
123

Petr Matoušek
Martin Schmiedecker (Eds.)

Digital Forensics
and Cyber Crime
9th International Conference, ICDF2C 2017
Prague, Czech Republic, October 9–11, 2017
Proceedings

216



Lecture Notes of the Institute
for Computer Sciences, Social Informatics
and Telecommunications Engineering 216

Editorial Board

Ozgur Akan
Middle East Technical University, Ankara, Turkey

Paolo Bellavista
University of Bologna, Bologna, Italy

Jiannong Cao
Hong Kong Polytechnic University, Hong Kong, Hong Kong

Geoffrey Coulson
Lancaster University, Lancaster, UK

Falko Dressler
University of Erlangen, Erlangen, Germany

Domenico Ferrari
Università Cattolica Piacenza, Piacenza, Italy

Mario Gerla
UCLA, Los Angeles, USA

Hisashi Kobayashi
Princeton University, Princeton, USA

Sergio Palazzo
University of Catania, Catania, Italy

Sartaj Sahni
University of Florida, Florida, USA

Xuemin Sherman Shen
University of Waterloo, Waterloo, Canada

Mircea Stan
University of Virginia, Charlottesville, USA

Jia Xiaohua
City University of Hong Kong, Kowloon, Hong Kong

Albert Y. Zomaya
University of Sydney, Sydney, Australia



More information about this series at http://www.springer.com/series/8197

http://www.springer.com/series/8197


Petr Matoušek • Martin Schmiedecker (Eds.)

Digital Forensics
and Cyber Crime
9th International Conference, ICDF2C 2017
Prague, Czech Republic, October 9–11, 2017
Proceedings

123



Editors
Petr Matoušek
Brno University of Technology
Brno
Czech Republic

Martin Schmiedecker
SBA Research Vienna
Vienna
Austria

ISSN 1867-8211 ISSN 1867-822X (electronic)
Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering
ISBN 978-3-319-73696-9 ISBN 978-3-319-73697-6 (eBook)
https://doi.org/10.1007/978-3-319-73697-6

Library of Congress Control Number: 2017963758

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

It is our pleasure to introduce the proceedings of the 9th EAI International Conference
on Digital Forensics and Cyber Crime (ICDF2C) 2017. Since its start in 2009, the
ICDF2C conference each year brings together leading researchers, practitioners, and
educators from around the world to advance the state of the art in digital forensics and
cybercrime investigation. After nine years of existence, the conference has received
worldwide recognition. Scores of researches and experts of digital forensics and
cybercrime come together each year to meet at this event.

The Technical Program Committee (PC) of ICDF2C received about 50 submissions
that were carefully evaluated by the team of international reviewers. After the review,
18 papers were invited for oral presentation at ICDF2C 2017. The authors of the papers
come from 11 countries over the world: UK, China, Czech Republic, Germany,
Austria, Switzerland, USA, Portugal, Sweden, Ireland, Australia, and South Korea.

Traditionally, the program of ICDF2C features keynote speeches. This year we had
the privilege to welcome Joshua I. James, a professor and researcher from Hallym
University, South Korea, whose research focuses on event reconstruction in
post-mortem digital investigations. The second keynote speaker was Felix Freiling
from Friedrich-Alexander-Universität in Erlangen-Nürnberg, Germany, who is an
expert on safety and security. For the third keynote, Domingo Montanaro and Cyllas
Elia presented their results of a two-year long investigation of cyber criminals in Brazil.
The program also accommodated three tutorials given to the ICDF2C audience:
Bitcoin analysis by experts from the cybersecurity lab Neutrino, Switzerland; an
application of NetFlow data for network forensics given by Flowmon Networks Ltd.,
Czech Republic; and an introduction to the GRR Rapid Response framework for
remote live forensics, given by Google.

We would like to thank everyone who offered their help and support during the
conference organization. We appreciate the thorough work and flexible approach of all
PC members during the reviewing process. Also, we would like to express our sincere
thanks to all members of the Organizing Committee for their hard work in the real-
ization of the conference. The conference could not have been organized without the
support of the European Alliance for Innovation (EAI) and Flowmon Networks Ltd.,
Czech Republic.

December 2017 Petr Matousek
Martin Schmiedecker



Organization

Steering Committee

Sanjay Goel University at Albany, State University of New York,
USA

Imrich Chlamtac EAI, CREATE-NET
Pavel Gladyshev University College, Dublin, Ireland
Marcus Rogers Purdue University, USA
Ibrahim Baggili University of New Haven, USA
Joshua I. James DFIRE Labs, Hallym University, South Korea
Frank Breitinger University of New Haven, USA

Organizing Committee

General Co-chairs

Petr Matoušek Brno University of Technology, Czech Republic
Martin Schmiedecker SBA Research, Vienna, Austria

Technical Program Committee Chair

Sebastian Schinzel University of Applied Sciences, Münster, Germany

Workshop Chair

Marc Scanlon University College Dublin, Ireland

Publicity and Web Chair

Sebastian Neuner SBA Research, Vienna, Austria

Publications Chair

Ondřej Ryšavý Faculty of Information Technology, Brno, Czech
Republic

Local Chair

Matěj Grégr Brno University of Technology, Brno, Czech Republic

Conference Coordinator

Alzbeta Mackova EAI



Technical Program Committee

Harald Baier University of Applied Sciences Darmstadt, Germany
Spiridon Bakiras Hamad Bin Khalifa University, Qatar
Nicole Beebe University of Texas at San Antonio, USA
Frank Breitinger University of New Haven, USA
Mohamed Chawki University of Lyon III, France
Kim-Kwang Raymond

Choo
University of South Australia, Australia

David Dampier Mississippi State University, USA
Virginia Franqueira University of Derby, UK
Pavel Gladyshev University College Dublin, Ireland
Joshua I. James DigitalFIRE Labs, Hallym University, South Korea
Ping Ji City University of New York, USA
Umit Karabiyik Sam Houston State University, USA
Nhien An Le Khac UCD School of Computer Science, Ireland
Michael Losavio University of Louisville, USA
Stig Mjolsnes Norwegian University of Science

and Technology NTNU, Norway
Alex Nelson NIST, USA
Sebastian Neuner SBA Research, Austria
Bruce Nikkel UBS AG, Switzerland
Richard E. Overill King’s College London, UK
Gilbert Peterson Air Force Institute of Technology, USA
Golden G Richard III Louisiana State University, USA
Vassil Roussev University of New Orleans, USA
Neil Rowe U.S. Naval Postgraduate School, USA
Ondřej Ryšavý Brno University of Technology, Czech Republic
Mark Scanlon University College Dublin, Ireland
Bradley Schatz Queensland University of Technology, Australia
Michael Spreitzenbarth Siemens CERT, Germany
Krzysztof Szczypiorski Warsaw University of Technology, Poland
Vladimír Veselý Brno University of Technology, Czech Republic
Timothy Vidas Carnegie Mellon University, USA
Christian Winter Fraunhofer Gesellschaft, Germany

VIII Organization



Contents

Malware and Botnet

FindEvasion: An Effective Environment-Sensitive Malware Detection
System for the Cloud. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Xiaoqi Jia, Guangzhe Zhou, Qingjia Huang, Weijuan Zhang,
and Donghai Tian

Real-Time Forensics Through Endpoint Visibility . . . . . . . . . . . . . . . . . . . . 18
Peter Kieseberg, Sebastian Neuner, Sebastian Schrittwieser,
Martin Schmiedecker, and Edgar Weippl

On Locky Ransomware, Al Capone and Brexit . . . . . . . . . . . . . . . . . . . . . . 33
John MacRae and Virginia N. L. Franqueira

Deanonymization

Finding and Rating Personal Names on Drives for Forensic Needs . . . . . . . . 49
Neil C. Rowe

A Web-Based Mouse Dynamics Visualization Tool for User Attribution
in Digital Forensic Readiness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Dominik Ernsberger, R. Adeyemi Ikuesan, S. Hein Venter,
and Alf Zugenmaier

Digital Forensics Tools I

Open Source Forensics for a Multi-platform Drone System . . . . . . . . . . . . . 83
Thomas Edward Allen Barton and M. A. Hannan Bin Azhar

A Novel File Carving Algorithm for EVTX Logs . . . . . . . . . . . . . . . . . . . . 97
Ming Xu, Jinkai Sun, Ning Zheng, Tong Qiao, Yiming Wu,
Kai Shi, Haidong Ge, and Tao Yang

Fuzzy System-Based Suspicious Pattern Detection in Mobile
Forensic Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Konstantia Barmpatsalou, Tiago Cruz, Edmundo Monteiro,
and Paulo Simoes

http://dx.doi.org/10.1007/978-3-319-73697-6_1
http://dx.doi.org/10.1007/978-3-319-73697-6_1
http://dx.doi.org/10.1007/978-3-319-73697-6_2
http://dx.doi.org/10.1007/978-3-319-73697-6_3
http://dx.doi.org/10.1007/978-3-319-73697-6_4
http://dx.doi.org/10.1007/978-3-319-73697-6_5
http://dx.doi.org/10.1007/978-3-319-73697-6_5
http://dx.doi.org/10.1007/978-3-319-73697-6_6
http://dx.doi.org/10.1007/978-3-319-73697-6_7
http://dx.doi.org/10.1007/978-3-319-73697-6_8
http://dx.doi.org/10.1007/978-3-319-73697-6_8


