
A Calculus of Coercive Subtyping

(Extended Abstract)

Libor Škarvada1, Matej Kollár1, Ondřej Peterka2,
Ondřej Ryšavý2, and Dušan Kolář2

1 Masaryk University
{libor,xkollar2}@fi.muni.cz
2 Brno University of Technology

{ipeterka,rysavy,kolar}@fit.vutbr.cz

August 24, 2009

1 Introduction

Our work that stems, in particular, from the research done by Aspinall and
Compagnoni [1], and Luo [5] attempts to provide a framework for systematical
studying coercive subtyping in dependent type systems. Contrary to [1] we define
subtyping based on coercions instead of allowing term overloading. Contrary to
[5] we implemented coercive subtyping as direct extension of �P type system
instead of introducing definitional mechanism, which is more powerfull but leads
to more complicated presentation of a system.

The calculus defined in this paper is based on �P system and the shape
of many type rules and the idea of splitting reduction on term and type level
corresponds to �P≤ system[1]. The introduced notion of coercion functions is
motivated by definitions presented in [5]. Therein, a coercion � is a definable term
in the system, and is inserted if necessary to harmonize the type of expressions.
It is done via introduction of abbreviations, f(x) = f(� a), for f with domain of
type A′ and coercion � : A → A′ that allows to apply the function to term a : A.
In our work, we take coercion as definitional term that stands for a function
usable for transforming terms between subtypes or computationally equivalent
types. In the case of coercion for computational type equality such mapping is
simply the identity function that may be removed from the term.

The contribution of the present work is in formalization of an extension of
�P calculus with coercive subtyping, in which the subtyping fragment itself is
more independent compared to related calculi, such as �P≤ or �� [2]. In fact,
the only dependence comes with the need to deal with type equality, but this is
restricted in subtyping fragment. Because of this restriction, by allowing to define
subtyping only on types in canonical form it is possible to break the dependence
as a whole and show decidability of subtyping fragment independently. Moreover,
it can be recognized that the subtyping fragment corresponds to simply typed
calculus (considering ≤ as a function type constructor).

The present paper is organized as follows: In Section 2, we give a formal
presentation of �P� calculus, which is supplied with examples to help grasp the

idea of the system. In Section 3, we state basic properties of the calculus. In
particular, we sketch the proof of decidability of typechecking. In Section 4,
we conclude with discussion and remarks on the presented system and provide
comparison with related work. We also indicate the possible extension of the
system and discuss the related issues.

2 The �P� calculus

In this section we define the calculus �P�, which is an extension of �P calculus
with coercive subtyping along the line of Luo as introduced in [5] and [6].

The formal presentation begins with a grammar of pre-terms and judgement
forms.

Definition 1 (Grammar of pre-terms). Let x is from an enumerable set of
variables, and � is from an enumerable set of type constants, then the pre-terms
of the calculus may be constructed according to the following grammar:

M,N ::= x ∣ �x:A.M ∣ MN ∣ �A terms of the calculus
A,B ::= � ∣ �x:A.B ∣ �x:A.B ∣ A M types of the calculus
K ::= ★ ∣ �x:A.K kinds of the calculus

The meaning is usuall:

– A term is a term variable, an abstraction, an application, or a designated
constant �.

– A type is an atomic type, a dependent product type, a type family, or a type
application.

– A kind is either the constant ★ or a type family. According to this a well-
formed kind has always form of �x1 : A1 . . . xn : An.★.

2.1 Type System

The type system incorporates derivation rules (typing, subtyping, kinding, and
formation rules), cosisting of judgements. Judgements contain contexts, which
are (possibly empty) finite sequences of declarations.

Definition 2 (Context Declaration). For every type constant �, kind K,
type A, variable x, and coercion �, a context declaration has one of the following
forms:

� : K type constant � is in kind K

� : � ≤ A type constant � is a subtype of A in kind ★ with coercion �.
x : A variable x has type A.

As we do not employ polymorphism, there are no type variables. Therefore,
in declaration � : K, the symbol � can denote only a new type constant.

Definition 3 (Context). Context is a finite sequence of context declarations.

2

For the sake of cleanliness, any declaration may appear at most once in a
given context. Thus, we rule out contexts like ⟨x:A, x:B⟩, or even ⟨x:A, x:A⟩.

For the presentation of the inference system we adapted Harper’s equational
formulation of LF [3]. Unlike the original system, we use only equational fragment
and define a system of abbreviations that allows us to simulate the rest of the
rules. The transformation to the Harper’s presentation is easy.

