
Preprints of the 30th IFAC Workshop on Real-Time Programming and
4th International Workshop on Real-Time Software pp. 155�160
On the Implementation of State-spaeExploration Proedure in a RelationalDatabase Management System⋆Jaroslav Rab Ondrej Rysavy Miroslav SvedaBrno University of Tehnology, Bozetehova 2612 66 Brno, Czeh RepubliAbstrat: An examination of disrete system's behavior an be done by exhaustive explorationof the state spae that is generated aording to the assigned domain semantis. Model-hekingis the matured disipline that allows to explore state spae as large as several millions ofstates. In this paper, we desribe a novel approah to the implementation of state explorationproedure using PL/SQL, the language of Orale relational database system. The high e�ienyof database systems when dealing with large amounts of data and relatively heap hardwareavailable nowadays advoates the use of relational database as an implementation platform forpratial exhaustive state exploration algorithm with the hope that this platform may sale upthe model heking method to hundreds of millions of explorable states.Keywords: Formal Spei�ation, Temporal Logi of Ations, State exploration, Relationaldatabase systems1. INTRODUCTIONPratial veri�ation of hardware and software systems isbased on algorithmi methods, whih are able to explorelarge state-spaes that exhaustively desribes the behaviorof these systems. While algorithms for state spae explo-rations are rather simple and well explored the issue ofhandling very large state spaes is atively researhing.The methods for e�ient representation of data in mainmemory and various abstration tehniques allows explorethe systems onsisting of hundreds of millions of states.Often the very sophistiated and omplex methods areused to deal with storing and indexing the data desribingstates. In this paper, we present an idea to use relationaldatabase system to manipulate the data desribing statespae and to provide a system for the exploration ofthese data in order to verify the required properties ofa hardware or software system being modeled. Although,the layer manipulating with data is muh heavier than thatusually implemented in state of the art model hekingtools, we believe that the following statements provideenough sound arguments to justify the rationality thisidea.Virtually unlimited memory. Database systems aredesigned to aommodate a large amount of data. Theative databases an have hundreds of millions of rows intables, and their total size an be hundreds of gigabytes.

⋆ The researh has been supported by the Czeh Ministry ofEduation in the frame of Researh Intention MSM 0021630528:Seurity-Oriented Researh in Information Tehnology and by theGrant Ageny of the Czeh Republi through the grants GACR102/08/1429: Safety and Seurity of Networked Embedded SystemAppliations and GACR 201/07/P544: Framework for the dedutiveanalysis of embedded software.

Time to result. Various tehniques have been imple-mented to speed up data proessing in the databasesystems. For example, indexes help to optimize variousoperations ontaining seleting the data or merging twotables. Often the speed optimization requires to usemore spae. As �rst assumption laims that we an havea lot of spae for the database, the speed of proessingmay be inreased. We assume that time required to getat least partial results is more important to users thanmemory requirement onsiderations.Presistene. The database systems are primarily usedfor storing the data. The state spae generated for aspei�ation whih is stored in the database is readyfor further exploration until someone expliitly deidesit should be erased from the database. The persistenebalane the overall osts of model generation that maybe very high for a large models. Moreover as databasedata may be altered as needed, the tehniques thatmodify or re�ne the model as spei�ation evolves anbe applied.We demonstrate the idea using a system desription givenin the formalism alled Temporal Logi of Ations devel-oped by Lamport (2003). In the rest of the setion, a briefdesription of this formalism is provided. Note that anadequate system desription as assumed in this paper anbe provided by any state-based formalism employing someform of guard/ation prediates.1.1 TLA+Temporal Logi of Ations (TLA) is a variant of linear-time temporal logi. It was developed by Lamport (2003)primarily for speifying distributed algorithms, but severalworks shown that the area of appliation is muh broader.The system of TLA+ extends TLA with data strutures155

