
Reachability Analysis in Dynamically Routed Networks

Miroslav Sveda Ondrej Rysavy Gayan de Silva
Petr Matousek Jaroslav Rab

Faculty of Information Technology
Brno University of Technology

Brno, Czech Republic
Email: {sveda,rysavy,xdesil,matousp,rabj@fit.vutbr.cz}

Abstract—In this paper, we introduce a novel approach to
reachability analysis of dynamically routed networks. The goal
is to determine the network-wide reachability using static anal-
ysis of configuration files gathered from forwarding devices.
We describe a method that can compute the reachability in
networks with a mix of static routing configurations, distance
vector routing protocols, filtering routing updates and redistri-
butions. The method computes a network-wide approximation
of distributed routing information using the standard graph
algorithms. Thus, for any network state, we can determine a
set of active paths used for packet delivery. The outcomes of
the method can be, for instance, used during the conformance
checking of distributed access control lists against network
security policies.

Keywords-IP-networks; network configuration; network de-
sign; network reachability; routing protocols

I. INTRODUCTION

Network design belongs to complex tasks. Network spe-
cialists should fulfill customers requirements while consid-
ering the limits of underlined technologies. The goal is to
provide reliable network services as requested. Once the
design is finished, the deployment phase is launched. It
consists of installation and physical interconnection of the
devices, setting up their configurations and, finally, network
troubleshooting, in order to assure network functionality.
Identification of potential problems as early as possible
in the design phases appears a serious argument for extra
techniques and methodologies that verify and validate the
results of the design process.

Routing design can be very complex task in practice as
contemporary converged networks have to achieve many
different objectives, e.g., basic reachability, network secu-
rity, quality of services required by converged applications,
resilience, or scalability. A lot of implementation options
are available to meet the design goals where each of them
imposes certain constraints and side-effects. To validate
routing designs, the network is usually set up and troubleshot
in an laboratory environment to find the acceptable design
and to correct possible misconfigurations.

In this paper, we focus on the static analysis of network
configuration files, which may be helpful in network design
and configuration. In this sense, we share the view of
Feamster [1] who explicitly points out the similarity of

Border Gateway Protocol (BGP) configuration verification
to program analysis problem. We also consider a sim-
ple failure model that helps network designers to check
if the configuration can guarantee availability of critical
network services under a presence of eventual device or
link failures. Of course, the method presented in this paper
cannot guarantee the resilience of a network, but it can
reveal misconfigurations that may cause to happen unwanted
network scenarios.

While most of the related work (except [2]) ommit the
issue and effect of routing, we attempt to create a model that
primarily considers it. Routing issue may be ignored in case
of verifying Access Control List (ACL) implementations,
which should be consistent even in the case of unpredictable
content of routing tables, but cannot be neglected in the case
of quality of service analysis, where properly configured
dynamic routing enables to achieve quality requirements of
network services.

A. State of the Art

The analysis of routing design including packet filter-
ing and routing policies recently attracks interest among
researchers because of demands to build larger and more
capable networks. In this subsection, we shortly survey
research done in security policy verification, packet filters
validation and routing design analysis.

In 1997, Guttman defined a formal method to compute a
set of filters for individual devices given a global security
policy [3]. To achieve a feasibility, the network is abstracted
so only network areas and border routers occur in a model.
This natural decision mirrors the real situation as internal
routers do not usually participate in data filtering. Similarly,
data flow model is defined in terms of abstract packets,
which are described by abstract source and destination
addresses and service types. An algorithm computes a fea-
sibility set of packets that passes all filtering rules along the
path. The employed abstract packets description make the
procedure practically feassible and efficient.

Yan et al. developed a tool called FIREMAN [4], which
allows to detect misconfigurations in firewall configurations.
The FIREMAN performs symbolic model checking of the
firewall configurations for all possible IP packets and along

2011 18th IEEE International Conference and Workshops on Engineering of Computer-Based Systems

978-0-7695-4379-6/11 $26.00 © 2011 IEEE

DOI 10.1109/ECBS.2011.24

197

all possible data paths. The underlaying implementation
depends on Binary Decision Diagram (BDD) library, which
efficiently models firewall rules. This tool can reveal intra-
firewall inconsistencies as well as misconfigurations that
lead to errors at inter-firewall level. The tool can analyze
ACL series on all paths for end-to-end connections thus
offering network-wide firewall security verification.

Jeffrey and Samak in [5] aim at firewall configurations
analysis using bounded model checking approach. They
focus at reachability and cyclicity properties. To check
reachability, it means to find for each rule r a packet p that
causes r to fire. To detect cyclicity of firewall configuration,
it means to find a packet p, which is not matched by any rule
of the firewall set. They implemented an analysis algorithm
by translating the problem to a SAT instance and showed
that this approach is efficient and comparable to tools based
on BDD representation. Similar work was done by Pozo,
Ceballos and Gasca [6] who provided a consistency checking
algorithm that can reveal four consistency problems called
shadowing, generalization, correlation and independency.