Definition 4 (Judgement Forms). Let � be a context, K be a kind, A and
B be types, � be a coercion, and M be term, then there are three basic forms of
judgements:

� ⊢ K = K ′ K and K ′ are equal kinds in context �
� ⊢ � : A ≤ B A is a subtype of B in context � with � being the witnessing

coercion between A and B.
� ⊢ M = N : A terms M and N are equal in type A.

For readability, we use additional judgement forms, which are abbreviations
of the basic ones:

� ⊢ K K is a kind, abbreviation for � ⊢ K = K

� ⊢ A = A′ : K A and A′ are equal types in kind K, abbreviation for � ⊢
�A : A ≤ A′ where �A is a special distinguished coercion—
identity coercion on A

� ⊢ A : K A is a type of kind K, abbreviation for � ⊢ A = A : K
� ⊢ M : A M is a term of type A, abbreviation for � ⊢ M = M : A

In judgements of form � ⊢ � : A ≤ B we have designated � symbols that
specify the unique identity coercions. If C : ★, then �C is the identity on C. If C =
(�x:A.B) : (�x:A.K), then �C is a mapping returning a (dependent) coercion
on lower type B, �C a = �B[x:=a]. Put loosely, if C : �x1:A1 . . .�xn:An.★, then
�C is n-times lifted identity on a standard type.

For brevity, we allow to write two or more similar judgements in compact
form, eg. � ⊢ M,N : A stands for two judgements � ⊢ M : A and � ⊢ N : A.

Rules for kind and context formation allow to create a well–defined context.
They include the only axiom of the system, (f-empty) rule, which simultane-
ously states that ★ is a well–formed kind and the empty context is a well–formed
context.

Definition 5 (Formation Rules).

f-empty

⟨⟩ ⊢ ★

f-�
�, x:A ⊢ K = K ′ � ⊢ A = A′ : ★

� ⊢ �x:A.K = �x:A′.K ′

f-term
� ⊢ A : ★

�, x:A ⊢ ★

f-type
� ⊢ K

�,�:K ⊢ ★

f-subt
� ⊢ A : K

�, �:�≤A ⊢ ★

3

Similarly to [1], there are two possible ways of introducing type constants
to the context. The rule (f-type) allows one to insert to the context a new
type constant that inhabits the given kind, e.g. �, seq :�x:nat.★ ⊢ ★. The other
way is supposed to be employed if one needs to declare a subtype of an existing
type. The rule (f-subt) enables declaring a new subtype and its accompanying
coercion function, e.g. �, n : nat, � : nlist≤ seq n ⊢ ★.

Next definition gives a collection of kinding rules. The purpose of these rules
is to state the equality on types.

Definition 6 (Kinding Rules).

k-var
�, �:K,� ′ ⊢ ★

�, �:K,� ′ ⊢ � : K

k-conv
� ⊢ A = B : K � ⊢ K = K ′

� ⊢ A = B : K ′

k-sym
� ⊢ A = B : K

� ⊢ B = A : K

k-trans
� ⊢ A = B : K � ⊢ B = C : K

� ⊢ A = C : K

k-�
�, x:A1 ⊢ B1 = B2 : K � ⊢ A1 = A2 : ★

� ⊢ �x:A1.B1 = �x:A2.B2 : �x:A1.K

k-app
� ⊢ A = A′ : �x:B′.K � ⊢ M = M ′ : B � ⊢ � : B ≤ B′

� ⊢ A M = A′ M ′ : K[x := M]

k-�

�, x:A ⊢ B : K � ⊢ M : A′ � ⊢ � : A′ ≤ A

� ⊢ (�x:A.B) M = B[x := M] : K[x := M]

The kind conversion rule (k-conv) is used to close kinding judgements
under a conversion of well-formed kinds. The only general form of �-kind is
�x1:A1. . . . �xk:Ak[x1, . . . , xk−1]. ★. Therefore for checking kind equality it is
sufficient to check equality of all argument types. This principle is used in rule
(f-�). The rule (k-�) is utilized for examining equality of arbitraty type fami-
lies. The rule (k-app) serves for the application of a type family to a well-typed
term. By requiring a coercion function � to exist, we allow here the type of the
argument to be a subtype of an anticipated type in a type-family argument. The
same applies also for (k-�). Rule (k-�) captures the notion of �–equality on the
level of types. In this rule it is acceptable to supply a term as a function argu-
ment, whose type is not equal to the expected argument type. Instead a subtype
is admitted and the coercion function stands for witnessing this subsumption.

