Sophisticated Testing of Concurrent Programs

Zdenck Letko
Brno University of Technology
BoZetéchova 2, Brno
CZ 612 66, Czech Republic
Email: iletko@fit.vutbr.cz

Abstract

Search-based techniques were successfully applied
to many different areas of testing but according to
our knowledge there are no works that applies search-
based techniques to testing of concurrent software, yet.
This PhD paper describes plans and already achieved
preliminary results with applying search-based tech-
niques to testing of concurrent software. In particular,
we plan to combine noise injection techniques for
testing of concurrent software, various concurrency
coverage measures, and several dynamic analyses with
search-based optimization techniques.

1. Introduction

As concurrent programming is far more demanding
than sequential, its increased use in the last decade
have led to a significantly increased number of defects
that appear in commercial software due to errors in
synchronization. This stimulates a more intensive re-
search in the field of detecting of such defects. Despite
persistent efforts of wide community of researchers,
a satisfiable solution of this problem for common
programming languages like Java does not exist.

Finding concurrency defects in concurrent programs
is a challenging task. The traditional testing approach
does not work well here because concurrency defects
often appear only under special conditions, e.g., when
a specific interleaving of threads occurs. Concurrent
programs are also much harder to analyze then sequen-
tial programs because one has to consider all possible
interleavings and interactions of involved threads and
therefore such analyzes suffer from exponential time
requirements.

In this paper, we propose an approach that combines
dynamic analysis which is able to precisely detect
a concurrency defect along a given execution path,
noise injection technique which allows us to influence

thread interleaving, and search-based technique that
is used to control noise generator with intention to
maximize number of different interleavings we see
during multiple executions. Our approach is sound if a
sound dynamic analysis which does not produce false
alarms is used and incomplete because usually we do
not analyze all possible interleavings. On the other
hand, our approach is able to analyze more different
interleavings than traditional testing having similar
time requirements and if suitable search technique is
used, we analyze mostly those interleavings which are
interesting to analyze.

The paper is organized as follows. The related works
are briefly mentioned in the next section. The third sec-
tion introduces the way how search-based techniques
can be applied to concurrency testing. Then, the main
directions of our research are pinpointed and finally,
the already achieved preliminary results are shortly
mentioned.

2. Related Works

Search-based Testing. Search-based testing ap-
plies metaheuristic search techniques to the problem
of test data generation. In principle, the test adequacy
criterion is encoded as a fitness function, and a search
technique uses this function as a guide to achieve a
maximal test adequacy. The search-based approach is
very generic because different fitness functions can be
defined to capture different test objectives.

Search techniques can be divided into local, global
and hybrid techniques. The local search techniques
[9], [5] seek for a better solution of the problem in
the neighborhood of the currently known best solution.
Such techniques provide a relatively good performance
but can get stuck in a local optimum. The global
search techniques [9], [5] seek for a better state in
the whole state space. Such methods overcome the
problem of local optima but usually need many more



states to be explored. Global search techniques are
often implemented using evolutionary algorithms [9].
The third class of techniques, referred to as hybrid
search techniques [5], tries to combine the previous
two approaches to get rid of their disadvantages.

There have been published many works in the
area of search-based testing in the past two decades.
The approach has so-far been successfully applied to
many different testing approaches covering functional,
non functional, and state-based properties (c.f., e.g.,
structural, exception, stress, regression, and integration
testing) [4], [5].

Finding Bugs in Concurrent Software. One
of the most common approaches used for detecting
concurrency bugs is testing, typically extended in some
way to cope with the fact that concurrency bugs often
appear only under very special scheduling. To increase
chances of spotting a concurrency bug, various ways
of influencing the scheduling are used (apart from
running the same test many times). An example of this
approach is random or heuristic noise injection used in
the ConTest tool [2] or a systematic exploration of all
schedules up to some number of context switches as
used in the CHESS tool [10].