Liu et al. developed a method for formal verification and
testing of (distributed) firewall rules (see [7], [8], [9]) to
the user provided properties. They represent firewall rules
using a Firewall Decision Diagram (FDD), which forms
an input to a verification algorithm. Another input is a
property rule, which describes a property that thay want
to check, e.g. description of a set of packets that should
pass the firewall. By a single traversing an FDD structure
from the root to the leave it is possible to check the given
property. In [2], Xie et al. report on their extensive work on
static analysis of IP networks. They define a framework able
to determine lower and upper approximations on network
rechability considering filtering rules, dynamic routing and
packet transformation. The method computes a set of packets
that can be carried by each link and, thus, by combination of
this, it is possible to determine end-to-end reachability. The
upper approximation determines the set of packets that could
potentially be delivered by the network, while the lower
approximation determines the set of packets that could be
delivered under all possible forwarding states. In the paper,
the authors also present refinement of both upper and lower
approximations by considering effect of routing.

Bera, Dasgupta and Ghosh (see [10], and [11]) define a
verification framework for filtering rules that allows one to
check the correctness of distributed ACL implementations
against the given global security policy and also to check
reliability (or fault tolerance) of service in a network. To
check the correctness, the filtering rules are translated to
assertions represented as boolean formulas that are together
with translation of the global security policy sent to SAT
solver. In the case of inconsistency the SAT solver may
produce a counter example that helps administrator to debug
ACL rules. To check the reliability, the framework accepts a
description of a global security policy, a collection of ACL

i12i11 i21 i22

R1

FIB

Static
RIB

OSPF
RIB

RIP
RIB

R2

FIB

Static
RIB

OSPF
RIB

Figure 1. A router model

rules and a network description to compute whether the rules
are consistent with the given policy. A policy is understood
as a description of service availability with respect to defined
network zones. First, the method computes a network access
model, which is a directed graph with ACLs assigned to its
edges. Next, the Service Flow Graphs (SFG) are generated
for all service in the interest, for instance, SFG for ssh traffic.
An SFG is a subgraph of network accesss graph. Based
on this graph the fault analysis is performed by computing
values of minimum cut in all SFGs. These values then
represent how many link failures can be tolerated.

B. Contribution

The contribution of this paper consists in the development
of a novel method focused on checking end-to-end connec-
tivity in dynamically routed networks1. Given configurations
of forwarding devices and a network topology, the method
is able to determine feasible paths in the network that
consequently allows us to check the overall reachability of
network services. The outcomes of the method can be further
deployed in analysis of the security level implemented by
firewalls distributed along the multiple paths. Using this
analysis, it is, e.g., possible to find backdoors or hidden
paths [10] in a network that can be used for the unauthorized
access to network services.

C. Structure of the paper

In section II, we restate a formal model for networks,
network nodes (routers) and routing information. In section
III, we define a method for computing all paths in a network
with only static routing information available. This method
is then extended in section IV to cope with distance vector
routing protocols. In particular, we focus on the issue of
filtering routing updates. Section V and VI deals with the
route redistribution and the selection of routing information
from routing information bases of routing protocol instances
to network-wide forwarding information base that gives the
desired output: the collection of all active paths in the

1In literature this problem is sometimes also called border-to-border
availability.

198

network. We conclude the paper in section VII discussing
the limitations of the method and the further work.

II. MODELING FORWARDING DEVICES AND ROUTING
INFORMATION

In this section we give a definition for network model and
a description of routing information. We use a path-based
model, which for each pair of source and destination net-
works determines a set of paths that satisfy a certain criteria.
These paths are found in the graph of a network topology
that captures physical interconnections among network de-
vices and connected networks. Each protocol maintains its
knowledge in structures called Routing Information Base
(RIB). Routers collect information from individual RIBs
and maintain Forwarding Information Base (FIB), which
governs the forwarding of packets. Next, we state the basic
terminology used in this paper.

A. Terminology

Thorough the paper, we commonly refer to the following
terms:
• Local RIB is stored in routing process address space

running on a router. Each process has its own RIB, e.g.
RIP maintains RIP database. Similarly, local FIB is a
single datatable, which is used by a router to decide
where to forward incoming packets.

• Network RIB/FIB is a network wide view of routing
information. This represents a shared routing knowl-
edge of forwarding devices. Similarly, network FIB
represents a global view on routing information that
governs forwarding packets in the entire network.

• Forwarding device is a network device that actively
decides where to forward packets based on its local
routing information stored in FIB.

• Redistribution stands for copying route information to
a target protocol instance, which is done in the scope
of a single router.

• Routing Protocol defines rules of routing information
exchange and routing information synthesis at local
router. Commonly, Routing Information Protocol (RIP)
, Open Shortest Path First (OSPF), Interior Gate-
way Routing Protocol (IGRP), and Enhanced IGRP
(EIGRP) are employed in local networks.

• Routing Instance also called routing process is a pro-
cess that runs the implementation of routing protocol
within router’s boundaries. It interacts with routing
instances running at neighboring routers.

B. A Network Model

We model the network topology as a hypergraph GNET =
〈VNET, ENET, C〉, where VNET is a set of forwarding devices
(routers) and ENET ⊆ 2VNET is a set of physical links 2, and C

2We model a network as hypergraph because we also admit topologies
that include n-to-n connections.

is a set of configurations that govern behaviors of forwarding
devices. For any v ∈ VNET there is a configuration Cv ∈ C.
More information about a similar network model can be
found in our previous paper [12].