The following example demonstrates the application of (k-app) rule. The
example however does not consider subtyping of argument types.

Example 1 (Equivalence of type families). Let us call “tall matrices” those whose
width is smaller than their height, tm = �ℎ:nat�w:lessℎ.matrix ℎw. Let � be a

4

context ⟨nat : ★, tm : �x:nat.less x ⇒ ★, m : nat, n : less m⟩. Assume that we
derive m′ : nat, n′ : less m, and also m = m′ and n = n′ (in the omitted part of
the derivation below). Then the rule (k-app) is used twice:

� ⊢ tm : �x:nat.less x ⇒ ★

...

� ⊢ m = m
′ : nat

� ⊢ tm m = tm m
′ : less m ⇒ ★

k-app

...

� ⊢ n = n
′ : less m

� ⊢ tm m n = tm m
′

n
′ : ★

k-app

The subtyping judgements � ⊢ � : A ≤ B consist of coercion term �, which
annotates the underlying subtyping relation.

For coercions on standard types we use the following abbreviations:

�1 ∘ �2 for �x:A.�1(�2 x) where �1 : A′ ≤ A′′, �2 : A ≤ A′ are coercions
(∘ �) for �f :(�y:A′.B)�x:A.f(�x) where � : A ≤ A′ is a coercion
(� ∘) for �f :(�y:A.B)�x:A.�(f x) where � : B ≤ B′ is a coercion

Subtyping rules introduce coercion judgements. In these rules, the symbol �
may appear in the position of a coercion function, and indicates that two types
are equal. The typing rule (t-�) defined later enables simplifying coercion terms
containing identity coercions.

Definition 7 (Subtyping Rules).

s-var
�, �:�≤A,� ′ ⊢ ★

�, �:�≤A,� ′ ⊢ � : � ≤ A

s-�1
� ⊢ � : A ≤ A′ �, x:A ⊢ B : ★

� ⊢ (∘ �) : (�x:A′.B) ≤ (�x:A.B)

s-�2
� ⊢ B,B′ : ★ �, x:A ⊢ � : B ≤ B′

� ⊢ (� ∘) : (�x:A.B) ≤ (�x:A.B′)

s-app
� ⊢ � : C ≤ C′ � ⊢ C,C′ : �x:A.K � ⊢ M : A

� ⊢ � M : C M ≤ C′ M : K

s-trans1
� ⊢ B,C,D : ★ � ⊢ �1 : B ≤ C � ⊢ �2 : C ≤ D

� ⊢ �2 ∘ �1 : B ≤ D

s-trans2
� ⊢ B,C,D : �x:A.★ � ⊢ �1 : B ≤ C � ⊢ �2 : C ≤ D

� ⊢ (�x:A.�2x ∘ �1x) : B ≤ D

Rule (s-var) allows to use the declaration asserted previously into the con-
text. Rule (s-�1) provides us with a way to subtype function types by assuming

5

contravariant typing of the function argument. Correspondingly, rule (s-�2) ex-
presses that subtyped function types are covariant in their result types.

The following example demonstrates the use of rule (s-�1), which allows sub-
typing an argument type between (dependent) function types in a contravariant
manner.

Example 2 (Contravariant subtyping). Consider a context � ≡ ⟨nat : ★, list :
nat ⇒ ★, � : even ≤ nat⟩.

...

� ⊢ � : even ≤ nat
s-var

...

�, y:even ⊢ list y : ★
k-app

� ⊢ (∘ �) : �x:nat.list x ≤ �y:even.list y
s-�1

Transitivity as subsumed by (s-trans) rules is necessary, if considering sub-
typing in several arguments of a function type. It immediatelly involves both
(s-�1) and (s-�2) rules as demonstrated in the following example:

Example 3 (Multiple contravariant subtyping). Let us consider context � ≡
⟨nat : ★, matrix : �ℎ:nat.�w:nat.★, � : even ≤ nat⟩. For the sake of space
the following abbreviations for type expressions are used:

