast CC pattern does not exist. One of 
the reasons is a huge complexity of the scheduling problem proved to be NP-complete [31]. For this 
reason a novel technique, based on evolutionary algorithms described in the next chapter, will be 
developed and implemented to alleviate all presented restrictions and bottlenecks. 
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Chapter 5  

Evolutionary Algorithms 

Since the 1960s there has been an increasing interest in the metaphor of imitating the evolution of 
living beings to develop powerful algorithms for difficult optimization problems. The algorithms 
belong to the class of stochastic algorithms named evolutionary algorithm (EA). The best known 
algorithms in this class include genetic algorithms (GA), developed by Holland [87]; evolutionary 

strategies (ES), developed by Rechenberg [164] and Schwefel [175]; evolutionary programming 
(EP), developed by Fogel [52]; and genetic programming (GP) developed by Koza [107]. There are 
also many hybrid versions that incorporate various features of the foregoing paradigms. 

This chapter deals with detailed description of principles of Genetic Algorithms (GA) [66] and 
their modifications called Estimation of Distribution Algorithms (EDA) [137], [117] that help us to 
solve our optimization problem of deadlock-free scheduling of collective communications. The 
chapter also presents basic requirements and hints on how to design successful evolutionary 
algorithms that produce sufficient solutions of the problem. 

An optimization problem solved by EA can be defined by specifying (1) a set of all potential 
solutions to the problem and (2) a measure to evaluate the performance of each candidate solution 
with respect to the objective. The goal is to find a solution or a set of solutions that perform best 
with respect to the specified performance measure. For example, in a maximum satisfiability 
(MAXSAT [78]) problem, each candidate solution represents an interpretation of all propositions 
(a list of truth values of all variables or propositions) and the quality of a solution can be defined as 
the number of satisfied clauses using the interpretation encoded by the solution. In the design of an 
aircraft wing, a solution can be represented by a set of parameters that specify the shape of the wing 
and the performance of each parameter set can be determined by an experiment in a wind tunnel. In 
the design of an algorithm for playing chess, a solution can be represented by a set of condition-
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action rules, and the performance of each such set can be defined as the portion of games won 
against other competitor strategies. 

In EA, there is no information about the relation between the semantics of solutions and the 
performance measure. The only way of learning something about this relation is to sample new 
candidate solutions and evaluate them. The task of finding the best solution to an EA optimization 
problem is extremely difficult. In order to illustrate the difficulty of EA optimization, imagine you 
are asked to implement a program in an unknown programming language, given only the syntax of 
the language and a procedure that evaluates how good each valid program is. 

The following section introduces EAs as one of the approaches to black-box optimization, where 
the search for an optimum is driven by ideas inspired by the Darwinian survival of the fittest and the 
Mendelian inheritance of parental traits.  

5.1 Genetic Algorithms 

Genetic algorithms (GA) [135], first proposed by Holland in 1975 [87], approach black-box 
optimization by evolving a population of candidate solutions using operators inspired by natural 
evolution and genetics to solve problems in a wide variety of domains.  

The genetic algorithm maintains a population of individuals. Each individual (string, 
chromosome) represents a potential solution to the problem at hand. Each individual is evaluated to 
give some measure of its fitness. Some individuals undergo stochastic transformation by means of 
genetic operations to form new individuals. There are two types of transformation: (1) mutation, 
which creates new individuals by making small changes in a single individual and (2) crossover, 
which creates new individuals by combining parts from two individuals. New individuals, called 
offspring, are then evaluated. A new population is formed by selecting the more fit individuals from 
the parent population and the offspring population. After several generations, the algorithm 
converges to the best individual, which hopefully represents an optimal or suboptimal solution to 
the problem. A general structure of the genetic algorithm is shown in Figure 39. 

 

 

Figure 39. Flowchart of a standard genetic algorithm. 

There are two important issues with respect to search strategies: exploiting the best solution and 
exploring the search space [21]. The genetic algorithms provide a directed random search in 
complex landscapes. Genetic operators perform essentially a blind search; selection operators 
hopefully direct the genetic search towards the desirable area of solution space. One general 
principle for developing an implementation of genetic algorithms for a particular real-world 
problem is to make a good balance between exploration and exploitation of the search space.  

 

yes 

initialize 
population 

select 
parents for 

mating 

create 
offspring by 

crossover 

mutate 
offspring 

replace 
offspring to 
population 

finish 

no 

are 
termination 
criteria met? 



Chapter 5 Evolutionary Algorithms 

 
 
 

57 

In general, a genetic algorithm has five basic components, as summarized by Michalewicz 
[133]: 

(1) A genetic representation of solutions to the problem. 

(2) A way to create an initial population of solutions. 

(3) An evaluation function rating solutions in terms of their fitness. 

(4) Genetic operators that alter the genetic composition of children during reproduction. 

(5) Values for the parameters of genetic algorithms. 

In order to achieve a good balance between exploration and exploitation of the search space, all 
components of the genetic algorithms must be examined carefully. Additional heuristics should be 
incorporated in the algorithm to enhance the performance. The most important parts will be 
reviewed in the next subsections. 

5.1.1 Encoding issue 

How to encode a solution of the problem into a chromosome (individual) is a key issue when using 
genetic algorithms. The issue has been investigated from many aspects, such as mapping characters 
from phenotype space to genotype space when solutions are decoded into individuals and 
metamorphosis properties when individuals are manipulated by genetic operators. 

Classification of Encodings. In Holland’s work, encoding is carried out using binary strings 
[87]. Binary encoding for function optimization problems is known to have severe drawbacks due to 
the existence of Hamming cliffs, pairs of encodings having a large Hamming distance while 
belonging to points of minimal distance in phenotype space [124]. For example, the pair 0111 and 
1000 belongs to neighboring points in phenotype space (points of minimal Euclidean distance) but 
have maximum Hamming distance in genotype space. In order to cross the Hamming cliff, all bits 
have to be changed simultaneously. The probability that crossover and mutation will occur can be 
very small. In this sense, the binary code does not preserve the locality of points in the phenotype. 
For this reason the Gray code is often used [73]. 

For many problems in the industrial engineering world, it is nearly impossible to represent their 
solutions with binary encoding. During the last twenty years, various encoding methods have been 
created for particular problems to provide effective implementation of genetic algorithms. 
Depending on which kind of symbol is used as the alleles (values) of a gene (parts of 
a chromosome/ parameters of a solution), the encoding methods can be classified as follows: 

• Binary and integer encoding 

• Real-number encoding 

• Literal permutation encoding 

• General data structure encoding 

Integer and real-number encodings are best used for function optimization problems. It has been 
widely confirmed that integer and real-number encoding performs better than binary or Gray 
encoding for function optimizations and constrained optimizations [50], [133], [219]. Integer or 
literal permutation encoding is best used for combinatorial optimization problems. Since the essence 
of combinatorial optimization problems is the search for the best permutation or combination of 
items subject to constraints, literal permutation encoding can be the best way to solve this type of 
problem. For more complex real-world problems, an appropriate data structure is suggested as the 
allele of a gene, in order to capture the nature of the problem. In such cases, a gene may be an n-ary 
or more complex data structure. 

In most practices, one-dimensional encoding is used. However, many real-world problems 
require solutions for multidimensional structures. It is natural to use a multidimensional encoding 
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method to represent those solutions. For example, Vignaux and Michalewicz used an allocation 
matrix as an encoding for the transportation problem [217]. Cohoon and Paris used two-dimensional 
encoding for the VLSI circuit placement problem [35]. Anderson, Jones and Rayan used 
a two/dimensional grid type of encoding [5]. Moon and Kim used a two-dimensional encoding for 
graph problems [136]. Ono, Yamamura and Kobayashi used a job-sequence matrix as an encoding 
for job-shop scheduling problems [150]. A general discussion of multidimensional encoding and 
crossover was given by Bui and Moon [27] who argued that to fit solutions of multidimensional 
problems into one-dimensional encoding entails losing a considerable amount of the information 
contained in the multidimensional structure. 

Infeasibility and Illegality. Genetic algorithms work on two types of spaces alternatively: 
coding space and solution space, or in other words, genotype space and phenotype space. Genetic 
operators work on genotype space, and evaluation and selection work on phenotype space. Natural 
selection is the link between chromosomes and the performance of decoded solutions. The mapping 
from genotype space to phenotype space has a considerable influence on the performance of 
a genetic algorithm. One outstanding problem associated with mapping is that some individuals 
correspond to infeasible solutions to a given problem. This problem may become very severe for 
constrained optimization problems and combinatorial optimization problems. 

We need to distinguish between two basic concepts: infeasibility and illegality as shown in 
Figure 40. These are often misused in the literature. Infeasibility refers to the phenomenon that 
a solution decoded from chromosome lies outside the feasible region of a given problem; illegality 
refers to the phenomenon that a chromosome does not represent a solution to a given problem.  

The infeasibility of chromosome originates from the nature of the constrained optimization 
problem [168]. Whichever technique is used, conventional methods or genetic algorithms, it must 
handle the constraints. For many optimization problems, the feasible region can be represented as 
a system of equalities or inequalities. For such cases, the penalty method can be used to handle 
infeasible chromosomes [59], [132]. In constrained optimization problems, the optimum typically 
occurs at the boundary between the feasible and infeasible areas. The penalty approach will force 
the genetic search to approach the optimum from both sides of the feasible and infeasible regions. 
 

 

Figure 40. Infeasibility and illegality. 

The illegality of chromosomes originates from the nature of encoding techniques. For many 
combinatorial optimization problems, problem-specific encodings are used, and such encodings 
usually yield illegal offspring by a simple one-point crossover operation [87]. Because an illegal 
chromosome cannot be decoded to a solution, the penalty techniques are inapplicable to this 
situation. Repair (restoration) techniques are usually adopted to convert an illegal chromosome to 
a legal one. For example, the well-known PMX operator [65] is essentially a two-point crossover 
for permutation representation, together with a repair procedure to resolve the illegitimacy caused 
by a simple two-cutpoint crossover. Orvosh and Davis [151] have shown that for many 
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combinatorial optimization problems, it is relatively easy to repair an infeasible or illegal 
chromosome, and the repair strategy does indeed surpass other strategies, such as the rejecting or 
penalizing strategy.  

Properties of Encodings. When a new encoding method is given, it is usually necessary to 
examine whether we can set up an effective genetic search using the encoding. Several principles 
have been proposed to evaluate an encoding [182]: 

• Nonredundancy. The mapping between encodings and solutions should be 1-to-1. In other 
cases, GA will either waste time while searching (n-to-1) or another procedure performed on 
phenotype space to determine one solution among many possible ones has to be used  
(1-to-n). 

• Legality. Any permutation of an encoding has to correspond to a solution. This property 
guarantees that most existing genetic operations can easily be applied to the encoding. 

• Completeness. Any solution has a corresponding encoding. This property guarantees that 
any point in a solution space is accessible for a genetic search.  

• Lamarkian property. The meaning of alleles for a gene should not be context dependent. 
The Lamarkian property for encoding concerns the issue of whether or not one chromosome 
can pass on its merits to future populations through common genetic operations [33]. 

• Causality. Small variations on the genotype space due to mutation should imply small 
variations in the phenotype space. The property is focused on the conservation of 
neighborhood structures; that is, for the successful introduction of new information by 
mutation, the mutation operator should preserve the neighborhood structure in the 
corresponding phenotype space.  

5.1.2 Genetic operators 

Genetic operators are responsible for the generating of new candidate solutions. Together with 
a selection mechanism they make an engine of GA and explore the search space. In GA, 
accumulated information is exploited by the selection mechanism, while new regions of the search 
space are explored by means of genetic operators. 

In conventional GAs, the crossover operator is used as the principal operator and the 
performance of a genetic system is heavily dependent on it. The mutation operator which produces 
spontaneous random changes in various chromosomes is used as a background operator.  

Crossover. There are some basic ideas, how crossover can produce two offspring from two 
parents. We can include these common types: 

• One-point, n-point and uniform crossover 

• Arithmetic/intermediate crossover 

• Permutation-based crossovers 

One-point crossover was the original recombination operator proposed in [87] and examined in 
[43]. It works by choosing a randomly placed cut-point that splits both parents at this point and 
creates the two children by exchanging the tails (see Figure 41). One-point crossover can easily be 
generalized to n-point crossover, where the representation is broken down into more than two 
segments of contiguous genes, and then the offspring are generated by taking alternative segments 
from the two parents. The previous two operators worked by dividing the parents into a number of 
sections of contiguous genes and reassembling them to produce offspring. In contrast to this, 
uniform crossover [194] works by treating each gene independently and making a random choice as 
to which parent it should be inherited from.  
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A: 0 1 0 0 1 1 1 1 0 1 1 0 

             B: 1 1 1 1 0 0 0 1 1 0 1 0 

                    ⇓  ⇓ 
A’: 0 1 0 0 1 1 0 1 1 0 1 0 

             B’: 1 1 1 1 0 0 1 1 0 1 1 0 

Figure 41. One-point crossover. 

There are two options for recombining two floating-point parents: (1) using an analogous 
operator to those used for binary chromosomes, or (2) using an operator that, in each gene position, 
creates a new gene value (allele) in the offspring that lies between those of the parents. In this way, 
crossover is able to create new gene material, but it has the disadvantage that as a result of the 
averaging process the range of the allele values in the population for each gene is reduced [133].  

Permutation-based representations present particular difficulties for the design of recombination 
operators, since it is not generally possible simply to exchange substrings between parents and still 
maintain the permutation property. Partially Mapped Crossover (PMX) was first proposed by 
Goldberg and Linge as a recombination operator for the Travelling Salesman Problem (TSP) in 
[65], and has become one of the most widely used operators for adjacency-type problems. The basic 
idea of PMX can be generalized as a combination of a two-point crossover with permutation 
preservation. First, PMX copies the segment between two cut-points from the first parent. Second, it 
completes the chromosome by looking for unused values from the second parent in order to 
preserve the permutation. The Order Crossover (OX) [40] was designed by Davis for order-based 
permutation problems. It begins in a similar fashion to PMX, but the intention is to transmit 
information about relative order from the second parent. Another mutation operator is Cycle 

Crossover (CX) [149] which is concerned with preserving as much information as possible about 
the absolute position in which elements occur.  

Mutation. Many variants of a mutation operator have been also introduced during the last 
decades. We briefly describe the most important ones: 

• Bitwise mutation of binary representations 

• Random resetting and creep mutation based on integer representations 

• Uniform and nonuniform mutation with a fixed distribution 

• Permutation based mutation operators 

Although a few other schemes have been occasionally used, the most common bit-flip mutation 
operator used for binary encodings considers each gene separately and allows each bit to flip with 
a small probability. The actual number of values changed is thus not fixed, but depends on the 
encoding length [87].  

For integers encodings there are two principal forms of mutation, and both mutate each gene 
independently within a user defined probability. The random resetting operator extends the bit-
flipping so that a new value is chosen at random from the set of permissible values in each position. 
This is the most suitable operator to use when the genes encode for cardinal attributes, since all 
other gene values are equally likely to be chosen. Creep mutation was designed for ordinal 
attributes and works by adding a small (positive or negative) value to each gene within a defined 
probability. Usually these values are sampled randomly for each position, from a distribution that is 
symmetric around zero, and is more likely generated to small changes than large ones [60].  

For floating-point representation, it is normal to ignore the discretisation imposed by hardware 
and consider the allele values as coming from a continuous rather that a discrete distribution. For 
a uniform operator the new values of a gene are drawn uniformly randomly from interval [xmin, xmax] 
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analogously to bit-flip or random resetting. Perhaps the most common form of nonuniform mutation 
used with floating point representation takes a form analogous to the creep mutation for integers. 
The operator adds to the current gene value an amount drawn randomly from a Gaussian 
distribution with a mean of zero and a user-specified standard deviation, and then curtailing the 
resulting value to the range [xmin, xmax], [145]. 

For permutation representations, it is no longer possible to consider each gene independently, 
but instead finding legal mutations in a matter of moving alleles around in the genome. The most 
common ordered proposed operators, firstly published in [193], include swap, insert, scramble, and 
inversion mutation. The swap operator swaps two randomly picked genes in the chromosome. 
Insert operator works by picking two alleles at random and moving one so that it is next to the 
other, shuffling among the others to make room. Scramble mutation randomly chooses some subset 
of values within a chromosome and scrambles them. Inversion mutation works by randomly 
selecting two positions in the string and reverse the order in which the values appear between those 
positions.  

The proper choice of genetic operator is problem (encoding) dependent. Our endeavour should 
be to design such operators that perform a good mixing of genetic material and prevent the creation 
of illegal solutions. Other hits on how to design genetic operators or choose the proper ones, can be 
found in the theory of GA proposed by Holland [87] and refined by Goldberg [67] in their building-
block hypotheses; or in a convergence controlled variation hypothesis given by Eshelman, Mathias, 
and Schaffer [49].  

Cheng and Gen suggests another approach for designing genetic operators [32]. For the two 
genetic operators, crossover and mutation, one is used to perform a random search to try to explore 
the area beyond a local optimum, and the other is used to perform a local search to try to find an 
improved solution. The genetic search then possesses two types of search abilities. With this 
approach, the mutation operator will play the same important role as that of crossover operator in 
a genetic search. 

5.1.3 Selection and replacement mechanisms 

The principle behind genetic algorithms is essentially the Darwinian natural selection. Selection 
provides the driving force in a genetic algorithm. With too much force, a genetic search will 
terminate prematurely; with too little force, evolutionary progress will be slower than necessary. 
Typically, a lower selection pressure is indicated at the start of a genetic search in favour of a wide 
exploration of the search space, while a higher selection pressure is recommended at the end to 
narrow the search space. The selection directs the genetic search towards promising regions in the 
search space. On the other hand, the replacement mechanism is responsible for replacing whole or 
part of the current population by newly created offsprings. During the past two decades, many 
selection/replacement methods have been proposed, examined and compared. The most common 
types are as follows [77]: 

• Roulette wheel selection 

• (µ + λ) and (µ, λ)- selection 

• Tournament selection 

• Steady-state reproduction 

• Ranking and scaling 

• Sharing 

Roulette wheel selection was proposed by Holland [87]. The basic idea is to determine selection 
probability or survival probability for each chromosome proportional to the fitness value. Then 
a model roulette wheel can be made displaying these probabilities. The selection process is based on 
spinning the wheel a number of times equal to population size, each time selecting a single 
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chromosome for the new population. The wheel features the selection method as a stochastic 
sampling procedure. Baker proposed a stochastic universal sampling method [7] that uses a single 
wheel spin. 

In contrast with proportional selection, (µ + λ)-selection, and (µ, λ)-selection as proposed by 
Bäck are deterministic procedures that select the best chromosomes from parents and offspring [6]. 
Note that both methods prohibit selection of duplicate chromosomes from the population, so many 
researchers prefer to use this method to deal with combinatorial optimization problems. Truncation 
and block selection are also deterministic procedures that rank all individuals according to their 
fitness and select the best as parents [197]. Elitist selection is generally used as supplementary to 
proportional selection to preserve the best chromosome in the new generation if it is not selected 
through a proportional selection process. 

Generational replacement, replacing an entire set of parents by their offspring, can be viewed as 
another version of the deterministic approach. The steady-state reproduction of Whitley [226] and 
Syswerda [194] belongs to this class, in which the n worst parents are replaced by offspring (n is the 
number of offspring). 

Another type of selection procedure contains random and deterministic features simultaneously. 
A typical example is the tournament selection of Goldberg, Korb, and Deb [70]. This method 
randomly chooses a set of chromosomes and picks out the best chromosome for reproduction. The 
number of chromosomes in the set is called the tournament size. A common tournament size is 2; 
this is called a binary tournament. Stochastic tournament selection was suggested by Wetzel [225]. 
In this method, selection probabilities are calculated normally and successive pairs of chromosomes 
are drawn using roulette wheel selection. After drawing a pair, the chromosome with higher fitness 
is inserted in the new population. The process continues until the population is full.  

In the proportional selection procedure, the selection probability of an individual is proportional 
to its fitness. This simple scheme exhibits some undesirable properties. For example, in early 
generations, there is a tendency for a few superchromosomes to dominate the selection process; in 
later generations, when the population has largely been converted, competition among 
chromosomes is less strong and random search behavior will emerge.  

The scaling and ranking mechanisms are proposed to mitigate these problems. The scaling 

method maps raw objective function values to positive real values, and the survival probability for 
each chromosome is determined according to these values. Fitness scaling has a two fold intention: 
(1) to maintain a reasonable differential between relative fitness ratings of chromosomes; and (2) to 
prevent a too-rapid takeover by some superchromosomes to meet the requirement to limit 
competition early but to stimulate it later.  