Cyber Crime Investigation and Digital Forensics Triage

Digital Forensic Readiness in Critical Infrastructures: A Case of Substation
Automation in the Power Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Asif Iqbal, Mathias Ekstedt, and Hanan Alobaidli

A Visualization Scheme for Network Forensics Based on Attribute
Oriented Induction Based Frequent Item Mining and Hyper Graph . . . . . . . . 130

Jianguo Jiang, Jiuming Chen, Kim-Kwang Raymond Choo,
Chao Liu, Kunying Liu, and Min Yu

Expediting MRSH-v2 Approximate Matching with Hierarchical
Bloom Filter Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

David Lillis, Frank Breitinger, and Mark Scanlon

Approxis: A Fast, Robust, Lightweight and Approximate
Disassembler Considered in the Field of Memory Forensics . . . . . . . . . . . . . 158

Lorenz Liebler and Harald Baier

Digital Forensics Tools Testing and Validation

Memory Forensics and the Macintosh OS X Operating System. . . . . . . . . . . 175
Charles B. Leopard, Neil C. Rowe, and Michael R. McCarrin

Sketch-Based Modeling and Immersive Display Techniques for Indoor
Crime Scene Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Pu Ren, Mingquan Zhou, Jin Liu, Yachun Fan, Wenshuo Zhao,
and Wuyang Shui

An Overview of the Usage of Default Passwords . . . . . . . . . . . . . . . . . . . . 195
Brandon Knieriem, Xiaolu Zhang, Philip Levine, Frank Breitinger,
and Ibrahim Baggili

Hacking

Automation of MitM Attack on Wi-Fi Networks . . . . . . . . . . . . . . . . . . . . . 207
Martin Vondráček, Jan Pluskal, and Ondřej Ryšavý

SeEagle: Semantic-Enhanced Anomaly Detection for Securing Eagle. . . . . . . 221
Wu Xin, Qingni Shen, Yahui Yang, and Zhonghai Wu

Coriander: A Toolset for Generating Realistic Android Digital
Evidence Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Irvin Homem

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

X Contents

http://dx.doi.org/10.1007/978-3-319-73697-6_9
http://dx.doi.org/10.1007/978-3-319-73697-6_9
http://dx.doi.org/10.1007/978-3-319-73697-6_10
http://dx.doi.org/10.1007/978-3-319-73697-6_10
http://dx.doi.org/10.1007/978-3-319-73697-6_11
http://dx.doi.org/10.1007/978-3-319-73697-6_11
http://dx.doi.org/10.1007/978-3-319-73697-6_12
http://dx.doi.org/10.1007/978-3-319-73697-6_12
http://dx.doi.org/10.1007/978-3-319-73697-6_13
http://dx.doi.org/10.1007/978-3-319-73697-6_14
http://dx.doi.org/10.1007/978-3-319-73697-6_14
http://dx.doi.org/10.1007/978-3-319-73697-6_15
http://dx.doi.org/10.1007/978-3-319-73697-6_16
http://dx.doi.org/10.1007/978-3-319-73697-6_17
http://dx.doi.org/10.1007/978-3-319-73697-6_18
http://dx.doi.org/10.1007/978-3-319-73697-6_18


Malware and Botnet



FindEvasion: An Effective
Environment-Sensitive Malware Detection

System for the Cloud

Xiaoqi Jia1,2,3,4, Guangzhe Zhou1,2,3,4, Qingjia Huang1,2,3,4(B),
Weijuan Zhang1,2,3,4, and Donghai Tian5

1 Institute of Information Engineering, CAS, Beijing, China
{jiaxiaoqi,zhouguangzhe,huangqingjia,zhangweijuan}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

3 Key Laboratory of Network Assessment Technology, CAS, Beijing, China
4 Beijing Key Laboratory of Network Security and Protection Technology,

Beijing, China
5 Beijing Key Laboratory of Software Security, Engineering Technique,

Beijing Institute of Technology, Beijing, China

Abstract. In recent years, environment-sensitive malwares are growing
rapidly and they pose significant threat to cloud platforms. They may
maliciously occupy the computing resources and steal the tenants’ pri-
vate data. The environment-sensitive malware can identify the operating
environment and perform corresponding malicious behaviors in differ-
ent environments. This greatly increased the difficulty of detection. At
present, the research on automatic detection of environment-sensitive
malwares is still rare, but it has attracted more and more attention.

In this paper, we present FindEvasion, a cloud-oriented system
for detecting environment-sensitive malware. Our FindEvasion system
makes full use of the virtualization technology to transparently extract
the suspicious programs from the tenants’ Virtual Machine (VM), and
analyzes them on our multiple operating environments. We introduce
a novel algorithm, named Mulitiple Behavioral Sequences Similarity
(MBSS), to compare a suspicious program’s behavioral profiles observed
in multiple analysis environments, and determine whether the suspicious
program is an environment-sensitive malware or not. The experiment
results show that our approach produces better detection results when
compared with previous methods.

Keywords: Cloud security · Environment-sensitive malware · MBSS
Transparent extraction · Multiple operating environments

1 Introduction

In recent years, increasing malwares have gradually become an important threat
to the construction of cloud computing. These malwares can not only occupy
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

P. Matoušek and M. Schmiedecker (Eds.): ICDF2C 2017, LNICST 216, pp. 3–17, 2018.

https://doi.org/10.1007/978-3-319-73697-6_1



4 X. Jia et al.

the computing resources maliciously, but also attack other tenants and even the
underlying platform to steal the other tenants’ private data. As more and more
data with sensitve and high commercial value information is migrated to the
Cloud, researchers paid more attention to the malware detection for the Cloud.

Among the various kinds of malwares, environment-sensitive malwares are
growing rapidly. This kind of malware can identify the current operating environ-
ment and perform corresponding malicious behaviors in different environments.
According to Symantec’s security threat report [1], 20% of new malwares are
environment-sensitive currently and the number of environment-sensitive mal-
ware is increasing at a rate of 10–15 per week.

In order to detect environment-sensitive malwares, some methods have been
proposed gradually, such as BareCloud [2] and Disarm [3]. BareCloud is based
on the bare-metal and only considers the operations that cause a persistent
change to the system. This will lead to many meaningful non-persistent mali-
cious operations being ignored, for example, the remote injection. Besides, Bare-
Cloud uses a Hierarchical similarity algorithm to compare the behavioral pro-
files, however, the detection ability of this algorithm will be greatly affected if
the environment-sensitive malware performs a lot of independent interference
behaviors. Disarm deploys two kinds of sandbox with different monitoring tech-
nologies. However, two kinds of environments are not enough to detect a variety
of evasive behaviors within the environment-sensitive malware. Therefore, how
to make the environment-sensitive malware exhibit the evasive behavior and
cope with the interference behaviors is the key issue for the detection.

In this paper, we present FindEvasion, a cloud-oriented system for auto-
matically detecting environment-sensitive malwares. The FindEvasion performs
malware analysis on multiple operating environments, which include Sandbox
environment, Debugging environment, Hypervisor environment and so on. In
order to analyze the suspicious program running in the guest VM, we make use
of the virtualization technology to transparently extract it from the guest VM
and the suspicious program will not be awared of this whole process. We pro-
pose an algorithm to compare the suspicious program’s behavioral profiles and
determine whether it is an environment-sensitive malware or not.

Our work makes the following contributions:

– We present a system called FindEvasion for detecting environment-sensitive
malwares. Our system makes full use of the virtualization technology to
transparently extract the suspicious program from the guest VM, and then
performs suspicious program analysis on multiple operating environments to
make the environment-sensitive malware exhibit the evasive behavior.

– We introduce a novel evasion detection algorithm, named MBSS, for behav-
ioral profiles comparsion. Our algorithm can cope with the interference behav-
iors to make the detection more effective.

– We present experimental evidence that demonstrates that the operations of
eliminating interference behaviors are effective for detecting enviornment-
sensitive malwares, and the recall rate is increased to 60% with 100%
precision.



FindEvasion 5

The rest of this paper is organized as follows. The next section presents the sys-
tem architecture of FindEvasion. Section 3 shows the implementation in detail. In
Sect. 4, we design four experiments for evaluating our systemand MBSS algorithm.
Finally, we discuss related work in Sect. 5 and conclude the paper in Sect. 6.

2 System Architecture

As Fig. 1 shows, the FindEvasion architecture consists of two parts. One is the
Cloud service node, which provides service to the tenants. It contains an Extrac-
tion module in the VMM. The Extraction module can extract a suspicious pro-
gram running in the guest VM and transfer it to the multiple environments anal-
ysis platform for analyzing. More details are provided in Sect. 3.1. The other is
the multiple environments analysis platform, which includes Sandbox environ-
ment, VM environment, Hypervisor environment and debugging environment,
etc. It contains an Environment-sensitive detection module, which can compare
the behavioral profiles extracted from multiple analysis environments and make a
judgment that whether the suspicious program is environment-sensitive malware
or not. This is achieved by our MBSS algorithm.