156 Preprints of WRTP/RTS. Mr¡gowo, 2009allowing for easier desription of omplex spei�ationpatterns. TLA+ spei�ations are organized into mod-ules. Modules an ontain delarations, de�nitions, andassertions by means of logial formulas. The delarationsonsist of onstants and variables. Constants an be unin-terpreted until an automated veri�ation proedure is usedto verify the properties of the spei�ation. Variables keepthe state of the system, they an hange in the systemand the spei�ation is expressed in terms of transitionformulas that assert the values of the variables as observedin di�erent states of the system that are related by thesystem transitions. The overall spei�ation is given bythe temporal formula de�ned as a onjuntion of the form
I∧�[N]v∧L, where I is the initial ondition, N is the next-state relation (omposed from transition formulas), andL is a onjuntion of fairness properties, eah onerninga disjunt of the next-state relation. Transition formulas,also alled ations, are ordinary formulas of untyped �rst-order logi de�ned on a denumerable set of variables,partitioned into sets of �exible and rigid variables. More-over, a set of primed �exible variables, in the form of
v′, is de�ned. Transition formulas then an ontain allthese kinds of variables to express a relation between twoonseutive states. The generation of a transition systemfor the purpose of model heking veri�ation or for thesimulation is governed by the enabled transition formulas.The formula �[N]v admits system transitions that leave aset of variables v unhanged. This is known as stuttering,whih is a key onept of TLA that enables the re�nementand ompositional spei�ations. The initial ondition andnext-state relation speify the possible behavior of thesystem. Fairness onditions strengthen the spei�ation byasserting that given ations must our. The TLA+ doesnot formally distinguish between a system spei�ationand a property. Both are expressed as formulas of temporallogi and onneted by impliation S =⇒ F , where S is aspei�ation and F is a property. Con�rming the validity ofthis impliation stands for showing that the spei�ationS has the property F. The TLA+ is aompanied with aset of tools. One of suh tool, the TLA+ model heker,TLC, is state-of-the-art model analyzer that an omputeand explore the state spae of �nite instanes of TLA+models. The input to TLC onsists of spei�ation �ledesribing the model and on�guration �le, whih de�nesthe �nite-state instane of the model to be analyzed. Anexeution of TLC produes a result that gives answer tothe model orretness. In ase of �nding a problem, this isreported with a state-sequene demonstrating the trae inthe model that leads to the problemati state. Inevitably,the TLC su�ers the problem of state spae explosionthat is, nevertheless, partially addressed by a tehniqueknown as symmetry redution allowing for veri�ation ofmoderate size system spei�ations.2. MODEL CONSTRUCTIONThe state spae onstrution demonstrated on an intro-dutory example is shown in this setion. The exampleis taken from Lamport's book (see Lamport (2003)). Itrepresents a spei�ation of loks enrihed with minutes(variable mn) that makes the spei�ation less trivial butstill small enough for omplete presentation.

2.1 Table PreparationListing 1. Creating s-table and t-table:reate table s_hourlok (id integer primary key ,hr integer , mn integer) ;reate table t_table (s r integer r e f e r e n e s s_hourlok (id) ,t rg integer r e f e r e n e s s_hourlok (id) ,at integer) ;reate sequene seq_s_hourloks t a r t with 1 noy le ;alter table s_hourlok add onstraints_hourlok_unique unique (hr ,mn)2.2 Initial StatesTo enumerate and store all initial state in state table thePL/SQL proedure shown in listing 2 is exeuted. It loopsover the variable hr and inserts eah value in state table,whih orresponds to prediate Init of the spei�ation.Listing 2. Generating initial states:f o r hr in 1 . . 1 2 loopinsert into s_hourlok values (seq_s_hourlok . nextval , hr , 0) ;end loop ;2.3 Ation de�nitionAn ation onsists of guard and omputable expressionfor determination of values in a suessive state. Theation A3 is realized as a stored proedure as shown inlisting 3. The evaluation of a guard expression yields toresult set that is bound to ursor 1. The selet statementontains where lause expressing that minutes are ininterval (0..58). The inner selet prevents to get statesthat where already examined. This is ahieved by testingthat there is not a transition (i.e. relation in transitiontable) arried by the ation a3 that starts in the seletedstate.Listing 3. Proedure implementing Ation 3:reate proedure hourlok_a3 asdupid s_hourlok . id%type ;u r so r 1 i sselet ∗ from s_hourlokwhere mn>=0 and mn<=58and id not in(selet distint s r from r_hourlokwhere at =3);r e 1%rowtype ;beginloopopen 1 ;f e t h 1 into r e ;e x i t when 1%notfound ;begin

