
A Metamodel for Modelling of
Component-Based Systems with
Mobile Architecture

Marek Rychlý

Abstract Current information systems tend to be distributed into networks
of quite autonomous, but cooperative, components communicating asyn-
chronously via messages of appropriate formats. Loose binding between those
components allows to establish and destroy their interconnections dynam-
ically at runtime, on demand, and according to various aspects; to clone
the components and to move them into different contexts; to create, destroy
and update the components dynamically at runtime; etc. Modelling of the
dynamics and mobility of components brings many issues that can not be
addressed by means of conventional architecture description languages. In this
paper, a metamodel for modelling of component-based systems with mobile
architecture is proposed.

Key words: Metamodel, Component-based system, Mobile architecture

1 Introduction

Globalisation of information society and its progression create needs for ex-
tensive and reliable information technology solutions. Several new require-
ments on information systems have emerged and significantly affected soft-
ware architectures of these systems. The current information systems can not
be realised as monoliths, but tend to be distributed into networks of quite
autonomous, but cooperative, components communicating asynchronously
via messages of appropriate formats. Loose binding between those compo-
nents allows to establish and destroy their interconnections dynamically at

Marek Rychlý
Department of Information Systems, Faculty of Information Technology, Brno Uni-
versity of Technology, Božetěchova 2, 612 66 Brno, Czech Republic, e-mail: rychly@
fit.vutbr.cz

1

rychly@fit.vutbr.cz
rychly@fit.vutbr.cz

2 Marek Rychlý

runtime, on demand, and according to various aspects (e.g. quality and cost
of services provided or required by the components); to clone the components
and to move them into different contexts; to create, destroy and update the
components dynamically at runtime; etc.

Modelling of the dynamics and mobility of components (i.e. the systems’
dynamic or mobile architecture [11], respectively) brings issues that can not
be addressed by conventional architecture description languages. Models have
to provide description of hierarchical composition of components, description
of binding of neighbouring components’ interfaces as well as interfaces re-
ceived via mobility, description of interfaces providing and requiring a com-
ponent’s functional operations, and description of interfaces with operations
controlling the component’s life-cycle, binding of its interfaces and its mobil-
ity.

In this paper, a metamodel for modelling of component-based systems with
mobile architecture is proposed. Section 2 outlines the current state-of-the-
art in modelling of dynamic and mobile architectures. Section 3 describes the
proposed metamodel. An application of the metamodel is demonstrated in
Section 4 as a model of a component-based system implementing a service of a
railway interlocking control system. To conclude, in Section 5, we summarise
the contribution of this paper and outline the future work.

2 State of the Art and Motivation

There are several architecture description languages that support modelling
of component-based systems (e.g. component diagrams in UML [1], language
ACME [8], etc.). They allow to describe a logical (structural) view of a
component-based system, i.e. basic entities, their relations and features. How-
ever, the most of them do not support mobile or even dynamic architecture.

The component model Fractal [5], which is a general component composi-
tion framework, provides a notation for description of dynamic architecture
of hierarchically nested components [3], but without component mobility.
The component model SOFA 2.0 [6] introduces a MOF-based metamodel for
dynamic architecture, which is able to describe passing references of “utility”
interfaces, i.e. limited mobility of the specific type of interfaces. The archi-
tecture description language ArchWare [2] provides constructs to describe
dynamic software architectures by means of a specific UML 2 profile [12] and
their behaviour by means of π-calculus [11]. Although the ArchWare is more
advanced than the previously mentioned component models, it also does not
directly address component mobility.

The motivation of the approach proposed in this paper is to address com-
ponent mobility and design a MOF-based metamodel for component-based
systems with mobile architecture. The metamodel will support subsequent
description of the systems’ behaviour by means of π-calculus.