The purpose of deployingmultiple environments analysis platform is to identify
the deviations in the behaviors of a suspicious program. That is, if a suspicious pro-
gram is environment-sensitive, then it would have different behaviors obviously in
a specific environment compared to the other environment. Besides, it is necessary
to point out that the Hypervisor used in multiple environments analysis platform is
modified particularly. It can not only transparently monitor a suspicious program
based on the virtualization technology, but also avoid being detected by the mal-
ware. This can be achieved by some skills, for example cheating the guest. We insert
a kernel module in the VM environment and debugging environment for monitor-
ing.As for Sandbox environment, it contains own in-guestmonitoring components.
Various monitoring technologies can also help us to find the environment-sensitive
malware that targets a specific monitoring technique.

Fig. 1. FindEvasion system architecture.



6 X. Jia et al.

3 Implementation

3.1 Transparent Extraction

In order to analyze a suspicious program which is in the guest Operating System
(OS), we should extract it to the multiple environments analysis platform trans-
parently. Note that the suspicious program is running in the guest VM. So the
simple socket operation, like FTP, is easy to be awared by environment-sensitive
malware because of the abnormal network behaviors. For this reason, we need
to make use of the virtualization technology to extract the suspicious program
and the whole process will not be awared by the malwares in the guest VM.

The detail is illustrated in Fig. 2. It is necessary to point out that the kernel
module in the Guest OS has no HOOK operations and it can be completely
hidden and protected by the VMM. Hence, the suspicious program is hard to
detect inside the VM. For instance, if the Guest OS is win7, we can hide the mod-
ule through monitoring the NtQuerySystemInformation function in the VMM.
While a malware calls the function to query the modules in system, the VMM
will intercept it and return the fake information to the malware. In this way, the
kernel module can be hidden.

To better understand the procedure, we introduce the step details in Fig. 2.
(1) While a suspicious program is going to run in the Guest OS, the Extraction
module can capture this behavior. Then the Extraction module injects an event
to notify the kernel module in the Guest OS. (2) The kernel module in the
Guest OS receives notification from the Extraction module, then locates the
suspicious program’s executable file and copies it to a buffer. (3) The kernel
module in the Guest OS calls instruction VMCALL to cause a VM-Exit. Now,

Fig. 2. Extract suspicious programs from Guest OS using virtualization technology.



FindEvasion 7

the Extraction module obtains the binary executable file. (4) The Extraction
module notifies the kernel module in Dom0. (5) The kernel module in dom0
reads the Extraction module through hypercalls. (6) The executable file is saved
in Dom0. (7) We use socket operation to send the file from Dom0 to the multiple
environments analysis platform. Here, we can use the socket operation, because
the extracted suspicious program in Dom0 is only a static executable file and
it can not be aware of the network behaviors. By this way, we can extract the
suspicious program from Guest OS transparently.

3.2 Behavioral Profile

While the analysis of a suspicious program finishes in multiple operating environ-
ments, we need to extract it’s behavioral profiles. Bayer et al. [6] have proposed
an approach about how to extract behavioral profile from system-call trace. We
will use a similar method in our system.

Similar to the model proposed by Bayer et al., we define our behavioral profile
BP as a 4-tuple.

BP := (obj type, obj name, op name, op attr)
Where, obj type is the type of objects, obj name is the name of objects,

op name is the name of operation and op attr is a corresponding attribute to
provide additional information of a specific operation.

The obj type is formally defined as follows.
obj type := File(0) | Registry(1) | Syspath(2) | Process/Thread(3)

| Network(4)
The File type represents this Behavioral Profile (BP) is a file operation, such

as creating a file. The Registry type represents this BP is a registry key/value
operation. The Syspath type represents this BP is a system key path operation,
for example the %systemroot%. The Process/Thread type represents this BP is
an operation about a process or a thread, such as terminating a process. And the
Network type represents network behaviors, which include the remote IP and
port. Each type is represented by integers 0, 1, 2, 3, 4 to reduce the complexity
of behavior comparison later.

An operation must have a name, which is the API in reality. Besides, a
corresponding attribute is needed to provide additional information about the
operation. For example, the kernel function NtDeviceIoControlFile is used uni-
formly to represent all the socket functions related. Hence, we need additional
information to tell us what exactly it is. That is, if we set the op attr to the
string “send”, then we can clearly know this operation is the send function.

3.3 Behavior Normalization

In order to eliminate the influence of irrelevant factor and get a more reliable
result, it is necessary for us to perform a series of normalization steps. As we
all know, the same object may be represented differently in different systems,
however, this will bring great differences in the behavioral profiles and then lead
to a wrong judgment. Hence, we perform the following actions:



8 X. Jia et al.

(1) We transformed uniformly all of the behavioral profiles into lowercase. The
same behavioral profiles in different environment usually have different for-
mat. Some use uppercase and some use lowercase. In order to eliminate the
differences, we use lowercase uniformly.

(2) We set a fix value to the SID. The registry key HKEY USERS\<SID>
is a secure identifier and the value is generally different in each system.

(3) We performed repetition detection. Some malwares perform many times with
the same behaviors, which will cover up the real malicious acts. Therefore, if
the number of repetitions is more than five times, the processing of duplicate
removal is executed.

3.4 Behavior Comparison

The environment-sensitive malware often performs a lot of independent inter-
ference operations for anti-detection. The interference behaviors will appear in
each environment, and if we do not deal with them, they will make up a large
proportion of the behaviors and impact on the calculation of similarity. The pre-
vious methods, such as Hierarchy similarity [2], did not consider this issue, and
it would lead to an absolutely opposite analysis result. Therefore, we propose a
novel algorithm, named MBSS, which can eliminate interference behaviors and
make the comparison more robust.

The algorithm model. Let X = {x1, x2, x3, . . . xn}, Y = {y1, y2, y3, . . . ym},
where x1–xn, y1–ym, each element represents a BP defined as Sect. 3.2,
such that the set X represent all the Behavioral Profiles captured from a
specific environment. Let L(X) be the number of elements of the set X and
L(Y) be the number of elements of the set Y. Let set S be the intersection of
set X and set Y, that is S = X ∩ Y. We recursively define Sim as:

Sim(X, Y ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if 0 < L(X) ≤ β and 0 < L(Y) ≤ β

0 if L(x) == 0 and L(Y) == 0

cpt(X, Y ) if S == ∅ and L(X) > β and L(Y) > β

Sim(X − xi, Y − yj) if S �= ∅ and xi == yj

(1)

where,

cpt(X,Y ) =
AB

|A||B| =
∑n

i=1 AiBi
√∑n

i=1 A2
i

√∑n
i=1 B2

i

(2)

Here, β is a configurable parameter and we designed an experiment in the
Sect. 4.1 to try to search an optimal value for it. xi is an element in set X
and yj is an element in set Y. A is a vector transformed from set X and Ai ∈ A.
Also, B is a vector transformed from set Y and Bi ∈ B. We realized a method
to transform the set into vector in Algorithm 2. The expression (2) is derived
from the cosine similarity algorithm and it represents the similarity between set
X and set Y after the interference operators are eliminated from set X and set
Y. Therefore, Sim(X,Y) represents the similarity score. More details about how
to eliminate interference behaviors are provided hereinafter.



FindEvasion 9

We can clearly see that Sim(X,Y) always lies between 0 and 1. Hence, the
deviation score between set X and set Y can simply be defined as:

Dis(X,Y ) = 1 − Sim(X,Y ) (3)

Also, Dis(X,Y) is in interval [0,1], that is if the value tends to 0, the deviation
between set X and set Y is small. On the other hand, if the value tends to 1, the
deviation is large. We define a deviation threshold t. If the Dis(X,Y) is greater
than t, we consider the suspicious program as an environment-sensitive malware.

Eliminate interference behaviors. Here, we use a simple but effective
method to eliminate interference behaviors. First we scan the behavioral profiles
captured from different environments, if there is a common behavioral profile,
that is all the elements in the 4-tuple defined as Sect. 3.2 are the same, we record
the position until all the common behavioral profiles are found. Then we remove
common behavioral profiles according to the positions we record. In this way,
we can eliminate most of the interference behaviors and leave the real malicious
behaviors behind. This simple method works well in our experiment.

We implement the above algorithm with pseudo code.

Algorithm 1. MBSS algorithm
Input: a suspicious samples behavioral profiles extracted in different

environments
Output: the sample is environment-sensitive or not

1 def Judge(bp1,bp2):
2 Dis = 1 - Sim(bp1,bp2)
3 if Dis > t:
4 return TRUE
5 else:
6 return FALSE
7 def Sim(bp1,bp2):
8 if 0 < len(bp1) ≤ β and 0 < len(bp2) ≤ β:
9 return 1

10 elif len(bp1) == 0 and len(bp2) == 0:
11 return 0
12 lines=[line for line in bp1 if line in bp2]
13 if len(lines) == 0:
14 return cpt(bp1,bp2)
15 for line in lines:
16 bp1.remove(line)
17 bp2.remove(line)
18 return Sim(bp1,bp2)

In Algorithm 1, the parameter t in the line 3 is a threshold. Lines 3–6 give
the result that the sample is environment-sensitive or not. Lines 7–18 is the
mainly part of our algorithm to compute the similarity score. Line 12 is to get



10 X. Jia et al.

the common behavioral profiles between bp1 and bp2. Lines 13–14 represent that
if there is no common behavioral profile, then we compute the similarity score.
More details are going to be described in Algorithm2. Lines 15–17 represent
that if there are a few of common behavioral profiles, then we do the processing
of eliminating interference, which just removing the common behavior profiles
from the set.