Similarly, we define a graph for each routing instance in
a network. Before we can do that, we need to introduce
a model of forwarding devices. This model reveals an
abstract internal structure of a router with respect to routing
instances.

C. The Model of Forwarding Device

A packet forwarding device (router) is modeled as a
collection of routing instances each maintaining its own
routing information base (RIB). Router forwards packets
using information from forwarding information base (FIB).
The FIB is populated from local RIBs according to speci-
fied procedure, which is usually proprietary to each device
vendor. In this paper, we use Cisco devices as the reference
platform. On this platform each routing protocol is assigned
by administrative distance that specifies a priority of the
information stored in RIB with respect to router’s FIB.
Routing protocols with lower administrative distances are
believed to maintain more accurate routing information and
hence their information is equipped by a higher priority than
information of routing protocols with higher administrative
distances.

Figure 1 depicts the model of a router. This model is
essentially the same as defined by Maltz et al. in [13] and
in the rest of this subsection we restate the key features
of this model including graph of routing information flow
denoted as GRIB (see bellow). In Figure 1, there are three
routing processes, denoted as Static 3, OSPF, and RIP. The
arrows represent the following information flows:
• A flow from RIB to FIB represents the process of pop-

ulating FIB with selected items from RIB according to
the defined rules, e.g. based on administrative distance.

• A flow between RIBs represents a redistribution of
information between different routing protocols or dif-
ferent instances of the same routing protocol running
on the same router.

• A flow between RIBs on different devices represents
information sharing (or exchanging) between routers
that are using the same routing protocol.

Based on the previous information which all can be
gathered from configuration files we can define a graph
GRIB. Routing information flows form a graph GRIB =
〈VRIB, ERIB,P〉, where VRIB is the set of RIBs in the network
and ERIB is the set of adjacencies between RIBs over which
routing information can flow. Set P , contains properties that
can be assigned to edges ERIB. In section IV, P is interpreted
as a set of route filters.

3The Static routing process maintains static information configured on a
router. It consists of directly connected networks and static routes inserted
by an administrator.

199

D. Representing Routing Information

A router’s FIB stores routing information in form of a
record consisting of identification of a destination network, a
next hop router, which is either determined by specifying an
outgoing interface or by its IP address, and a cost. In our path
based model, we keep a global view on a network. Thus we
determine network FIB, which is represented by FIB matrix
that contains best paths among all destinations. Each cell of
this matrix contains information in the form of v1 →c1→
. . . vn−1 →cn−1 vn, where vi ∈ VNET. Alternatively, we can
write 〈π, c〉, where π = v1, . . . , vn is a path and c is an
aggregate cost if we do not care about particular link costs.
A cost of the path is always to be interpreted with respect
to a routing protocol that advertises such path, e.g. RIP uses
hop-count while OSPF uses values proportional to bandwith
along the path. Thus we need to annotate every costs with its
meaning, i.e. ci = 〈p, v〉, where p denotes an interpretation
for cost v.

A cost-path is a tuple 〈π, c〉, where π denotes a path and
c is an agregate costs to the destination. A path may contain
subpaths, for instance, 〈(〈(v1, v2, v3), 2〉, v6, v5, v8), 5〉. This
allows us to model a path that was observed by employing
multiple protocols using redistribution.

Our aim is to express a global view on the network
routing information; hence, instead of modeling local RIBs
and FIBs, we define a network RIBs and the network FIB.
There are many network RIBs, where the number depends
on the number of routing instances running in network.
There is always at least one network RIB that models
the static routing. There is always a single network FIB,
which contains a complete information on routing in the
current network state. In the following sections we show
how network RIBs and the network FIB are computed from
static routing configurations.

III. STATIC RIBS

Static routing information base (RIB) for every router
is obtained from analysis of router configuration files. For
instance, in the case of Cisco devices the static information
appearing in the routing table consists of directly connected
networks and static routes.

A. Directly connected networks

Directly connected networks are automatically placed
in local RIBs. There are two methods to define directly
connected route:
• An interface is configured with a valid IP address and

mask. Such configuration is implicitly considered as a
directly connected route that will be installed in routing
table.

• A static route is configured without defining a next
hop Ip address. It means only an outgoing interface
is defined.

B. Static routes

Static routes govern packet switching on a local router.
Implicitly, they have assigned low administrative value,
which stands for their high priority in the forwarding pro-
cess. This means that static routes will replace dynamic
routes in the router’s forwarding information base (FIB).
For instance, using RIP dynamic routing protocol, router R1
knows about the destination network 10.151.14.0/8 via
interface s0/1 with cost 8. However, static route for this
destination suggests to use interface s0/2. The static route
has priority over the dynamic route and, thus, router will
send packets for 10.151.14.0/8 out the interface s0/2.