Since De Jong’s work, use of scaling objective functions has become widely accepted, and 
several scaling mechanisms have been proposed. According to the type of function used to 
transform the raw fitness into scaled fitness, scaling methods can be classified as linear scaling [75], 
sigma truncation [53], power law scaling [63], logarithmic scaling [75], etc.  

For most scaling methods, scaling parameters are problem dependent. Fitness ranking has an 
effect similar to that of fitness scaling but avoids the need for extra scaling parameters [165]. Baker 
introduced the notion of ranking selection with genetic algorithms to overcome the scaling problems 
of the direct fitness-based approach [69]. The ranking method ignores the actual object function 
values; instead, it uses a ranking of chromosomes to determine survival probability. The idea is 
straightforward: sort the population from best to worst and assign the selection probability of each 
chromosome according to the ranking but not its raw fitness. Two methods are in common use: 
linear ranking and exponential ranking. 

Sharing techniques, introduced by Goldberg and Richardson [68] for multimodal function 
optimization, are used to maintain the diversity of population. A sharing function is a way of 
determining the degradation of and individual’s fitness due to a neighbor at some distance. With the 
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degradation, the reproduction probability of individuals in a crowd peak is restrained while other 
individuals are encouraged to give offspring.  

5.1.4 Creation of initial population 

Initialization of the first population is kept single in most EA applications and seeded by randomly 
generated individuals. In principle, problem-specific heuristics can be used in this step aiming at an 
initial population with higher fitness. Whether this is worth the extra computational effort or not 
very much depends on the application at hand.  

5.1.5 Fitness function 

The role of the fitness function is to represent the requirements in order to adapt to them. It forms 
the basis for selection, and thereby it facilitates improvements. More accurately, it defines what 
improvement means. Technically, it is a function or procedure that assigns a quality measure to 
genotypes.  

5.1.6 Values for the parameters of GA 

The behavior of genetic algorithms is characterized by a balance between exploitation and 
exploration in the search space. The balance is strongly affected by strategy parameters such as 
population size, maximum generation, crossover, and mutation ratio. How to choose a value for 
each parameter and how to find the values efficiently are very important, promising areas of 
research into genetic algorithms [74], [41]. Fixed parameters are used in most applications of GAs. 
The parameter values are determined using a set-and-test approach. However, the number of 
possible parameters and their different values means that this is a very time-consuming activity.  

The technical drawbacks to parameter tuning based on experimentation can be summarized as 
follows:  

• Parameters are not independent, but trying all different combination systematically is 
practically impossible. 

• The process of parameter tuning is time consuming, even if parameters are optimized one by 
one, regardless of their interactions.  

• For a given problem the selected parameter values are not necessarily optimal, even if the 
effort made for setting them was significant.  

During the history of EAs considerable effort has been spent on finding parameter values that 
were good for a number for test problems. A well-known example is that of [43], determining 
recommended values for basic parameters. 

5.2 Estimation of Distribution Algorithms 

The behavior of the evolutionary computation algorithms introduced in the previous section 
depends on several parameters associated with them (crossover and mutation operators, 
probabilities of crossover and mutation, size of the population, rate of generational reproduction, 
number of generations, etc.). If a researcher does not have experience in using this type of approach 
for the resolution of a concrete optimization problem, then the choice of suitable values for the 
parameters is itself converted into an optimization problem, as was shown by Grefenstette [74]. 
This reason, together with the fact that prediction of the movements of the populations in the search 
space is extremely difficult, has motivated the birth of a type of algorithms known as Estimation of 

Distribution Algorithms (EDA). EDAs were introduced in the field of evolutionary computation for 
the first time by Mühlenbein and Paaß [137], and some similar approaches can be found in the book 
by Zhigljavsky [228].  
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Holland [87] already recognized that to take into account interacting variables (genes) would be 
beneficial to genetic algorithms. This unexploited source of knowledge was called linkage 

information. Following this idea, in other approaches developed by different authors [70], [101], 
and [11] simple genetic algorithms were extended to process building blocks.  

In EDAs there are neither crossover nor mutation operators. Instead, the new population of 
individuals is sampled from a probability distribution which is estimated from a database containing 
selected individuals from the previous generation. Whereas in evolutionary computation heuristic, 
the interrelations (building blocks) between the different variables representing the individuals are 
kept implicitly in mind, in EDAs the interrelations are explicitly expressed through the joint 
probability distribution associated with the individuals selected at each iteration. In fact, estimation 
of the joint probability distribution associated with the database containing these selected 
individuals constitutes the bottleneck of this new heuristic. Because estimation of distribution 
algorithms replaces standard recombination operators by building and sampling a probabilistic 
model, EDAs are also called Probabilistic Model Building Genetic Algorithms (PMBGA) [158] and 
Iterated Density Estimation Algorithms (IDEAs) [24]. 

Since, there are many different ways on how to estimate a probabilistic model at the required 
level of complexity, EDAs have been classified by this property into three basic classes which 
include: 

• EDAs with no interactions between genes 

• EDAs with pairwise interaction between genes 

• EDAs with multivariate interactions.  

5.2.1 EDA with no interactions 

The Population Based Incremental Learning (PBIL) [8] replaces the population of candidate 
solutions by a probability vector (p1, p2, ..., pn), where pi denotes the probability of a 1 in the i-th 
position of solution strings (of the ith gene). Each pi is initially set to 0.5 which corresponds to 
a uniform distribution over the set of all solutions. In each iteration, PBIL generates s candidate 
solutions according to the current probability vector where s ≥ 2 denotes the selection pressure. 
Each value is generated independently of its context (remaining bits) and thus no interactions are 
considered (see Figure 42).  

The best solution from the generated set of s solutions is then used to update the probability-
vector entries using 

)( iiii pxpp −+= λ , 

where λ∈ (0,1) is the learning rate (say 0.02), and xi is the i-th bit (gene) of the best solution. PBIL 
was also referred to as the Hill Climbing with Learning (HCwL) [115] and the Incremental 

Univariate Marginal Distribution Algorithm (IUMDA) [139]. Theoretical analyses of PBIL can be 
found in [115] and [71]. 

 

Figure 42. A graphical model with no interactions displayed as a Bayesian network.  
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The Compact Genetic Algorithm (cGA) [80] eliminates the gap between PBIL and traditional 
GAs. Although cGA uses a probability vector instead of a population, updates of the probability 
vector correspond to replacing one candidate solution by another one using a population of size N 
and shuffling the resulting population using the population-wise uniform crossover [155]. 

Unlike PBIL and cGA, the Univariate Marginal Distribution Algorithm (UMDA) [137] 
maintains a population of solutions. A probability vector is computed using the selected population 
of promising solutions and new solutions are generated by sampling the probability vector. The new 
solutions replace the old ones and the process is repeated until termination criteria are met. UMDA 
is therefore equivalent to a GA with probabilistic uniform crossover (see chap. 5.1.2) Although 
UMDA uses a probabilistic model as an intermediate step between the original and new 
populations, unlike PBIL and cGA, the performance and dynamics of PBIL, cGA, and UMDA are 
similar. 

PBIL, cGA, and UMDA can solve problems decomposable into subproblems of order one in 
a linear or quadratic number of fitness evaluations. However, if decomposition into single-bit 
subproblems misleads the decision making away from the optimum, these algorithms scale up 
poorly with problem size. For example, PBIL, cGA and UMDA require exponentially many 
evaluations until reliable convergence for additively separable traps.  

5.2.2 EDA with pairwise interactions 

EDAs with pairwise probabilistic models can encode dependencies in the form of a chain, a tree, or 
a forest (a set of isolated trees). Because these models move beyond the assumption of variable 
independence, they represent the first step toward competent EDAs capable of solving 
decomposable problems of bounded difficulty in a scalable manner.  

The Mutual-Information-Maximizing Input Clustering (MIMIC) algorithm [42] uses a chain 
distribution (Figure 43a) specified by (1) an ordering of string positions (variables); (2) 
a probability of a 1 in the first position of the chain; and (3) conditional probabilities of every other 
position given the value in the previous position in the chain. A chain probabilistic model encodes 
the probability distribution where all positions, except for the first position of the chain, are 
conditionally dependent on the previous position in the chain. 

After selecting promising solutions and computing marginal and conditional probabilities, 
MIMIC uses a greedy algorithm to maximize mutual information between the adjacent positions in 
the chain. In this fashion the Kullback-Liebler divergence [109] between the chain and actual 
distributions is to be minimized.  

The Combining Optimizers with Mutual Information Trees algorithm COMMIT, first 
proposed by Baluja and Davies [9], uses dependency trees (Figure 43b) to model promising 
solutions. Like in PBIL [8], the population is replaced by a probability vector, but in this case the 
probability vector contains all pairwise probabilities. The probabilities are initialized to 0.25. Each 
iteration adjusts the probability vector according to new promising solutions acquired on the fly. 
A dependency tree encodes the probability distribution where every variable except for the root is 
conditioned on the variable’s parent in the tree. A variant of Prim’s algorithm for finding the 
minimum spanning tree [163] can be used to construct an optimal tree distribution.  

The Bivariate Marginal Distribution Algorithm (BMDA) [159] uses a forest distribution 
(a set of mutually independent dependency trees, see Figure 43c). This class of models is even more 
general than the class of dependency trees, because any forest that contains two or more disjointed 
trees cannot be generally represented by a tree. As a measure used to determine whether to connect 
two variables, BMDA uses Pearson’s chi-square test [126]. This measure is also used to 
discriminate the remaining dependencies in order to construct the final model. In order to learn 
a model, BMDA uses a variant of Prim’s algorithm [163]. 
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     (a) MIMICS                                     (b) COMMIT                              (c) BMDA 

Figure 43. Graphical models with pairwise interactions in form of (a) chain, (b) tree, or (c) forest 
displayed as Bayesian networks.  

Pairwise models capture some interactions in a problem with a reasonable computational 
overhead. EDAs with pairwise probabilistic models can identify, propagate, and juxtapose partial 
solutions of order two, and therefore they work well on problems decomposable into subproblems 
of order at mostly two [9], [24], [159]. Nonetheless, capturing only some pairwise interactions has 
still been shown to be insufficient for solving all decomposable problems of bounded difficulty 
scalably [9], [159]. That is why EDAs research has pursued more complex models discussed in the 
next section. 

5.2.3 EDA with multivariate interactions 

This section is an overview of EDAs with models that can encode multivariate interactions. Using 
general multivariate models has brought powerful algorithms capable of solving problems of 
bounded difficulty quickly, accurately, and reliably. On the other hand, learning distributions with 
multivariate interactions necessitates more complex model-learning algorithms that require 
significant computational time and still do not guarantee global optimality of the resulting model. 
Nonetheless, many difficult problems are intractable using simple models and the use of complex 
models and algorithms is warranted. 

The Factorized Distribution Algorithm (FDA) [138] uses a fixed factorized distribution 
throughout the whole computation. The model is allowed to contain multivariate marginal and 
conditional probabilities, but FDA only learns the probabilities, not the structure (dependencies and 
independencies). In order to solve a problem using FDA, we must first decompose the problem and 
then factorize the decomposition.  

The Extended Compact Genetic Algorithm (ECGA) [79] uses a marginal product model 
(MPM) that partitions the variables into several partitions which are processed as independent 
variables in UMDA (see Figure 44a). Each partition is treated as a single variable and different 
partitions are considered to be mutually independent.   

In order to decide between alternative MPMs, ECGA uses a variant of the Minimum Description 

Length (MDL) metric [166] which favors models that allow higher compression of data (in this 
case, the selected set of promising solutions). More specifically, the Bayesian Information Criterion 
(BIC) [177] is used. 

ECGA provides robust and scalable solutions for problems that can be decomposed into 
independent subproblems of bounded order (separable problems) [173]. However, many real-world 
problems contain overlapping dependencies which cannot be accurately modeled by dividing the 
variables into disjoined partitions. This can result in poor performance of ECGA in relation to these 
problems. 
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The Bayesian Optimization Algorithm (BOA) [156] builds a Bayesian network for the 
population of promising solutions (Figure 44c) and samples the built network to generate new 
candidate solutions. Initially, BOA used the Bayesian-Dirichlet (BD) [36] metric subject to 
a maximum model-complexity constraint to discriminate competing models, but other metrics have 
been analyzed in later work. In all variants of BOA, the model is constructed by a greedy algorithm 
that iteratively adds a new dependency in the model that maximizes the model quality. Other 
elementary graph operators – such as edge removals and reversals – can be incorporated, but edge 
additions are the most important. The construction is terminated when no more improvement is 
possible. The greedy algorithm which is used to learn a model in BOA is similar to the one used in 
ECGA. However, Bayesian networks can encode more complex dependencies and independencies 
than models used in ECGA. Therefore, BOA is also applicable to problems with overlapping 
dependencies.  

BOA uses an equivalent class of models as FDA; however, BOA learns both the structure and 
the probabilities of the model. Although BOA does not require problem-specific knowledge in 
advance, prior information about the problem can be incorporated using Bayesian statistics, and the 
relative influence of prior information and the population of promising solutions can be tuned by the 
user. An interesting study on incorporating prior problem specific information to improve the 
performance of BOA in graph partitioning and multiprocessor tasks scheduling can be found in 
[178]. 

 

       
             (a) ECGA                        (b) BOA 

Figure 44. Graphical models with multivariate interactions displayed as a Bayesian network. 

EDAs that use models capable of covering multivariate interactions can solve a wide range of 
problems in a scalable manner; promising results were reported on two-dimensional Ising spin-glass 
systems [157], graph partitioning [178], telecommunication network optimization [167], silicon 
cluster optimization [173], and scheduling [100].  
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Chapter 6  

Evolutionary Design of 

Collective Communications  

As we could see in previous chapters, a systematic approach applicable to an arbitrary topology to 
obtain an optimal or almost optimal schedule for any scatter or broadcast CC pattern does not exist. 
For this reason, a novel evolutionary based technique will be proposed.  

Therefore, the hypothesis of the thesis can be formulated based on information and experiences 
collected in chapter 5: Evolutionary design is able to produce optimal or near optimal 

communication schedules comparable or even better than which have been obtained by 

a conventional design for the networks sizes of interest. Moreover, evolutionary design can reduce 

many drawbacks of present techniques and invent still unknown schedules for an arbitrary topology 

and scatter/broadcast communication patterns.  

This chapter deals with the description of the main components of the technique, their design 
and implementation. The input data structure containing all necessary information about a solved 
task will be introduced, and the preprocessing of them will be described in the first subsection. 
Suitable encodings and their properties will be investigated in the second subsection. The third 
subsection will continue with a definition of the fitness function. The next subsection will describe 
acceleration and restoration heuristic to reduce execution time and increase success rate of proposed 
algorithms. The topic of the last subsection is an introduction of the heuristic mutation operator.      
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6.1 Input Data Structure and Preprocessing 

The description of a network topology and other necessary information about a particular CC are 
specified in an input data file. The structure of the file is as follows: 

• Any text/row beginning with the hash (#) symbol is considered to be a comment. 

• The first uncommented row determines the number of nodes in a particular topology and the 
maximal number of output links per node (maximal node degree). 

• Any other row describes one node. A row contains the node index; its operation mode 
within the CC (transmitter, receiver, both functions, switch); and a list of the node’s 
neighbors, where two nodes are considered to be neighbors only if they are connected by 
a simple direct link. 

Figure 45 illustrates the 4×4 2D mesh with specified sets of transceivers and receivers that are 
performing many-to-many communication with each other. The topology contains 16 nodes; six of 
them are operating only as transmitters, two of them are operating only as receivers and six nodes 
are executing both functions. Let us note that any receiver, including nodes operating in both 
modes, can accept messages from any transmitter and vice versa. The topology also contains two 
nodes not participating in the illustrated CC, and working only as switches (i.e. messages can be 
transported via them, but no message can be consumed, or created and distributed from them). 

On the right side of Figure 45, there is an input file dump. The comments are shown in italics 
for lucidity. The number of nodes is set to 16 (4×4 nodes). The maximal number of links is set to 4, 
since no node has got more than 4 neighbors (east, south, west, and north). Then, the lists of nodes 
and their neighbors follow. The node operation mode is specified by one of these four symbols  
{T, R, B, N}.  
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 45. Description of an input file containing the 4×4 mesh topology with 
a many-to-many communication. 

# 16 nodes 4x4 mesh topology   

 

# number of nodes and  

# maximal number of links per node  

16 4  

 

# Node operation mode 

# - T = Transmitter 

# - R = Receiver 

# - B = Transmitter and Receiver 

# - N = Switch 

 

# node index, operation mode, neighbors  

0 T 1 4    

1 T 2 5 0   

2 T 3 6 1   

3 N  7 2   

4 B 5 8  0  

5 B 6 9 4 1  

6 B 7 10 5 2  

7 R  11 6 3  

8 B 9 12  4  

9 B 10 13 8 5  

10 B 11 14 9 6  

11 R  15 10 7  

12 T 13   8  

13 T 14  12 9  

14 T 15  13 10  

15 N   14 11  

T T 

T T 

T∩R T∩R R 

0 1 2 

5 

3 

4 6 7 

8 9 10 11 

12 13 14 15 
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6.1.1 Input data preprocessing 

After an input file is loaded, the data have to be preprocessed. In the first phase, the preprocessor 
divides the set of all nodes V* into a set of transmitters T and a set of receivers R. Then, a set of 
terminal nodes V is determined as the union T∪R. Finally, all the sets are ordered based on the node 
index. 

The preprocessor generates all the shortest paths (the set Rx,y) between all transmitter-receiver 
pairs and saves them into a specific data structure in the operating memory in the second phase. The 
algorithm [62] is inspired by the breadth-first search algorithms (BFS). BFS is based on the 
searching of a graph where a transmitter is chosen as a root. The edges create a tree used in the 
searching process. A tree is gradually constructed, one level at a time, from the root that is assigned 
an index of a transmitter node. When a new level of the tree is generated, every node at the lowest 
level (leaf) is expanded. When a node is expanded, its successors are determined as all its direct 
neighbors except those which have been already located at higher levels of the tree (it is necessary 
to avoid cycles). The construction of the tree is finished when a value of at least one leaf is equal to 
the index of a receiver node. Receiver leaves’ indices confirm the existence of searched paths, 
which are then stored as sequences of incident node indices. 

A sample tree constructed while searching for the shortest paths from node no. 0 to node no. 6 
in the 4×4 2D mesh topology is shown in Figure 46. Three paths were actually found in the tree:  
0-1-2-6, 0-1-5-6 and 0-4-5-6. If one-to-all communication is being scheduled, only paths from 
a single transmitter node to all other receiver nodes are searched for. On the other hand, for 
optimization of many-to-many and all-to-all communication, all paths between every 
communicating pair of transmitter-receiver nodes are considered. 

In certain cases when the target topology has nonuniform numbers of links per node (irregular 
topologies), it can happen that an optimal routing schedule cannot be constructed from a set of the 
shortest paths only. The usage of the shortest paths only could cause heavy utilization of some links 
but the rare utilization of the others which can prevent the finding of an optimal solution. In order to 
avoid this problem, the algorithm must consider not only the shortest paths but also paths whose 
length may be longer. This approach can be used only for small topologies, because in cases of the 
large topologies the searching space of possible paths increases dramatically. For example, let us 
study 4×4 2D Mesh, all-to-all communication pattern, and the paths that are elongated by 2  
(1 makes no sense in this topology) according to the shortest paths; whole number of paths is 
increased from 744 to 2784, for more complex topologies with 36 processors and more, rising to 
tens of thousands. Consequently, optimization algorithms are not able to search an optimal solution 
for more complex topologies by non-minimal routing 
 

 

Figure 46. Construction of the shortest paths list from node no. 0 to node no. 6 
in the 4×4 2D mesh topology. 
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6.2 Scatter Encoding 

This chapter describes fundamental principles of chosen encoding of candidate routing schedules. 
As broadcast and scatter are completely different communication services, candidate solutions are 
encoded in separate ways. First, the definition and features of scatter encoding will be introduced 
and examined. 

6.2.1 Definition of scatter encoding 

Consider a scatter based CC communication between M transmitters from T and N receivers from R 
(e.g. from Figure 45).  