We implement the Algorithm 2 with pseudo code. Lines 2–3 is to split all the
4-tuple behavioral profiles into words. Line 4 is to union all the words into a
set. Lines 6–14 transform the set into vector, that is if an element not only in
the set allwords but also in the set word1, then the vector1 appends a value 1,
otherwise, appends a value 0. Line 15 makes use of the cosine similarity algorithm
to compute the similarity score.

Algorithm 2. Function cpt()
Input: a suspicious samples behavioral profiles after the interference behaviors

are eliminated
Output: the similarity score

1 def cpt(bp1,bp2):
2 word1 <- split the bp1 into words
3 word2 <- split the bp2 into words
4 allwords <- union all the words in word1 and word2
5 vector1 = [], vector2 = []
6 for w in allwords:
7 if w in word1:
8 vector1.append(1)
9 else:

10 vector1.append(0)
11 if w in word2:
12 vector2.append(1)
13 else:
14 vector2.append(0)
15 return cosine(vector1,vector2)

4 Evaluation

We use Xen-4.4.0 [4] to build the Cloud service node. The Hypervisor environ-
ment used in multiple environments analysis platform is also based on Xen-4.4.0.
We use cuckoo [5] to build Sandbox environment. Moreover, we deploy debug-
ging environment with windbg and Ollydbg, and deploy VM environment using
VMware workstation 12. And we choose Windows 7 SP1 (32bit) as the operating
system for all analysis environments in the experiment.

We use the precision and recall [7] to measure the detection effectiveness.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(4)



FindEvasion 11

where, TP represents true positive, FP represents false positive and FN repre-
sents false negative.

We designed four experiments for the following purposes. The first exper-
iment was to look for the optimal parameter β used in MBSS algorithm. The
second was to evaluate MBSS algorithm by performing the precision-recall analy-
sis. The third was to demonstrate the effectiveness of eliminating the interference
behaviors on detecting the environment-sensitive malwares. The last experiment
was a large scale test for evaluating the feasibility and usability of FindEvasion.

In order to evaluate our approach, we selected the BareCloud [2] as a com-
parison in the following experiments. The BareCloud was developed to detect
environment-sensitive malware in 2015, and used the Hierarchy similarity algo-
rithm to compare the behavioral profiles. It has the 40.20% recall rate with 100%
precision.

4.1 Optimal Parameter β Selection

In this experiment, we try to look for the optimal parameter β used in our
algorithm.

Dataset. We randomly selected 140 environment-sensitive malwares and 140
common malwares as the dataset of this experiment. For simplicity, we just
considered Win32 based malware in PE file format.

We extracted the behavioral profiles of these samples from all the analysis envi-
ronments and computed the deviation score by varying the parameter β between 2
and 20. The result is illustrated in Fig. 3. We can clearly see that when the param-
eter β exceeds 8, the precision keeps on 100%. According to our algorithm defined
in Sect. 3.4, when we choose a higher value for the parameter β, the similarity score
will get higher so that the deviation score will become lower. That is, if a malware
is judged as environment-sensitive, it will always be true with the 100% precision.
However, from the Sect. 3.4, the expression (1) tells us that if we select the β too
high, the similarity score will have great chance to be 1. This will cause the devi-
ation score to be 0 and the recall rate will be lower relatively. Therefore, we can
choose β between 9 and 12. Here, we selected β = 10.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14 16 18 20

Pr
ec

isi
on

 

Parameter β

β=10 

Fig. 3. The selection of parameter β



12 X. Jia et al.

4.2 Algorithm Evaluation

In this experiment, we evaluated our MBSS algorithm by comparing with the
Hierarchy similarity algorithm.

Dataset. We selected 542 environment-sensitive malwares and 319 common
malwares. Also, we just considered Win32 based malware in PE file format for
simplicity.

We extracted the behavioral profiles of above malwares from all the analy-
sis environments and computed the deviation score using MBSS algorithm and
Hierarchy similarity algorithm.

We performed a precision-recall analysis by varying the threshold t for these
deviation score. If the deviation score exceeds the threshold t, the sample is
considered as environment-sensitive. The result is presented in Fig. 4. We can
clearly see that the MBSS algorithm gives better results. The reason is that
the interference behaviors can impact on the detection of environment-sensitive
malwares and our algorithm is able to cope with this issue. In the Sect. 4.3, we
demonstrated the effectiveness of eliminating the interference behaviors.

Figure 5 illustrates the precision-recall characteristics of the MBSS algorithm
by varying the threshold t between 0 and 1. We can clearly see that when the
threshold t = 0.75, we get 100% precision with the recall rate of 60%. Compared
to the recall rate of Hierarchy similarity algorithm, our algorithm’s recall rate
increases by 20% approximately.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

isi
on

Recall

MBSS

Hierarchical-similarity

Fig. 4. Precision-Recall analysis of the MBSS and Hierarchy similarity behavior com-
parison

4.3 The Effectiveness of Eliminating Interference Behaviors

Since the Hierarchy similarity does not consider the influence of interference
behaviors, we can therefore demonstrate the effectiveness by comparing the
detection number of environment-sensitive malwares.



FindEvasion 13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

isi
on

Threshold  t

Precision

Recall

t=0.75

Fig. 5. Precision-Recall analysis of the behavior devision threshold value t

Dataset. We selected 380 environment-sensitive malwares as the dataset of
this experiment. Each of the above malwares can perform a lot of interference
operations. We only considered Win32 based malware in PE file format.

We extracted the behavioral profiles of these samples from all the analy-
sis environments and computed the MBSS-based deviation score. We used the
threshold t = 0.75 and parameter β = 10 that were selected in the previous
experiments. We also used the Hierarchy similarity to calculate deviation score.
The comparion result is shown in Fig. 6. We can clearly see that the MBSS algo-
rithm gives better results. The MBSS algorithm was able to detect a total of 351
environment-sensitive malwares, which accounted for 92.4%. By contrast, the
Hierarchy similarity only detected a total of 93 environment-sensitive malwares,
which accounted for 24.5%. In other words, if an environment-sensitive malware
performs a lot of interference operations, our MBSS algorithm works better than
Hierarchy similarity algorithm. It also proves that the operation of eliminating
interference behaviors is useful to detect the environment-sensitive malware.

351

93

0

50

100

150

200

250

300

350

400

MBSS Hierarchical-similarity

Th
e 

de
te

cƟ
on

 n
um

be
r o

f e
nv

iro
nm

en
t-

se
ns

iƟ
ve

 m
al

w
ar

es

Algorithms

Fig. 6. The detection effect of MBSS algorithm compared to Hierarchy similarity
algorithm



14 X. Jia et al.

4.4 Large Scale Test

In this experiment, we evaluated the feasibility and usability of our FindEvasion
system on a larger dataset, using BareCloud [2] system as a comparison.

Dataset. We have used VXHeaven Virus Collection [8] database which is avail-
able for free download in the public domain. We selected a total of 7257 malware
samples and only considered Win32 based malware in PE file format. Note that,
since we do not have a ground truth for this dataset, we cannot provide the
precision rate and recall rate.

We ran FindEvasion and BareCloud using the same dataset, and made a judg-
ment. The result is presented in Fig. 7. We can clearly see that our FindEvasion
system detected 176 more samples than BareCloud did. Through manual reverse
analysis, we confirmed that these samples are environment-sensitive malwares.

563

387

0

100

200

300

400

500

600

700

800

FindEvasion BareCloud

Th
e 

de
te

cƟ
on

 n
um

be
r o

f e
nv

iro
nm

en
t-

se
ns

iƟ
ve

 m
al

w
ar

es

Systems

Fig. 7. The detection effect of FindEvasion and BareCloud

5 Limitations

Through the experiments result, we can clearly see that FindEvasion is able
to detect environment-sensitive malwares. However, some samples using specific
technologies can escape the detection. In this section, we describe the limitations
of our system.

Firstly, if a sample uses stalling code to wait for some times before performing
malicious behaviors, our system will lead to a wrong analysis result. The reason is
that, our system’s analysis time is limited. Within the limited time, the malware
sample may be sleeping and escape the detection.

Secondly, our system can only identify the environment-sensitive malwares
and it can not find out the provenance of the infection which may lead back to
the offender. Our log files can only record the behaviors of malwares which do
not include the attack’s information.



FindEvasion 15

6 Related Work

6.1 Dynamic Analysis

Dynamic analysis is the testing and evaluation of an application during runtime.
Recently, many dynamic analysis tools have been developed for automatically
analyzing malware. Most of them make use of the sandbox techniques. A sand-
box is implemented by executing the software in a restricted operating system
environment. Some tools like CWSandbox [9] and Norman Sandbox [10], mak-
ing use of in-guest techniques for intercepting Windows API calls. This method
is easy to be awared by environment-sensitive malware and be bypassed. The
emulation or virtualization technologies are also universally used, for example
VMScope [11], TTAnalyze [12], and Panorama [13], which are based on the Qemu
[14] to record the API. Besides, Ether [15], VMwatcher [16] and HyperDBG [17]
are the representative of hardware-supported virtualization technology.