C. Representing Static Network RIB

Figure 2 depicts an example of static routing configuration
and the resulting RIBs for networks N1 and N4. The
computation starts with adjacency matrices that capture an
effect of ip route configuration commands. Then, using
a standard graph algorithm, e.g., Floyd-Warshall, the path
matrices are computed. Because network N1 is directly
connected to router R1 the column R1 of the path matrix
for N1 defines all paths from any network destination to
network N1. From the example it can be concluded that

• it is possible to use standard graph approach to de-
termine paths taken by packets routed under the static
routing configuration, and

• for each network it seems to be necessary to perform
independent comutation unless two or more networks
share the same adjacency matrix.

Computing all pair shortests path using Floyd-Warshall
algorithm has time complexity of |V |3. As stated above we
need to perform up to |N | executions of this algorithm,
which is the number of destinations to be analyzed, to
determine the reachability of the network. Hence, the overall
complexity is |N | · |V |3.

IV. DISTANCE VECTOR PROTOCOLS

Routing processes running on network devices execute
a distributed algorithm to collect all relevant routing data.
These data are stored in a local database of routing protocol,
which is private to the routing process. Every instance
of routing protocol has its own private data structure that
maintains this kind of information. The following is a
content of a RIP database captured on a Cisco router:

Router#show ip rip database
11.0.0.0/8 directly connected, FastEthernet0/0
12.0.0.0/8

[1] via 192.168.1.2, 00:00:23, Serial2/0
13.0.0.0/8

[2] via 192.168.1.2, 00:00:23, Serial2/0
192.168.1.0/24 directly connected, Serial2/0
192.168.2.0/24

[1] via 192.168.1.2, 00:00:23, Serial2/0

200

R1

R2 R5

R3 R4

N1

N4

R2#ip route N1 R1
R3#ip route N1 R2
R4#ip route N1 R3
R5#ip route N1 R1

R1#ip route N4 R5
R2#ip route N4 R3
R3#ip route N4 R4
R5#ip route N4 R2

Static adjacency for N1 Path matrix for N1

N1 R1 R2 R3 R4 R5 N1 R1 R2 R3 R4 R5

R1 0 x x x x R1 x x x x x

R2 1 x x x x R2 2,1:1 x x x x

R3 x 1 x x x R3 3,2,1:2 3,2:1 x x x

R4 x x 1 x x R4 4,3,2,1:3 4,3,2:2 4,3:1 x x

R5 1 x x x x R5 5,1:1 x x x x

Static adjacency for N4 Path matrix for N4

N4 R1 R2 R3 R4 R5 N4 R1 R2 R3 R4 R5

R1 x x x x 1 R1 x 1,5,2:2 1,5,2,3:3 1,5,2,3,4:4 1,5:1

R2 x x 1 x x R2 x x 2,3:1 2,3,4:2 x

R3 x x x 1 x R3 x x x 3,4:1 x

R4 x x x 0 x R4 x x x x x

R5 x 1 x x x R5 x 5,2:1 5,2,3:2 5,2,3,4:3 x

Figure 2. An example of static network configuration and network RIBs.
On the left side of the figure, there is a simple network topology consisting of five routers and static routing configuration snippets. On the
right side there are adjacency matrices and path matrices for destinations N1 and N4. The path information contains also costs, which is
nevertheless irrelevant in case of static configuration. The required result is obtained by taking column R1 and R4, respectively.

Using defined criteria, the router selects from local RIBs
of all running routing protocols the information about avail-
able routes and installs them in the routing table. The content
of a routing table determines paths, which the data would
go through in the network.

Maltz et al. [13] developed a model for understanding
routing contribution to network dynamics. In this section,
we could employ their routing process graph to define an
abstraction for network wide-routing information dissem-
ination. However, we diverge from that approach as our
goal is to define a method that would be able to compute
efficiently the approximation of routing base information
for the given network state without simulating (distributed)
routing protocol algorithms.

For basic cases it is easy to determine routing infor-
mation. Based on routing process graph one knows the
flow restrictions of routing information and, by application
of a standard graph traversal algorithm, it is possible to
find the best paths with respect to cost models used by
analyzed routing protocols. However, it is possible that
routing information can be modified as it is spreading among
routers. In this section, we deal with the case, in which the
routing configuration includes access control lists applicable
to routing information updates. In this case, to determine
routing information bases it requires some additional steps.

A. Filtering Routing Updates

Route filtering is provided by regulating the route ad-
vertisments sent to neighboring routers and by filtering
routes advertised by other routers before they are added
to or updated in the local routing protocol database. Route
filters have only an effect on distance vector protocols [14],
e.g. Routing Information Protocol (RIP), Interior Gateway
Routing Protocol (IGRP), and Enhabced IGRP (EIGRP).

It is possible to block routing updates sent through the in-
terface or to control the processing and advertising of routes
in routing updates. The first option stands for completely

denying updates usually sent by the router to its neighbors
through the connecting interface. The second option stands
for applying filters that delete some routes from the routing
update sent to the neighbor routers.

Depending on the device vendor, some form of access
control lists is used to determine, which routes will be
filtered. It is possible to process i) incoming routing updates
to control, which routes are added to a local database, or ii)
outgoing routing updates to control, which routes are sent
to neighbor routers. Bellow you can se an example of two
routing filters:
access-list 1 permit 1.0.0.0 0.255.255.255
access-list 2 permit 1.2.3.0 0.0.0.255
router rip

distribute-list 2 in ehternet 0
distrubute-list 1 out

The routing filter implemented by access control list 1
affects all outgoing routing updates and allows to send only
information about destination 1.0.0.0/8. The routing
filter implemented by access control list 2 accepts from
all updates received on etherent interface only information
about destination 1.2.3.0/24.