A Metamodel for Modelling of Component-Based Syst. with Mobile Arch. 3

3 Metamodel

The component model for mobile architectures is described as a metamodel
in the context of a four-layer modelling architecture. The metamodel is im-
plemented in OMG’s Meta Object Facility (MOF, [9]), which is used as a
meta-metamodel. The modelling architecture comprises the four layers:

M0: An information layer, which is comprised of the actual data objects.
This layer contains particular instances of component-based systems, their
runtime configurations, specific deployments of their components and con-
nectors, etc.

M1: A model layer, which contains models of the M0 data. The models
include structure and behaviour models that describe different perspec-
tives of component-based systems such as, for example, UML component
models or communication diagrams.

M2: A metamodel layer provides a language for building M1 models. Com-
ponent models fall in this layer, as well as models of the UML language.

M3: A meta-metamodel layer, which is used to define modelling languages.
It holds a model of the information from M2, e.g. MOF.

In the context of component-based development, a specific component-
based system (in layer M0) contains instances of elements from its model
(from layer M1). The model contains instances from a specific component
model (a metamodel in layer M2), which is described by a given meta-
metamodel (in layer M3).

The proposed metamodel is defined by means of Essential MOF (EMOF),
which is a part of MOF in layer M3. The EMOF contains packages Basic,
Reflection, Identifiers, and Extension, which form a minimal set of modelling
elements to define simple metamodels. Complete MOF (CMOF), which is
second and the last part of MOF, extends EMOF by Constructs package
from UML 2 Core [10].

The component model, as a model of layer M2, can be described by means
of UML 2 diagrams in two contexts:

1. as an object diagram of instances of EMOF classes from layer M3 (entities
in layer M2 are instances of classes in M3), i.e. it is described as “a model”,

2. as a class diagram from layer M1 (entities in layer M1 are instances of
classes in layer M2), i.e. it is described as “a metamodel”.

For better clearness, the component model will be described as an UML 2
class diagram from layer M1. To reuse well-established concepts of MOF, the
component model’s metamodel extends EMOF classes EMOF::NamedElement,
EMOF::TypedElement, and EMOF::Operation, which are outlined in Figure 1. A
complete and detailed definition of the EMOF classes can be found in [9].

4 Marek Rychlý

+ name : string

NamedElement
(CM::metamodel::EMOF)

Operation
(CM::metamodel::EMOF)

TypedElement
(CM::metamodel::EMOF)

+ isOrdered : boolean = false
+ isUnique : boolean = false
+ lower : int
+ upper : int

MultiplicityElement
(CM::metamodel::EMOF)

Parameter
(CM::metamodel::EMOF)

0..*+ ownedParameter

+ operat ion
owns

Fig. 1 A simplified part of the EMOF metamodel [9] with classes that will be
extended by the component model.

Component

+ behaviouralDescript ion

PrimitiveComponent

CompositeComponent

+ name : string

NamedElement
(CM::metamodel::EMOF)

+ getOwner() : Component

Interface

ProvidedInterface

RequiredInterface

ExternalProvInterface

ExternalReqInterface

InternalProvInterface

InternalReqInterface

0..*

1

+ required

+ owner

0..*

1

+ provided

+ owner

0..*
0..1

+ subcomponent

+ parent

0..*

1
+ providedIn

+ owner

0..*

1

+ requiredIn

+ owner

requires inside

provides inside

requires

provides

consists of

Fig. 2 Abstract component, realisations, and interfaces, extending
EMOF::NamedElement in the metamodel of the component model.

3.1 Components and Interfaces

Figure 2 describes the first part of the component model as an extension
of EMOF. The metamodel defines an abstract component, its realisations
as a primitive component and a composite component, and their interfaces.
All classes of the metamodel inherits (directly or indirectly) from class
EMOF::NamedElement in package Basic of EMOF.

In our approach, a component, which is an active communicating entity of
a component-based software system, can be described form two sides: as an
abstract component without considering its internal structure (“black-box”
view) and as a component realisation in the form of a primitive component
or a composite component (“grey-box” view). The abstract component (class
Component in the metamodel) can communicate with neighbouring components
via its interfaces (class Interface). The interfaces can be provided (class Exter-
nalProvInterface) or required (class ExternalReqInterface) by the component.