6.2 Transparent Monitoring

In order to prevent the environment-sensitive malware from escaping the detec-
tion, it is necessary to develop transparent analysis platforms. Cobra [18] uses
dynamic code translation, fighting with the environment-sensitive malware with
anti-debugging techniques. It performs the behavioral analysis by modifying the
memory properties. There are also a number of tools based on the out-of-VM
monitoring which can provide transparent monitoring. Examples include Ether
[15] which makes use of the hardware-supported virtualization. However, the
tools above only provide very few kinds of environments which is not conducive
to identify the environment-sensitive malware.

6.3 Evasion Detection

Chen et al. [19] proposed a detailed classification of anti-virtualization and
anti-debugging techniques used by environment-sensitive malwares. According
to their experiments, if an environment-sensitive malware is under a debugger
or virtual machine environment, it showed less malicious behaviors. Lau and
Svajcer [20] have proposed a method to detect VM detection by dynamic-static
tracing technique. Disarm [3] deployed two kinds of analysis environments to
compare the behavioral profiles. It requires each sample to be analyzed multiple
times in each analysis environment. This procedure would reduce the influence
of random files name. After that, it computes the deviation score through the
inter-sanbox distance and intra-sanbox distance based on the Jaccard similarity.
BareCloud [2] use the bare-metal environment, which has no monitoring compo-
nent in the Guest OS. They only consider the persistent change to the system and
they proposed a hierarchical similarity algorithm based on the Jaccard similarity
to compute the deviation score. The major difference between BareCloud and
our work is that we deployed multiple analysis environments and we proposed a
novel algorithm, which can deal with the interference behaviors.



16 X. Jia et al.

7 Conclusions and Future Work

In this paper, we present FindEvasion, a malware detection system for the Cloud.
Different from traditional system, our system introduces a novel evasion detec-
tion algorithm that can effectively detect environment-sensitive malwares. As
mentioned above, the environment-sensitive malwares can identify the operating
environment and perform corresponding malicious behaviors in different environ-
ment. With the development of cloud computing, they have gradually become an
important threat to cloud platforms. In order to make the environment-sensitive
malware exhibit the evasive behavior and cope with the interference behaviors,
we perform malware analysis on multiple operating environments and propose
an algorithm to compare the suspicious programs behavioral profiles. Our app-
roach can tranparently extract the suspicious programs from the guest VM and
eliminate the influence of the interference behaviors. We have empirically demon-
strated that this approach works well in practice and that is efficient.

In future, we would like to focus on adding the capability of human-computer
interaction and handling stalling code. A malware can sleep for a long time to
escape the analysis or the malicious behaviors need human to interact. Within
a limited analysing time(e.g., five minutes), our system can not observe the
malicious behaviors and this will lead to a wrong analysis result. Besides, our
log files should record the provenance of the infection for leading back to the
offender. We will deal with these issues in the future. Moreover, we plan to
evaluate the robustness of our proposed technique on a customized dataset.

Acknowledgments. This paper is supported by National Natural Science Foundation
of China (NSFC) under Grant No. 61572481, National key research and development
program of China under Grant No. 2016YFB0801600 and Nation key research and
development program of China under Grant No. 2016QY04W0900.

References

1. Symantec. https://www.symantec.com/security-center/threat-report
2. Kirat, D., Vigna, G., Kruegel, C.: Barecloud: bare-metal analysis-based evasive

malware detection. In: Malware Detection (2014)
3. Lindorfer, M., Kolbitsch, C., Milani Comparetti, P.: Detecting environment-

sensitive malware. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011.
LNCS, vol. 6961, pp. 338–357. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23644-0 18

4. Linux Foundation: The Xen project. http://www.xenproject.org/. Accessed 4 Mar
2017

5. Cuckoo Sandbox. http://www.cuckoosandbox.org
6. Bayer, U., Comparetti, P.M., Hlauschek, C., Krgel, C., Kirda, E.: Scalable,

behavior-based malware clustering. In: Network and Distributed System Security
Symposium, NDSS 2009, San Diego, California, USA, February 2009

7. Powers, D.M.W.: Evaluation: from precision, recall and f-factor to ROC, informed-
ness, markedness and correlation. J. Mach. Learn. Technol. 2, 2229–3981 (2011)

https://www.symantec.com/security-center/threat-report
https://doi.org/10.1007/978-3-642-23644-0_18
https://doi.org/10.1007/978-3-642-23644-0_18
http://www.xenproject.org/
http://www.cuckoosandbox.org


FindEvasion 17

8. VX Heaven Virus Collection: VX Heaven. http://vx.nextlux.org. Accessed 4 Mar
2017

9. Willems, C., Holz, T., Freiling, F.: Toward automated dynamic malware analysis
using CWSandbox. IEEE Secur. Priv. 5(2), 32–39 (2007)

10. Norman Sandbox. http://www.norman.com/
11. Jiang, X., Wang, X.: “Out-of-the-Box” monitoring of VM-based high-interaction

honeypots. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS,
vol. 4637, pp. 198–218. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74320-0 11

12. Bayer, U., Kruegel, C., Kirda, E.: TTAnalyze: A Tool for Analyzing Malware (2006)
13. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: capturing system-

wide information flow for malware detection and analysis. In: ACM Conference on
Computer and Communications Security, CCS 2007, Alexandria, Virginia, USA,
pp. 116–127, October 2007

14. Bellard, F.: QEMU, a fast and portable dynamic translator. In: Conference on
USENIX Technical Conference, p. 41 (2005)

15. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: malware analysis via hardware
virtualization extensions. In: ACM Conference on Computer and Communications
Security, CCS 2008, Alexandria, Virginia, USA, pp. 51–62, October 2008

16. Jiang, X., Wang, X., Xu, D.: Stealthy malware detection through VMM-based
“Out-of-the-Box” semantic view reconstruction. In: ACM Conference on Computer
and Communications Security, CCS 2007, Alexandria, Virginia, USA, pp. 128–138,
October 2007

17. Fattori, A., Paleari, R., Martignoni, L., Monga, M.: Dynamic and transparent anal-
ysis of commodity production systems. In: IEEE/ACM International Conference
on Automated Software Engineering, pp. 417–426 (2010)

18. Vasudevan, A., Yerraballi, R.: Cobra: fine-grained malware analysis using stealth
localized-executions. In: IEEE Symposium on Security & Privacy, p. 15 pp. -279
(2006)

19. Chen, X., Andersen, J., Mao, Z.M., Bailey, M.: Towards an understanding of anti-
virtualization and anti-debugging behavior in modern malware. In: IEEE Interna-
tional Conference on Dependable Systems and Networks with FTCS and DCC,
pp. 177–186 (2008)

20. Lau, B., Svajcer, V.: Measuring virtual machine detection in malware using DSD
tracer. J. Comput. Virol. Hacking Tech. 6(3), 181–195 (2010)

http://vx.nextlux.org
http://www.norman.com/
https://doi.org/10.1007/978-3-540-74320-0_11
https://doi.org/10.1007/978-3-540-74320-0_11


Real-Time Forensics Through
Endpoint Visibility

Peter Kieseberg1(B), Sebastian Neuner1, Sebastian Schrittwieser2,
Martin Schmiedecker1, and Edgar Weippl1

1 SBA Research, Vienna, Austria
pkieseberg@sba-research.org

2 Josef Ressel Center for Unified Threat Intelligence on Targeted Attacks,
St. Pölten University of Applied Sciences, St. Pölten, Austria

Abstract. In the course of the last years, there has been an established
forensic process in place known by every investigator and researcher. This
traditional process is regarded to produce valid evidence when it comes
to court trials and, more importantly, it specifies on a very precise level
how to acquire a suspects machine and handle the data within. How-
ever, when new technologies come into play, certain constraints appear:
Having an incident in a network containing thousands of machines, like
a global corporate network, there is no such thing as shutting down and
sending an investigation team. Moreover, the question appears: Is this
an isolated incident, or are there any other clients affected?

In order to cover such questions, this paper compares three tools aim-
ing at solving them by providing real-time forensics capabilities. These
tools are meant to be deployed on a large scale to deliver information
at any time, of any client all over the network. In addition to a fea-
ture comparison, we deployed these tools within a lab environment to
evaluate their effectiveness after a malware attack, using malware with
pre-selected features in order to allow for a more precise and fair com-
parison.

Keywords: Digital forensics · Real-time forensics · Forensic process
Endpoint visibility

1 Introduction

Through several years of accumulated practical experience and academic
research, forensic investigators were able to establish a standardized and well-
known routine for digital investigations [3,10]. This is especially important, since
relying on a common ground is critical for forensic investigations that have to
back a legal trial, in order to provide soundness to claims of both sides, the
defendant as well as the prosecutor (for different reasons obviously). However,
there are forensic investigations that do not have the convenient features of phys-
ical access, sufficient investigation time or close to unlimited storage capacity. In

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

P. Matoušek and M. Schmiedecker (Eds.): ICDF2C 2017, LNICST 216, pp. 18–32, 2018.

https://doi.org/10.1007/978-3-319-73697-6_2



Real-Time Forensics Through Endpoint Visibility 19

times of fast growing storage capacities and even commodity hardware bringing
more than two terabytes to the end-user as a USB stick, the well-established
forensic process has to be re-invented. A first step to this new process has been
shown by Neuner et al., who opted for a whitelisting approach that allows to
exclude already known files from the acquisition process [18]. However, this still
relies on the assumption that the computers which have to be investigated are
physically accessible and are already (or at least can be) shut down.