Testing can be improved by specific dynamic analy-
ses which try to extrapolate the behaviour seen within
a testing run and to warn about a possible defect
even if such defect was not in fact seen in the testing
run. Many dynamic analyses have been proposed for
detecting special classes of bugs, such as data races
[3], atomicity violations [7], and deadlocks [6]. These
techniques may find more bugs than classical testing
but, on the other hand, their computational complexity
is usually higher and some of them can produce false
alarms.

An alternative to testing and dynamic analyses is the
use of various static analyses [11] or model checking
[1]. Static analyses try to avoid execution of the given
program or to execute it on a highly abstract level
only. Model checking (sometimes viewed as a heavy-
weight static analysis) tries to systematically explore
all possible states of a model representing the analyzed
program. These approaches are usually not precise
enough and therefore produce false alarms or are too
demanding and do not scale well.

Search-based Testing of Concurrent Software.
According to our knowledge, search-based techniques
have not been applied to concurrency testing yet. But,
recently published work [12] describes application of
a search technique to control state space exploration
within a model checker with intention to explore areas
that are more likely to contain errors. Our approach
share the same idea of applying a search technique to

focus on scenarios that more likely lead to an error
but we focus on testing. Therefore, we do not need to
construct model and handle state space of the tested
application.

3. Search-based Concurrency Testing

The success of search-based software testing is
based on two facts. First, the input space within which
test data is sought is typically well defined but so
large that it is usually infeasible to explore the whole
input space. Second, the test goal can be expressed
as a fitness function. The reason why the search-
based testing has probably not been used for testing of
concurrency is that there were not suitable definitions
of input spaces and fitness functions. In the rest of
this section, specifics of concurrency testing are briefly
described and then definitions of input spaces and
fitness functions are provided.

Specifics of Concurrency Testing. Testing is usu-
ally based on the idea that a test is executed and results
(or partial results) are compared with the expected
results. If the results obtained from the test correspond
to the expected results, the test passes. If not, the test
fails. Concurrency introduces non-determinism into the
execution and one has to check that a program pro-
duces the same results for the same inputs regardless of
which of the many legal orderings of operations within
the program execution occurred. Therefore, testing of
concurrent software is known to be very difficult since
a test that has already passed in many executions may
suddenly fail just because the order of operations dur-
ing the execution differs from all previous executions.
Concurrency testing tools therefore focus on observing
many different legal orderings of program operations
during multiple executions of the same test with the
intention to find an ordering that makes the test fail.

Different legal orderings during multiple executions
of a test can be achieved either by using a modified
scheduler that schedules operations in an order that
has not been seen yet or by the noise injection tech-
nique. The biggest problem of the modified scheduler
approach is compatibility. There exist various imple-
mentations of Java and implementations of schedulers
they use may differ, e.g., due to differences in un-
derlying platforms. Therefore, we focus on the noise
injection approach. In this approach, the application is
instrumented and calls to a noise maker are injected
at selected places. The noise maker tries to cause a
delay (generally referred to as noise) when called. The
selected places are those whose relative order among
the threads can impact the result; such as entrances
and exits from synchronized blocks, accesses to shared



variables, and calls to various synchronization primi-
tives. The decisions whether to insert a noise can be
random so different interleavings are attempted at each
run or based on heuristics that try to reveal typical bugs
for a particular synchronization construction.

Input Space. In our proposed approach, the input
space for concurrency testing combines classic test
inputs, noise maker inputs, noise parameter inputs, and
an input dimension for the number of iterations to be
considered. The task of identifying classic test inputs is
the same as, for instance, for the structural testing and
therefore existing approaches can be used to identify
them.