(1) The CC can be defined as a set of pair-wise transfers originating in src ∈ T and terminating 
in dst ∈ R, where src ≠ dst 

{ }dstsrcRdstTsrccommCOMM dstsrc ≠∈∈= ,,:, . (6.1) 

(2) A direct encoding can be designed for the scatter based communication schedules (i.e. an 
exact description of the schedule is stored in a chromosome). A chromosome can be formalized as 
n-tuple of genes: 
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where M is the number of transmitters and N is the number of receivers while n is the total number 
of genes. Notice that 

M, N ≤ P and n =M·N. (6.3) 

(3) A gene genei,j represents a single message transfer from the transmitter (source) xi∈ T to 
the receiver (destination) xj ∈ R, where xi ≠ xj. The source and the destination are identified by the 
genes’ indexes i and j. A gene is an ordered couple 
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 (6.4) 

The first component li,j represents a chosen path from the transmitter xi to the receiver xj stored in 
the set Ri,j. The second component si,j determines a selected time slot (communication step) of the 
transfer between xi and xj. The total number of time slots (communication steps) is given by the 
predefined parameter Steps. 

(4) The (shortest) path has been defined in section 2.2.4 as an ordered set of unidirectional 
channels 

{ }Lji ccccl ,...,,, 321, = , (6.5) 

where src(c1) =xi and dst(cL) = xj  

(5) Next, consider a set GENOME containing all the genes included in a chromosome: 

{ }jiNjMigeneGENOME ji ≠<≤<≤= ,0 and 0:, . (6.6) 

(6) Finally, we can define a bijective mapping f from set GENOME into set COMM meaning 
that each gene corresponds to a unique pair-wise transfer and also vice versa: 

COMMcommGENOMEgenef dstsrcji ∈∈ ,,: a  iff xi=src, xj=dst. (6.7) 
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6.2.2 Features of scatter encoding 

The basic advantage of the scatter encoding complies with most of the requirements defined in the 
section 5.1.1:  

• Nonredundancy. The encoding has satisfied the condition of nonredundancy since all its 
instances can be transformed into unique communication schedules (see eq. 6.7). Any 
variation of genotype leads to a different schedule.  

• Legality. The encoding also satisfies the condition of legality (any chromosome can be 
transformed into a communication schedule). If the genes values (alleles) respect the eq. 6.4, 
there is no way to create an illegal solution of the scatter CC. 

• Completeness. Because the chromosomes directly encode the communication schedules, any 
possible schedule can be stored in a chromosome.  

• Lamarkian property. The Lamarkian property is satisfied considering that all point-to-point 
transfers are independent, and this implies that all alleles are context independent.  

• Causality. The causality condition is not fully satisfied since even a small variation in 
a chromosome can produce a large difference in the quality of the decoded schedule 
(phenotype). The first gene component satisfies the condition since two paths from Ri,j 
indexed by close values differ only in a small number of links. Hence, a swap of the paths 
will produce nearly the same schedule. On the other hand, a shift of a pair-wise transfer to 
a different time slot can rapidly modify channels’ utilization, produces hot-spots, and 
dramatically influences the quality of the schedule.  

6.2.3 Graphic visualization of a scatter chromosome 

The presented encoding covers all possible instances of M-to-N scatter chromosome. Figure 47 
illustrates an example of the most complex all-to-all scatter chromosome on the 4×4 2D mesh. 
 

 

Figure 47. The structure of an AAS chromosome. 

Particular genes are separated by the blue lines. The first component li,j is emphasized by 
a yellow background and si,j by a blue background. The index i corresponds to the particular row 
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(transmitter) and the index j to the particular column (receiver). Genes situated on the main diagonal 
are excluded from the chromosome since these communications do not have to be performed 
(source = destination).  

M-to-N CCs are composed of only a subset of all possible pair-wise transfers. Some nodes are 
operating only as transmitters or receivers, while other nodes can be executing both functions, or 
can be excluded from communication and perform only switching tasks.  

There is an example of MNS encoding based on a communication scheme presented in Figure 
45 and shown in Figure 48. Because nodes no. 3, 7, 11, and 15 are not transmitting in this CC, their 
rows have been excluded from the chromosome (illustrated by hyphens). The columns representing 
nodes no. 0, 1, 2, 3, 12, 13, 14 and 15 have also been excluded from the genome since they are not 
operating as receivers.  

 

 

Figure 48. The structure of MNS chromosome following the distribution of transmitters and receivers 
illustrated in Figure 45. 

6.3 Broadcast Encoding 

This section introduces the definition of broadcast encoding. Its features are examined and graphic 
representation is illustrated in the following subsections.  

6.3.1 Definition of broadcast encoding 

Consider a broadcast based CC communication between M transmitters from T and N receivers 
from R (e.g. from Figure 45). As previously discussed in section 4.2.3, the COMM set cannot be 
constructed for broadcast based CCs since each node already informed can become a distributor of 
the broadcast message.  

(1) Therefore, the definition of CC is based on a set of messages MSG that have to be delivered 
during a given CC to each destination. 
Let  

{ }dstsrcRdstTsrcmsgMSG dstsrc ≠∈∈= ,,:,  (6.8) 
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be a set of messages originating in transmitters src, transported through the network via an 
intermediate distributor, and consumed by receivers dst. Notice, the distributor of the message 
transfer is not known in advance.  

(2) A direct encoding has been designed to store broadcast based communication schedules. 
A broadcast CC schedule is represented by the chromosome in the form of n-tuple of genes 
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where M is the number of transmitters and N is the number of receivers while n is the total number 
of genes. Notice that 

M, N ≤ P and n =M·N. (6.10) 

(3) A gene genei,j determines the way in which a receiver xj ∈ R obtains the broadcast message 
msgi,j from the transmitter xi ∈ T via a distributor di,j ∈ V. The producer and consumer of the 
message are identified by the genes’ indexes i and j. Individual genes are represented by an ordered 
triplet: 
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 (6.11) 

The first component of the gene selects a distributor di,j of the message msgi,j. The distributor can be 
any node from 

jisiD
,, , and thus not only the transmitter. Set 

jisiD
,, includes all nodes informed 

during all of si,j–1 steps; see extended domination set theory [207] or section 4.2.3. The second 
component li,j represents a chosen path between the distributor di,j and a receiver xj from the set 

jd ji
R ,,

. Analogously, the last component si,j determines a selected time slot of the transfer between 

di,j and xj. The total number of time slots (communication steps) is given by the predefined 
parameter Steps. 

(4) The (shortest) path was defined in the same way as in the section 2.2.4 as an ordered set of 
unidirectional channels. 

(5) Next, consider a set GENOME containing all genes included in a chromosome:  

{ }jiNjMigeneGENOME ji ≠<≤<≤= ,0 and 0:, .  (6.12) 

(6) Finally, we can define a bijective mapping f from set GENOME into set MSG, thus each 
gene corresponds to a unique src-dst transfer of the message and also vice versa: 

MSGmsgGENOMEgenef dstsrcji ∈∈ ,,: a  iff xi=src, xj=dst.   (6.13) 

6.3.2 Features of broadcast encoding 

The basic characteristics of broadcast encoding are summarized below: 

• Nonredundancy. The encoding has satisfied the condition of nonredundancy, since all its 
instances can be transformed into a unique communication schedule, eq. 6.13. Any variation 
of genotype leads to a different schedule. 



Chapter 6 Evolutionary Design of Collective Communications 

 
 
 

75 

• Legality. The legality of all instances of OAB chromosomes can be simply guaranteed using 
restoration heuristic (see section 6.5.3 and the eq. 6.11). This correction of broadcast 
chromosomes follows the theory of domination sets [207]. The distributor in step s can 
become only a node informed during some of previous time steps {0,..., s-1}. Thus, all 
nodes/genes violating this condition are corrected after an arbitrary modification of the 
chromosome.  

• Completeness. Because the chromosome directly encodes the communication schedule, any 
possible schedule can be stored in a chromosome.  

• Lamarkian property. The Lamarkian property is satisfied considering that all pair-wise 
transfers are independent which implies that all alleles are context independent. On the other 
hand, the values within the scope of a gene are naturally context dependent, so that 
a selected path between a distributor and destination is dependent on the selected distributor. 
Fortunately, genetic operators can be simply modified to prevent linkage disruption by 
handling only whole genes.  

• Causality. The causality condition is not fully satisfied since even a small variation in 
a chromosome can produce a large difference in the quality of a decoded schedule 
(phenotype). The reason is the same as in the case of OAS, moreover it is aggravated by the 
selection of distributors.  

6.3.3 Graphic visualization of a broadcast chromosome 

The presented encoding covers all possible instances of M-to-N broadcast chromosome. Figure 49 
illustrates an example of the most complex all-to-all broadcast chromosome on the 4×4 2D mesh. 
Particular genes are separated by the blue lines. The first component di,j is emphasized by a green 
background, the second component li,j is emphasized by a yellow background and si,j by a blue 
background. The index i corresponds to the particular row (transmitter), and the index j to the 
particular column (receiver). Genes situated on the main diagonal are excluded from the 
chromosome since these communications do not have to be performed (source = destination). 
 

 

Figure 49. The structure of an AAB chromosome. 
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M-to-N broadcasts are composed of only a subset of all possible point-to-point communications. 
Some nodes are operating only as transmitters or receivers, some others can be executing both 
functions, or can be excluded from communication and perform only switching tasks (see 6.2.3).  

6.4 Fitness Function Definition 

The purpose of the fitness function is a quality measurement of candidate solutions. The candidate 
solutions encode communication schedules for a particular CC. The goal of the evolution is to 
design valid schedules with a predefined time complexity (number of communication steps in our 
approach). The necessary condition for all valid schedules is their conflict-freedom. Two 
communications are said to be in conflict if and only if they share the same channel in the same 
time slot. In order to be able to implement evolved schedules into a parallel system, the conflicts of 
shared resources have to be prevented.  

Consequently, the main idea of the fitness function is based on the conflict-free condition 
violations. All conflicts within a chromosome are discovered and their count is calculated. The 
quality of the chromosome is then determined from the number of conflicts. 

The valid communication schedule for a given number of communication steps must be 
conflict-free. Valid schedules are either optimal (the number of steps equals the lower bound) or 
suboptimal. Evolution of a valid schedule for the given number of steps is finished up as soon as 
fitness (number of conflicts) drops to zero. If it does not do so in a reasonable time, the prescribed 
number of steps has to be increased. 

6.4.1 Formal definition of the fitness function 

This section proposes a formal description of the fitness function. The definition is the same for 
scatter and broadcast CC. For this purpose we recall the introduced definitions of the encodings 
from sections 6.2.1 and 6.3.1. 

(1) Let SS (Same Slot/Step) be a binary relation on the set GENOME. Let COMMba ∈,  

(scatter) or MSGba ∈, (broadcast) message transfers be represented by genei,j and genek,l, then 

lkjilkji ssgeneSSgene ,,,,  iff  = . (6.14) 

Thus, two transfers are in relation SS if and only if they are executed within the same time slot. 

Now, we show that SS is an equivalence relation: 

(a) SS is reflexive, since no transfer can be performed in more than one time slot. 

(b) SS is symmetric considering si,j = sk,l, then sk,l = si,j 

(c) SS is transitive. Let a, b, c be elements of GENOME. Whenever a SS b and b SS c, then 
also a SS c (a is executed within the same slot as c whenever a is executed within the same 
slot as b and b is executed within the same slot as c). 

Thus SS is an equivalence relation. 

(2) The equivalence relation SS induces the partition GENOME/SS. Each equivalence class [gs] 
includes all transfers performed in the same slot s.  

(3) Let Ea,b be a set of all shared channels between two transfers a, b represented by genes 
Genomegenegene lkji ∈,, ,  utilizes the paths li,j and lk,l, then 

lkjiba llE ,,, ∩= .  (6.15) 

The number of conflicts between a and b can be obtained as the cardinality of the set Ea,b. 
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(4) Define a multiset Es including channels shared by all transfers within a given time slot, then 

U
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EE
≠∈

=
],[,

, . (6.16) 

(5) The multiset E, covering all shared channels within the whole CC, can be obtained by 
a union over all equivalence classes. Thus 

U
SSGENOMEg

s

s

EE
/][ ∈

= . (6.17) 

(6) The total number of conflicts can be obtained as the cardinality of multiset E. Thus 

|| EFitness = . (6.18) 

6.4.2 Graphic visualization of the fitness function 

Figure 50 illustrates an example of two point-to-point communications forming a part of a CC. The 
(a) variant shows transfers 0→11 (the blue one) and 4→7 (the green one). These two transfers are 
causing a conflict on the channel c = (5, 6), where both transfers want to use the channel at the same 
time, which is naturally not possible. Opposite it, the (b) variant does not invoke any violations of 
the conflict-free condition. Both transfers 0→11 and 13→7 are not sharing any channel.  

 

                                
       (a) conflicting communication                         (b) Conflict-free communications 

Figure 50. Two point-to-point communications illustrating the conflict-free condition.  

The illustration of the fitness function concept is provided in Figure 51. On the left side of the 
figure, they are depicted by two different AAS chromosomes with marked pair-wise transfers from 
Figure 50. The sources of the messages transfers are determined by the row indices. The destination 
of the messages transfers are determined by the column indices.  

First, the genes are categorized using the si,j component. Then, all paths stored in the genes in 
the same category are mutually compared. The li,j component of a gene is a pointer into the vector 
that maintains all paths between the source-destination pair.  

In the first case illustrated in Figure 51, the paths contain the same substring of length 2, hence 
one conflict is identified. In the second case, the paths do not share the same substring. Notice, that 
two paths can stash more conflict.  
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Figure 51. Illustration of the fitness function evaluation concept. 

6.5 Acceleration and Restoration Heuristics 

This section introduces acceleration heuristics intended for speeding-up the optimization process. 
The acceleration heuristics are executed before the fitness function evaluation or inside the mutation 
operator (see section 6.6). The section also presents restoration heuristic aimed at prevention of 
illegal solutions in the case of broadcast CC. The restoration heuristic is executed just before the 
fitness function evaluation. 

6.5.1 Port based acceleration heuristic 

Port based acceleration heuristic improves optimization speed, taking into account the search space 
restrictions due to a limited message injection and acceptance capability of network nodes. Since no 
node can inject more than k messages into the network in a time slot (k-port model, see section 3.1), 
the acceleration heuristic checks this condition in the whole chromosome and redesigns ports’ 
utilizations in all time slots.  

Figure 52 shows a node congestion. Four messages are waiting for transmission, however only 
three of them can be dispatched since the node has been equipped by three output and three local 
ports. The fourth message has to wait for another time slot. 
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Figure 52. Illustration of port number limitation. 

The implementation of the heuristic is based on a node utilization histogram (see Figure 53). 
First, the numbers of messages dispatched in particular time slots are counted for all transmitters. 
Then all the messages that cannot be transmitted due to overload are shifted to such time slots 
where there are free output channels. 

The same check is also made on output channels. This heuristic performs a local search on 
candidate solutions based on space domain that leads to the significant reduction of congestions. 

 

 

Figure 53. The concept of port based heuristic using a channel utilization histogram. 

6.5.2 Transfer swap heuristic 

The transfer swap heuristic swaps associated time slot of two transfers originate in the same 
transmitter. Figure 54 illustrates one possible situation. Consider two different time slots si and sj 
and four different message transfers. The heuristic works as follows: (1) one transfer from the same 
transmitter in each time slots is randomly selected (e.g. 0→11from slot si, and 0→3 from slot sj);  
(2) Their time slots are mutually exchanged, so that the transfer 0→11 will be executed in slot sj, 
and the transfer 0→3 in slot si.  

This heuristic performs a local search on a candidate solution based on the time domain. The 
conflicting transfers are rescheduled in spite of their timing to reduce total congestion.  
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Figure 54. The concept of the transfer swap heuristic. 

6.5.3 Restoration of broadcast chromosomes 

Considering that the broadcast chromosomes can get illegal during genetic manipulations 
(crossover, mutation, model sampling, etc.), thus the legality condition given by dominating sets, 
eq. 6.11, has to be verified.  

The restoration (a repair of the broadcast tree) proceeds in subsequent communication steps.  

(1) The domination set for a particular time slot
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choice is based on node ports’ utilization histogram (see 6.5.1). 

A modification of the distributor node di,j has an impact naturally on utilized channels li,j, and 
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R ,,
. Hence, the original path is replaced by a newly chosen one from a list of exploitable 

paths between the new distributor-destination pair. 

Figure 55 presents the idea of the restoration heuristic. There is an invalid broadcast 
communication on the left side of the figure, variant (a). The informed nodes (elements of
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are highlighted by a blue background. Notice that, node no. 11 is receiving the message from node 
no. 2. Naturally, this is not possible, since node no. 2 has not obtained the message yet. Therefore, 
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the source of the transfer is exchanged for node no. 13 (one of the blue ones, see the right side of the 
figure). Consequently, the used path is also changed (b). 
 

 

Figure 55. Restoration of the broadcast tree. 

6.5.4 Initial population building heuristic  

The search space of broadcast based schedules is much more restricted than the search space of 
scatter based ones. The initial population of scatter schedules can be simply generated by a uniform 
random generator, thus all gene values are randomly selected from corresponding definition scopes 
(see eq. 6.4).  

However, this technique will lead mostly to illegal solutions in the case of broadcast 
communication. Therefore, a specific heuristic for the initial population creation has been 
developed. The heuristic injects good building blocks into the initial population. The idea follows 
these steps for each gene: 

(1) di,j is selected using a uniform random generator from the set V. 

(2) ijl ,  is selected using a uniform random generator from the set
jd

ji
R ,,

. 

(3) si,j is set initially to an undefined value. 

(4) By selecting correct time slots, the restoration heuristic produces legal broadcast schedules 
that violate the conflict-free condition in much fewer cases. 

6.5.5 Restricted surrounding heuristic  

The heuristic is based on the search space pruning and it is incorporated into the restoration 
heuristic. If for a given topology and MNB pattern, this formula ((M – 1)/k > log k N) is valid, then 
MNB can be performed as a controlled flood (i.e. all processors send their message only to 
uniformed neighbors). In each step, messages are propagated in waves through the interconnection 
network. This feature of the interconnection network and MNB communication can be employed 
with an advantage of pruning the search space. The set of possible receivers of the broadcast 
message in a slot can be restricted only to nodes within a given radius r ∈ <1, D/2 >, where D is 
a network diameter. This restriction leads to a massive reduction of possible engaged shortest paths.  

The suitable radius value is chosen according to the ratio between the numbers of transmitters M 
and receivers N. The suitable radius r for OAB (M = 1, N = P) is D/2 considering that many optimal 
broadcast algorithms inform the furthermost node first (see section 4.2.3). On the other hand, the 
suitable radius value for AAB (M = P, N = P) is r = 1, [203]. Generally, the lower values of radius 
lead to faster convergence, but in some cases it is necessary to choose larger values (D/2 in the case 
of OAB communication) to ensure retrieval of a purposeful schedule.  
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As a consequence of the reception restriction, the restoration heuristic has to be modified. In 
a process of building the dominating set, it can happen that there is no node that can inform 
a selected node in a given time slot. In this case, the communication has to be postponed to the later 
time slot, where at least one possible source of broadcast message has already existed. In some 
cases this postponement can cause a number of communication steps which is in excess of the 
requested maximum. This situation is handled by a penalization function. The amount of penalty is 
given by the sum of all pair-wise transfers running over the prescribed maximum number of steps. 
Finally, this value is added to the conflict count computed by the fitness function. 

Figure 56 illustrates the surrounding of node no. 1 with r = 1. This node can accept the 
messages only from the nodes belonging to its surrounding. On the other hand, the node can 
distribute the messages only to nodes lying in its surrounding.  

 

 

Figure 56. Illustration of surrounding of r = 1. 

6.6 Mutation Operator 

The mutation is primarily intended to bring new genetic material into the population of 
chromosomes. Typically, very simple mutation operators are used (see section 5.1.2). As we know, 
with an increasing distance of a source-destination pair, the number of possible paths exponentially 
goes up. Therefore, it is necessary to employ a high-quality strategy responsible for testing possible 
paths and their organization into time slots.  

The mutation operator exploits possibilities of some of the proposed heuristics. The mutation 
operator follows this procedure: 

(1) The port based heuristic is executed. This step prevents conflicts on input and output 
channels of terminal nodes. 

(2) There are two ways how to select a mutated gene. The gene is selected with uniform 
probability in the first half of instances in order to be able to escape from suboptimal 
solutions. Otherwise, we select only from genes that are causing conflicts to guide the 
search to better regions of the search space. 

(3) One component of the selected gene is selected to be mutated. 

(a) Path mutation: a new path between source and destination is chosen using Gaussian 
distribution with the mean value equal to the current path index, and with the 
variance value equal to the one third of the total number of paths between source-
destination pairs. It ensures that similar paths to the current will be generated with 
higher probability, and on the other hand, any path can still be selected.  
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(b) Slot mutation: first, the transfer swap heuristic is executed. If it does not improve 
the quality of the solution, the time slot is generated using a uniform random 
generator. 