Jaroslav Rab et. al: On the Implementation of State-spae Exploration Proedure 157
module HourClock

extends Naturals

variable hr , mn

Init
∆

= hr ∈ (1 . . 12) ∧ mn = 0
A1

∆

= hr ∈ (1 . . 11) ∧ mn = 59 ∧ hr ′ = hr + 1 ∧mn ′ = 0
A2

∆

= hr = 12 ∧ mn = 59 ∧ hr ′ = 1 ∧ mn ′ = 0
A3

∆

= mn ∈ (0 . . 58) ∧ mn ′ = mn + 1 ∧ unchanged 〈hr〉
Next

∆

= A1 ∨ A2 ∨A3

Spec
∆

= Init ∧ 2[Next]〈hr ,mn〉

1

Fig. 1. HourClok TLA Spei�ationinsert into s_hourlok values(seq_s_hourlok . nextval ,r e . hr , r e .mn+1);insert into r_hourlok values(r e . id , seq_s_hourlok . urrva l , 3) ;exeption when othe r s thenselet id into dupid from s_hourlokwhere hr=re . hr and mn=re .mn+1;insert into r_hourlok values(r e . id , dupid , 3) ;end ; l o s e 1 ;end loop ;end ;The loop in the ation proedure inserts new states instate table and new transitions in transition table. A newstate is omputed from the values of the urrent state aspointed by the ursor. If newly omputed state alreadyexists in the state table an exeption is raised beause thevalue uniqueness onstraint is violated. In this ase onlythe transition is inserted in the transition table. Note thatthe transition is marked with identi�ation of ation a3.2.4 Main LoopIn main loop, whih intuitively orresponds to Next pred-iate, the ations are exeuted until the set of statesstops growing. The implementation is straightforward inPL/SQL by the loop that ompares the size of state tablebefore and after the exeution of ation proedures.Listing 4. Main Loop:d e l a r ei integer ;p i integer ;beginselet ount (∗) into pi from s_hourlok ;loophourlok_a1 ;hourlok_a2 ;hourlok_a3 ;selet ount (∗) into i from s_hourlok ;e x i t when pi=i ;p i := i ;end loop ;end ;

By exeuting the main loop, the s_hourlok ontainsall reahable states and r_hourlok ontains all possibletransitions of the hourlok spei�ation. These tables anbe readily used for querying properties of the model, e.g.heking the type invariant amounts to selet all statesthat violates the type invariant property (see listing 5).Listing 5. Type Invariant Cheking:selet ∗ from s_hourlok where not(hr >= 1 and hr <= 12andmn >= 0 and mn <= 59)Nevertheless for deeper analysis, if properties are givenas formulas fo temporal logi, the state spae needs tobe onsidered together with the transition graph to forma transition system. It allows for answering the questionof whether the given temporal logi formula holds in thistransition system.2.5 An Issue of Transitive ClosureBefore we proeed to de�ne a systemati method for statespae exploration, we examine the role of transitive losure(TC) of transition table. Having preomputed TC wouldgreatly simplify algorithms for state exploration. The naiveiterative implementation is shown in listing 6.Listing 6. Transitive Closure of T-Table:reate table t_hourlok asselet ∗ from r_hourlok ;loopinsert into t_hourlok(selet G. sr , TC. t rgfrom r_hourlok G, t_hourlok TCwhere G. t rg = TC. s r) ;e x i t when s q l%rowount = 0 ;end loop ;The (time) omplexity of this implementation is O(n3) for
n edges and if appropriate indexes are used the omplexityan be redued to O(n2log n). These values seem notto be very optimisti if onsidering large state tables.Although several improvements and alternative methods

158 Preprints of WRTP/RTS. Mr¡gowo, 2009were studied, e.g. by Libkin and Wong (1997) and Donget al. (1999), we attempt to avoid the omputation of fullTC. Note that also exiting database management systemso�ers for limited implementation of reursive queries, forinstane, Orale's onnet by query.3. MODEL EXPLORATIONAlthough SQL-based querying over the state and transi-tion tables is possible, the usual way of validating reativemodels is to hek properties de�ned by terms of a tem-poral logi. The most straightforward algorithm adaptablefor SQL implementation is CTL model heking algorithmbased on state labeling.The algorithm for heking validity of CTL formula φin a (Kripke-style) model M operates by labeling statesaording to markers that orrespond to subformulas of
φ. The state s is labeled, s ∈ labelψ , i� the subformula
ψ is true in that state. One the algorithm ompletes the
M, s |= φ i� s ∈ labelφ. For further explanation see, e.g.Clarke et al. (1999).As any CTL formula an be expressed in terms of atomiexpression, ¬, ∨, EX, EU and EG we provide the orrespond-ing labeling proedures only for those ases.The �rst three ases are straightforward to implement. Anexample of labeling an atomi proposition or a propositiononsisting of non-temporal subformula is shown on listing7. The idea is to reate a new table that onsists of indexesof states that satisfy the given proposition, in this ase,
hr = 12 ∧mn ∈ (0..30).Listing 7. Labeling atomi expressions:reate table l_hourlok_1 asselet id from s_hourlok wherehr = 12 and mn >= 0 and mn <= 30Labeling disjuntion onsists of reating a new table thatmerges rows of the two subtables that orrespond to thesubformulas. We only need to guarantee that the resultingtable will not ontain dupliities.Listing 8. Labeling g=f1 ∨ f2:
−− input : l_hour lok_f1 , l_hour lok_f2
−− output : l_hourlok_greate table l_hourlok_g as(selet id from l_hourlok_f1unionselet id from l_hourlok_f2)Also proedure for the labeling of EX f is easy to imple-ment. To do this we selet all states labeled with f andlabel their predeessors with EX f . The listing 9 provide anexample of suh labeling. Note that predeessor is aessedin transition table if we onsider the urrent state beingindexed by dst �eld.Listing 9. Labeling g=EX f expressions:
−− input : l_hour lok_f
−− output : l_hourlok_greate table l_hourlok_g as(selet s r