The noise maker inputs influence the behavior of
the applied noise maker. There could be two different
kinds of such inputs: direct and indirect. The direct
noise maker inputs tell the noise maker where exactly
to put a noise. In this case, the search technique is
used to identify a subset from the set of all possible
locations in the code where it is suitable to cause
a noise. The indirect noise maker inputs do not tell
the noise maker where exactly to put a noise but
set parameters influencing the procedure that decides
whether to cause a noise at a particular location (e.g.,
a probability of causing the noise, enabling usage of
some specific heuristic, etc.).

The noise parameter inputs define what kind of
noise to use. The kind of noise is given by the type of
language construction that is used by the noise maker
to produce the noise and the strength of the produced
noise. Finally, the iteration count input determines how
many times the test must be performed because as
was stressed above, a repeated execution of the same
test with the same parameters can lead to different
interleavings.

It is evident that what we do here is that we enlarge
the classic input space by adding dimensions needed
by the noise maker. This makes the input space much
larger and hence more suited for advanced search-
based techniques.

Fitness Functions. A fitness function is an objec-
tive function that prescribes the optimality of a solution
and is highly dependent on the goal that a search
technique tries to reach. Identifying suitable fitness
functions for testing concurrency is one of our research
goals and therefore we describe here only concurrency
related measures on top of which the fitness functions
can be built. As the most promising candidates for the
inputs of fitness functions, we consider concurrency
coverage measures, outputs of dynamic analyses, and
classical measures like duration of the test and the
number of bugs detected during a test execution.

To evaluate how well the concurrent behavior is

tested, one needs some suitable coverage measures like
those described in [13] (referred here as concurrency
coverage measures). There exist several concurrency
coverage models. These models usually combine code
and concurrency coverage information. For instance,
the synchronization coverage model [13] consists of
tasks that describe all possible “interesting” behaviors
of selected synchronization primitives. For instance, in
the case of a synchronized block (defined using the
Java keyword synchronized), the related tasks are:
synchronization visited, synchronization blocking, and
synchronization blocked. The synchronization visited
task is basically just a code coverage task. The other
two are reported when there is an actual contention be-
tween synchronized blocks—when a thread ¢; reached
a synchronized block A and stopped because another
thread ¢5 was inside a block B synchronized on the
same lock. In this case, block A is reported as blocked,
and block B as blocking (both, in addition, as visited).

Further input information (and derived measures)
can be obtained from outputs of various concurrency-
related dynamic analyses executed along the test.
Besides detecting bugs, these analyses can produce
interesting data like, for instance, the set of variables
that were really accessed by several different threads,
the set of variables over which a race condition was
detected, etc.

4. Proposed Research

A search-based testing techniques. The first
direction of our research considers designing suitable
fitness functions that are suitable for the needs of
concurrency testing. The common use cases are to
detect a concurrency bug (find a set of locations where
to put a noise to cause an ordering of operations that
enables detection of a bug), to make the detected bug
reproducible (find a set of locations where to put a
noise that cause an ordering making the bug to reveal),
etc.

Reduction of input space. As was described in
Section 3, the input space for concurrency testing is
much larger than, for instance, in structural testing.
However, since putting noise to some program lo-
cations does not make sense (e.g., locations that do
not influence concurrency) and putting noise to some
program locations can have the same effect as having
the noise somewhere else, there is an open space
for various optimizations that reduce the input space.
Of course, most of the reductions must be problem-
specific.

Propose a suitable incorporation of dynamic
and/or static analyses. Finally, the third direction



combines testing with dynamic and static analyses in
order to detect concurrency bugs. As was mentioned
in Section 3, dynamic analyses can be used not only
to detect concurrency bugs but also to produce inputs
for the fitness function. Static analysis can be used to
further analyze tests and its outputs can be used in
search algorithms.

5. Already Achieved Results

We have implemented a generic platform for search-
based testing called SearchBestie [8]' that provides
an environment for experimenting with search-based
techniques as well as applying these methods in the
area of testing. We instantiate the generic platform for
concurrency testing, by linking it to the concurrency
testing tool ConTest [2] from IBM. ConTest provides
us with a tool for instrumenting Java bytecode, a con-
figurable noise maker, code and concurrency coverage
generators, and a listeners infrastructure that can be
used to develop and apply dynamic analyses.