(c) For broadcast solutions, there is a possibility to mutate the distributor of the 
message. The distributor is selected using a uniform random generator from all 
terminal nodes participating in the CC. Naturally, the restoration heuristic has to be 
applied before the fitness function is executed.  
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Chapter 7  

Optimization Tools and 

Parameters Adjustments 

Combinatorial search and optimization techniques in general look for a solution to a problem 
among many potential solutions. For many search and optimization problems, exhaustive search is 
not feasible and some form of directed search is undertaken instead. In addition, rather than only the 
best (optimal) solution, a good non-optimal solution is often sought. 

The basic components of many search and optimization techniques are very similar. The 
definition of basic components like: an evaluation function, an encoding and a global data structure 
is often expected. The previous chapter proposed the fundamental concepts of the most frequently 
utilized components independent of a searching technique. Consequently, the problem of CC 
scheduling can be solved by many common techniques like evolutionary algorithms [135], hill 
climbing [115], tabu search [165], simulated annealing [21], particle swarm optimization [104], ant 
colonies [46], and many others. 

This chapter deals with the selection of the most suitable optimization tool for our task. We 
restricted ourselves to investigate the behaviour of Standard Genetic Algorithm (SGA) [66], Mixed 

Bayesian Optimization Algorithm (MBOA) [148] and Univariate Marginal Distribution Algorithm 
(UMDA) [137]. These three algorithms are the typical representatives of evolutionary and 
estimation of distribution algorithms. The optimal parameters of the selected algorithms are going 
to be established, and the performance of the algorithms is going to be measured and mutually 
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compared in the following subsections. The victorious algorithm will be employed to check the 
quality of the proposed method and to design the optimal schedules on many topologies of interest.  

7.1 Optimization Tools 

This subsection introduces the selected optimization tools and introduces their operators’ 
implementations and parameter setups.  

7.1.1 Standard genetic algorithm 

Standard Genetic Algorithm (SGA) [66], detailed in section 5.1.1, is probably the most frequently 
used evolutionary algorithm. In order to complete the algorithm design, some operators have had to 
be established: 

(1) Selection mechanism. Two parents are selected from the population by a binary tournament 
operator [70]. 

(2) Crossover. One-point crossover with possible crossover points only on the boundaries of the 
genes is used [87]. 

(3) Mutation. The mutation operator proposed in section 6.6 is employed. 

(4) Replacement strategy. The steady-state reproduction is used [226]. The parent population is 
sorted according to its fitness after every generation. The worst two thirds are replaced by 
newly generated offspring. The higher replacement value ensures reasonable diversity level 
and prevents an early stuck in local optima.  

In order to execute the algorithm, the values of several parameters have to be adjusted. The most 
important ones cover [74]: 

(1) Population size. The recommended values are between 50 and c. 200. 

(2) Crossover probability. The recommended values are between 0.7 and 0.9. 

(3) Mutation probability. The recommended values are between 0.001 and 0.1. 

(4) Number of generations. The number of generation strongly depends on the population size 
and the optimized task complexity. 

The SGA algorithm was implemented using GAlib [218] library and compiled by GNU C++ 
under a Linux operating system. 

7.1.2 Mixed Bayesian optimization algorithm 

Mixed Bayesian Optimization Algorithm (MBOA) algorithm was created by Jiri Ocenasek in [148]. 
MBOA is based on a Bayesian Optimization Algorithm (BOA). The probabilistic model of MBOA 
is a set of binary decision trees/graphs. MBOA also differs from BOA in the heterogeneous model 
parameters. The decision trees can also be created for continuous or mixed domains. Although the 
mutation operator is not frequently used in BOA algorithms because it could disturb convergence of 
the probabilistic model, its employing can generate new solutions from unexplored places of 
a search space.  

In order to complete the algorithm design, some operators have had to be established: 

(1) Selection mechanism. The parent population is selected by a binary tournament operator 
[70]. 

(2) Mutation. The mutation operator proposed in section 6.6 is employed to incorporate a local 
search technique into an MBOA algorithm. 
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(3) Replacement strategy. The steady-state principle is used [226]. The parent population is 
sorted according to its fitness after every generation. The worst two thirds are replaced by 
a newly generated offspring. The higher replacement value ensures a reasonable diversity 
level and prevents an early stuck in local optima.  

In order to execute the algorithm, the values of several parameters have to be adjusted. The most 
important ones cover [148]: 

(1) Population size. The recommended values are between 50 and several hundreds with respect 
to the character of the solved task. 

(2) Parent population size. The size of the parent population is usually 50% of the population 
size. The probability model is estimated from the selected parent population.  

(3) Model building frequency. The model is constructed in every generation. 

(4) Mutation probability. If it is ever used, the recommended values are between 0.001 and 0.1 
[155]. 

(5) Number of generations. The number of generations strongly depends on the population size 
and the optimized task complexity. 

MBOA was implemented and compiled by standard GNU C++ under a Linux operating system. 

7.1.3 Univarite marginal distribution algorithm 

A Univariate Marginal Distribution Algorithm (UMDA) lies on the frontier between classic genetic 
algorithms and estimation of distribution algorithms [137]. It does not cover any dependencies 
between variables (genes). For all components of the genes, histograms are created. Then, the 
frequencies of all values of the genes are calculated. In contrast to SGA, the whole parent 
population is used to learn the model and produce offspring (not only two individuals).  

In order to complete the algorithm design, some operators have had to be established: 

(1) Selection mechanism. The parent population is selected by a binary tournament operator 
[70]. 

(2) Mutation. The mutation operator proposed in section 6.6 is employed to incorporate a local 
search technique into an UMDA algorithm. 

(3) Replacement strategy. The steady-state principle is used. The parent population is sorted 
according to its fitness after every generation. The worst two thirds are replaced by a newly 
generated offspring. The higher replacement value ensures a reasonable diversity level and 
prevents an early stuck in local optima.  

In order to execute the algorithm, the values of several parameters have to be adjusted. The most 
important ones cover [137]: 

(1) Population size. The recommended values are between 50 and c. 200. 

(2) Parent population size. The size of the parent population is usually 50% of the population 
size. The probability model is estimated from the selected parent population.  

(3) Model building frequency. The model is constructed in every generation. 

(4) Mutation probability. The recommended values are between 0.001 and 0.1, in case it is ever 
used.  

(5) Number of generations. The number of generations strongly depends on the population size 
and the optimized task complexity. 

UMDA was implemented and compiled by standard GNU C++ under a Linux operating system. 
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7.2 Experimental Comparison of Optimization Quality 

The first experimental work deals with the quality of obtained solutions. The goal of these 
measurements was the establishment of the most suitable parameters for all selected optimization 
tools to produce the most quality solutions. Two sufficiently difficult benchmark tasks were chosen; 
AAS and AAB patterns on the 4D hypercube. 

An AAS communication pattern was chosen since it is the most complex variant of MNS 
communication. Similarly, AAB is the most complex variation of the MNB communication if the 
surrounding size is not restricted. The surrounding size was not yet restricted to get the benchmark 
more difficult in these experiments. The 4D hypercube with 16 nodes was selected due to its 
symmetry and known optimal solutions for both AAS and AAB communication patterns. The 
corresponding chromosome lengths for AAS/AAB were 512/786 integer components. 

The numbers of communication steps were knowingly set one step below the lower bound for 
both communication patterns. It makes it possible to compare the algorithms only by the number of 
conflicts after a finite number of generations. That prevents the algorithm finishing before a given 
number of generations has been evolved due to a global optima discovery. 

Thirty experimental runs were executed for all the parameters setups. All graphs show the mean 
values of the fitness function (conflicts counts) from all 30 runs after 500,000 generations.  

7.2.1 Optimization quality of SGA 

In order to obtain a high-quality optimization tool based on SGA, three crucial parameters were 
established: the population size, the mutation probability, and the crossover probability. The tested 
values of parameters were: 

• Population size: 50, 100 and 150 individuals 

• Mutation probability: 0.0, 0.2, 0.5, 0.7, 0.9 

• Crossover probability: 0.0, 0.2, 0.5, 0.7, 0.9 

Since the mutation operator also incorporates the local search techniques, the values of the 
mutation probability are significantly higher than in related literature.  

Figure 57 shows the influence of the population size and the mutation and crossover 
probabilities on the best evolved solution quality. The results of the AAS benchmark are situated in 
the left column of the figure; cases (a), (b), and (c). The results of the AAB benchmark are situated 
in the right column of the figure; cases (d), (e), and (f).  

The rows match particular population sizes: 50 individuals for cases (a) and (d); 100 individuals 
for cases (b) and (e); and 150 individuals for cases (c) and (f). The x-axis of the graphs represents 
accruing mutation probability. The y-axis of the graph corresponds to accruing crossover 
probability. Finally, the z-axis evaluates the solutions quality in terms of the conflicts count. The 
best parameter setup is highlighted by a red oval. 

Figure 57 presents several very important tendencies common for both benchmarks:  

• Higher population size does not lead to significant improvement of the solution quality! 

 It can be seen all graphs for both benchmarks are very similar. Actually, the higher 
population size slightly decreases the solutions quality. It can be caused by the slower 
convergence of SGA; however 500,000 generations appear to be sufficient to do it.  

• The crossover probability has only a small impact on the solution quality! The mixture of 
genetic material performed by the crossover operator does not produce good building blocks 
(see building block theory [67]). It is probably due to the great number of potential source-
destination paths. 
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Figure 57. The influence of the population size, and the mutation and crossover probability on the solution 
quality: (a) - (c) AAS benchmark; (d) - (f) AAB benchmark; SGA algorithm. 
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• The evolution is controlled mainly by the mutation operator! The mutation operator 
improved by local search techniques is responsible for the solution quality improvement. 
With higher mutation probability, the number of conflicts significantly decreases. For 
example, if the mutation is not employed, the designed schedules contain about 200 
conflicts. On the other hand, if 90% of all solutions are mutated, the obtained solutions 
attacks the 7-8 conflicts count level for AAS benchmark. 

The following conclusions can be deduced from Figure 57: 

• Appropriate population size is between 50 and 100 individuals. 

• Reasonable crossover probability for appropriate population is about 0.5 - 0.7. 

• It is always better to mutate as many individuals as possible, so that the appropriate value 
is 0.9. 

7.2.2 Optimization quality of MBOA 

In order to obtain a high-quality optimization tool based on MBOA, we have to establish two 
crucial parameters: the population size and the mutation probability. The tested values of 
parameters were: 

• Population size: 50, 100 and 150 individuals 

• Mutation probability: 0.0, 0.2, 0.5, 0.7, 0.9 

Since the mutation operator incorporates also the local search techniques, the values of the 
mutation probability are significantly higher than in related literature. The maximal population size 
was limited by the time complexity of the algorithm (see section 7.3). 

Figure 58 shows the influence of the population size and the mutation probability on the 
solution quality. The results of the AAS benchmark are situated in the left column of the figure: 
cases (a) and (b). The results of the AAB benchmark are situated in the right column of the figure: 
cases (c) and (d). The first row shows the influence of the mutation probability in the whole gamut 
of the mutation probabilities. Since the mutation affects the solution quality dramatically, the graphs 
are detailed in the second row. The x-axis of the graphs represents accruing mutation probability. 
Three different bars representing the results achieved with different population sizes are depicted 
for each mutation probability. The y-axis evaluates the solutions quality in terms of the conflicts 
count. Finally, the best parameter setup is highlighted by a red oval. 

Several interesting tendencies can be observed from Figure 58: 

• Higher population slightly improves the solution quality! This statement is almost true in the 
whole mutation probability gamut for the AAS benchmark. Only in a few cases, can some 
oscillations be observed. The opposite tendency can be observed for the AAB benchmark. 
The higher the population size, the worse the solution quality in most cases. The fitness 
function values for 50 and 100 individuals are very closed indeed.  

• The evolution is controlled mainly by the mutation operator! The mutation influences the 
quality dominantly. Disabling the mutation operator will lead to very poor solutions. Higher 
values of the mutation probability bring only a minority improvement, but even a small 
innovation can bring us a high benefit. 

Analogous to the previous subsection, some statements can be concluded from Figure 58:  

• Appropriate population size is between 100 and 150 individuals. 

• Reasonable mutation probability for appropriate population is about 0.5 - 0.7. 
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Figure 58. The influence of the population size and the mutation probability on the solution quality: 
(a) and (b) AAS benchmark; (c) and (d) AAB benchmark; MBOA algorithm. 

7.2.3 Optimization quality of UMDA 

Finally, the quality of solutions produced by an UMDA algorithm was investigated. As in the 
previous cases, it is necessary to use suitable parameters. They are the population size and the 
mutation probability. The tested values of the parameters were: 

• Population size: 50, 100, and 150 individuals 

• Mutation probability: 0.0, 0.2, 0.5, 0.7, 0.9 

Since the mutation operator also incorporates the local search techniques, the values of the 
mutation probability are significantly higher than in related literature.  

Figure 59 shows the influence of the population size and the mutation probability on the 
solution quality. The AAS results are situated in the left column and the AAB results in the right 
column again. The details are presented in the second row. The x-axis represents accruing mutation 
probability. Three different columns representing the results achieved with different population 
sizes are depicted for each mutation probability. The y-axis evaluates the solutions quality. Finally, 
the best parameter setup is highlighted by a red oval. 
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Figure 59. The influence of the population size and the mutation probability on the solution quality: 
(a) and (b) AAS benchmark; (c) and (d) AAB benchmark; UMDA algorithm. 

Similar tendencies to the MBOA algorithm can be observed from Figure 59: 

• The population size has only a small influence on the solution quality! As accrue from the 
figure, higher population size sometimes improves the solution quality, but sometimes does 
not. From this point of view, it is better to use a smaller population due to lower 
computation expensiveness.  

• The evolution is controlled mainly by the mutation operator! If the mutation operator is not 
employed, the quality of the produced solutions is poor. The quality of the solutions 
dramatically appreciates incorporating the mutation operator into the evolution process. It is 
very interesting that even small mutation probability improves the quality many times. The 
higher values of the mutation probability only bring relatively small additional 
improvements.  

Analogous to the previous subsections, some statements can be concluded from Figure 59:  

• Appropriate population size is between 50 and 100 individuals. 

• Reasonable mutation probability for an appropriate population is about 0.7 - 0.9. 
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7.2.4 Summary 

This subsection summarizes the quality of the solution produced by proposed optimization tools. 
Figure 60 compares the achieved solution quality using the best parameters setups for AAS and 
AAB benchmarks.  

The best solutions for the AAS benchmark are produced by MBOA. Let us note that solutions 
produced by UMDA achieve very similar quality. SGA produces slightly worse solutions than both 
other optimization tools. The best solutions for the AAB benchmark are produced by UMDA. There 
are many more differences in solution quality between the investigated tools. SGA produces 
solutions with approximately 30% worse quality than UMDA. The worst solutions are produced by 
the MBOA algorithm with about twice as worse quality. 

For all these reasons, UMDA can be declared the best optimization tool for both tested 

benchmarks.  
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        (a) AAS benchmark               (b) AAB benchmark 

Figure 60. The comparison of achieved solution quality by different optimization tools.  

7.3 Experimental Comparison of Optimization Speed 

The second experimental work deals with the optimization speed of the proposed optimizations 
tools. The goal of these measurements was to estimate the time complexity of proposed algorithms 
and select the fastest one. The same benchmarks as in section 7.2 were used.  

The execution times of 500,000 generations of all three optimization tools were measured for 
both AAB and AAS benchmarks. Then, the measured times were converted into generation time. 
The generation time is the time that one generation takes to be executed. Thirty experimental runs 
were executed for all the parameter setups. All graphs show the mean values of the generation time 
in milliseconds over all 30 runs. All results were measured on IBM Blade servers equipped with 2x 
dualcore AMD Opteron 275 processors and supplied by 4GB DDR2 RAM at 800 MHz. 

In order to be able to compare all three optimization tools, the parameter values have to be set as 
close as possible with respect to the quality of produced solutions.  

The following parameters values were used: 

• Population size: 50, 100, and 150 individuals 

• Mutation probability: 0.9 

• Crossover probability: 0.9 
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Figure 61 shows the generation time in milliseconds measured for all three optimization tools. 
The results of the AAS benchmark are situated in the left column of the figure: cases (a) and (b) 
while the results of the AAB benchmark are situated in the right column of the figure: cases (c) and 
(d). The x-axis represents the increasing population size, the y-axis evaluates the generation time in 
milliseconds.  

First, we can take note the incorporable higher generation time of the MBOA tool. MBOA is 
nearly a hundred times slower than SGA and UMDA. MBOA exploits a very complex probabilistic 
model to be able to solve hard real-world tasks. It actually achieved the best solution quality for the 
AAS benchmark. Unfortunately, the creation phase of such a complex model consumes too much 
time.  

The second row of Figure 61 details the remaining optimization tools. It is evident that a simple 
genetic algorithm is approximately about 30-40% faster than UMDA. Although, UMDA belongs to 
an EDA algorithm, its model is very simple. Furthermore, the differences between GA and UMDA 
go down for the AAB benchmark. 

Finally, if we compare AAS and AAB generation times, we can observe a marked growth. The 
growth is caused by a longer genome in the case of AAB (three components per gene against two 
components per gene in AAS), and also more complex fitness function (restoration heuristic). 

For these reasons, we SGA can be declared the fastest optimization tool for both tested 

benchmark. 
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Figure 61. The performance of investigated optimization tools with the near optimal parameter setups: 
(a) and (b) AAS benchmark; (c) and (d) AAB benchmark. 
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7.4 Experimental Comparison of Optimization Scalability 

This subsection deals with the scalability that indicates the ability to handle growing amounts of 
work in a graceful manner. Two different characteristics of the proposed optimization tools were 
investigated. First, we focused on the number of fitness evaluations needed to get the global 
optimum (NE). Second, we focused on the success rate representing the percentage of occurrence of 
the global optimum in ten performed runs (SR). The global optima is represented by a conflict-free 
(fitness function equals to zero) communication schedule reaching the lower bound on the number 
of communication steps. 

Both these characteristics were examined using our familiar hypercubes. Five different instances 
of hypercube topology with 8, 16, 32, 64 and 128 nodes served these tasks. All of the four basic 
communication patterns were used to examine the behavior of the tools for this time. Only ten 
experimental runs were executed because of an excessive time complexity in order of days for some 
experimental setups. Appropriate parameters were set up according to tips described in subsection 
7.2: 

• Population size: 100 individuals  

• Mutation probability: 0.9 

• Crossover probability: 0.9 

The preliminary results in this field have been published in [XVI], [XXII], but these results have 
not taken into account acceleration and restoration heuristic, incorporated into the present version so 
the results had to be recomputed again for the following sections.  

7.4.1 Scalability of scatter based communications 

Figure 62 presents the growth of the NE characteristic in dependence on the hypercube size. The 
figure shows the results for the OAS benchmark, case (a); and for the AAS benchmark, case (b). 
The x-axis of the graphs represents accruing hypercube size. The y-axis evaluates the needed 
number of fitness function evaluations to reach the global optima for a particular benchmark. The 
NE characteristics are completed by the SR ones shown in Table 3 and Table 4. The configurations 
of the hypercubes, where some tool discovered the global optima in all experimental runs, are 
highlighted in red.  

All proposed tools scale well for an OAS pattern. Only a linear dependence of NE on the 
topology size was observed. Furthermore, the values of NE characteristic are very favorable and 
allow us to solve more complex topologies. SE characteristics also promise a high yield of the 
optimization process (most runs will find the global optima). 

If we look carefully through both characteristics in Figure 62a and Table 3, we will be able to 
make some conclusions valid for the OAS communication pattern: 

• SGA needs twice smaller NE than MBOA, but the success rate (SR) is the lowest of all the 
tools. The 100% success rate is reached only for the smallest hypercube.  

• MBOA needs the most NE (it is the slowest), but reaches very good SR, comparable to 
UMDA. 

• UMDA conducts best in both of the characteristics. It is the faster tool, and what is more 
important, it also attains the highest SR of all the tools.  