The component realisation can be primitive or composite. The primitive
component realisation (class PrimitiveComponent) is implemented directly, be-

A Metamodel for Modelling of Component-Based Syst. with Mobile Arch. 5

Binding BindOutwardBindInward

+ name : string

NamedElement
(CM::metamodel::EMOF)

TypeOfBinding

ProvidedInterface

RequiredInterface

ExternalProvInterface

ExternalReqInterface

InternalProvInterface

InternalReqInterface

BindSiblings

CompositeComponent

1

0..1

+ provided

10..*

+ provided

1

0..1

+ required

1

0..1

+ required

1

0..1

+ required

*

1

+ binding
+ owner

1

0..1

+ provided

0..1

0..*

+ type
has

imports from

exports to

imports to

exports from

bound from

bound to

contains

Fig. 3 Binding and its different realisations between interfaces of a composite com-
ponent realisation in the metamodel of the component model. Classes CompositeCom-
ponent and ...Interface are identical to the classes in Figure 2.

yond the scope of architecture description. It is a “black-box” with described
observable behaviour (attribute behaviouralDescription). The composite com-
ponent realisation (class CompositeComponent) is decomposable on a system of
subcomponents at the lower level of architecture description (it is a “grey-
box”). Those subcomponents are represented by abstract components (class
Component and relation “consists of”). Moreover, every composite component
realisation can communicate with its subcomponents via its provided (class
InternalProvInterface) and required (class InternalReqInterface) internal in-
terfaces (relations “provides inside” and “requires inside”, respectively).

The specific interfaces have to implement methods getOwner(), which re-
turn their owners, i.e. objects that act as the abstract components in a case of
the abstract component interfaces or as instances of the composite component
realisations in a case of their internal interfaces (in accordance with owner roles
of components in the relations with their interfaces).

3.2 Composite Components and Binding of Interfaces

Binding is a connection of required and provided interfaces of the identical
types into a reliable communication link. It is described in Figure 3. Interfaces
of a component (classes ExternalProvInterface and ExternalReqInterface) can
be provided to and required from its neighbouring components, while in-
terfaces of a composite component realisation (classes InternalProvInterface

and InternalReqInterface) can be provided to and required from its sub-
components only. Therefore, we distinguish three types of the binding (the
realisations of class Binding):

6 Marek Rychlý

1. Binding of provided interfaces to required interfaces in the same composite
component realisation is represented by class BindSiblings. The interfaces
have to be internal interfaces of the composite component realisation or
external interfaces of subcomponents in the same composite component
realisation1. The binding interconnects required interfaces (class Required-

Interface) via relations “bound from” to provided interfaces (class Pro-

videdInterfaces) via relations “bound to”.
2. Binding of external provided interfaces of a composite component real-

isation to its internal required interfaces is represented by class BindIn-

ward. The external interfaces are provided to neighbouring components of
the composite component acting as an abstract component (relation “im-
ports from” an instance of class ExternalProvInterface), while the internal
interfaces are required from the composite component’s subcomponents
(relation “exports to” an instance of class ExternalReqInterfaces).

3. Binding of internal provided interfaces of a composite component reali-
sation to its external required interfaces is represented by class BindOut-

ward. The internal interfaces are provided to the composite component’s
subcomponents (relation “exports from” an instance of class InternalProv-

Interface), while the external interfaces are required from neighbouring
components of the composite component acting as an abstract component
(relation “exports to” an instance of class ExternalReqInterfaces).

The bindings (i.e. instances of the realisations of class Binding) are owned
by the composite component realisations. Each binding can have a type (class
TypeOfBinding), a specialisation of EMOF::TypedElement, which can describe a
communication style (buffered and unbuffered connection), a type of synchro-
nisation (blocking and output non-blocking), etc.