B. Computing the Effects of Filtering Routing Updates

First we consider the case without route filters. It is
possible to easily compute a network RIB for the routing
protocol instance by defining an adjacency table that exactly
follows the neigborship relations in the network among the
same routing protocol instances. Then, again by the using
the standard graph algorihtms, the path matrix is computed.
It would be possible to compute a single RIB that defines
reachability and path information for all networks.

Then, if we consider the case, in which route filters
could remove some destinations from routing updates, is
is necessary to compute the path matrices for individual
networks. If there is route filtering for network N on a
link between router Rs and Rt the adjacency between these
two nodes from the adjacency table must be removed. This

201

R1

R2 R5

R3 R4

N1

N4

R1#router rip
R1#network N1
R2#router rip
R3#router rip
R4#router rip
R4#network N4
R5#router rip

-N1

-N1

Routing adjacency for N1 Path matrix for N1

N1 R1 R2 R3 R4 R5 N1 R1 R2 R3 R4 R5

R1 0 1 x x 1 R1 x 1,2:1 1,2,3:2 1,5,4:2 1,5:1

R2 1 x 1 x 1 R2 2,1:1 x 2,3:1 2,3,4:2 2,5:1

R3 x x x 1 x R3 3,4,5,2,1:4 3,4,5,2:3 x 3,4:1 3,4,5:2

R4 x x 1 x 1 R4 4,5,2,1:3 4,5,2:2 4,3:1 x 4,5:1

R5 x 1 x 1 x R5 5,2,1:2 5,2:1 5,2,3:2 5,4:1 x

Routing adjacency for N4 Path matrix for N4

N4 R1 R2 R3 R4 R5 N4 R1 R2 R3 R4 R5

R1 x 1 x x 1 R1 x 1,2:1 1,2,3:2 1,5,4:2 1,5:1

R2 1 x 1 x 1 R2 2,1:1 x 2,3:1 2,3,4:2 2,5:1

R3 x 1 x 1 x R3 3,2,1:2 3,2:1 x 3,4:1 3,2,5:2

R4 x x 1 x 1 R4 4,5,1:2 4,3,2:2 4,3:1 x 4,5:1

R5 1 1 x 1 x R5 5,1:1 5,2:1 5,2,3:2 5,4:1 x

Figure 3. An example of route filtering and computation of network RIBs:
For simplicity there are only two route filters applied on links 〈R1, R5〉 and 〈R2, R3〉, respectively. These filters deny to send
information on network N1 to routers R5 and R3, which is captured in adjacency table for network N1 by deleting adjacencies
at AdjN1

[R5, R1] and AdjN1
[R3, R2]. For comparison, AdjN4

enjoys full adjacency as no filters for N4 are configured in the
network.

approach means to compute a path matrix for each network,
which leads to |V |3 · |N | time complexity, be the same as
in the case of computing static network RIB. However, in
real world scenario not all networks are filtered or a single
filter affects multiple networks. Therefore, we can improve
the performance by collecting all networks that are treated in
the same way. We use term slice to denote such a collection
of the equally treated networks.

A slice describes a collection of networks that are filtered
by the same filters. We can compute a collection of slices
by analyzing configuration of routing update filters. We use
a set representation for a routing update filter, e.g. f =
{n1, n2, n5, n7} is a filter f that deletes information about
networks n1, n2, n5 and n7 from an update. As decribed
in the previous subsection, there are many kinds of filters
applicable in various way. However, all these filters can be
appropriately represented in a graph model by associating
the filtering sets to edges.

Given F to be a set of filtering, we define the slicing S
to be a set partitioning such that:
• ∀f ∈ F, s ∈ S : s ∩ f 6= ∅ =⇒ s ⊆ f ,
•

⋃
s∈S s = N

• ∀s1, s2 ∈ S : s1 ∩ s2 = ∅.
The perfect slicing stands for such slicing that provides

minimal |S| with respect to F among a set of possible slicing
sets. The problem is solved in the following two steps:
• for each network compute a set of filters in which the

network occurs, and
• group networks according to their sets of filters; net-

works that have the same set of filters belong to the
same slice.

Figure 3 depicts a demonstration of route filtering for
two destination networks. For simplicity, we do not consider
the slice-based approach. The algorithm starts by initiating
cost matrices using information from configurations. Cost

adjacency matrices for networks N1 and N4 describe the
effect of routing update filters on a RIP databases. The
basic idea is to classify edges between RIP vertices into two
categories. If an edge has no associated filter that would
prevent an information about a network to be sent from
a source vertex to a destination vertex, then the edge has
associated its cost; hence, this costs is stored in the cell
of adjacency matrix. On the other hand, we use cost x
to express that information is filtered on that edge. The
path matrix is computed using the standard graph algorithm
and we obtain N1-RIB and N4-RIB associated with RIP
instance.