Our experiments with SearchBestie are in a pre-
liminary stage. So far, we have mainly shown the
concept of interconnection of SearchBestie and Con-
Test. However, in our experiments [8] focused on
various specifics of concurrency testing, we have also
obtained certain evidence that search-based techniques
can be useful in concurrency testing. To prove our
ideas, we compared random testing with a search-based
approach which uses the simplest greedy search algo-
rithm for finding a configuration of ConTest (indirect
noise maker inputs) that provides as high concurrency
coverage as possible. Since we get in some cases better
results by such a primitive search than by the random
approach, we believe that there is a big potential in ap-
plying better search algorithms and various heuristics
in this area.

Acknowledgment

This work was partly supported by the Czech
Science Foundation (proj. P103/10/0306 and 102/09/
HO042) and the internal BUT FIT grant FIT-10-1.

References

[1] E. Clarke, O. Grumberg, and D. Peled. Model Check-
ing. MIT Press, 1999.

1. The submitted version of the paper can be downloaded from:
http://www.fit.vutbr.cz/~iletko/pub/padtad10.pdf

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby,
and S. Ur. Framework for testing multi-threaded java
programs. Concurrency and Computation: Practice and
Experience, 15(3-5):485-499, 2003.

T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: a
race and transaction-aware java runtime. In PLDI '07:
Proceedings of the 2007 ACM SIGPLAN conference
on Programming language design and implementation,
pages 245-255, New York, NY, USA, 2007. ACM
Press.

M. Harman. Automated test data generation using
search based software engineering. In AST ’07: Pro-
ceedings of the Second International Workshop on
Automation of Software Test, page 2, Washington, DC,
USA, 2007. IEEE Computer Society.

M. Harman and P. McMinn. A theoretical and empirical
study of search-based testing: Local, global, and hybrid
search. [EEE Transactions on Software Engineering,
99(RapidPosts):226-247, 2009.

P. Joshi, C.-S. Park, K. Sen, and M. Naik. A random-
ized dynamic program analysis technique for detecting
real deadlocks. In PLDI ’09: Proceedings of the 2009
ACM SIGPLAN conference on Programming language
design and implementation, pages 110-120, New York,
NY, USA, 2009. ACM.

Z. Letko, T. Vojnar, and B. Kfena. Atomrace: data race
and atomicity violation detector and healer. In PADTAD
'08: Proceedings of the 6th workshop on Parallel and
distributed systems, pages 1-10, New York, NY, USA,
2008. ACM.

Z. Letko, T. Vojnar, B. Kfena, and S. Ur. A platform for
search-based testing of concurrent software, to appear
in proceedings of PADTAD ’10.

P. McMinn. Search-based software test data generation:
a survey: Research articles. Softw. Test. Verif. Reliab.,
14(2):105-156, 2004.

M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A.
Nainar, and I. Neamtiu. Finding and reproducing
heisenbugs in concurrent programs. In OSDI, pages
267-280. USENIX Association, 2008.

F. Nielson, H. R. Nielson, and C. Hankin. Principles
of Program Analysis. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1999.

J. Staunton and J. A. Clark. Searching for safety
violations using estimation of distribution algorithms.
Software Testing Verification and Validation Workshop,
IEEE International Conference on Software Testing,
Verification, and Validation, 0:212-221, 2010.

E. Trainin, Y. Nir-Buchbinder, R. Tzoref-Brill, A. Zlot-
nick, S. Ur, and E. Farchi. Forcing small models
of conditions on program interleaving for detection
of concurrent bugs. In PADTAD ’09: Proceedings of
the 7th Workshop on Parallel and Distributed Systems,
pages 1-6, New York, NY, USA, 2009. ACM.