3.3 Types of the Interfaces

To ensure type compatibility of interfaces in a binding, each inter-
faces has a type (class TypeOfInterface, which is a specialisation of class
EMOF::NamedElement in package Basic of EMOF). Hierarchy of the types of
interfaces is described in Figure 4.

According to a scope of visibility of the interfaces in a composite compo-
nent realisation, we can distinguish public interfaces, private interfaces, and
protected interfaces. The public interfaces (classes realising PublicIntType) of
a component can be accessed by its neighbouring components (via binding
BindSiblings). If the component is a composite component realisation, its
external public interfaces can be also accessed by its subcomponents and its

1 The diagram in Figure 3 does not restrict relations of BindSiblings to the interfaces
of the same composite component realisations; this will be defined later by means of
additional constraints in Section 3.4.

A Metamodel for Modelling of Component-Based Syst. with Mobile Arch. 7

CtrlRefProvInterface

CtrlBindReqInterface

ProtectedIntType PublicIntType

Operation

CtrlStart

CtrlStop

CtrlClone

CtrlAttach CtrlDetach

RefToProvInterface RefToComponent

PrivateIntType

TypeOfInterface

Operation
(CM::metamodel::EMOF)

+ name : string

NamedElement
(CM::metamodel::EMOF)+ getOwner() : Component

Interface

Component

RequiredInterface

ProvidedInterface

1

+ operat ion

1

*

+ type

1

+ component

1

0..1

+ operat ion

+ referrer

1

0..1

+ operat ion

+ binder

has

refers to

refers to

sets binding from

gets reference to

Fig. 4 Types of interfaces with class Operation extending EMOF::Operation in the
metamodel of the component model. Classes Interface, ProvidedInterface, Re-

quiredInterface, and Component are identical to the classes in Figure 2.

internal public interfaces can be accessed by its neighbouring components
(i.e. the interfaces can pass the component’s border via binding BindInward

and BindOutward owned by the component). They can be interconnected by
means of all kinds of bindings.

Contrary to the public interfaces, the private interfaces (classes realising
PrivateIntType) are specific types of interfaces, which can be provided only
by a composite component realisation and only to its subcomponents as the
component’s internal interfaces2. They can be interconnected only by means
of binding BindSiblings.

Finally, the protected interfaces (classes realising ProtectedIntType) of a
component can be accessed by its neighbouring components as the compo-
nent’s external interfaces, but if the component is a composite component
realisation, they are not reachable by its subcomponents. They can be inter-
connected only by means of binding BindSiblings.

We distinguish the following types of interfaces3 by their functionality:

• Public interface Operation, which extends class EMOF::Operation from pack-
age Basic of EMOF and represents a business oriented service with typed
input and output parameters.

• Protected interface CtrlRefProvInterface provides references to given pro-
vided interface ProvidedInterface of type Operation4, while protected in-

2 The private interfaces can be required by the subcomponents as their external
interfaces, but they can not pass borders of the subcomponents (nor any other
component). It means that the subcomponents have to be primitive components.
3 Operation denotes functional interfaces, while the others denote control interfaces.
4 The restriction to the interface of type Operation will be defined explicitly by
additional constraints in Section 3.4.

8 Marek Rychlý

terface CtrlBindReqInterface allows to establish a new binding of specific
required interface RequiredInterface of type Operation4 to a provided in-
terface of another component formerly referred by CtrlRefProvInterface.

• Protected interfaces CtrlStart and CtrlStop allow to control behaviour of
a component (i.e. to start and to stop the component, respectively).

• Private interfaces CtrlAttach and CtrlDetach provided by a composite com-
ponent realisation allow to attach a new component as a subcomponent of
the realisation (“nesting” of the component) and detach an old subcompo-
nent from the realisation, respectively.

• Protected interface CtrlClone provides references to fresh copies of a com-
ponent.

• Protected interface RefToInterface is able to pass references of provided in-
terfaces ProvidedInterface of type Operation4, while public interface RefTo-

Component allows to pass references of a whole component Component, which
is required to support component mobility.