V. REDISTRIBUTION

The situation when routing protocols advertise routes
learned by some other means is called redistribution. While
the most obvious and desirable use of Interior Gateway
Protocols (IGP) is to employ a single scalable routing
protocol for the entire domain, there are situations, which are
quite common in practice: multiple IGP in a single domain.
In these situations some form of redistribution is necessary.
An introduction to redistributing routing protocols can be
found in [15].

When redistributing, it is important to define a correct
initial (seed) metric for each redistributing route as each pro-
tocol uses a different cost scheme. A configuration snippet
bellow shows redistributing static routes and OSPF routes
to RIP. A value after metric keyword specifies the seed
metric used for redistributed routes in RIP.

router rip
redistribute static metric 1
redistribute ospf metric 1

A router uses an adminstrative distance to select the best
route for each destination. This route is installed in the
router’s forwarding information base (routing table). Using

202

redistribution in a wrong way can lead to problems in
forming routing loops, convergence problems or inefficient
routing [16].

The redistribution mechanism is vendor dependend, but
most platforms obey two additional rules when doing redis-
tribution:

RR1: The route can only be redistributed if it is installed
in router’s FIB.

RR2: Even if a route is redistributed in the routing
process with lower AD, this new route is not
installed into router’s FIB.

These two rules cause that redistribution is not transitive as
pointed out by Le, Xie and Zhang in [16]. This observation
makes our computation more complicated.

A. Computing Redistribution

To demonstrate the approach to redistribution we refer to
the example shown in Figure 4. Redistribution is done within
router’s boundary. We define a redistribution matrix, which
is similar to a matrix that denotes adjacency for distance
vector routing protocols. This matrix expresses how the route
redistribution is configured on a router, see Figure 4 b) for
example.

Redistribution configured on router Rv , which redis-
tributes routing information from RIBs to RIBt requires to
insert paths at row v of matrix RIBs to corresponding items
in matrix RIBt if these paths have lower costs and can be
found in FIB. This is depicted by arrows between matrices
4 d) and 4 e) in the example.

Formally, the redistribution algorithm is defined as fol-
lows:

for all r ∈ V do
if RIBs[v, r] is in FIB then

RIBt[v, r] = cmin(mS (RIBs[v, r]),RIBt[v, r])
end if

end for
There cmin is selecting from two paths that path with

the lower cost. Function mS assigns a metric seed to the
redistributing information.

The impact of redistribution rules RR1 and RR2 is best
observable in the process of route selection. The route
selection finds the most appropriate information from local
RIBs and puts it in the router’s FIB. Redistribution then
must check whether the information that can be redistributed
was selected for FIB to conform with rule RR1. To satisfy
rule RR2, the route selection must not choose redistributed
network into the FIB. The next section describes the route
selection process in detail.

VI. ROUTE SELECTION

The purpose of the routing processes running at each
router is to maintain routing protocol specific information.
Every process manage its own (topological) database that

allows to determine the best path to the destination as viewed
by the routing protocol. The router needs to select a single
(or a collection of alternate paths for load balancing) route
to its FIB. This process is vendor dependent, but most often
the routing information is prioritized by using administrative
distance measure. This section provides a basic and straight-
forward algorithm that computes a content of the network
FIB from a collection of network RIBs. For simplicity,
we consider all routers follow the same route selection
rules and no router contains redefined default administrative
distance for any routing protocol nor any single route. This
corresponds to the vast majority of configurations used in
enterprise networks. The case when administrative distances
are redefined is left for future work. The route selection
algorithm is defined as follows:

for all n ∈ N do
for all R ∈ RIB do

for all r ∈ V do
if ∃p ∈ R[r, n] then

FIB[r, n] = p
for all s ∈ V : 〈q0, . . . , r, . . . , qn〉 = FIB[s, n]
do

FIB[s, n] = 〈q0, . . . , r〉+ p.
end for

end if
end for

end for
end for
The algorithm’s time complexity is |N | · |R| · |V 2|, where

N is a number of destination networks, R is a number
of RIBs and V is a number of routers. Informally, the
computation proceeds as follows:

1) Take the lowest priority network RIB and copy all
information to a network FIB. This will initialize the
network FIB.

2) Take the RIB with immediately higher priority and
replace paths in FIB with existing paths in this RIB.
This corresponds to the selection of route information
with less administrative distance. If there is not path
in this RIB then the path from a lower priority RIB
remains in the FIB.

3) For each path in the RIB we must also check if
this path can replace a suffix in an existing path
in the FIB. This means, that if the FIB contains a
path 〈r1, r4, r2, r5, r3〉 and the RIB contains a path
〈r4, r7, r8, r9, r3〉 we should replace the FIB’s path
with 〈r1, r2, r4, r7, r8, r9, r3〉. This replacement cor-
responds to installation of route with lower AD in a
router on the existing path.

4) Repeat from step 2 until we process all RIBs.