Optimization of AAS pattern is a much more difficult task. Let us note that if a hypercube is 
twice expanded, the number of pair-wise communication will be doubled in the OAS pattern. But 
what will happen in the case of AAS? The number of pair-wise communication increases four 
times! That is why the proposed tools attain the values of about a million evaluations. 
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More than quadratics dependence of NE on the hypercube size can be observed. The SGA was 
not able to reach the optima in all cases. Accordingly, the corresponding bars in Figure 62b are 
crossed. Furthermore, no tool was able to reliably solve bigger instances of hypercube than a 32-
node one. Also SR statistics are worse than in the case of OAS. SR characteristic notify us that the 
search for the optimal AAS schedules on larger topologies is not very effective. Practically 90% of 
the experimental runs will get stuck in a local optima (i.e. a few conflicts will remain in the 
schedule). It makes us to increase the minimal number of communication steps and thereby simplify 
the task, but at the cost of performance lost in the designed schedule.  
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         (a) OAS benchmark             (b) AAS benchmark 

Figure 62. The scalability of investigated optimization tools - the numbers of fitness functions evaluations 
to reach global optima of scatter CCs with optimal parameter setups.  

Some conclusion valid for the AAS pattern can be made from Figure 62b and Table 4 

• SGA is not a suitable tool for this communication pattern. It is able to solve only the 
smallest hypercube, and moreover with very small reliability. 

• MBOA reaches better SR values. However NE values are very high, the dependency on the 
hypercube size is nearly quadratic.  

• UMDA conducts best in both of the characteristics again. But the NE grows nearly 
exponential (2.2M evaluations for hyper-16 against 82M evaluations for hyper-32). The 
larger topologies cannot be probably solvable by this tool. 

Table 3. The success rate with increasing benchmark instances; OAS benchmark. 

 Hyper-8 Hyper-16 Hyper-32 Hyper-64 Hyper-128 

SGA 100% 80% 70% 70% 70% 
MBOA 100% 100% 100% 90% 80% 
UMDA 100% 100% 100% 100% 90% 

 

Table 4. The success rate with increasing benchmark instances; AAS benchmark. 

 Hyper-8 Hyper-16 Hyper-32 Hyper-64 Hyper-128 

SGA 10% - - - - 

MBOA 60% 30% 10% - - 

UMDA 100% 40% 10% - - 
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7.4.2 Scalability of broadcast based communications 

Figure 63 presents the growth of the NE characteristic in dependence on the hypercube size for 
broadcast patterns. The figure shows the results for the OAB benchmark case (a); and for the AAB 
benchmark case (b) in the same way as in the previous section. The NE characteristics are 
completed by the SR ones shown in Table 5 and Table 6. The configurations of the hypercubes, 
where some tool discovered the global optima in all experimental runs, are highlighted in red.  

The scalability of OAB pattern is a little worse than in the case of OAS, but still remains on the 
favourable level. NE characteristics commonly attain the values up to millions against several 
hundred of thousand. It is caused by a one third longer chromosome and more complex 
communication patterns. There is an interesting drop of NE for 64-node hypercube (hyper-64) in the 
figure. It is related to a rounding up function used in the formulas of the lower bounds. This 
phenomenon will be explained later in section 7.4.3. SR characteristics also look good. All the tools 
are able to produce optimal solution with a sufficient probability.  

If we have a careful look at both characteristics in Figure 63a and Table 5, we will be able to 
make some conclusions valid for the OAB communication pattern: 

• SGA, MBOA and UMDA achieve similar NE up to hyper-64. Bigger differences can be 
observed as late as the 128-node hypercube. It can be said SGA achieves moderate NE with 
a slightly lower success rate. 

• MBOA needs the most NE (it is the slowest), but reaches very good SR comparable to 
UMDA. 

• UMDA conducts best in both of the characteristics again. It is the fastest tool (three times 
faster than MBOA), and what is more important, it also attains the highest SR of all the 
tools, however the SR values are very closed. 
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        (a) OAB benchmark              (b) AAB benchmark 

Figure 63. The scalability of investigated optimization tools - the numbers of fitness functions evaluations 
to reach global optima of broadcast CCs with optimal parameter setups. 

NE characteristics for the AAB pattern embody an exponential growth. MBOA and UMDA 
were able to find demanded solutions up to 32-node hypercube in a relatively short time. 
Unfortunately, MBOA reaches only a 10% success rate for this topology. Moreover, SGA was not 
able to solve the benchmark. On the other hand, UMDA broke this limit and solved also a 64-node 
hypercube but with a very low SR.  
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Some conclusions valid for the AAB pattern can be made from Figure 63b and Table 6: 

• SGA is not a suitable tool for this communication pattern. It is able to solve only two 
smallest hypercubes, and moreover with very small reliability. 

• MBOA reaches better SR values but with a higher NE. Unfortunately, it failed at solving the 
biggest hypercube.  

• UMDA conducted best in both of the characteristics again. But the NE grows exponential 
(160k evaluations for hyper-32 against 64.6M evaluations for hyper-64). A drop of NE is 
present between a 16 and 32-node hypercube. 

Table 5. The success rate with increasing benchmark instances; OAB benchmark. 

 Hyper-8 Hyper-16 Hyper-32 Hyper-64 Hyper-128 

SGA 100% 100% 50% 50% 30% 
MBOA 100% 100% 100% 70% 50% 
UMDA 100% 100% 100% 90% 60% 

 

Table 6. The success rate with increasing benchmark instances; AAB benchmark. 

 Hyper-8 Hyper-16 Hyper-32 Hyper-64 Hyper-128 

SGA 70% 20% - - - 

MBOA 100% 50% 10% - - 

UMDA 100% 80% 40% 10% - 

7.4.3 Summary 

This subsection summarizes scalability of proposed optimization tools. Two different characteristics 
were used to evaluate the scalability in terms of the number of evaluations needed to reach the 
global optima and the success rate of its discovery. We could see the values of these characteristics 
for all the proposed CC patterns. 

Generally, the higher SR was observed at one-to-all patterns, where it was not a problem to 
solve the hypercubes up to 128 nodes. On the other hand, the limits of the proposed tools were 
found near the 32/64 node boundary in cases of all-to-all patterns.  

Using real generational times presented in section 7.3 for the optimal population size we can 
estimate the real time complexity for a particular optimization tool, a given topology and 
communication pattern. For simplicity, one example will be introduced. Consider the AAB pattern, 
hyper-16 topology and UMDA optimization tool. The evolution process will take approximately: 

stimegeneration
sizepop

NE
Hypert AAB 4.155104.8

100

1085.1
_

_
)16( 3

6

=⋅⋅
⋅

==− −
.  

Note there is only a 40% probability to obtain the global optimum. 

Finally, we should explain an interesting gap occurred in the NE characteristics. Let us compare 
the NE characteristics for the OAB communication pattern, Figure 63a. It is related to a rounding up 
function used in the formulas of the lower bound. While for hyper-32 the unrounded lower bound 
on the number of steps is 1.93, for hyper-64 it is 2.13. The time complexity of an optimal 
communication schedule can not exceed two communication steps in the first case, whereas it can 
be split into three steps in the second case. By comparing not rounded and rounded time 
complexities we can make a conclusion that in the case of a hyper-64 topology, much more 
interconnection links remain unused and the evolutionary algorithm has more space to find the 
optimal schedule. The same abnormality can be seen in many other topologies and CC patterns. 

Finally, the UMDA tool can be declared as the best scaling tool. 
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7.5 Conclusions 

The goal of this section was a search for the most suitable optimization tool. We examined in depth 
the qualities of Standard Genetic Algorithm (SGA) [66], Mixed Bayesian Optimization Algorithm 
(MBOA) [148] and Univariate Marginal Distribution Algorithm (UMDA) [137].  

Firstly, we looked for suitable parameters for all the optimization tools. We compared the 
quality of obtained solutions and chose the best ones. We also compared the tools mutually and 
found out that UMDA reached the best results. Then we compared the generational time of the 
proposed tools with suitable parameters, and after that the time complexity was estimated. From 
these results, we deduced that SGA is the fastest of all. Finally, we aimed for the scalability of the 
proposed tools. From the results we concluded UMDA scaled best.  

Finally, we can conclude this section and acclaim the winner. The UMDA algorithm seems to 
be the most effective and powerful optimization tool for our task. For all these reasons, it will be 
used for all further experiments. 
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Chapter 8  

Experimental Results of the 

Quest for High Quality 

Schedules 

This chapter introduces the results of the proposed technique of evolutionary design of collective 
communication on wormhole networks. The key requirements for the schedules were described in 
chapter 4. The main ideas of the proposed technique were spelled out in chapter 6. The previous 
chapter solved the issue of a suitable optimization tool selection and appropriate parameters setups. 
In this chapter, we will investigate the skills of the proposed technique implemented into UMDA 
[139] on various interconnection topologies, including several common topologies, optimal 
diameter degree topologies, some special topologies, multistage and fat topologies. We will also 
briefly discuss the results achieved on faulty topologies and with many-to-many communication 
patterns.  

The goal of this chapter is to verify the quality of the technique and to determine the attainable 
upper bounds on various interconnection networks. Moreover, we would like to prove that our 
evolutionary based technique will be able to reinvent well known collective communication 
algorithms like recursive doubling [128], Ho-Kao [84], etc. As we could also see in section 4.2,
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there are many interconnection topologies with unknown optimal schedules for some CC patterns. 
Actually, a systematic approach that optimally executes the CC in asymmetric, irregular, fat or 
faulty topologies does not exist. Consequently, this chapter will demonstrate the most interesting 
newly invented communication schedules for some promising interconnection networks. The 
achieved results (the upper bounds of time complexity in terms of numbers of communication steps) 
are also well-arranged in appendix. 

8.1 Common Interconnection Topologies  

This section introduces the results of an implementation of the proposed technique into the UMDA 
algorithm on the interconnection topologies often used to build parallel computers. In this section, 
we focus on hypercubes, rings, meshes and tori. The upper bounds of CC schedules produced by 
evolution will be compared to theoretical lower bounds. The evolved schedules will be presented 
for the most interesting cases.  

8.1.1 Hypercubes  

Hypercubes are regular direct topologies with known optimal scheduling, except for OAB reachable 
by known optimal schedules for any hypercube size. Table 7 summarizes the time complexity of 
evolved schedules. From the table, it is evident that the upper bounds (found by evolution) are the 
same as the lower bound mathematically derived in most cases. Two integers in one cell separated 
by a slash indicate that the lower bound (a smaller integer) has not been reached. A single integer 
represents both the lower and the upper identical bounds reached by UMDA. Empty cells 
(illustrated by hyphens) denote the cases that have not been tested for its time complexity yet. 

OAS schedules reached the lower bounds in all cases. OAB schedules were equaled in the best 
known algorithms like double tree and Ho-Kao. The optimal schedule reaching 3 steps for a 256-
node hypercube is not known up to now. The evolution equaled only the best known suboptimal 
solution of 4 steps; however the scheduling with 3 steps was almost successful. Only one conflict 
remained. Unfortunately, it was not possible to remove it even after days of optimization. UMDA 
also found optimal schedules for AAB up to 64-node and AAS up to 32-node instances. In the case 
of a 64 node hypercube, the lower bound had to be increase by 3 steps to be able to obtain 
a conflict-free schedule at least. Let us note the chromosome size for a 64-node hypercube and AAS 
is 8192 genes with dozens of their possible values!  

Table 7. Time complexity of the evolved schedules for all-port hypercubes. 

Topology OAS AAS OAB AAB 

Hypercube-8 3 4 2 3 
Hypercube-16 4 9 2 4 
Hypercube-32 7 16 2 7 
Hypercube-64 11 35/32 3 11 
Hypercube-128 19 - 3 - 

Hypercube-256 32 - 4/3 - 

 

We will now present the optimal schedules at least for the 8-node hypercube because we are 
limited by their size and complexity. Table 8 presents the optimal schedules for OAS and OAB. 
OAS communication can be scheduled in three time steps (slots). The UMDA reinvented the 
conflict-free sequential tree (ST) [147] in this case. If we have a look at the OAB schedule, we 
could find a modified double tree in this schedule. The message is sent to three nodes at different 
distances in the fist step. Consequently, node no. 4 helps the root with the broadcast. In an original 
double tree algorithm [128], the message is sent to the furthermost node (here node no. 7 at the 
distance of 3). In our case, the root of the second tree was chosen in the distance of 2. 
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Table 8. Optimal OAS and OAB schedules on the 8-node all-port hypercube. 

OAS  OAB 

step from→to path  step from (origin)→to path 

0→4 0,4      0→1 0,1 
0→5 0,1,5      0→3 0,2,3 1 
0→6 0,2,6  

1 
    0→4 0,4 

0→1 0,1      0→2 0,2 
2 

0→2 0,2      0→5 0,1,5 
0→3 0,1,3  4 (0)→6 4,6 

3 
0→7 0,4,5,7  

2 

4 (0)→7 4,5,7 

 

The optimal AAS schedule cannot be executed in less than four communication steps (see Table 
9). In each step, every node can distribute up to three distinct messages (d = 3). Although we tried 
to study the schedule carefully, we were not able to find any system or regularity of the schedule. 
We can only note the schedule is formed by pairwise communications that do not cause any 
conflict.  

Table 9. Optimal AAS schedule on the 8-node all-port hypercube. 

time step/from → to (path) 
source 

step 1 step 2 step 3 step 4 

0→3 (0,2,3) 0→1 (0,1) 0→2 (0,2) 0→6 (0,2,6) 
 0→5 (0,4,5) 0-4 (0,4) 0→7 (0,4,5,7) 0 
    
1→0 (1,0) 1→6 (1,5,7,6) 1→2 (1,3,2) 1→3 (1,3) 
 1→7 (1,3,7) 1→4 (1,5,4) 1→5 (1,5) 1 
    
2→4 (2,0,4) 2→0 (2,0) 2→5 (2,6,7,5) 2→1 (2,0,1) 
 2→6 (2,6) 2→7 (2,3,7) 2→3 (2,3) 2 
    
3→4 (3,7,6,4) 3→0 (3,1,0)  3→1 (3,1) 
3→5 (3,1,5)   3→2 (3,2) 3 
3→6 (3,2,6)   3→7 (3,7) 
4→1 (4,0,1) 4→3 (4,0,2,3) 4→5 (4,5) 4→0 (4,0) 
4→7 (4,5,7)  4→6 (4,6) 4→2 (4,6,2) 4 
    
5→3 (5,1,3) 5→2 (5,4,6,2) 5→1 (5,1) 5→0 (5,1,0) 
5→6 (5,4,6)  5→7 (5,7) 5→4 (5,4) 5 
    
6→2 (6,2) 6→4 (6,4) 6→0 (6,2,0) 6→5 (6,7,5) 
6→3 (6,7,3) 6→7 (6,7) 6→1 (6,4,0,1)  6 
    
7→5 (7,5) 7→1 (7,5,1) 7→0 (7,3,1,0) 7→3 (7,3) 
 7→2 (7,3,2) 7→6 (7,6) 7→4 (7,6,4) 7 
    

 

In contrast, the AAB schedule illustrated in Table 10 embodies a strongly regular structure. The 
communication is guided by a controlled flood [203]. The schedule is formed by neighbor-to-
neighbor transfers. The broadcast messages can be moved to only an uninformed adjacent node.  
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Table 10. Optimal AAB schedule on the 8-node all-port hypercube. 

time step/from → to (path) 
source 

step 1 step 2 step 3 

0→1 (0,1) 1→3 (1,3) 6→7 (6,7) 
0→2 (0,2) 4→5 (4,5)  0 
0→4 (0,4) 4→6 (4,6)  
1→0 (1,0) 3→2 (3,2) 4→6 (4,6) 
1→3 (1,3) 5→4 (5,4)  

1 
 

1→5 (1,5) 5→7 (5,7)  
2→0 (2,0) 0→1 (0,1) 7→5 (7,5) 
2→3 (2,3) 0→4 (0,4)  2 
2→6 (2,6) 3→7 (3,7)  
3→1 (3,1) 1→0 (1,0) 0→4 (0,4) 
3→2 (3,2) 1→5 (1,5)  3 
3→7 (3,7) 2→6 (2,6)  
4→0 (4,0) 5→1 (5,1) 7→3 (7,3) 
4→5 (4,5) 0→2 (0,2)  4 
4→6 (4,6) 6→7 (6,7)  
5→1 (5,1) 4→0 (4,0) 3→2 (3,2) 
5→4 (5,4) 7→3 (7,3)  5 
5→7 (5,7) 7→6 (7,6)  
6→2 (6,2) 2→0 (2,0) 5→1 (5,1) 
6→4 (6,4) 2→3 (2,3)  6 
6→7 (6,7) 7→5 (7,5)  
7→3 (7,3) 3→1 (3,1) 2→0 (2,0) 
7→5 (7,5) 6→2 (6,2)  7 
7→6 (7,6) 6→4 (6,4)  

8.1.2 Rings  

The bidirectional ring topology, though very simple, is not free from the routing deadlock because 
the channel dependency graph is not acyclic [47]. This can be seen on a unidirectional as well as 
a bidirectional ring. The problem can be solved by the introduction of virtual channels [47] and by 
implementing rules on channel usage. We assume that these rules are adhered to automatically in all 
our CC schedules and thus the deadlock is avoided. 

Table 11 summarizes the upper bounds τCC(G) reached by UMDA for unidirectional and 
bidirectional rings of sizes 8, 16, 24 and 32 nodes. From the table, it is evident that the lower 
bounds τCC(G) and the upper bounds τCC(G) are mostly identical. The only exception is AAS 
communication in larger networks, where the lower bounds are apparently too tight. In fact, the 
obtained numerical results have led us to improve of theoretical lower bounds for AAS 
communication. The lower bound for AAS and WH networks in wide use has been seen in [134], 
[39]: 
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For orthogonal topologies such as hypercubes, the correction is not needed as ∆=0 and two 
expressions in which the maximum is sought for are equivalent. However, for other networks the 
inclusion of the correction is essential and may change the bound dramatically (e.g. for the 8-node 
unidirectional ring the lower bound has changed from 16 to 28 steps!), see section 3.4.2. 
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Table 11. Time complexity of the evolved schedules for bidirectional and unidirectional rings. 

Topology OAS AAS OAB AAB 

Ring-bi-8 4 8 2 4 
Ring-bi-16 8 34/32 3 8 
Ring-bi-24 12 78/72 4/3 12 
Ring-bi-32 16 140/128 4 16 
Ring-uni-8 7 28 3 7 
Ring-uni-16 15 128/120 4 15 
Ring-uni-24 23 300/276 5 23 
Ring-uni-32 31 550/496 5 31 

 

OAS algorithm spreading customized messages to every partner is trivial because the source has 
to inject 1 (d = 1) or 2 (d = 2) messages at a time into the ring and the lower bound clearly applies. 
A sample OAS schedule on a unidirectional 8-node ring is illustrated in Table 12. The optimal OAB 
algorithm reaching the lower bound recursively doubles (k = 1) or triples (k = 2) the number of 
informed nodes in each step. The ring is split into 2 halves (k = 1) or 3 thirds (k = 2) and then the 
source sends a message in its image in the other half or in other thirds. The same schedule was 
reinvented by UMDA exactly for the unidirectional 8-node ring, see Table 12. 

Table 12. Optimal OAS and OAB schedules on the 8-node unidirectional ring. 

OAS  OAB 

step from→to path  step from (origin)→to path 

1 0→4 0,1,2,3,4  1 0→4 0,1,2,3,4 
2 0→3 0,1,2,3  0→2 0,31,2 
3 0→6 0,1,2,3,4,5,6  

2 
4 (0)→6 4,5,6 

4 0→5 0,1,2,3,4,5  0→1 0,1 
5 0→7 0,1,2,3,4,5,6,7  2 (0)→3 2,3 
6 0→2 0,1,2  4 (0)→5 4,5 
7 0→1 0,1  

3 

6 (0)→7 6,7 

 

The AAS communication could be implemented as (P–1) permutations, deadlock-free with 
virtual channels, but not without link congestions (conflicts). Communication time thus cannot be 
estimated. We have therefore tried to find an AAS communication schedule organized into 
congestion-free steps with the usage of UMDA. Though in most cases the optimal solution was not 
found, even a suboptimal solution could prevent contentions and in addition improve the 
performance of a parallel algorithm. 

There is a sample solution of an optimal AAS schedule for the 8-node bidirectional ring shown 
in Table 13. For simplicity the path descriptions were omitted. The number of steps reaches the 
lower bound of 8 and 56 messages get distributed. In each step some nodes use one or all (two) their 
ports while other nodes are idle. For example, in step 1, node no. 4 is communicating 
simultaneously on 2 ports; nodes no. 0, 2, 3 and 7 are communicating on one of their ports; and 
nodes no. 1, 5 and 6 are idle. It is important to note that all 16 channels are busy in all the steps. 