from r_hourlok , l_hourlok_fwhere dst = id)In the following subsetions, we onentrate on non-trivialases that involves iterative omputations.3.1 Proedure for E[f1Uf2]To handle formulas of the form g = E[f1Uf2], the algorithm�rst �nds all states labeled with f2 (these states areimmediately labeled with g). Then the algorithm goesbakward, i.e. in the opposite way the transition relationis de�ned, to �nd all reahable states labeled with f1 andlabels them with g. The PL/SQL ode is in listing 10.Listing 10. Labeling g=E[f1Uf2]:
−− input : l_hour lok_f1 , l_hour lok_f2
−− output : l_hourlok_gbeginreate table l_hourlok_g asselet id from l_hourlok_f2loopinsert into l_hourlok_g(selet r . s r from r_hourlok r ,l_hourlok_g g ,l_hourlok_f1 f1where r . t rg = g . idand f 1 . id = r . s r and r . s r not in(selet id from l_hourlok_g))e x i t when s q l%rowount = 0 ;end loop ;end3.2 Proedure for EG fThe most ompliated part is represented by the ase EG fthat requires analyzing the graph to determinate nontrivialstrongly onneted omponents (SCC).First, we provide a PL/SQL ode for omputation of SCCadapting the algorithm devised by Tarjan (1971). Thealgorithm performs depth-�rst-searh traversal in order to�nd a sink node or a loop. The proedure visit (see listing11) is in the ore of the algorithm. It works on s table,whih has four olumn:id identi�es a node, it refers to state table.root identi�es the andidate root node of a stronglyonneted omponent of the given node.omp identi�es the strongly onneted omponent.stak is a number that represents a stak index, i.e. theorder on the stak.The proedure pushes root node passed as the only argu-ment in the s table. In a main loop, it marks the topnode as visited and pushes all its hildren on the stakof nodes waiting for the proessing. The proessed node isput into the other stak that determines an order, in whih

Jaroslav Rab et. al: On the Implementation of State-spae Exploration Proedure 159Listing 11. Visit proedure:reate or r ep l a eproedure v i s i t(vertex in number)v i s i t e d integer ;l e f t p t r integer := 1 ;r i gh tp t r integer := 2∗∗31 ;node integer ;u r so r 1 (node integer) i s selet t rg from r_hourlok where s r = node andt rg not in (selet id from s) ;r e 1%rowtype ;begindelete from s ;
−− push (root)insert into s values (vertex , vertex , 0 , r i gh tp t r) ;loop
−− pop (node)beginselet id into node from s where s tak = r i gh tp t r ;exeption when no_data_found then e x i t ;end ;update s set s tak=l e f t p t r where s tak = r i gh tp t r ;r i gh tp t r := r i gh tp t r + 1 ;l e f t p t r := l e f t p t r + 1 ;open 1 (node) ;loopf e t h 1 into r e ;e x i t when 1%notfound ;

−− push (h i l d)r i gh tp t r := r i gh tp t r − 1 ;insert into s values (r e . trg , r e . trg , 0 , r i gh tp t r) ;end loop ; l o s e 1 ;end loop ;end v i s i t ;the nodes were examined. To simulate two staks, used byTarjan's algorithm, it is enough to have only one stakolumn and two sets of indexes (leftptr, rightptr) asthe node annot be in both stak simultaneously.The algorithm for g = EG f onsiders that stronglyonneted omponents were determined in the previousstep and attempts to �nd all paths that lead to theseSCCs. To do this it proeeds by inrementally inrease thelabeled set by adding in eah step states for those thereare transitions ending in the labeled set.Listing 12. Labeling g=EG f :
−− input : l_hour lok_f ,
−− output : l_hourlok_gbeginSCC(f) −− i t produes l_hourlok_g