3.4 Additional Constraints

We need to define additional constraints to ensure type compatibility of
interfaces in bindings, i.e. instances of realisations of class Binding in Fig-
ure 3. Types of the interfaces are given by relation to specific instances of
realisations of class TypeOfInterface and according to the hierarchy of the
types of interfaces in Figure 4. The following formulae use a first-order logic
with extra predicate symbols “o : T” and “o is T” for restriction of o to type T,
predicate symbol “i ∈ L” for restriction of l to list L, predicate symbol “x = y”
to check equality of x and y, and function symbol “i.getOwner()” to get an
owner of interface i (see method getOwner() of Interface in Section 3.1).

1. Bindings BindInward and BindOutward in a composite component realisation
can interconnect only interfaces of the same realisation.

(∀c : CompositeComponent) (
((∀b : BindInward ∈ c.binding)(b.provided.getOwner() = c ∧ b. required.getOwner() = c)) ∧
((∀b : BindOutward ∈ c.binding)(b.provided.getOwner() = c ∧ b. required.getOwner() = c)))

2. Binding BindSiblings in a composite component realisation can intercon-
nect only internal interfaces of the same composite component realisation
or external interfaces of its subcomponents.

(∀c : CompositeComponent) (∀b : BindSiblings ∈ c.binding) (
(∀i : InternalProvInt ∈ b.provided) (i.getOwner() = c)
∧ (∀i : InternalReqInt ∈ b. required) (i.getOwner() = c)
∧ (∀i : ExternalProvInt ∈ b.provided) (i.getOwner() ∈ c.subcomponent)
∧ (∀i : ExternalReqInt ∈ b. required) (i.getOwner() ∈ c.subcomponent))

3. Bindings Binding in a composite component realisation can interconnect
only provided interfaces with required interfaces of compatible types.

A Metamodel for Modelling of Component-Based Syst. with Mobile Arch. 9

(∀c : CompositeComponent) (∀b : Binding ∈ c.binding)(b.provided. type = b. required. type)

4. Bindings BindInward and BindOutward can interconnect only public inter-
faces, i.e. instances of class PublicIntType.

(∀c : CompositeComponent) (
((∀b : BindInward ∈ c.binding)

(b.provided. type is PublicIntType ∧ b. required. type is PublicIntType)) ∧
((∀b : BindOutward ∈ c.binding)

(b.provided. type is PublicIntType ∧ b. required. type is PublicIntType)))

5. Bindings BindSiblings that are inside a composite component realisation
can be connected to private interfaces, only if the interfaces are internal
interfaces of the composite component realisation.

(∀c : CompositeComponent) (∀b : BindSiblings ∈ c.binding)
(b.provided. type is PrivateIntType ⇒ b.provided ∈ c.providedIn)

6. Instances of classes CtrlBindReqInterface, CtrlRefProvInterface, and RefTo-

ProvInterface, and their relations to interfaces via “sets binding from”,
“gets reference to” and “refers to”, respectively, have to be connected with
the interfaces of type Operation only.

(∀t : CtrlBindReqInterface) (t.operation. type is Operation)
∧ (∀t : CtrlRefProvInterface) (t.operation. type is Operation)
∧ (∀t : RefToProvInterface) (t.operation. type is Operation)

4 A Case Study of a Component-Based System

As a case study, we create a model of a component-based system (CBS) that
implements a specific service of a service oriented architecture (SOA). We
adopt a specification of the SOA for functional testing of complex safety-
critical systems, more specifically a testing environment of a railway inter-
locking control system, which has been described in [7]. The environment
allows to distribute and run specific tests over a wide range of different testing
environments, varying in their logical position in the system’s architecture.
The CBS implements service TestEnvironment, which executes a test script
received from service TestManager via its interface ExecuteTest and forwards
its results back to TestManager via interface asyncReplyET when the test script
is finished. During its execution, the test script is interacting with a tested
environment, which is specific to each instance of service TestEnvironment5.
For a detailed description of the SOA and all its services, see [13].