AAB communication around a 1-port ring also has also a straightforward solution: all 
processors just send their messages in one direction around the ring and the communication 
proceeds by pipelining in P–1 steps. All the channels are used in all steps. In a 2-port model, every 
node sends its messages into two branches of a primitive broadcast tree and they do one hop in each 
step. It is easily seen that these broadcast trees of all the nodes are time-arc disjoint (i.e. no channel 
is used more than once in a single step) [18]. Thus the lower bound can again be reached. In this 
case, UMDA was able to reinvent this algorithm (see Table 13).  
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Table 13. Optimal AAS and AAB schedules on the 8-node bidirectional all-port ring. 

AAS AAB 

from → to from → to 
source 

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 
source 

step 1 step 2 step 3 step 4 

0→4 0→3 0→1  0→2  0→7  0→1 1→2 2→3 5→4 0 
 0→5   0→6    

0 
0→7 7→6 6→5  

 1→0 1→2 1→6  1→3  1→4 1→0 2→3 3→4 6→5 
1 

  1→5     1→7 
1 

1→2 0→7 7→6  
2→0 2→1 2→6 2→3 2→5 2→7 2→4  2→1 1→0 4→5 5→6 

2 
        

2 
2→3 3→4 0→7  

3→4 3→5  3→1  3→2 3→0  3→2 2→1 1→0 6→7 
3 

   3→6  3→7   
3 

3→4 4→5 5→6  
4→2    4→0  4→3 4→1 4→3 3→2 2→1 1→0 

4 
4→7      4→5 4→6 

4 
4→5 5→6 6→7  

 5→2 5→1  5→0 5→3 5→7  5→4 4→3 7→0 0→1 
5 

 5→6   5→4    
5 

5→6 6→7 3→2  
 6→0 6→7 6→2 6→5  6→4 6→1 6→5 7→0 0→1 1→2 

6 
   6→3     

6 
6→7 5→4 4→3  

7→3  7→0   7→1 7→2 7→4 7→0 0→1 1→2 4→3 
7 

     7→5 7→6  

 

7 
7→6 6→5 5→4  

8.1.3 Meshes and tori 

Meshes and tori are also very popular topologies. Meshes can be easily manufactured on a chip due 
to local interconnections only, but they have other disadvantages. The main one is a lack of node 
symmetry. Meshes are also irregular networks as the node degree is not constant. While the corner 
nodes have degree 2, the nodes on the boundary have 3 links and internal nodes 4 links. Therefore, 
one-to-all schedules for all-port meshes (k = d) will need more or less steps accordingly. This is 
a big difference in comparison to node symmetric tori networks containing wrap-around links.  

As far as 2D meshes are concerned, the dimension-ordered deterministic routing (first in x, then 
in y dimension) on meshes and tori is known to be deadlock-free [131]. A certain degree of 
adaptivness can be obtained by more relaxed routing, such as North-last or West-first strategy [64]. 

Table 14 confronts the upper bounds achieved by evolution with the mathematically derived 
ones. There are several square instances of meshes and tori with sizes from 3×3 nodes up to 10×10 
nodes in the table. We also investigated two cases of rectangular topologies with dimensions 3×4 
and 4×8. There are three different values for OAB and OAS in the case of meshes, reflecting three 
chosen root node positions (left corner, the centre of the upper edge, the centre of the mesh).  

During the search for the optimum schedule, it may be necessary to include not only multiple 
minimum paths, but sometimes even non-minimum ones! Figure 64 shows one example - OAS 
communication in the mesh topology. In order to reach the minimum number of communication 
steps (the lower bound is 5 steps), 3 messages must be injected into a network in every step by the 
source node. The last step requires non-minimum routing. 

OAB in 1-port 2D-meshes is a relatively easy task: recursive doubling (as on the ring) is done 
first in x dimension and as soon as all nodes in row x are informed, we do OAB in all columns 
simultaneously, again by recursive doubling (see Figure 35). On the other hand, the development of 
an optimal OAB algorithm in all-port 2D-meshes is difficult because the lower bound is pretty tight. 
In order to achieve it, we need an algorithm in which every node, once informed, must find in every 
subsequent step four uninformed nodes and deliver them the message, so that globally all used paths 
are link-disjoined. Since meshes, unlike tori, are not node-symmetric, there are no elegant 
algorithms for them. Here again we have to resort to evolutionary optimization that produced 
successful optimal schedules up to 10×10 mesh and 7×7 tori. If we survey the upper bounds 
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presented in Table 14, we will learn that OAS and OAB do not pose a challenge for UMDA. 
Therefore, the evolution is able to produce novel, maybe up to now unknown, schedules.  

Table 14. Time complexity of the evolved schedules for 2D meshes. 

Topology OAS AAS OAB AAB 

Mesh-3x3 4,3,2 6 2,2,2 4 
Mesh-3x4 6,4,3 12 3,2,2 6 
Mesh-4x4 8,6,4 16 3,2,2 8 
Mesh-5x5 12,8,6 32 3,3,3, 12 
Mesh-4x8 16,11,8 64 3,3,3 16 
Mesh-6x6 18,12,9 56/54 4,3,3 18 
Mesh-7x7 24,16,12 - 4,4,3 24 
Mesh-8x8 32,22,16 - 4,4,3 32 
Mesh-9x9 40,27,20 - 4,4,4 - 

Mesh-10x10 50,33,25 - 5,5,5 - 

Torus-3x3 2 4 2 3 
Torus-3x4 3 6 2 3 
Torus-4x4 4 9/8 2 4 
Torus-5x5 6 16/15 2 6 
Torus-4x8 8 33/32 3 11/8 
Torus-6x6 9 30/27 3 9 
Torus-7x7 12 - 3 13/12 
Torus-8x8 16 - 3 18/16 
Torus-9x9 20 - 4/3 - 

Torus-10x10 25 - 4/3 - 

 
 
 

 

Figure 64. Optimal OAS schedule with the usage of non-minimal routing. 
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The similar situation is in the design of TADT trees useful for OAS and AAB communications. 
They are known for square tori, but in the other cases their construction is difficult due to the lack 
of symmetry. On the contrary, the evolution was very successful. It was able to solve the meshes up 
to 8×8 nodes and tori up to 6×6 nodes without any loss of performance in the schedules. In the case 
of 7×7 mesh, only one step worse solution was obtained. Moreover, UMDA could elegantly solve 
rectangular topologies, like mesh-4×8, too.  

Finally, the conflict-free AAS schedules are not known even for square tori. AAS schedules 
were a hard nut to crack, especially in cases of tori. The optimal schedules were designed up to 4×8 
(32 node) mesh and only up to 4×3 tori. Rectangular meshes and tori need more relaxed lower 
bounds, because due to different x and y dimensions not all port can be effectively used.  

Many of evolved schedules embodied a one step higher time complexity. The evolution on very 
large topologies has not been done because the execution time of evolution could simply exceed 
several days. 

Due to the exceeding complexity of the evolved schedules we will not show all-to-all schedules 
and show only one interesting OAB schedule. The root (node no. 0) found two partners in the first 
step, nodes no. 6 and 13. These nodes found other partners and distributed the message to the other 
seven nodes in the second steps. All remaining nodes were informed in the last step. 

Table 15. Optimal OAB schedule on the 4×4 mesh; node 0 which is situated in the left corner is the root.  

step 0 step 1 step 2 

from→to path from→to path from→to path 

0→6 0,1,2,6 0→9 0,1,5,9 0→1 0,1 
0→13 0,4,8,12,13 0→12 0,4,8,12 6→7 6,7 
  6→10 6,10 10→15 10,11,15 
  6→11 6,7,11 11→3 11,7,3 
  13→2 13,9,10,6,2 13→8 13,12,8 
  13→4 13,12,8,4 14→5 14,13,9,5 
  13→14 13,14   

8.2 Optimal Diameter-Degree Topologies 

The evolution has been also applied to several optimal diameter-degree topologies that either 
already found the commercial application (such as scalable Kautz networks, [188]) or are potential 
candidates e.g. for NoCs (like non-scalable Petersen (P = 10) [88], Heawood (P = 14) [220] or Levi 
(P = 30) [121]) networks. The potential of the ODD networks was briefly discussed in section 4.1.2. 

As far as this author knows, performance of collective communications on such networks has 
not been studied as of yet. The reason may be that until recently [188] these networks have not been 
used in commercial systems. Consequently, any designed schedule improves the performance of 
CCs and pushes our knowledge in this area a leap forward.  

The results of an UMDA optimization tool are summarized in Table 16. Two integers in one 
cell separated by a slash indicate that the lower bound (a smaller integer) has not been reached. 
A single integer represents both the lower and the upper identical bounds reached by an EA. An 
asterisk (*) indicates the fact that a non-minimum routing had to be used; otherwise the minimum 
routing was used everywhere else. From the table below it can be concluded that except for the 
AAS pattern, the lower bounds have been reached, and therefore cannot be improved any more. 
However, the upper bounds of AAS are fairly close to the optimum. This is good news for many 
NoC designers because: (1) ODD networks enable us to make highly compact systems, and (2) we 
are able to make it pretty fast now.  

 

 



Chapter 8 Experimental Results of the Quest for High Quality Schedules 

 
 
 

107 

Table 16. Time complexity of the evolved schedules for ODD networks. 

Topology OAS AAS OAB AAB 

Petersen-10 3 5 2 3 
Kautz-12 4 7 2 4 
Heawood-14 5 10/9 2 5 
Levi-30 10 31/28 3 10 
Kautz-36 12* 34/31 3 12 

 

In order to show an example of the optimal schedule, the unidirectional oriented Kautz-12 
network has been chosen. The resulting schedules are presented only for the most complex all-to-all 
communication patterns in Table 17. Some empty slots in the AAS table show that not all links are 
used in every step of AAS.  

The broadcasting sub-trees have been chosen to illustrate the AAB schedule. There are three 
columns (sub-trees) in the AAB table, because all nodes are equipped by three output channels, 
hence they can distribute three messages simultaneously (via nodes no. 3, 4 and 5 in the case of 
source no. 0). The notations 0-3-1 and 0-3-2 denote the following: the message was delivered to 
node no. 3 in the first communication steps. Then, the message was received by nodes no. 1 and 2 
from node no. 3 in the second communication step. Another example, the notation 0-4-x-x-9 
denotes the following statements: Node no. 4 was informed by node no. 0 in the first step; then the 
message did not move two steps; and finally, the message was delivered to node no. 9 by node no. 4 
in the fourth communication step.  

Let us note that the presented solution is not unique, several solutions have been found for both 
AAS and AAB patterns. 

Table 17. Optimal AAS schedule in 7 steps and AAB schedule in 4 steps on the oriented Kautz-12 network. 

AAS AAB 

from→to three subtrees broadcasting source message 
source 

step 1 step 2 step 3 step 4 step 5 step 6 step 7 
source 

tree 1 tree 2 tree 3 

0→9 0→2 0→3 0→6 0→1  0→8   0-3-1   0-4-x-x-9   0-5-x-6 
 0→4 0→7 0→B      0-3-2   0-4-x-x-A   0-5-x-x-7 0 
 0→5 0→A     

0 
   0-4-x-x-B   0-5-x-x-8 

1→7 1→2 1→0 1→3 1→6 1→4    1-6-3   1-8-A   1-x-7-0 
1→9 1→A 1→5   1→B    1-6-4   1-8-x-9   1-x-7-x-2 1 

  1→8     
1 

  1-6-x-x-5   1-8-x-B  
2→7 2→1 2→4 2→0 2→5 2→6    2-9-8   2-A-5   2-B-1 

 2→3 2→9  2→B 2→A    2-9-x-6   2-A-x-4   2-B-x-0 2 
 2→8      

2 
  2-9-x-7   2-A-x-x-3    

 3→1 3→0 3→8 3→5 3→2 3→6   3-0-4   3-1-8   3-2-9 
  3→B  3→9 3→4 3→A   3-0-5   3-1-x-6   3-2-A 3 
     3→7  

3 
   3-1-x-7   3-2-B 

4→A 4→0 4→1  4→3 4→2 4→7   4-9-6   4-A-x-3   4-B-x-x-0 
 4→6 4→8  4→B 4→5    4-9-7   4-A-x-x-5   4-B-x-x-1 4 
     4→9  

4 
  4-9-x-8    4-B-x-x-2 

5→4 5→0 5→A 5→7 5→2 5→6 5→1   5-7-2   5-x-6-x-3   5-x-8-A 
5→B   5→8  5→9 5→3   5-7-x-x-0   5-x-6-x-4   5-x-8-x-9 5 

       
5 

  5-7-x-x-1      5-x-8-x-B 
6→2 6→0 6→1 6→A 6→8 6→3 6→B   6-3-x-0   6-4-9   6-x-5-7 
6→5 6→4   6→9 6→7    6-3-x-1   6-4-x-A   6-x-5-8 6 

       
6 

  6-3-x-2   6-4-x-B    
7→0 7→6  7→3 7→8 7→5 7→2   7-0-x-4   7-2-x-9   7-x-1-x-6 
7→1   7→9  7→B 7→4   7-0-x-5   7-2-x-A   7-x-1-x-8 7 
7→A       

 

7 
  7-0-x-x-3   7-2-x-B  
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AAS AAB 

from→to three subtrees broadcasting source message 
source 

step 1 step 2 step 3 step 4 step 5 step 6 step 7 

 
source 

tree 1 tree 2 tree 3 

 8→2 8→9 8→1 8→4 8→3 8→0   8-9-x-x-6   8-A-3-x-0   8-x-B-1 
  8→B 8→7   8→5   8-9-x-x-7   8-A-x-5   8-x-B-2 8 
   8→A   8→6 

8 
   8-A-x-x-4  

9→6 9→7 9→2 9→5 9→0 9→1    9-6-x-3   9-7-0   9-8-x-x-A 
9→A  9→4 9→8 9→3     9-6-x-4   9-7-x-1  9 

    9→B   
9 

  9-6-x-5   9-7-x-2-B  
A→1 A→8 A→3 A→2  A→4 A→0   A-3-0   A-4-B   A-5-7 
A→7  A→6 A→5      A-3-x-x-1   A-4-x-9-8   A-5-x-x-6 A 
A→B   A→9    

A 
  A-3-x-x-2     

B→5  B→0 B→A B→4 B→1 B→8   B-1-6   B-x-0-3   B-x-2-x-9 
B→6  B→2  B→7 B→3 B→9   B-1-x-8   B-x-0-x-4   B-x-2-x-A B 

       

 

B 
  B-1-x-x-7   B-x-0-x-5  

8.3 Novel Network Architectures 

This section explores the quality of evolved CC schedules for some novel interconnection networks. 
First, the small K-ring [112] and Midimew topologies (see section 4.1.3) were examined both with 
8 nodes. This section is mainly targeted to spidergon [102] (also called octagon) and AMP topology 
[28]. Spidergon is also a novel on-chip network architecture suitable for the aggressive on-chip 
communication demands of SoCs in several application domains and also for networking SoCs 
[102] (see Figure 31a). As a ring, it is also not free from deadlock and virtual channels have to be 
used. The AMP topology is a result of genetic graph optimization [28]. A Minimum Path (AMP) 
[29] configuration is constructed so that the network diameter and the average inter-node distance is 
minimized. Let us note that AMP is an asymmetric topology. 

Table 18 compares the time complexity of evolved schedules for particular communication 
patterns. From the table, it can be seen that UMDA was able to design optimal schedules for OAS 
and OAB in all instances of the proposed topologies. The obtained schedules for AAB on spidergon 
also reached the lower bounds. In the case of AAS, UMDA tried to approach the lower bounds as 
close as possible. In some cases it was verified that the difference between lower and upper 
(reached) bounds is due to the minimum routing strategy used in our approach. Inclusion of the non-
minimum routing would have led to an enormous increase of possible source-destination paths and, 
therefore, was not explored. However, in some small networks the analysis of the last remaining 
conflict in fitness function revealed that it can be eliminated if non-minimum routing is used.  

After checking of AAB results on AMP topology, it could be concluded that UMDA does not 
offer very good results (e.g. two steps worse schedule for 23 nodes). This problem has been hardly 
studied. It originates in the asymmetrical nature of AMP where there are some bottlenecks and 
hotspots that make it impossible to design an optimal schedule. Consequently, the lower bound 
cannot ever be found. Let us note that this can be a problem of more topologies, not only AMP. The 
theoretical lower bounds tell us only the lowest possible time complexity of the schedule for 
a particular CC and topology, but they do not tell us anything about whether it is possible to reach 
them! On the other hand, UMDA surprisingly designs optimal AAS schedules for all AMP 
instances.  

Collective communications on the generic 8-node symmetric spidergon network are easy. One-
to-All communications are done the same way for every source node. AAS can be clearly done in 
three steps and OAB needs two steps. In order to implement AAB, we have to use such 
a broadcasting tree that is time-arc-disjoint (TADT) and can be used by all nodes simultaneously 
without creating conflict. The same tree as well as for store-and-forward switching can be used, 
restricting communication in each step to only between neighbors.  
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Table 18. Time complexity of the evolved schedules for some novel networks. 

Topology OAS AAS OAB AAB 

K-Ring-8 2 3 2 2 
Midimew-8 2 3 2 2 
Spidergon-6 2 3 2 2 
Spidergon-8 3 4 2 3 
Spidergon-12 4 9 2 4 
Spidergon-16 5 17/16 2 5 
Spidergon-20 7 26/25 3 7 
Spidergon-24 8 37/36 3 8 
Spidergon-28 9 51/49 3 9 
Spidergon-32 11 70/64 3 11 
Spidergon-36 12 91/81 3 12 
Spidergon-64 21 - 3 24 
AMP-8 2 3 2 2 
AMP-23 6 14 2 8/6 
AMP-32 8 22 3 8 
AMP-42 11 31 3 14/11 
AMP-53 13 46 3 14/13 

 

The most complex AAS communication is not performed the same way by all nodes - there is 
no analogy to the TADT. In the design of an AAS schedule, the same approach has been used as 
with the bidirectional ring, namely evolutionary optimization. The optimum AAS schedule is given 
in Table 19. Since AMP is an asymmetrical network, no systematic approach to schedule CC exists 
so the best ever known schedules are presented. The optimal schedules have been shown in Figure 
23 and Figure 25 in section 3.4.1 and 3.4.2. 

Table 19. Optimal AAS schedule on the 8-node all-port spidergon. 

time step/from → to (path) 
source 

step 1 step 2 step 3 step 4 

0→3 (0,7,3) 0→2 (0,1,2) 0→1 (0,1) 0→4 (0,4) 
 0→7 (0,7)  0→5 (0,1,5) 0 
   0→6 (0,7,6) 
1→4 (1,0,4) 1→0 (1,0) 1→2 (1,2) 1→3 (1,2,3) 
1→6 (1,5,6)  1→5 (1,5)  1 
  1→7 (1,0,7)  
2→1 (2,1) 2→5 (2,6,5) 2→4 (2,3,4) 2→0 (2,1,0) 
2→3 (2,3)  2→6 (2,6)  2 
2→7 (2,6,7)    
3→0 (3,4,0) 3→1 (3,2,1) 3→2 (3,2) 3→5 (3,4,5) 
 3→4 (3,4)  3→6 (3,2,6) 3 
   3→7 (3,7) 
4→2 (4,3,2) 4→1 (4,5,1) 4→0 (4,0) 4→3 (4,3) 
4→5 (4,5) 4→7 (4,3,7) 4→6 (4,5,6)  4 
    
5→2 (5,1,2) 5→4 (5,4) 5→3 (5,4,3) 5→0 (5,4,0) 
 5→7 (5,6,7)  5→1 (5,1) 5 
   5→6 (5,6) 
6→4 (6,5,4) 6→3 (6,2,3) 6→0 (6,7,0) 6→2 (6,2) 
  6→1 (6,2,1) 6→5 (6,5) 6 
   6→7 (6,7) 
7→1 (7,0,1) 7→4 (7,0,4) 7→5 (7,6,5) 7→0 (7,0) 
7→2 (7,6,2) 7→3 (7,3)   7 
 7→6 (7,6)   
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8.4 Multistage Topologies 

This section is oriented to multistage interconnection networks, also called MINs [195], [108]. 
MINs are indirect networks that means the interconnection networks are composed of several 
processing nodes (processors) and intermediate switches. More formally, MIN is a succession of 
stages of switching elements (SEs) and interconnection wires connecting P processing (terminal) 
nodes. SEs in the most general architecture are themselves interconnection networks of small sizes. 
If P is the number of terminal nodes (the MIN’s degree) and k is the SE’s degree (the number of 
input/output ports), the minimum number of switches in a stage must be P/k.  

The interconnection pattern or patterns between MIN’s stages can be represented 
mathematically by a set of functions. Examples of such topologies cover an unidirectional Omega 
[119] (a perfect-shuffle permutation) and Butterfly [102] (butterfly permutation) networks. Figure 
65 presents the 8-node Omega and Butterfly network. Terminal nodes are shown in green and 
switching elements in red boxes. In both cases, eight input-output ports are interconnected by three 
stages of 2×2 switches. It is easy to see that a single pass through the three stages allows any input 
port to reach any output port.  