Large companies such as Google, Facebook and Mozilla are challenged with
the downsides of those standardized approaches. Like many other companies,
they experienced several incidents [2], however they suffer from the problem of
scales, having to investigate on thousands and thousands of computers. Relying
on the established forensic approach and turning every computer off, making
a 1:1 hard drive copy and so forth, is not only unfeasible in reality, but would
cost millions of Dollars every hour [15]. Thus the three mentioned companies
are developing solutions called real-time forensic tools, namely Google’s GRR
Rapid Response (GRR) [8,16], Facebooks osquery [12] and Mozillas InvestiGa-
tor (MIG) [17]. In this paper we compare these three tools with respect to their
feature set and capabilities. Furthermore, we evaluate their effectiveness in a
scenario where a presumable administrator detected multiple infections on dif-
ferent machines. Main questions answered include whether it is possible to detect
the infections if the malware features are known and whether it is possible to
detect every infected machine. More precisely, the contributions of our work are
as follows:

• We survey the current state-of-the-art forensic approach with respect to real-
time forensics.

• We compare the three real-time forensic tools regarding their features and
applicability.

• We evaluate their effectiveness for a successful attack with a known malware.

The rest of the paper is structured as follows: Sect. 2 provides the needed
background information to this work and also offers insights into the related
work. Section 3 provides an overview on the three selected real-time forensic
tools, but also discusses alternatives in the open-source sector as well as other
commercial tools. Section 4 describes the methodology and the evaluation details
of our work. This section furthermore describes the lab setup used for the eval-
uation as well as the selected malware and its features. Section 5 outlines the
results of the evaluation. Section 6 discusses the limitations of our approach and
future work in the direction of live forensics. Finally, Sect. 7 summarizes and
concludes our paper on real-time forensics.

2 Background and Related Work

Forensics in a traditional sense is a standardized process - standardized in aca-
demic work [4] and by the National Institute of Standards and Technology



20 P. Kieseberg et al.

(NIST) for law enforcement organizations such as the U.S. Department of Jus-
tice [19]. This process ensures that the investigator is carrying out reproducible
steps in order to acquire a suspects data. Figure 1 [20,21] shows a typical illus-
tration of the process.

Fig. 1. Flow of a traditional forensic process.

However, the process requires the suspect to have its data stored on a man-
ageable number of devices, preferable only possessing low storage capacities. As
shown in related work [10], storage is a very limiting factor during the acquir-
ing process, since several copies have to be made for each device. These copies
include the actual working copy for the investigator, a backup copy in case the
working copy is tampered and, in some cases, a copy directly sent to the client
(e.g. the court). Having all these copies means a high recoverability against
data loss, however, this also means that the investigator needs huge amounts of
storage capacities and enough computing power to process the data for investiga-
tive tasks. This problem was already predicted before in 2010 by Garfinkel [10]
and since then discussed in academic work. One suggestion in 2016 by Neuner
et al. [18] is the utilization of file whitelisting of known files to reduce both,
the required capacity and the required process power. Additionally there is not
only academic work describing the traditional forensic process, but also sugges-
tions by the NIST [13]. These suggestions for acquiring data include a graceful
shutdown, once the volatile memory (e.g., RAM) is acquired.

Considering a typical suspect having one computer, several hard disks and a
mobile phone, this traditional forensic process works well in practice. But con-
sidering modern storage techniques, like distributed storage (cloud storage), the
standardized process mentioned above will not work in every detail [11]. Consid-
ering large companies such as Google, Facebook and Mozilla having an incident
within their infrastructure of tens of thousands of clients, shutting down every
(probably) affected computer will not work without causing huge costs to the
infrastructure provider. Therefore companies like those three developed frame-
works, called real-time forensic tools which do not require shutting down the
client, but are able to copy important data over the network to a centralized
station for further investigation. Considering an infected client, these real-time
forensic tools are able to scan all clients in range for infection details to find
other infected clients, with some of those frameworks being able to directly
access the client and prevent further spreading of the malware, e.g. by disabling
certain network interfaces. On the one hand, this approach is definitely con-
sidered tampering with the data on the client, however, on the other hand this
approach is fast and does not affect the clients (or the networks) up-time. Certain
frameworks (e.g. Googles GRR) are able to produce AFF4 images of the clients,



Real-Time Forensics Through Endpoint Visibility 21

which could be considered as a starting point for a forensic standard targeting
live environments using real-time forensic tools. Nevertheless, it should not be
unmentioned that carrying out real-time forensics is at no point compliant with
any standardized forensic process as it is currently demanded by court.

3 Real-Time Forensic Tools

In contrast to traditional tools as outlined in Sect. 2 real-time forensic tools do
not work upon the standardized forensic process. To tackle huge amounts of data
in real-time, without turning off the suspected computer, several tools have been
developed by various companies [23]. In this section we provide insights into the
three tools selected for evaluation, including an illustration of their capabilities
with Table 1 providing a compact overview.

Table 1. Capabilities of real-time forensic tools

osquery MIG GRR

File interaction Read access on files ✗ ✓ ✓

Client write access ✗ ✗ ✗

File timelining ✓ ✗ ✓

Endpoint statistics Host statistics (e.g. uptime) ✓ ✓ ✓

Process listing ✓ ✓ ✓

Connected users ✓ ✓ ✓

Network statistics Users ✓ ✓ ✓

Connected machines (IP) ✓ ✓ ✓

Connected machines (MAC) ✓ ✓ ✓

Endpoint monitoring Windows registry ✓ ✗ ✓

Linux packages ✓ ✓ ✗

Memory inspection (userland
memory)

(✓) ✓ ✓

Agent compatibility Windows ✓ ✓ ✓

Linux ✓ ✓ ✓

MAC OSX ✓ ✓ ✓

Embedded devices (e.g.
switches)

✗ ✓ ✗

Digital evidence acquisition AFF4 ✗ ✗ ✓

3.1 osquery

osquery was first released by Facebook in October 2014 as a simple way for
extracting properties from a life system that can be helpful in a forensic investi-
gation. It currently targets Linux, Ubuntu, CentOS, FreeBSD and OSX and was



22 P. Kieseberg et al.

very recently extended to the Windows world [22]. The main idea behind osquery
lies in providing an abstraction layer between the analyst and the operating sys-
tem internals, allowing querying of information like changes in the file system,
loaded kernel modules, information on processes and users, from a database-like
structure. For this, all information is abstracted as so-called “tables” that follow
the same syntax as SQLite tables and can be queried using SQL-commands.

Basically, there exist two ways of invoking osquery: Using an interactive
shell called osqueryi, or configuring the osqueryd daemon. The osqueryi shell
is completely stand-alone and typically used for prototyping, as well as ad-hoc
analysis of the system. The osqueryd daemon on the other hand is used for
structured and regular analysis of key features of the system, e.g. the list of
running processes or changes in the file system. It is primarily configured by a
scheduler, where defined queries are executed regularly. The daemon provides
means for aggregation of these results over time and generates logs, thus can be
used to easily show changes on the operating system level.

The main configuration work is done using so-called query schedules, SQL-
style definitions of the data to be retrieved, including an interval definition for
the recurring execution of the retrieval. Several queries can be packed together
in so-called packs that allow for more fine-grained options on the logging, as
well as the use of predefined packs for specific cases, including specific malware.
Figure 2 shows a simple query schedule for retrieving all files opened by processes.
The interval was set to 10 s, i.e. the daemon checks for these variable every ten
seconds, events that take place in between will not be recorded and are lost for the
analysis. Contrary to e.g. GRR, osquery is meant to be executed permanently to
monitor changes on the fleeting aspects of the operating system, it is not capable
of actually analyzing the actual content of files.

Fig. 2. A query schedule for osquery.

3.2 GRR

The Google GRR Rapid Response (GRR) was first announced by Cohen et al. in
2011 and intended to handle Google’s internal infrastructure regarding remote
live forensics [5]. Basically, GRR is a Python agent that is installed on the clients
to be managed. The GRR front-end servers, that are under the control of a
system administrator (sysadmin), receive the messages sent by the GRR agents.
This sysadmin initiates a so-called “flow” via the front-end server on the agents.
This message contains code that is executed on the agents, which are requested
to return the required information to the front-end server for aggregation and



Real-Time Forensics Through Endpoint Visibility 23

evaluation. The concept of “hunts” on the other hand describes massive amounts
of flows, targeting a huge number of agents.

Most of the “basic” capabilities are built into GRR, such as file interactions,
live memory analysis and endpoint monitoring. Strong points of GRR are on the
one hand the possibility to manage the agent live by using an IPython shell that
is capable to run on all major operating systems (Windows, Linux, OSX). On
the other hand, GRR offers the possibility to extract forensic evidences using
the open-source file format Advanced Forensics File Format 4 (AFF4) [6].

3.3 MIG

To tackle problems like accidental private key pushes to github in a large envi-
ronment (such as every computer and every server owned by Mozilla) Julien
Vehent proposed Mozillas own real-time forensic tool, the Mozilla InvestiGator
(MIG) [17], in 2015. MIG is written in GO and compiled into a statically linked
binary for easy sharing and easy deployment. Although the binary has to be
installed as a root service, activated MIG modules are locked down in terms of
requested privileges. For secure communication between the clients on which a
MIG agent is installed and the MIG master, Rabbit MQ is used to exchange
PGP signed JSON messages. The underlying architecture is shown in Fig. 3.