Information stored in the network FIB can be used to
determine paths to all destinations. In our example presented
in Figure 3 we compute the network N?-FIB for all networks

203

RIP

EIGRP

R1

R2 R5

R3 R4

N1

N4

R6

N6

(a) Network topology graph

R2 Static RIP EIGRP

Static x x x

RIP x x 1

EIGRP x x x

R5 Static RIP EIGRP

Static x x x

RIP x x x

EIGRP x 1 x

Redistribution matrix

Redistribution matrix

(b) Redistribution

N* R1 R2 R3 R4 R5 R6

R1 x x x x x x

R2 x x 1 x x x

R3 x 1 x 1 x x

R4 x x 1 x 1 x

R5 x x x 1 x x

R6 x x x x x x

N* R1 R2 R3 R4 R5 R6

R1 x 1 x x x x

R2 1 x x x x 1

R3 x x x x x x

R4 x x x x x x

R5 x x x x x 1

R6 x 1 x x 1 x

EIGRP

RIP

(c) Routing adjacency

N* R1 R2 R3 R4 R5 R6

R1 x x x x x x

R2 x x 2,3:1 2,3,4:2 2,3,4,5:3 x

R3 x 3,2:1 x 3,4:1 3,4,5:2 x

R4 x 4,3,2:2 4,3:1 x 4,5:1 x

R5 x 5,4,3,2:3 5,4,3:2 5,4:1 x x

R6 x x x x x x

N* R1 R2 R3 R4 R5 R6

R1 x 1,2:1 x x 1,2,6,5:3 1,2,6:2

R2 2,1:1 x x x 2,6,5:2 2,6:1

R3 x x x x x x

R4 x x x x x x

R5 5,6,2,1:3 5,6,2:2 x x x 5,6:1

R6 6,2,1:2 6,2:1 x x 6,5:1 x

N* R1 R2 R3 R4 R5 R6

R1 x 1,2:1 x x 1,2,6,5:3 1,2,6:2

R2 2,1:1 x 2,3:1 2,3,4:2 2,3,4,5:3 2,6:1

R3 x 3,2:1 x 3,4:1 3,4,5:2 x

R4 x 4,3,4:2 4,3:1 x 4,5:1 x

R5 5,6,2,1:3 5,4,3,2:3 5,4,3:2 5,4:1 x 5,6:1

R6 6,2,1:2 6,2:1 x x 6,5:1 x

EIGRP RIB

RIP RIB

FIB

(d) Network RIBs and the network FIB

N* R1 R2 R3 R4 R5 R6

R1 x x x x x x

R2 2,1:1 x 2,3:1 2,3,4:2 2,3,4,5:3 2,6:1

R3 x 3,2:1 x 3,4:1 3,4,5:2 x

R4 x 4,3,2:2 4,3:1 x 4,5:1 x

R5 x 5,4,3,2:3 5,4,3:2 5,4:1 x x

R6 x x x x x x

N* R1 R2 R3 R4 R5 R6

R1 x 1,2:1 x x 1,2,6,5:3 1,2,6:2

R2 2,1:1 x x x 2,6,5:2 2,6:1

R3 x x x x x x

R4 x x x x x x

R5 5,6,2,1:3 5,4,3,2:1 5,4,3:1 5,4:1 x 5,6:1

R6 6,2,1:2 6,2:1 x x 6,5:1 x

EIGRP with RIP redistributed routes

RIP with EIGRP redistributed routes

(e) RIBs with redistributed routes

N* R1 R2 R3 R4 R5 R6

R1 x x x x x x

R2 2,1:1 x 2,3:1 2,3,4:2 2,3,4,5:3 2,6:1

R3 3,2,1:2 3,2:1 x 3,4:1 3,4,5:2 3,2,6:2

R4 4,3,2,1:3 4,3,2:2 4,3:1 x 4,5:1 4,3,2,6:3

R5 5,4,3,2,1:4 5,4,3,2:3 5,4,3:2 5,4:1 x 5,4,3,2,6:4

R6 x x x x x x

N* R1 R2 R3 R4 R5 R6

R1 x 1,2:1 1,2,6,5,4,3:4 1,2,6,5,4:4 1,2,6,5:3 1,2,6:2

R2 2,1:1 x 2,6,5,4,3:3 2,6,5,4:3 2,6,5:2 2,6:1

R3 x x x x x x

R4 x x x x x x

R5 5,4,3,2,1:2 5,4,3,2:1 5,4,3:1 5,4:1 x 5,6:1

R6 6,2,1:2 6,2:1 6,5,4,3:2 6,5,4:2 6,5:1 x

N* R1 R2 R3 R4 R5 R6

R1 x 1,2:1 1,2,6,5,4,3:4 1,2,6,5,4:4 1,2,6,5:3 1,2,6:2

R2 2,1:1 x 2,3:1 2,3,4:2 2,3,4,5:3 2,6:1

R3 3,2,1:2 3,2:1 x 3,4:1 3,4,5:2 3,2,6:2

R4 4,3,2,1:3 4,3,2:2 4,3:1 x 4,5:1 4,3,2,6:3

R5 5,4,3,2,1:4 5,4,3,2:3 5,4,3:2 5,4:1 x 5,4,3,2,6:4

R6 6,2,1:2 6,2:1 6,5,4,3:2 6,5,4:2 6,5:1 x

EIGRP RIB with redistributed RIP routes

RIP RIB with redistributed EIGRP routes

FIB

(f) Converged network RIBs and the network FIB

Figure 4. An example of route redistribution and selection:
Initially, network RIBs for two routing instances are computed as showed in (d). The computation gets as an input the data from redistribution
matrices (b), which define redistribution flows within routers and routing adjacency matrices (c), which define routing information flow
between routers. The redistribution requires to compute network FIB such that the redistribution rules can be checked. Then the redistribution
copies appropriate information from RIP to EIGRP and from EIGRP to RIP, which is shown in (e). After that the RIBs are updated and
FIB is determined, see (f). In (d) and (f), the underlined items stand for RIB’s paths selected for FIB. In (e) the underlined items stand for
paths redistributed from the source routing protocol.