 

      
             (a) Omega network                 (b) Butterfly network 

Figure 65. Illustration of the 8-node Omega and Butterfly networks. 

The main disadvantage of permutation-based MINs is their zero fault-tolerance and high 
blocking probability. In order to alleviate the bottleneck consisting in only a single path between an 
input-output pair, the multipath Clos network has been proposed [210]. Here, each network input-
output pair can be connected by a path via an arbitrary middle stage. The basic version of a Clos 
network consists of three SE stages, as shown in Figure 66a. Clos networks of more than three 
stages emerge by substituting again the middle stage SEs by Clos network. 

The MINs described so far have unidirectional network links, but bidirectional forms are easily 
derived as two MINs back-to-back, folded on one another (see Figure 66b). The overlapping 
unidirectional links run in different directions, thus forming bidirectional links, and the overlapping 
switches merge into a single switch with twice the ports (i.e. 4×4 switch). A representative of this 
class is a Fat-tree [120] topology which originates in the two folded Butterfly network. Unlike 
traditional trees in computer science, fat trees resemble real trees because they get thicker near the 
root.  

Let us carefully look at investigated MINs. There are two different types of nodes in these 
networks. We have to realize that SE nodes can only pass on the message from its input to its output 
and are not able to consume, create or modify the message. Only terminal nodes can do this. The 
situation is similar to many-to-many communication patterns, when only terminal nodes (the green 
ones in Figure 66) are involved in communication so that the chromosomes include only terminal 
nodes (see Figure 48)  
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      (a) Clos network           (b) unfolded Butterfly network (Fat tree) 

Figure 66. General form of the Clos network and Fat tree topology. 

The UMDA has been applied to several MINs that already found the commercial application 
such as Omega, Butterfly and Clos networks. The bidirectional MINs were represented by binary 
and fat tree where terminal nodes were placed only in leaves. This study was completed by a full 
binary tree, where each node represents one processing node. 

First, we verified the ability of the UMDA to discover optimal communication schedules for 
unidirectional MINs (see Table 20). Two integers in one cell separated by a slash indicate that the 
lower bound (a smaller integer) has not been reached. A single integer represents both the lower and 
the upper identical bounds reached by the UMDA. Obtained schedules for 8-node Omega and 
Butterfly met the theoretical lower bound for all classes of collective communications, and thus 
cannot be improved anymore. The limits of simultaneously executable transfers were reached by 
12-node and 16-node topologies. For the successful accomplishment of all-to-all communications, 
UMDA had to add one additional communication step to the theoretically derived value. The Clos 
network embodies the same problem that has led also in a one step addition. 

Second, we investigated the ability of the proposed UMDA to discover optimal communication 
schedules for bidirectional MINs represented by the binary (B-Tree), fat (Fat-Tree), and full binary 
tree (Full-Tree). Binary trees represent suitable interconnection networks for chip multiprocessor 
because they need only a very simple link arrangement on a 2D silicon chip. However, as we can 
see in Table 20, their performance rapidly decreases with the number of connected processing 
nodes. More importantly, the proposed UMDA is able to find optimal communication schedules for 
most tested binary trees and investigated communication patterns. As can be seen from Table 20, 
the lower bounds for the AAB pattern are too tight. Consequently, it was not possible to find 
optimal solutions. Moreover, there is no certainty that it will be even possible to reach them because 
the controlled flood does not work for multistage networks.  

The fat tree topology eliminates the bottleneck of the narrowing bandwidth towards the root. 
The height of the tree remains the same, but the number of bidirectional links proportionally 
increases. In this case, the UMDA was able to find optimal schedules for fat trees with 4, 8, 16, and 
32 leaves, except for AAS on the 32-leave fat tree. There was achieved only a suboptimal solution 
with one step worse time complexity.  

Finally, the experimental work was completed with the full binary tree, where all switching 
elements integrate a processing unit too. Since the full binary tree is an asymmetrical topology, 
several different situations depending on a level of a source node (from a leave to the root) were 
investigated. In all cases, the theoretical lower bounds were reached. 
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Table 20. Time complexity of the evolved schedules for unidirectional and bidirectional MINs. 

Topology OAS AAS OAB AAB 

Omega-8 7 7 3 8 
Omega-16 15 16/15 4 16/15 
Butterfly-8 7 7 3 7 
Butterfly-16 15 16/15 4 16/15 
Clos-8 11 12/11 4 12/11 
Clos-16 15 16/15 4 16/15 
B-Tree-4 3 4 2 3 
B-Tree-8 7 16 3 8/7 
B-Tree-16 15 64 4 20/15 
B-Tree-32 31 256 5 64/31 
Fat-Tree-4 3 3 2 3 
Fat-Tree-8 7 7 3 7 
Fat-Tree-16 15 15 4 15 
Fat-Tree-32 31 32/31 5 31 
Full-Tree-7 6,4,3 12 3,2,2 7 
Full-Tree-15 14,12,8,7 56 3,3,3,3 15 
Full-Tree-31 30,28,24,16,15 240 4,4,4,4,4 31 
Full-Tree-63 62,60,56,50,48,32 992 5,5,5,5,5,5 64 

 

An example of a designed optimal AAS schedule for the 8-leave fat-tree topology is shown in 
Table 21. There is a complete path from source to destination via a turning node (sub-tree root) in 
every cell. The first row in a cell represents the movement up from the source to the sub-tree root. 
The second row represents the movement down from the sub-tree root to the destination node. Let 
us note that since interconnection links are bidirectional, the messages do not have to go through all 
intermediate stages. Finally, it should be mentioned that the presented communication schedule is 
not unique: several optimal schedules can be found for a given CC.  

Table 21. Optimal AAS schedule on the 8-node fat tree. 

path [from, via, turning point (sub-tree root), 

via, to] source 

step 1 step 2 step 3 step 4 step 5 step 6 step 7 

0 
0,A,F 
B,2 

0,A,E,I 
G, D,7 

0,A,F,L 
H,C,5 

7,D,G,K 
E,B,3 

0,A,F,L 
H,D,6 

0,A,E 
B,3 

0,A 
1 

1 
1,A,E,K 
G,C,5 

1,A,F 
B,3 

1,A,E,K 
G,D,6 

1,A,E,K 
G,D,7 

1,A,E,I 
G,C,4 

1,A 
0 

1,A,E 
B,2 

2 
2,B,F,L 
H,D,6 

2,B,E,K 
G,C,5 

2,B,E,I 
G,C,4 

2,B,E 
A,1 

2,B 
3 

2,B,F,L 
H,D,7 

2,B,E 
A,0 

3 
3,B,E,I 
G,D,7 

3,B,F,J 
H,D,6 

3,B,F 
A,1 

3,B,F 
A,0 

3,B 
2 

3,B,E,I 
G,C,5 

3,B,F,L 
H,C,4 

4 
4,C,G,K 

E,B,3 
4,C,H,J 
F,A,1 

4,C,H 
D,7 

4,C,H 
D,6 

4,C,H,L 
F,A,0 

4,C,H,J 
F,B,2 

4,C 
5 

5 
5,C 
4 

5,C,G,K 
E,B,2 

5,C,G,I 
E,A,0 

5,C,G,I 
E,B,3 

5,C,G,I 
E,A,1 

5,C,G 
D,6 

5,C,G 
D,7 

6 
6,D,H,J 
F,A,1 

6,D,G,I 
E,A,0 

6,D,H,L 
F,B,2 

6,D,G 
C,5 

6,D 
7 

6,D,H 
C,4 

6,D,H,L 
F,B,3 

7 
7,D,G,I 
E,A,0 

7,D,H 
C,4 

7,D,G,K 
E,B,3 

7,D,H,L 
F,B,2 

7,D,H 
C,5 

7,D,G,K 
E,A,1 

7,D 
6 
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8.5 Fat Topologies 

One way on how to increase the number of interconnected terminal nodes and not make the network 
more complex is to use a concept of fat topologies. The idea is very simple: all terminal nodes are 
replaced by multiprocessor nodes, so that more than one CPU core is connected by the shared router 
to the interconnection network. We can divide 12 CPU cores in spidergon network among 12, 6 or 4 
multiprocessor nodes with 1, 2 or 3 CPU per a node, respectively. In this case, only a one-port 
model is usually assumed. As microelectronic technology is turning to multicore and multi-threaded 
processors for more performance and less power consumption, networks interconnecting such fat 
nodes that are of interest (e.g. fat hypercube has been recently used in SGI Origin 3000 machine 
[185]). Also, Opteron processors produced by AMD are equipped by HyperTransport links on the 
chip ready for a fat cube connection [103]. Fat nodes (8 CPUs per node) have been used in a Swiss-
T1 cluster with a K-ring network [56].  
 

    

     
         (a) all-port slim spidergon             (b) one-port fat spidergon 

Figure 67. Illustration of the all-port slim 8-node spidergon and one-port 2-fat 8-node spidergon. 

Figure 67 illustrates the way the network gets fat. The direct all-port slim spidergon is 
transformed into the indirect one-port fat spidergon with the same structure of switching elements 
(routers), but with twice as many interconnected terminal nodes. The technique of fat 
interconnection networks has several advantages over traditional networks: (1) it makes some small 
networks more scalable, even though the interconnection graph of a network is not scalable at all 
(e.g. OOD networks, see section 4.1.2) or even partially scalable (spidergon, hypercube, AMP);   
(2) it provides in many cases cheaper network implementation in terms of hardware cost and is 
more often suitable for networking systems on a chip; (3) the performance in collective 
communications is a little worse than that of base networks, but it can be controlled by a 
multiplicity of links (see the fat tree topology, Figure 66b) and by overlapping local and global 
communications.  

Table 22 summarizes the upper bound attained on a 2-fat one-port fat hypercube and 2-fat, 3-fat 
and 4-fat spidergons. The term 2-fat implies two CPUs connected to a switching element. The 
notation 2-fat-hypercube-8 represents a 3D hypercube with 8 switching elements connected by three 
input/output links and 16 terminal nodes, two per each switch. The construction of an input file for 
the evolution algorithm is straightforward. A slim topology is taken, all terminal nodes are replaced 
by switches changing the operation mode for T, R or B to N. Two new terminal nodes are then 
connected to the original one by adding edges to and from it (see section 6.1). The technique is 
actually the same to the case indirect topologies and the many-to-many communications.  
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Table 22. Time complexity of the evolved schedules for one-port bidirectional fat hypercubes and spidergons 
with 2 terminal nodes per switch. 

Topology OAS AAS OAB AAB 

2-fat-hypercube-4 7 8 3 7 
2-fat-hypercube-8 15 17 4 15 
2-fat-hypercube-16 31 36 6 33 
2-fat-hypercube-32 63 - 7 - 

2-fat-spidergon-6 11 12 4 12 
2-fat-spidergon-8 15 17 4 16 
2-fat-spidergon-10 19 25 5 20 
2-fat-spidergon-12 23 37 5 24 
2-fat-spidergon-14 27 50 5 29 
2-fat-spidergon-16 31 66 6 37 
2-fat-spidergon-18 35 86 6 42 
3-fat-spidergon-4 11 11 4 11 
3-fat-spidergon-8 23 38 5 24 
3-fat-spidergon-12 35 82 6 42 
4-fat-spidergon-4 15 16 4 16 
4-fat-spidergon-6 23 38 5 24 
4-fat-spidergon-8 31 64 6 34 

 

It should be noted that neither lower bounds for one-port, nor for all-port model apply here. The 
reason is that we cannot assign 3 network ports (spidergon) of a node explicitly to internal cores. 
Let us also note that the optimal schedules are not known for the fat spidergon networks so far. 
Accordingly, Table 22 presents the best know upper bounds of CCs for the fat spidergon networks 
found by evolution. the upper bounds are close to the double of the basic topologies - sometimes 
better sometimes worse, compare Table 22 with Table 18 and Table 7. 

An example of a designed optimal AAB on the 2-fat-hypercube-4 is shown in Table 23. There is 
shown the complete path from source terminal node via some switches to the destination terminal 
node in every cell. The terminal nodes are denoted by numbers from 0 to 7, switching nodes are 
denoted by letters from A to D. It can be seen that the schedule follows the technique of a modified 
controlled flood (i.e. no message is transported further than 3 hops).  

Table 23. Optimal AAB schedule on the 2-fat-hypercube-4. 

from→ via →to 
source 

step 1 step 2 step 3 step 4 step 5 step 6 step 7 

0,A,B,2 2,B,D,7 0,A,C,5 0,A,B,3 0,A,1 5,C,D,6  0 
    7,D,C,4   

1,A,C,4 4,C,D,6 6,D,7  1,A,B,3 7,D,B,2 3,B,A,0 
1 

     1,A,C,5  
2,B,D,7  2,B,A,1  4,C,5 2,B,A,0 2,B,3 

2 
  7,D,C,4  2,B,D,6   

3,B,A,0 0,A,C,4 3,B,2 2,B,A,1  3,B,D,7 4,C,5 
3 

      7,D,6 
4,C,D,6 6,D,B,3 4,C,A,0 3,B,2  4,C,A,1 5,C,D,7 

4 
   4,C,5    

5,C,A,1 1,A,B,2 1,A,B,3 1,A,0 5,C,D,7  1,A,C,4 
5 

  5,C,D,6     
6,D,C,5 5,C,A,0  6,D,7  0,A,B,3 0,A,1 

6 
     6,D,C,4 6,D,B,2 

7,D,B,3 3,B,A,1  7,D,C,4 3,B,A,0   
7 

 7,D,C,5  5,C,D,6 6,D,B,2   
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Let us note that for fat topologies and AAB, the controlled flood mechanism has to be modified 
because the switch nodes are not able to maintain any message, but only interconnect their inputs to 
outputs and, therefore, cannot be used as distributors. Consequently, the modified flood mechanism 
should take into account only the terminal nodes. In the case of direct slim topologies, the nearest 
terminal nodes are situated at a distance of 1 (see Figure 67a). However, in the case of indirect fat 
topologies, two switches are put between them. Finally, the nearest terminal nodes not connected to 
the same switch are situated at a distance of 3 (see the Figure 67b). Finally, the value of radius r has 
to be increased to a value of at least three to be able to reach a terminal node connected to 
a neighbor switch (see section 6.5.5). 

8.6 Faulty Topologies 

Since SoC/NoC systems include many processor cores, interconnection links and other units, their 
failure rate is much higher than the failure rate of the single-processor system. Generally, there are 
two kinds of faults in NoC systems: faulty links and faulty nodes. The first one is a damaged link 
interconnecting two parts of a system. After the faulty link has been located, it has to be excluded 
from all routing algorithms (CC schedules). After new CCs are re-scheduled, the system is able to 
work properly with only little loss of performance. A node fault can be imagined as implying that 
all of that node’s communication links are faulty. Of course, the network has to continue connected 
(i.e. at least one path for each source-destination pairs has to remain). 

In this section, we will consider faults to be permanent (defects in manufacturing) as opposed 
to, say, transient, intermittent or even malicious faults. Our technique supposes that faulty links or 
nodes have been already detected, and the faulty region has been bordered. Conceptually, the faulty 
region may be considered as an island of faults in a sea of communication channels and nodes. In 
the same manner a ship is navigated around an island, it should be feasible to route a message 
around a faulty region (see Figure 68). It can be done using adaptive routing algorithms that re-route 
paths from source-destination pairs. However, these algorithms achieve only suboptimal results (i.e. 
possible faster CC schedules can exist, but they are not discovered, whereas only deterministic 
principles are used for rescheduling). In addition, many of the fault-tolerant adaptive routing 
algorithms are not deadlock free and this introduces additional delays and congestions. Moreover, 
networks in a faulty state are neither symmetrical nor regular, and analytic methods for scheduling 
do not exist. In order to relax all these restrictions, our evolutionary based technique has been 
applied for finding CCs schedules on faulty networks.  

 

 

Figure 68. Isolation of faulty node no. 10. 

The evolutionary technique described previously was applied to two networks that either 
already found the commercial application such as scalable 12-node Kautz networks, [188] and the 
well known 4×4 2D-mesh.  
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As the Kautz network is known for its fault tolerance, performance degradation under a single 
link fault has been tested. A fault diameter of the Kautz12 network is D+2, meaning that among 
multiple links between any two nodes the longest path is 4. The network performance under a single 
link fault is given in Table 24 (with node no. 0 as the root of OAB and OAS), but the network could 
operate even under a double link fault. In any case, when the link fault is detected, a new schedule 
could be computed in 20 seconds on a single processor and then the cluster could continue with 
a lower performance (see Table 29). 

Table 24. Performance of the Kautz12 network with a single faulty link (in the number of steps). 
Reduced performance is in bold.  

link OAS AAS OAB AAB 

no fault 4 7 2 4 
0→3 6 9 3 6 

0→5 6 9 3 6 

0→4 6 9 3 6 

1→7 4 9 2 6 

1→6 4 9 2 6 

1→8 4 9 2 6 

2→B 4 9 2 6 

2→A 4 9 2 6 

2→9 4 9 2 6 

3→0 4 9 2 6 

3→1 5 9 2 6 

3→2 5 9 2 6 

5→7 4 9 2 6 

all other 4 9 2 6 

 

The 2D meshes are very suitable for the interconnection network for System on Chips (SoC) 
because they need only a very simple link arrangement on a 2D silicon chip. For the 4×4 2D mesh, 
performance degradation under a single link fault and a single node fault were tested. Table 25 
shows the performance degradation under a single link failure. The source node of OAB and OAS 
was appointed node no. 0. Any link failure in the 4×4 2D mesh increases the time overhead of AAS 
about 37%. The OAS and AAB communication will be delayed twice, but only in two cases, and 
OAB communication will not be influenced in any way. In all tested link failures, the proposed 
technique discovers the optimal communication schedule for a given CC. 

Table 25. Performance of the 4×4 2D mesh network with a single faulty link (in the number of steps). 
Reduced performance is in bold. 

link OAS AAS OAB AAB 

no fault 8 16 3 8 
0→1 15 22 3 15 

0→4 15 22 3 15 

all other 8 22 3 8 

 

Finally, we tested the performance degradation under a single node failure (Table 26). A node 
fault can be thought of as implying that all of that node’s communication links are faulty. From this 
table, it can be observed the same performance degradation under a single node fault as under 
a single link fault. 

Because the communication schedules are too complicated to be simply demonstrated in the text 
form, they will be omitted this time around.  
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Table 26. Performance of the 4×4 2D mesh network with a single faulty node (in the number of steps). 
Reduced performance is in bold. 

node OAS AAS OAB AAB 

no fault 8 16 3 8 
0 15 22 3 15 

4 15 22 3 15 

all other 8 22 3 8 

8.7 Many-to-Many Communications 

Besides one-to-all and all-to-all communication patterns, we can also find many communication 
patterns that are engaged only as a subset of nodes. Typical occurrences of these CC patterns can be 
found in algorithms based on recursion, like divide and conquer [198]. For example, one big task is 
divided into several smaller ones. These smaller tasks can also be divided into subtasks and 
processed in a parallel fashion. The communication among a subset of nodes participating in 
a subtask can be globally seen as many-to-many (M-to-N) communication.  

Another situation could be simply imagined. Let us suppose we keep at our disposition an 
extensive parallel cluster. Unfortunately, our task can effectively employ only a small part of the 
cluster. From the global point of view, all our all-to-all CCs will be transformed to M-to-N ones.  

The importance of M-to-N communications also consists in their commonness. Many special 
patterns can be simply converted to them. Moreover, any CC executed on an indirect (fat, 
multistage) network can be actually seen as M-to-N communication, where switching nodes are 
excluded from the communication. M-to-N communications can also be beneficial for one-port 
networks. We can simply transform a direct all-port network to an indirect one-port one by putting 
switches between the terminal nodes and entry points of the network. It is now possible that we can 
handle the CC problem as M-to-N communications. Moreover, any combination of all-port and one-
port nodes can be created.  

We investigated only a couple of possible M-to-N arrangements, but it can be simply 
demonstrated that the proposed technique is able to design M-to-N with any distribution of 
transmitters and receivers. The topologies of interest were the 8-node all-port hypercube and 8-node 
all-port spidergon. Four armaments of transceivers and receivers were investigated for both 
topologies. In the case of a hypercube, we examined the communication within the same base 
(4 nodes) and between the bases (nodes on the lower base transmitted the messages to nodes on the 
upper base). Furthermore, we examined the situation when every node on the lower base sends the 
message to all other nodes, and finally, the nodes situated on the body diagonal forward the 
messages to the nodes on the lower base. In the case of a spidergon, we investigated these 
arrangements: within the left half of the spidergon; between left and right half; left half distributing 
the messages to all the nodes; and the nodes with odd indexes transmitting to the nodes with even 
indexes. The upper bounds of obtained schedules are summarized in Table 27. 