Fig. 3. Architecture of the Mozilla InvestiGator (Image source: http://mig.mozilla.
org/doc/.files/mig workflow.gif. Accessed: 13.09.2016).

As soon as the agents are finished working on the tasks requested by the
master, the results are sent back to the investigators and stored in a postgreSQL
database. Table 1 outlines capabilities of MIG not mentioned here. The develop-
ers of MIG, besides various other features, managed to deploy MIG agents on
rather restricted embedded systems like switches. This, on the one hand, adds
a large amount of additional systems to be managed and analyzed, but on the
other hand creates the possibility to monitor and protect these kinds of systems.

http://mig.mozilla.org/doc/.files/mig_workflow.gif
http://mig.mozilla.org/doc/.files/mig_workflow.gif


24 P. Kieseberg et al.

3.4 Commercial Solutions

Besides open-source real-time forensic tools there are also commercial tools avail-
able. This includes Mandiant’s MIR, Encase Enterprise, as well as the real-time
forensic tool of F-Response. These frameworks could not be evaluated due to the
limited availability of the software, e.g. demo versions, however, even if a demo
would be available for all of these commercial frameworks, they are typically
limited and therefore cannot be compared to fully fledged open-source solutions.

4 Methodology

4.1 Lab Setup

Figure 4 depicts the setup of the lab environment used for the evaluation of
the real-time forensic tools. As a first step (1), the control panel prepares the
malware that is subsequently sent to the virtual machines. The malware can be
chosen based on a range of pre-classified features (see Sect. 4.3 for details on the
selection for our work). Step (2) initializes the VMs for a first use.

Fig. 4. The lab setup used for evaluating the real-time forensic tools.

In our case this includes the installation of the operating system Windows
7 Service Pack 1 (64 bit) for GRR and Windows 10 Pro (64 bit) for MIG and
osquery, as well as an agent corresponding to all three real-time forensic tools
we are evaluating. In step (2) the malware is loaded onto the machines, enabling
certain types of malware to infect the virtual machine at boot time or at time
of the start of the operating system, respectively. Step (3) is bi-directional: The
real-time forensic tools are polling for data, which results in data sent to the
infected virtual machines. The way the data is sent (methods, protocols used)
depends on the communication techniques of each real-time forensic tool. As
soon as the data is available for each tool it is evaluated and made available for
the investigator in step (4).



Real-Time Forensics Through Endpoint Visibility 25

4.2 Malware Sample Selection

Based on the methodology described in Sect. 4, the malware used for evaluation
was selected on the following feature set:

Feature (F1), Process spawning: Malware is often running as processes in
the background in order to carry out their malicious activities. However, the
names of those processes are often either publicly known or easy to spot [14].
Feature (F2), Persistence: Certain kinds of malware persists themselves on
the system, either somewhere on the filesystem but also e.g. in the registry.
Persistence ensures the malware staying on the system after a reboot, as well
as the possibility to restart the malware process after manual termination [1].
Feature (F3), Network connection: Processes that start outgoing, as well
as accept incoming connections without any user interaction, are often
malware [24]. Outgoing connections can indicate data that is being exfiltrated
or the establishing of a connection to a botnet server (Command and Con-
trol server) [9]. Incoming connections can indicate patching of the malware
or dropping additional payload on the attacked system [7].

Therefore, the following samples of malware have been selected based on the
feature list above: Sample (S1) containing the banking trojan retefe, a malware
that installs a root CA on the infected machine and starts to intercept e-banking
connections, sample (S2) containing the Locky ransomware that encrypts files
on the user’s hard disk for asking for ransom for the decryption key, as well as
sample (S3) containing the Win32.Viking worm.

Feature F1 is fulfilled by all of the three samples S1, S2 and S3. Each of
them spawns several processes, some running in the background in order to
carry out the malicious behavior. These processes include notoriously danger-
ous executables like “powershell.exe”, “certutil.exe” and “tor.exe”. All malware
samples persist themselves on the system, more precisely the file system, ful-
filling feature F2. Finally, feature F3 is also fulfilled by all three samples to a
varying degree: While the banking trojan does open several connections, the
Win32.Viking worm works much more stealthy.

Sample S2, the Locky ransomware, was also chose, because it possesses a
specialty: Contrary to other malware like ebanking trojans, ransomware stays
hidden only for a specific time, until enough user files (or even the whole disk,
depending on the actual malware) have been encrypted. Then the malware actu-
ally informs the user in order to make him/her pay the ransom. Thus, the detec-
tion capabilities evaluated in our scenarios are evaluated with respect to the
“dormant” ransomware, i.e. the ransomware before or during the encryption
phase, since its presence afterwards, in the ransom phase, is detected trivially.

4.3 Evaluation

The goal of the evaluation was to study the behavior and detection possibilities of
the three live forensic tool-kits under real-life conditions. To this end we selected
three malware examples and tested them on a system. Furthermore, we had a



26 P. Kieseberg et al.

look on the capabilities of the different tool-kits and extrapolated their typical
applicability in real-life scenarios.

For the evaluation, we infected a running system, with each malware sepa-
rately, in order to get a good comparison of the results. While this evaluation
yields good results for the detection of malware with known or at least expected
feature, it does yield the problem that many artifacts are quite typical for the
malware in question. Thus, we concentrated on utilizing the artifacts for detec-
tion that are more uncommon, like changes to system routines, changes to specific
keys in the registry, or spawning of suspicious processes.

5 Results

In this section we provide a comparison of the analyzed tools with respect to our
research scenario and outline major differences, as well as shortcomings based
on the three malware samples selected before.

5.1 osquery

osquery mainly targets the monitoring of operating system internals, i.e. it is a
constant monitor of the system state and does not target the reconstruction of
deleted files. Regarding the banking trojan retefe, this helps detection in case
of continuous monitoring through the osqueryd daemon. Here, the following
artifacts could be found that identified this malware. It has to be noted though
that the malware does generate many more artifacts, we reduced our analysis
to those issues that possess high significance. This also implies that we did
not concentrate on artifacts that can be the result of arbitrary other programs
running on the respective machine like memory usage or checking for needed
third party software:

• For file interaction, osquery is capable to detect the changes done to the file
system on a pure metadata level. The malware generates and changes several
files in the AppData directories for Microsoft Office and Tor, using file names
like “Microsoft.Win32.Task Scheduler.dll”, as well as the TOR-AppData.

• On the endpoint statistics level, it created various process, the most notorious
including instances of “powershell.exe”, “certutil.exe” (for adding the root
CA) and “tor.exe”.

• Regarding the network level, it generates various connections to the outside
world, which can be detected by constant querying of the respective interfaces
using osquery.

• On the endpoint monitoring level, there is a change happening to the Windows
registry, deleting and recreating a specific key “HStartupItem” for MS Office
and creating several other keys. Furthermore, a new root CA is installed, also
resulting in the respective changes in the registry. Altogether, the process
changes the registry which can be detected by osquery.

For the Locky ransomware, we detected the following artifacts that indicate an
infection with malicious software:



Real-Time Forensics Through Endpoint Visibility 27

• On the file level, it generates an executable in the system32 directory of
Windows, as well as a file containing decryption instructions. Furthermore,
as soon as the ransomware process is started, in starts accessing and updating
files and changing their names to the “.locky” suffix.

• On the endpoint statistics level, it generates some processes, with “cmd.exe”
being the most notable.

• Regarding the network level it does some DNS-lookups and downloads
executable code during the infection. This of course is only visible in
osquery in case the malicious code is not already downloaded before. Fur-
thermore, it opens a connection to the well-known Locky distribution site
“greenellebox.com”. In addition, it uses a known web browser user agent for
HTTP communication, which can be filtered using osquery.

• On the endpoint monitoring level, while of course activity was shown that
can be attributed to the infection, there was nothing outstanding recorded
that enabled us to identify the infection with Locky with a high certainty,
while, of course, the randomly generated key in the registry was visible and
could be a starting point for further investigations.

Regarding the Win32.Viking worm, we detected the following artifacts that indi-
cate an infection with malicious software:

• On the file level, it generates the dll-file “FastUserSwitchingCompatibility.dll”
in the system32-directory, as well as deletes a file in this directory. Further-
more, it generates a randomly named file in the root directory (typically
“c:”).

• While only spawning a few processes, these include several instances of
“reg.exe” for modifying the registry, as well as a (changed) instance of Inter-
net Explorer.

• On the network level, this malware is invisible to osquery, as no direct net-
work connections are opened, but the (modified) Internet Explorer is used for
hiding the communication.

• On the endpoint monitoring level, the malware makes changes to the reg-
istry by adding a new key and creating a Windows Service pointing to the
executable “FastUserSwitchingCompatibility.dll”.

5.2 GRR

The main benefit of GRR is its capability to check actual file content and search
for strings that can be attributed to known malware samples. Furthermore, it still
allows for file timelining and looking for changed files in the overall OS structure.
This also holds true for the analysis of running processes. Still, the typical idea
of GRR, in contrast to osquery, does not lie in the permanent observation and
monitoring of the system looking for changes that might hint at an infection, but
more on analyzing a system suspected for an infection already having taken place.
Regarding our first sample, the banking trojan retefe, the following artifacts can
be detected:

http://greenellebox.com/


28 P. Kieseberg et al.

• Regarding changes to the file system, GRR is capable to detect the changed
files in the AppData directories for Microsoft Office and Tor. Furthermore, the
docx-document used for infection contains several deviations to typical docx-
files like irregular field values in the summary information. It also contains a
stream with embedded javascript code. This is especially valuable, as it helps
to reveal the actual source of the infection.