�nn ≡ �ℎ:nat.�w:nat.matrix ℎ w → nat

�n ≡ �w:nat.matrix ℎ w → nat

�e ≡ �w:even.matrix ℎ w → nat

�en ≡ �ℎ:even.�w:nat.matrix ℎ w → nat

�ee ≡ �ℎ:even.�w:even.matrix ℎ w → nat

� ⊢ � : even ≤ nat

� ⊢ (∘ �) : �nn ≤ �en
s-�1

�, ℎ:even ⊢ � : even ≤ nat

�, ℎ:even ⊢ (∘ �) : �n ≤ �e
s-�1

� ⊢ ((∘�) ∘) : �en ≤ �ee
s-�2

� ⊢ ((∘�) ∘) ∘ (∘�) : �nn ≤ �ee
s-trans1

Example 4 (Subtyping of type families). Let us consider context � ≡ ⟨nat :
★, �en : even ≤ nat, 0e : even, 0n : nat, bag : nat ⇒ ★, �lb : list ≤ bag, . . . ⟩ and
assume we have derived judgement � ⊢ 0n = �en0e : nat. Then, using the rule
(s-app), we can derive judgement

� ⊢ �lb 0n : list 0n ≤ bag 0n : ★

Using rule (k-app) and the fact that 0n = �en0e we derive � ⊢ bag 0n = bag 0e :
★, which is the same as

� ⊢ � : bag 0n ≤ bag 0e : ★

(recall that the former is just an abbreviation of the latter). Then using rule
(s-trans1), we get

� ⊢ � ∘ �lb 0n : list 0n ≤ bag 0e

6

Finally, the last definition of the section introduces typing judgements. These
rules assert equality on terms under the typing assumptions. This fragment de-
pends on subtyping fragment as we allow the application of a function to the
argument whose type is a subtype of the type expected by the function.

Definition 8 (Typing Rules).

t-var
�, x:A,� ′ ⊢ ★

�, x:A,� ′ ⊢ x : A

t-conv
� ⊢ M1 = M2 : A1 � ⊢ A1 = A2 : ★

� ⊢ M1 = M2 : A2

t-sym
� ⊢ M1=M2 : A

� ⊢ M2=M1 : A

t-trans
� ⊢ M1=M2 : A � ⊢ M2=M3 : A

� ⊢ M1=M3 : A

t-�
� ⊢ N1=N2 : A � ⊢ A : ★

� ⊢ �A N1=N2 : A

t-�

�, x:A ⊢ M : B � ⊢ N : A′ � ⊢ � : A′ ≤ A

� ⊢ (�x:A.M)N=M [x := � N] : B[x := N]

t-�
�, x:A1 ⊢ M1=M2 : B � ⊢ A1=A2 : ★

� ⊢ �x:A1.M1=�x:A2.M2 : �x:A1.B

t-app
� ⊢ M1=M2 : �x:A.B � ⊢ N1=N2 : A′ � ⊢ � : A′ ≤ A

� ⊢ M1 N1=M2 N2 : B[x := N1]

t-c
� ⊢ � : C ≤ C′ � ⊢ C,C′ : ★

� ⊢ � : C→C′

Rules (t-var), (t-sym), (t-trans), and (t-�) are standard. Rule (t-�) de-
fines equality under �-contraction. It means that � can be safely removed from the
term as it does not represent a significant computational meaning. Rule (t-�)
introduces �-reduction into equality judgements. There is, however, a difference
from the usual �-reduction. A suitable coercion function is substituted with the
argument during redex elimination by �-reduction. It means that the following
two terms are equal: (�x:nat.twice x) e = twice (� e), if twice : nat→ even,
e : even, and � : even ≤ nat. Note that coercion is not inserted to types in
(t-�) nor (t-app) rules. Rule (t-c) makes posible to transform a coercion to an
ordinary term.

The subtyping introduced via (t-app) rule is shown in the following example.

7

Example 5 (Coercion in application). Let � ≡ ⟨nat : ★, � : even ≤ nat, list :
nat ⇒ ★, listMake : �x:nat.list x, e : even⟩, then:

� ⊢ listMake : �x:nat.list x � ⊢ e : even � ⊢ � : even ≤ nat : ★

� ⊢ listMake e : list e
t-app

2.2 Typed Reduction

The reduction relation on terms and types can be defined by means of the
typing rules (t-�) and (t-�) (reduction on terms), and the kinding rule (k-�)
(reduction on types). This means that reduction requires typing to work and
the only correct notion of reduction is typed reduction. While the typing rules
are the tool of inference the reduction should be understand in the computation
sense giving the operational semantics of the calculus.