Railway interlocking control systems are safety-critical systems and can
be described as component-based systems [4]. A testing environment of such
systems has to interact with the systems’ components. For that reason, a

5 Each rail yard has its own instance of the tested environment with specific sensors
and actuators where assigned tests are automatically executed.

10 Marek Rychlý

< < component> >
testEnvironment

< < component> >
controller

< < component> >
test

< < component> >
environment

< < component> >
output

executeWithID
exec : Operat ion

startTestP
: CtrlStart

detachTestP/ R

: CtrlDetach

: CtrlDetach

stopTestP/ R

: CtrlStop

: CtrlStop

provRefOResP/ R

: CtrlRefProvInterface

: CtrlRefProvInterface

teAttachP/ R

: CtrlAttach

: CtrlAttach

done : Operat ion

cDone oDone teReply oReply

rep : Operat ion

res : Operat ion

oResult
bindTResP

: CtrlBindReqInterface

: CtrlRefProvInterface

teExecTestP/ R

tResult

bindTIntP

tInteract

provRefEIntP/ R

eInteract

: CtrlRefProvInterface

int : Operat ion
res : Operat ion

: CtrlBindReqInterface

int : Operat ion

done : Operat ion
: RefToComponent

rep : Operat ion: RefToComponent

asyncReplyETexecuteTest

Fig. 5 Composite component TestEnvironment (a specific UML-like notation).

part of the testing environment, which is directly connected to a system
under testing (i.e. the tested environment), has character of a component
neighbouring to the system and can be described as the CBS. Moreover, the
test scripts are distributed to different instance of service TestEnvironment,
i.e. different parts of the system’s architecture, where they interact with
local testing environments. The test scripts act as mobile components in the
system’s architecture, i.e. in mobile architecture.

Figure 5 describes composite component testEnvironment, which represents
service TestEnvironment. The component model (from layer M1) is described
as a specific class diagram where entities of the CBS (from layer M0) will be
instances of the depicted classes6. The class diagram is figured in a specific
modification of UML 2 component diagrams’ notation7.

In Figure 5, components of the CBS are denoted by UML components,
i.e. classes stereotyped as «component». Provided interfaces are denoted by
UML interfaces, i.e. classes stereotyped as «interface» realised by related
components that own the interfaces, while required interfaces are denoted
by UML interfaces used by related components that own the interfaces. A
type of a component’s interface (see Section 3.3) is denoted by an UML
port where the port’s (optional) name and (mandatory) type are identical
to a name and a class of the type of the component’s interface. Bindings of

6 Another, but less comprehensible, method is to describe the component model as an
object diagram where objects in layer M1 are instances of classes from the metamodel
in layer M2 and represent abstractions of entities of the CBS from layer M0.
7 The aim is to simplify the diagram and reuse the well-established UML notation,
although it is not formally defined as an UML profile.

A Metamodel for Modelling of Component-Based Syst. with Mobile Arch. 11

functional required and provided interfaces are denoted by UML relations
of dependency stereotyped as «use». Each binding can have its (optional)
name and its type, if needed. In a case of a nameless binding of interfaces,
which is common for control interfaces, it is possible to interconnect the
interfaces directly. Relations of UML ports of types CtrlBindReqInterface or
CtrlRefProvInterface, which represent control provided interfaces for binding
of required functional interfaces or referencing functional provided interfaces,
respectively, are denoted by UML relations stereotyped as «use».

Component testEnvironment receives a test script via provided interface
executeTest, which is internally processed by component controller. The script
is represented by a fresh component, which does required testing after binding
of its interfaces to component environment.

At first, component controller attaches the new component as a subcom-
ponent test of component testEnvironment via its control interface teAttachP.
Then, it binds interfaces tInteract and tResult of the new component to
interface eInteract of component environment and interface oResult of com-
ponent output, respectively. Finally, component test is activated via interface
startTestP and executed with a new identifier via interface executeWithID. The
identifier is also returned by component testEnvironment as a reply of the test
script’s submission.