Table 27. Time complexity of the evolved schedules for the 8-node hypercube and spidergon 
for a few M-to-N CC patterns. 

Topology Pattern MMS MMB 

Within the same base 2 2 
Between the bases 4 2 
Lower base to all 4 3 

Hypercube-8 

diagonal to the lower base 2 2 
Within the left half 2 2 
Left half to right half 3 3 
Left half to all 3 3 

Spidergon-8 

Odd nodes to even nodes 3 2 
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The obtained upper bounds are identical to the estimated lower bounds for all the cases. It 
should be noted that the upper bounds lie between one-to-all and all-to-all bounds. Of course, for 
more complex topologies, the quality of schedules does not have to be identical to the estimated 
lower bounds, but in all cases it will be at least the same as in the case of all-to-all communication 
on a given interconnection network.  

It is also important to remember that for most M-to-N communication, the non-minimal routing 
has to be used to exploit all of the potential of the interconnection network (all free links). Minimal 
routing will often lead to only suboptimal solutions. This situation can be simply observed (e.g. in 
the case of the 8-node spidergon and MNS communication within the left half). If only minimal 
routing is allowed, the communication will take 3 steps because it cannot employ links from the 
second half, especially, the links connecting both halves. On the other hand, if the non-minimal 
routing is allowed, the communication will save one step. This schedule is shown in Table 28. 
Notice the transfer from node no. 4 to node no. 6. The shortest path goes through node no. 5, but the 
channel between 5 and 6 is busy, so the longer path will have to be chosen (4, 0, 1, 2, 6) (for a better 
understanding see Figure 67a). 

Table 28. Optimal MNS schedule within the left side of the 8-node all-port spidergon.  

from, via, to 
source 

step 1 step 2 

4,5 4,0,1,2,6 
4,0,7  4 

  
5,6 5,4 

 5,6,7 5 
  

6,5 6,2,1,0,4 
6,2,3,7  6 

  
7,3,4  

7,0,1,5  7 
7,6  

8.8 Summary 

This section analyzed the capabilities of a proposed evolutionary technique to design near optimal 
CC schedules on almost all types of interconnection networks at great length. It is seen from the 
results that for the networks of interest in this work, the obtained upper bounds are mostly close or 
equal to theoretical lower bounds. The only exception is AAS communication in larger networks, 
where the lower bounds are apparently too tight. In fact, the obtained numerical results have led us 
to an improvement of theoretical lower bounds for AAS communication (see section 3.4.2). This is 
a very significant contribution of this thesis.  

Of course, the fact that the lower bound may not always be reached by the presented algorithm 
is to be expected because it may not be attainable in principle by any algorithm. Sometimes lower 
bounds can be obtained in schedules with non-minimum routing. Unfortunately, inclusion of the 
non-minimum routing will lead to an enormous increase of possible paths from sources to 
destinations and to the prohibitive computer memory and time requirements. 

Table 29 shows average execution times of the UMDA during 5 successful runs on several 
networks. OAS communication is relatively easy; a solution always takes less than one second. For 
OAB communication, the values are less than one second for simple network topologies. The 
longest execution time (hypercube-32) is about 41 seconds. On the other hand, a suitable solution 
for all-to-all communication takes a much longer time, especially for the AAS communication. An 
exponential increase of the execution time within the network can be observed. For the most 
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complex topologies it can easily reach impracticable values of days. The execution times as such 
delimitate the area of suitable topologies for the proposed evolutionary approach of CC scheduling.  

Let us note that all experiments were realized in sequential manner on IBM Blade servers 
equipped with 2x dualcore AMD Opteron 275 processors and supplied by 4GB DDR2 RAM at 800 
MHz. 

Table 29. Execution times of UMDA in seconds, minutes, hours and days 
(average values during 5 successful runs). 

Topology OAS AAS OAB AAB 

Ring -8 <1s 5m6s <1s <1s 
Uni-Ring-8 <1s 57s <1s <1s 
Spidergon-8 <1s 2s <1s <1s 
Petersen-10 <1s 12s <1s 2s 
Kautz-12 <1s 23s <1s 3s 
Heawood-14 <1s 9m17s <1s 5s 
Spidergon-16 <1s 22m36s 3s 1m41s 
Levi-30 <1s 1d6h 3s 2h2m 
Hypercube-32 <1s 4d5h 41s 28m38s 
Kautz-36 <1s 3d5h 20s 9h50m 

 

The evolved schedules may serve for writing high-performance communication routines for 
application-specific networks on chip or for development of communication libraries in the case of 
general-purpose interconnection networks. All the upper bounds achieved by UMDA are 
summarized in Appendix. For implementation we need to establish synchronization between 
particular communication steps and upload the routing tables (taken from the schedule) to the 
switching elements and terminal nodes. The time complexity of real implementation can be then 
obtained by the usage of the model of wormhole communication (see section 3.1). 
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Chapter 9  

Conclusions 

The importance of point-to-point interconnection networks steadily grows. Many real 
multiprocessor systems have been based on wormhole interconnection networks (e.g. Tilera Tile 
[199], Sicortex SC systems [184], IBM Cell processor [91]), and other systems will certainly 
follow. These networks are directly predestined to force out bus based interconnections from 
Systems on Chip (SoC) and Networks on Chip (NoC) of many scales due to their simple 
manufacturability, reliability, fault-tolerance, low latency and high throughput.  

One of the key issues in this area is the performance of communications among nodes placed in 
such a topology. Since any parallel task requires communication and synchronization mechanisms, 
the communication latency should be minimized while the network throughput should be 
maximized. Most communication and synchronization mechanisms can be simply converted into 
collective communications (CC) based on scatter/gather and broadcast/reduce services, for example, 
the data distribution among nodes can be implemented by one-to-all scatter, the parallel algorithm 
control by one-to-all broadcast, results collection by all-to-one gather or reduce, barrier 
synchronization by one-to-all broadcast, etc.  

As we could see in chapter 3, the time complexity of a particular collective communication 
pattern can be estimated from the network parameters. The lower bound on time complexity can be 
expressed in terms of the number of synchronized communication steps (time slots). Although, the 
lower bound can be obtained relatively easily, the design of such a communication schedule that 
meets the lower bound is still an outstanding problem because the schedule has to prevent link 
blocking, deadlock and livelock [37]. 
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Many approaches that implement (near) optimal schedules of CC have been published [174], 
[128], [12]. Unfortunately, the authors have concentrated either on only a fixed topology, such as 
hypercube [85] or mesh [10], or have not been able to work with irregular topologies, many-to-
many communication patterns, all-port model or indeterminist routing (see chapter 4). A universal 
approach has not existed up till now.  

Therefore, the hypothesis of the thesis has been formulated based on information and 
experiences collected in chapter 5: Evolutionary design is able to produce optimal or near optimal 

communication schedules comparable or even better than which have been obtained by 

a conventional design for the networks sizes of interest. Moreover, evolutionary design reduces 

many drawbacks of present techniques and invents still unknown schedules for an arbitrary 

topology and scatter/broadcast communication patterns.  

The design of the proposed evolutionary technique has been detailed in chapter 6. The chapter 
has described the encodings of schedules, fitness function evaluation and acceleration and 
restoration heuristics. The chapter has also provided the formal definition of the main components 
of the technique. Let us remind ourselves that the proposed method is not only restricted to 
evolutionary algorithms, but to any other optimization technique that can be employed.  

Because the evolutionary algorithms are highly sensitive to a suitable parameters setup, 
a comprehensive study has been accomplished in chapter 7. Three different evolutionary algorithms 
have been investigated, namely the Standard Genetic Algorithm (SGA) [66], Mixed Bayesian 
Optimization Algorithm (MBOA) [148] and Univariate Marginal Distribution Algorithm (UMDA) 
[137]. The results have shown that the most suitable one is the UMDA algorithm. The results have 
also shown that the evolution is controlled mainly by a mutation operator and that the sufficient 
population size is relatively small.  

Chapter 8 has presented the achievements of the UMDA algorithm. The postulated hypothesis 
has been completely proved in this chapter. UMDA has reinvented many important optimal 
scheduling techniques like the recursive doubling [128] on hypercubes, rings, tori or TAD Tree 
[212] approach for tori and hypercubes. It also equals the Ho-Kao algorithm [84] and ST algorithm 
[147]. Moreover, many unknown optimal schedules have been invented namely for optimal 
diameter-degree networks, irregular meshes, fat topologies, indirect topologies, and many-to-many 
communication pattern. If it was not possible to design an optimal schedule, a suboptimal one was 
found in reasonable time. All the results are also summarized in appendix.  

Since the schedules are designed for the source-based routing technique [39], the wormhole 
switches [146] can remain without any change. The schedules can be uploaded into processing 
nodes that can exploit them to perform the communications as fast as possible. The designed 
schedules may also serve for writing high-performance communication functions for a concrete 
topology. Consequently, this function can be included into, for example, a well-known OpenMPI 
[92] library. Otherwise, when a promising topology would be introduced, the proposed technique 
could be simply applied to this topology and accelerate the communication on it. 

The results of this technique has been also published at prestigious conferences in the area of 
evolutionary algorithms like ACM GECCO in 2007, 2008 and 2009 or ICES 2008, and in the area 
of networks on chip like IEEE ICN 2006 and 2007 or IEEE PARALEC 2006. The main parts of the 
thesis have been accepted as a chapter of upcoming book “Autonomic Networking-on-Chip: Bio-
inspired Specification, Development and Verification". 

The core of this thesis was actually awarded Honorable Mention at Human-Competitive 
Competition, London, UK, 2007 and by Jan Hlavička Award for the Best Paper presented at 
workshop on Computer architectures and diagnostics PAD 2005. 
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9.1 Contributions of the Thesis 

This section summarizes all notable contribution of the thesis and the proposed technique.  

(1) The new method for scheduling of collective communication with the prevention of link 
blocking, deadlock and livelock not limited by a topology or of a distribution of cooperating 
nodes has been proposed. 

(2) The thesis has introduced the concept of the main components of most optimization tools. 
Hence, a lot of optimization tools based on classical artificial intelligence or heuristic 
methods like hill climbing [115], as well as stochastic methods like simulating annealing 
[21], particle swarm optimization [104], and artificial ant colonies [46] can be exploited.  

(3) The integrity of the technique is given by its capabilities to design optimal or at least sub-
optimal schedules for many kinds of network topologies and communication pattern that 
have never been solved so far. The technique can be applied to 

(a) Regular topologies (e.g. hypercube and torus). 

(b) Irregular topologies (e.g. mesh, AMP). 

(c) Multi-stage topologies (e.g. Omega, Clos). 

(d) Fat topologies of any type (e.g. fat tree, fat hypercube). 

(e) One-port, all-port, and even k-port model (by an additional limitation of port based 
heuristic). 

(f) Minimal and even non-minimal routing (only for small scale topologies). 

(g) Simplex, full duplex links and even half-duplex (by a simple modification of 
conflict counting function not to distinguish between channel directions). 

(h) Any distribution of cooperating nodes on the topology (one-to-all, many-to-many, 
all-to-all). 

(i) Faulty nodes and faulty links (an operational state can be restored after a link or 
a node fault). 

(j) And many others. 

(4) Many optimal communication schedules have been reinvented with the help of the 
technique implemented into the UMDA algorithm. Let’s remember the recursive doubling 
algorithm or time-arc disjoint broadcast trees at least. Very significant success has been in 
the invention of algorithms that equal the Ho-Kao algorithm.  

(5) Many still unknown optimal schedules have been designed by the technique (e.g. for 
rectangular tori, meshes, spidergons, AMP, ODD networks, etc.). 

(6) The section 3.5 provided a new look on the lower bounds for many-to-many CCs. They 
were classified and estimated there for the first time ever. 

(7) The results allow us to rectify the mathematical formula for the lower bound of all-to-all 
scatter, (see section 3.4.2). 

(8) An assessment whether the theoretical lower bounds of CC times are reachable at all or how 
close we can get to them (multistage topologies, spidergon, etc.) has been done. 

For all these reasons this technique was declared as human competitive. It means that produced 
results are comparable to them produced by an expert. 
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9.2 Future work 

Although the proposed technique covers a large area of the scheduling of collective communication 
on wormhole networks, there are naturally many other possible extensions of the technique.  

An introduction of the channel capacity (throughput) is one of many possible future extensions. 
Only the channels with the same capacity have been presumed in this work, but in real-world 
applications the channels can be hierarchized into more levels of different capacity (e.g. backbone 
links, inter-cluster links, local interconnection, etc). Accordingly, the capacity of the channels 
should be taken into account in the fitness function to allow more transfers at a time with respect to 
the channel capacity. 

Only scatter or broadcast CCs have been investigated in this work because they are most 
frequently used. A few additional communication services could be seen in real-world applications. 
Let us note for example permutation and scan communications or application specific CCs created 
by a collection of point-to-point communications. Such a CC can perform any possible combination 
of messages transmissions. The input file structure would have to be modified to be able to handle 
a general CC. The source-destination pairs of all message transfers would have to be provided to the 
technique. A corresponding chromosome would appear from many-to-many scatter ones. 

For some networks, it could also be beneficial to use the combining model that was not used to 
keep the switches as simple as possible in this work. Message combining reduces the total number 
of messages, making each node sends fewer messages of a larger size. Reducing the number of 
steps start-ups can improve communication performance in the case of short messages when the 
start-up delays dominate in CC times. Unfortunately, the combination of messages completely 
changes the principles of the scheduling and such a new technique would have to be designed.  

Another direction for future research could be targeted to an improvement of acceleration and 
restoration heuristics. Limitations of the technique have been observed mainly at AAS 
communications, so additional research in this area could be beneficial. Better results could also be 
obtained by employing a more sophisticated optimization tool, such as particle swarm optimization 
(PSO) that turns out to be a surprisingly good optimization tool. 
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Appendix  

The following tables summarize the upper bounds τCC (G) in terms of numbers of communication 
steps achieved on investigated topologies using the UMDA algorithm. Two integers in one cell 
separated by a slash indicate that the lower bound (a smaller integer) has not been reached. A single 
integer represents both the lower and the upper identical bounds reached by UMDA. Empty cells 
(illustrated by hyphens) denote the cases that have not been tested for its time complexity yet. 
 

Topology OAS AAS OAB AAB 

Hypercube-8 3 4 2 3 
Hypercube-16 4 9 2 4 
Hypercube-32 7 16 2 7 
Hypercube-64 11 35/32 3 11 
Hypercube-128 19 - 3 - 
Hypercube-256 32 - 4/3 - 
Ring-bi-8 4 8 2 4 
Ring-bi-16 8 34/32 3 8 
Ring-bi-24 12 78/72 4/3 12 
Ring-bi-32 16 140/128 4 16 
Ring-uni-8 7 28 3 7 
Ring-uni-16 15 128/120 4 15 
Ring-uni-24 23 300/276 5 23 
Ring-uni-32 31 550/496 5 31 
Mesh-3x3 4,3,2 6 2,2,2 4 
Mesh-3x4 6,4,3 12 3,2,2 6 
Mesh-4x4 8,6,4 16 3,2,2 8 
Mesh-5x5 12,8,6 32 3,3,3, 12 
Mesh-4x8 16,11,8 64 3,3,3 16 
Mesh-6x6 18,12,9 56/54 4,3,3 18 
Mesh-7x7 24,16,12 - 4,4,3 24 
Mesh-8x8 32,22,16 - 4,4,3 32 
Mesh-9x9 40,27,20 - 4,4,4 - 
Mesh-10x10 50,33,25 - 5,5,5 - 
Torus-3x3 2 4 2 3 
Torus-3x4 3 6 2 3 
Torus-4x4 4 9/8 2 4 
Torus-5x5 6 16/15 2 6 
Torus-4x8 8 33/32 3 11/8 
Torus-6x6 9 30/27 3 9 
Torus-7x7 12 - 3 13/12 
Torus-8x8 16 - 3 18/16 
Torus-9x9 20 - 4/3 - 
Torus-10x10 25 - 4/3 - 
Petersen-10 3 5 2 3 
Kautz-12 4 7 2 4 
Heawood-14 5 10/9 2 5 
Levi-30 10 31/28 3 10 
Kautz-36 12* 34/31 3 12 
K-Ring-8 2 3 2 2 
Midimew-8 2 3 2 2 
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Topology OAS AAS OAB AAB 

Spidergon-6 2 3 2 2 
Spidergon-8 3 4 2 3 
Spidergon-12 4 9 2 4 
Spidergon-16 5 17/16 2 5 
Spidergon-20 7 26/25 3 7 
Spidergon-24 8 37/36 3 8 
Spidergon-28 9 51/49 3 9 
Spidergon-32 11 70/64 3 11 
Spidergon-36 12 91/81 3 12 
Spidergon-64 21 - 3 24 
AMP-8 2 3 2 2 
AMP-23 6 14 2 8/6 
AMP-32 8 22 3 8 
AMP-42 11 31 3 14/11 
AMP-53 13 46 3 14/13 
Omega-8 7 7 3 8 
Omega-16 15 16/15 4 16/15 
Butterfly-8 7 7 3 7 
Butterfly-16 15 16/15 4 16/15 
Clos-8 11 12/11 4 12/11 
Clos-16 15 16/15 4 16/15 
B-Tree-4 3 4 2 3 
B-Tree-8 7 16 3 8/7 
B-Tree-16 15 64 4 20/15 
B-Tree-32 31 256 5 64/31 
Fat-Tree-4 3 3 2 3 
Fat-Tree-8 7 7 3 7 
Fat-Tree-16 15 15 4 15 
Fat-Tree-32 31 32/31 5 31 
Full-Tree-7 6,4,3 12 3,2,2 7 
Full-Tree-15 14,12,8,7 56 3,3,3,3 15 
Full-Tree-31 30,28,24,16,15 240 4,4,4,4,4 31 
Full-Tree-63 62,60,56,50,48,32 992 5,5,5,5,5,5 64 
2-fat-hypercube-4 7 8 3 7 
2-fat-hypercube-8 15 17 4 15 
2-fat-hypercube-16 31 36 6 33 
2-fat-hypercube-32 63 - 7 - 
2-fat-spidergon-6 11 12 4 12 
2-fat-spidergon-8 15 17 4 16 
2-fat-spidergon-10 19 25 5 20 
2-fat-spidergon-12 23 37 5 24 
2-fat-spidergon-14 27 50 5 29 
2-fat-spidergon-16 31 66 6 37 
2-fat-spidergon-18 35 86 6 42 
3-fat-spidergon-4 11 11 4 11 
3-fat-spidergon-8 23 38 5 24 
3-fat-spidergon-12 35 82 6 42 
4-fat-spidergon-4 15 16 4 16 
4-fat-spidergon-6 23 38 5 24 
4-fat-spidergon-8 31 64 6 34 
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Performance of the Kauz-12 network with a single faulty link (reduced performance is in bold). 
 

link OAS AAS OAB AAB 

no fault 4 7 2 4 
0→3 6 9 3 6 

0→5 6 9 3 6 

0→4 6 9 3 6 

1→7 4 9 2 6 

1→6 4 9 2 6 

1→8 4 9 2 6 

2→B 4 9 2 6 

2→A 4 9 2 6 

2→9 4 9 2 6 

3→0 4 9 2 6 

3→1 5 9 2 6 

3→2 5 9 2 6 

5→7 4 9 2 6 

all other 4 9 2 6 

 
Performance of the 4×4 2D mesh network with a single faulty link (reduced performance is in bold). 

 
link OAS AAS OAB AAB 

no fault 8 16 3 8 
0→1 15 22 3 15 

0→4 15 22 3 15 

all other 8 22 3 8 

 
Performance of the 4×4 2D mesh network with a single faulty node. (reduced performance is in 
bold). 

 
node OAS AAS OAB AAB 

no fault 8 16 3 8 
0 15 22 3 15 

4 15 22 3 15 

all other 8 22 3 8 

 
Time complexity of the evolved schedules for the 8-node hypercube and spidergon for a few  
M-to-N CC patterns. 
 

Topology Pattern MMS MMB 

Within the same base 2 2 
Between the bases 4 2 
Lower base to all 4 3 

Hypercube-8 

diagonal to the lower base 2 2 
Within the left half 2 2 
Left half to right half 3 3 
Left half to all 3 3 

Spidergon-8 

Odd nodes to even nodes 3 2 

 

 