Definition 9 (Reduction �PR
�). Reduction (⊳) is defined as usual with respect

to the following typed contraction schemes:

(�1)
�, x : A ⊢ M : B � ⊢ N : A′ � ⊢ � : A′ ≤ A

� ⊢R (�x:A.M)N ↝� M [x:=� N] : B[x:=N]

(�2)
�, x : A ⊢ B : K � ⊢ M : A′ � ⊢ � : A′ ≤ A

�R ⊢ (�x:A.B)N ↝� B[x:=N] : K[x:=N]

(�1)
� ⊢ A : ★ � ⊢ M : A

� ⊢ �A M ↝� M : A

(�2)
� ⊢ M : A � ⊢ A : ★ �, x : A ⊢ B : K

� ⊢ ��x:A.B M ↝� �B[x:=M] : K

The following demonstrates the interplay between � and � reductions.

� ⊢ (�x:A�y:B�z:A → B → C.z x y)M N (�x:A′.�y:B.gx,y)
⊳★�C′≤C((�x:A

′.�y:B′.gx,y)(�AM)(�BN)))
⊳★�C′≤C((�x:A

′.�y:B.gx,y) M N)
⊳★�C′≤Cgx,y (�A≤A′ M) N

Any application of � reduction introduces coercions that stick to the arguments
when doping substitution in function body. Using � reduction the identity co-
ercions can be eliminated from terms therefore we polish the term from the
evidently unnecessary applications. Because of existence of � terms we need cor-
responding rule to eliminate � from terms by means of computation. On the
other hand, it is possible to check whether two types are equal A = A′ or one is
a subtype of another A < A′ in the common manner by checking A ≤ A′.

Becase the reduction of terms of the calculus requires the typing context we
need to show that the defined typed reduction is sound with typing rules.

Proposition 1. Let M1 and M2 are terms, A, A1 and A2 are types, and K is
a kind.

8

– If � ⊢ M1 ⊳ M2 : A then � ⊢ M1 = M2 : A.
– If � ⊢ A1 ⊳ A2 : K then � ⊢ A1 = A2 : K.

Also the desirable property is that the reduction is complete with respect to
term and type equality as captured by the type system.

Proposition 2. Let M1, M2 and M ′ are terms, A, A1, A2 and A′ are types,
and K is a kind.

– If � ⊢ M1 = M2 : A then there exists M ′ such that � ⊢ M1 ⊳ M
′ : A and

� ⊢ M2 ⊳ M
′ : A.

– If � ⊢ A1 = A2 : K then there exists A′ such that � ⊢ A1 ⊳ A′ : K and
� ⊢ A2 ⊳ A

′ : K.

3 Properties of �P�

In [4] we dealt with a restricted version of our calculus we showed that a restricted
version of our calculus has standard useful properties like strong normalization,
or Church-Rosser property. This is because the only essential difference from
Aspinall’s calculus �P≤ is in explicit coercions supplied in judgements, and this
additional information does not spoil the properties of the calculus.

We also need to deal with equational judgements which allows us to con-
sider typed reductions on terms and types. Typing information in reductions is
necessary to supply right coercions in expressions during the evaluation.

Proposition 3 (Strong Normalization). If � ⊢ M : A then M is strongly
normalizing.

The important property is the decidability of the calculus. In [4] we showed
that if we restrict the subtype relation ≤ to types of kind ★, the resulting calculus
has decidable type derivability.

We expect that the same holds for �P� (with the subtype relation extended
to all types). The reason for this belief is that (one of) the hard parts of the
typing process is the derivation of subtyping judgements—and this is simplified
due to the presence of coercion terms. Moreover, the coercion terms can be kept
in simple form, thanks to which the equality of coercion terms can be decided.

References

1. D. Aspinall and A. Compagnoni. Subtyping dependent types (summary. In Pro-
ceedings of the 11th Annual IEEE Symposium on Logic in Computer Science, pages
86–97. IEEE Computer Society Press, 1996.

2. G. Chen. Dependent type system with subtyping. Journal of Computer Science
and Technology, 13(6), 1998.

3. R. Harper. An equational formulation of lf. Technical Report ECS-LFCS-88-67,
University of Edingurgh, 1988.

9

4. M. Kollar, O. Peterka, O. Rysavy, and D. Kolar. A calculus of coercive subtyping.
Technical report, FI MUNI, Brno, to appear Sep2009.

5. Z. Luo. Coercive subtyping. Journal of Logic and Computation, 9(1):105–130, 1999.
6. Z. Luo and S. Soloviev. Dependent coercions. In Proceedings of 8th conference on

Category Theory and Computer Science (CTCS’99), 1999.

10