as we do not consider static routing nor route filtering. If we
analyze network configuration that combines static routing,
dynamic routinng with route filtering and redistribution, we
would need to compute more network FIBs depending on the
number of networks. Alternatively, it is possible to reduce a
number of computations by creating slices as explained in
section IV.

VII. CONCLUSIONS

In this paper we define a method for computing the
network-wide view of the forward information base (FIB),
which allows us to predict all delivering paths in the net-
work. This work is complementary to the work on packet
filter analysis as carried out by, e.g., Guttman [3], Liu
[7], Bera, Dasgupta and Ghosh [10]. The work presents

204

an alternative method to the approach presented by Xie,
Zhan, Maltz and Zhang in [2] and, in particular, by Maltz,
Xie, Zhan and Greenberg [13]. Contrary to their work, we
compute the global view using standard graph algorithms
without the need to mimic behaviors of routing protocols.
On the other hand, it can become difficult to represent a route
modification, e.g., tagging used to prevent routing loops.
While we have determined the theoretical complexity of the
method, the future work is required to assess its practical
contribution on real world examples.

ACKNOWLEDGMENT

This work was partially supported by the BUT FIT grant
FIT-10-S-2 and the research plan MSM0021630528 and by
the Grant Agency of the Czech Republic through the grant
no. GACR 102/08/1429: Safety and Security of Networked
Embedded System Applications. Also, the first co-author
was supported by the grant no. FR-TI1/037 of Ministry of
Industry and Trade: Automatic Attack Processing.

REFERENCES

[1] N. Feamster, “Practical verification techniques for wide-area
routing,” SIGCOMM Comput. Commun. Rev., vol. 34, no. 1,
pp. 87–92, 2004.

[2] G. G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg,
G. Hjalmtysson, and J. Rexford, “On static reachability anal-
ysis of ip networks,” in in Proc. IEEE INFOCOM, 2005.

[3] J. D. Guttman, “Filtering postures: Local enforcement for
global policies,” in In Proceedings, 1997 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press,
1997, pp. 120–129.

[4] L. Yuan and H. Chen, “Fireman: a toolkit for firewall model-
ing and analysis,” in In Proceedings of IEEE Symposium on
Security and Privacy, 2006, pp. 199–213.

[5] A. Jeffrey and T. Samak, “Model checking firewall policy
configurations,” Policies for Distributed Systems and Net-
works, IEEE International Workshop on, vol. 0, pp. 60–67,
2009.

[6] S. Pozo, R. Ceballos, and R. Gasca, “Fast algorithms for
consistency-based diagnosis of firewalls rule sets,” in Pro-
ceedings of the 3rd International Conference on Availability,
Reliability and Security (ARES), 2008.

[7] A. X. Liu, “Formal verification of firewall policies,” in
Proceedings of the 2008 IEEE International Conference on
Communications (ICC), Beijing,China, May 2008.

[8] M. Gouda, A. X. Liu, and M. Jafry, “Verification of
distributed firewalls,” in Proceedings of the IEEE Global
Communications Conference (GLOBECOM), New Oreleans,
Louisiana, Novembrt 2008.

[9] A. X. Liu and M. G. Gouda, “Firewall policy queries,” IEEE
Transactions on Parallel and Distributed Systems (TPDS), to
appear.

[10] P. Bera, S. Ghosh, and P. Dasgupta, “Formal verification
of security policy implementations in enterprise networks,”
in ICISS ’09: Proceedings of the 5th International Confer-
ence on Information Systems Security. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 117–131.

[11] ——, “Formal analysis of security policy implementations
in enterprise networks,” International journal of Computer
Networks and Communications, vol. 1, no. 2, pp. 56–73,
2009.

[12] P. Matousek, J. Rab, O. Rysavy, and M. Sveda, “A formal
model for network-wide security analysis,” in Proceeding of
the 15th IEEE International Symposium and Workshop on
the Engineering of Computer-based Systems. University of
Ulster, 2008, pp. 171–181.

[13] D. A. Maltz, G. Xie, J. Zhan, H. Zhang, and A. Greenberg,
“Routing design in operational networks: A look from the
inside,” in In Proc. ACM SIGCOMM, 2004.

[14] “Filtering routing updates on distance vector ip routing pro-
tocols,” Cisco Systems, Document ID:9105, September 2006.

[15] “Redistributing routing protocols,” Cisco Systems, Document
ID:8606, September 2006.

[16] F. Le, G. Xie, and H. Zhang, “Understanding route redis-
tribution,” in Network Protocols, 2007. ICNP 2007. IEEE
International Conference on, 2007, pp. 81 –92.

205