Component test performs the test script by interacting with component
environment via its interface eInteract. When the test script is finished, com-
ponent test sends the test’s results and its identifier to component output via
its interface oResult. Then, component output notifies component controller
via its interface cDone and forwards the results and the identifier out of the
component testEnvironment via its external interface asyncReplyET.

After component controller is notified about the finished test script, it is
able to receive and execute another test script, i.e. to attach a new component
in the place of component test. Before that, component test with the old
script is stopped via interface stopTestP and detached via control interface
detachTestP8.

5 Conclusion and Future Work

In this paper, we have presented a MOF-based metamodel for modelling of
component-based systems with mobile architecture. The proposed metamodel
has defined classes for primitive and composite components, the components’
functional and control interfaces, specific bindings of the interfaces, and types
of their operations. An application of the metamodel has been demonstrated

8 In the diagram in Figure 5, only these two interfaces of test are connected with
controller, because the rest of the test’s interfaces are used only during its nesting and
their connections do not exist outside of controller component.

12 Marek Rychlý

on the case study of the component-based system implementing a specific
service for a testing environment of a railway interlocking control system.

We are currently working on an integration of the metamodel into mod-
elling tools based on Eclipse Modeling Framework and on developing a
graphical editor in Eclipse Graphical Modeling Framework for structural
and behavioural modelling of service-oriented architectures and underlying
component-based systems.

Acknowledgements This research was partially supported by the BUT FIT grant
FIT-10-S-2 and the Research Plan No. MSM 0021630528 “Security-Oriented Research
in Information Technology”.

References

1. Avgeriou, P., Guelfi, N., Medvidovic, N.: Software architecture description and
UML. In: UML Satellite Activities, Lecture Notes in Computer Science, vol.
3297, pp. 23–32. Springer (2004)

2. Balasubramaniam, D., Morrison, R., Oquendo, F., Robertson, I., Warboys, B.:
Second release of ArchWare ADL. Tech. Rep. D1.7b (and D1.1b), ArchWare
Project IST-2001-32360 (2005)

3. Barros, T.: Formal specification and verification of distributed component sys-
tems. Ph.D. thesis, Université de Nice – INRIA Sophia Antipolis (2005)

4. Bowen, J.P., Stavridou, V.: Safety-critical systems, formal methods and stan-
dards. IEE/BCS Software Engineering Journal 8(4), 189–209 (1993)

5. Bruneton, E., Coupaye, T., Stefani, J.B.: The Fractal component model. Draft
of specification, version 2.0-3, The ObjectWeb Consortium (2004)

6. Bureš, T., Hnětynka, P., Plášil, F.: SOFA 2.0: Balancing advanced features in a
hierarchical component model. In: Proceedings of SERA 2006, pp. 40–48. IEEE
Computer Society, Seattle, USA (2006)

7. Donini, R., Marrone, S., Mazzocca, N., Orazzo, A., Papa, D., Venticinque, S.:
Testing complex safety-critical systems in SOA context. In: CISIS, pp. 87–93.
IEEE Computer Society, Los Alamitos, CA, USA (2008)

8. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for
software architecture description languages. IEEE Transactions on Software
Engineering 26(1), 70–93 (2000)

9. Meta object facility (MOF) core specification, version 2.0. Document formal/06-
01-01, The Object Management Group (2006)

10. UML infrastructure, version 2.1.2. Document formal/2007-11-04, The Object
Management Group (2007)

11. Oquendo, F.: π-ADL: an architecture description language based on the higher-
order typed π-calculus for specifying dynamic and mobile software architectures.
ACM SIGSOFT Software Engineering Notes 29, 1–14 (2004)

12. Oquendo, F.: UML 2.0 profile for ArchWare ADL. Tech. Rep. D1.8, ArchWare
Project IST-2001-32360 (2005)

13. Rychlý, M.: A case study on behavioural modelling of service-oriented architec-
tures. e-Informatica Software Engineering Journal 4(1), 71–87 (2010)