−− with s t a t e s in SCC(f)loopinsert into l_hourlok_g(selet r . s r from r_hourlok r ,l_hourlok_g g ,l_hourlok_f fwhere r . t rg = g . id

and f 1 . id = r . s r and r . s r not in(selet id from l_hourlok_g))e x i t when s q l%rowount = 0 ;end loop ;end 4. DISCUSSION AND FURTHER WORKIn the present work we introdued an idea of implement-ing state exploration proedure in the language of rela-tion database. In partiular, we demonstrated the ideaon examples given in PL/SQL that is the language ofOrale database system. We showed that, in partiular,the full implementation of CTL model heking algorithmis straightforward. In the presentation, we did not onsiderany optimization of state spae generation proedure northe model heking algorithm, although using aompa-nied pro�ling tools it is possible to �nd the performaneproblems in SQL queries and ome with optimization im-provements. As the experiments indiate the used under-laying database system o�ers promising pratial platformfor automated veri�ation of large sale models. Although,

160 Preprints of WRTP/RTS. Mr¡gowo, 2009it is not possible to diretly ompare this implementationwith other model heking tools, on several examples weobtain results in time similar to the TLC model-hekeraompanied with TLA tool suite. We were also unableto pratie bigger ase studies as the tool that wouldautomatially generate PL/SQL statements from TLAspei�ation is not fully implemented yet, therefore for allthe experiments ode was entered manually.The immediate observations an be split to two lasses.The �rst lass onsiders the pratial aspet on the use ofthe method. To gain advantages of the method one needsto be provided with a set of tools that allows to automatigeneration of state spae models from spei�ations, sys-tem for property desription and state spae analysis. Fore�ieny reasons, the advantage user should be allowedto see preliminary results or to modify generated SQLstatements. The seond lass onsiders the implementa-tion aspet of the method. The ruial issue behind theimplementation of the state exploration method in theenvironment of relational database is e�ient proedurefor reursive query evaluation, whih appears behind anyall non-trivial omputations.As the researh done so far only points out the basiideas, there is a a huge room for further development andimprovements of the method. The following list ontainsthe most appealing items for immediate researh:
• SQL optimization and DBS-spei� optimizationtehniques should be applied as along the line onsid-ered by the seond assumption. Currently, only thepriniple was shown but the further improvements one�ieny need to be done in order to demonstratethat the method an be really onsidered as a prati-al tool for validation of industrial sale problems.
• Reusing auxiliary results of CTL model hekingproedure is possible as formulas may share samesubformulas. The tehnique that allows to identifythe same labeling should be studied in order to usethis option transparently to the user. The mathingatomi formulas with respet to their logial equiv-

aleny is a premise for implementation of e�ientreusing tehnique.
• Inremental model onstrution or modi�ation thatredues the osts assoiated with a reomputationof omplete state spae or sets of labeled states.The inremental approah an inrease the methodse�ieny but requires more sophistiated approahin state spae generation and veri�ation algorithmdesign. There are numerous work on inremental om-putation of views generated by reursive algorithmsfor relational database systems (e.g.), whih may helpin this ourse of researh.
• Support for omponent veri�ation that exploits thenatural operation of relational databases, e.g. joinand intersetion. A design onsisting of omponentsmay easier to treat as for eah individual omponentthe state spae an be generated and then the statespaes an be ombined aording to ompositionaloperation de�ned for a ontaining omponent. In thisphase, the native SQL operations, whih implemen-tations are optimized in relational database an beexploited. REFERENCESClarke, E., Grumberg, O., and Peled, D. (1999). ModelCheking. The MIT Press.Dong, G., Libkin, L., Su, J., and Wong, L. (1999). Main-taining the transitive losure of graphs in sql. In Int. J.Information Tehnology, 5.Lamport, L. (2003). Speifying Systems: The TLA+ Lan-guage and Tools for Hardware and Software Engineers.Addison-Wesley Professional.Libkin, L. and Wong, L. (1997). Inremental reomputa-tion of reursive queries with nested sets and aggregatefuntions. In In LNCS 1369: Proeedings of 6th Interna-tional Workshop on Database Programming Languages,Estes Park, 222�238. Springer-Verlag.Tarjan, R. (1971). Depth-�rst searh and linear grajhalgorithms. In Swithing and Automata Theory,1971., 12th Annual Symposium on, 114�121. doi:10.1109/SWAT.1971.10.