• GRR is capable of detecting the processes spawned by the malware, still,
since GRR is typically used as ad-hoc tool in the course of an investigation
and not as constant system monitoring, it might miss most of these processes.

• The same holds true for the networking level. Since a banking trojan is meant
to be active regularly in order to intercept the e-banking connections, GRR
can be used for detection.

• The same holds true for the connections on the network level, especially since
relevant information on the connection parameters can be extracted from the
infected file, thus giving a valuable hint on what to look for.

• Finally, GRR is perfectly capable on extracting the changes that happened
to the registry, the recreated “HStartupItem” key, as well as the root CAs.

For the Locky ransomware, the capabilities to check the actual file content are
especially valuable. Furthermore, the following artifacts were be used for detect-
ing this infection:

• GRR is capable of detecting the files generated by the malware, especially
the executable in the system32 directory of Windows. Furthermore, since the
timeline of the files is accessible by GRR, arbitrarily changed files become
visible. In addition, the file system can be checked for files that should be
readable (e.g. Office files), but only contain gibberish, hinting at encrypted
data. Furthermore, the statistics also reveal the suffix changes. In addition,
specific URLs can be found in the documents, as well as a dropped file, where
the content does not match the file extension.

• While the encryption is taking place, GRR is capable of detecting the respec-
tive processes, especially running an executable with a randomly generated
name from the local temporary directory (e.g. “b7uG0vk9g4qsBc5Z.exe”).

• Locky contacts the distribution site “greenellebox.com” which can be detected
using GRR during the connection. Furthermore, GRR could detect the known
web browser user agent used for HTTP, in case Locky communicates during
the investigation, still, the ransomware is typically limiting itself to small
amounts of communication.

• GRR is also capable to see the randomly generated key in the registry, still,
we found it rather hard to detect Locky solely by this artifact, especially in
the presence of the much more distinctive artifacts on the file level.

Also with respect to the Win32.Viking worm, the capability to search for the
content inside files helped a lot:

• The generated dll-file in the systems32-directory can be detected easily. Fur-
thermore, it generates an executable with a random name in the root directory
“C:” that contains search strings for anti-malware evasion.

http://greenellebox.com/


Real-Time Forensics Through Endpoint Visibility 29

• GRR was capable of detecting the spawning of the “reg.exe” command for
editing the registry, if this is done during the investigation.

• While in theory GRR should be capable to see the network channel opened
by using Internet Explorer, we were not able to detect this in our example
environment using GRR.

• GRR is perfectly capable to detect the changes to the registry by adding a
new key and creating a Windows Service pointing to the executable “Fas-
tUserSwitchingCompatibility.dll”.

5.3 MIG

The MIG framework proposed by Mozilla, like GRR, is used in ad-hoc inves-
tigations and not for permanent monitoring. Furthermore, like GRR, it is also
capable to provide read access to the actual content of files. Still, since the main
goal was to tackle the problem of accidental pushes of information, it does not
allow for file timelining, somewhat limiting the detection capabilities compared
to GRR. Thus, in this section, we will mainly outline the differences to GRR.

With respect to the retefe banking trojan, the following artifacts could be
observed in the lab environment:
• While it is possible to analyze the actual contents of the files, the detection

of actually changed files is harder due to missing file timelining. Still, the
detection is possible, especially when routinely looking for the ill-formatted
docx-files.

• One major drawback for the detection, is the incapability to access the Win-
dows registry, as the tool misses the recreated “HStartupItem” key, as well
as the root CAs. This information is especially valuable, as it is (i) far more
specific for this malware, (ii) typically not the effect of an user error (like
badly formatted docx-files could be) and (iii) very simple to spot.

Still, even though the Windows registry could not be accesses, MIG is capable
to detect the malware based on the other characteristics. For the Locky ran-
somware, the picture looks almost the same:
• Having no file timelining seems a bit problematic for getting the best picture

on the changes taking place in the overall file system, still, we were able to
detect the malware,

• Again, having access to the randomly named keys in the registry would add
to the analysis.

For the Win32.Viking worm, the following artifacts were especially useful:
• Since the filename that is generated is known, and the malware generates an

executable holding search strings for anti-malware evasion, we were able to
detect it using MIG.

• Again, accessing the Windows registry would have helped a lot finding the
Windows Service created by the malware.

It must be noted though that MIG is the only product of the three evaluated
approaches that can be used for embedded devices, thus possesses a feature that
must be taken into account as especially interesting in other real-life scenarios.



30 P. Kieseberg et al.

6 Limitations and Future Work

In terms of limitations of our evaluation, there is clearly the limited number
of deployed clients. This accompanies one of our targets for future work: For
follow-up work we plan to contact companies such as Google, Facebook and
Mozilla to share their insights after several months (or even years) of deploy-
ment and execution of those real-time forensics tools. This would provide data
from real-world deployments rather than from a lab environment, allowing to
answer research questions like statistics on the typical time between detection
and cleanup of a certain incident, or on the most commonly experienced inci-
dents, and so on. However, the lab environment is indispensable without having
access to the company data.

In case we do not get access to the requested data, a fallback plan is to imitate
a large network by deploying thousands of cloud instances, running the real-time
forensic tools. This would also provide insights into the long-term applicability
of the evaluated tools. Additionally, this would bring shed light onto the effec-
tiveness of the tools, e.g. in terms of time: How long does it take from detection
until cleanup of a given incident?

Among further future work planned, we also intend to deploy more open
source real-time forensics tools (or at least freeware tools) on the cloud instances
mentioned. This would extend the insights on different frameworks, but would
raise the problem of increasingly unmaintained frameworks.

7 Conclusions

In conclusion, all the tools reviewed in this work were able to detect the samples,
still the artifacts most probably used seem to differ. In the selected examples,
especially MIG’s incapability to check the Windows registry was noted, as this
would offer a lot of additional capabilities. Still, it must be noted that MIG is
capable of dealing with embedded systems, which is an additional benefit worth
noting. From the point of view of usage, the use of osquery differs quite a lot
from GRR and MIG: While GRR and MIG are made to be used during an
investigation, i.e. at a specific point of time after e.g. an infection was suspected,
osquery, while offering this capability too, is typically configured to automatically
monitor the system based on different attributes and artifacts that are prepared
to be queried like tables. Still, on the other hand, it does not offer the user
the possibility to check actual data on the file system, especially reconstructing
deleted files and checking for search strings inside suspicious files.

In conclusion, we would recommend to use a mixed approach by having the
osquery daemon permanently monitoring a selection of artifacts, especially the
process list, changes to the file system and changes to the Windows registry, as
well as using either MIG or GRR for getting into the issue of file checking in case
new and suspicious file generation or changes are detected by the monitoring. For
choosing between GRR and MIG, this mainly depends on the system at hand.
In case of a Windows system, GRR outperforms MIG due to its capabilities of



Real-Time Forensics Through Endpoint Visibility 31

file timelining and accessing the Windows registry. On the other hand, in case
of a more complex system structure including embedded systems or low-end
hardware, MIG is simply capable to generate a much more complete picture, as
information from these sources can be incorporated into the analysis.

Acknowledgements. The financial support by the Austrian Federal Ministry of Sci-
ence, Research and Economy and the National Foundation for Research, Technology
and Development is gratefully acknowledged.

References

1. Alsagoff, S.N.: Malware self protection mechanism. In: 2008 International Sympo-
sium on Information Technology, vol. 3, pp. 1–8 (2008)

2. Auchard, E.: Major security breaches found in Google and Yahoo email services.
Accessed 13 Sept 2016

3. Carrier, B.: File System Forensic Analysis. Addison-Wesley Professional, Boston
(2005)

4. Casey, E.: Digital Evidence and Computer Crime: Forensic Science, Computers,
and the Internet. Academic Press, Orlando (2011)

5. Cohen, M.I., Bilby, D., Caronni, G.: Distributed forensics and incident response in
the enterprise. Digit. Invest. 8, S101–S110 (2011)

6. Cohen, M., Garfinkel, S., Schatz, B.: Extending the advanced forensic format to
accommodate multiple data sources, logical evidence, arbitrary information and
forensic workflow. Digit. Invest. 6, S57–S68 (2009)

7. Comparetti, P.M., Salvaneschi, G., Kirda, E., Kolbitsch, C., Kruegel, C., Zanero,
S.: Identifying dormant functionality in malware programs. In: IEEE Symposium
on Security and Privacy. IEEE (2010)

8. Cruz, F., Moser, A., Cohen, M.: A scalable file based data store for forensic analysis.
Digit. Invest. 12, S90–S101 (2015)

9. Dittrich, D., Dietrich, S.: Command and control structures in malware. Usenix
Mag. 32(6), 8–17 (2007)

10. Garfinkel, S.L.: Digital forensics research: the next 10 years. Digit. Invest. 7, S64–
S73 (2010)

11. Guo, H., Jin, B., Shang, T.: Forensic investigations in cloud environments. In:
2012 International Conference on Computer Science and Information Processing
(CSIP), pp. 248–251. IEEE (2012)

12. Facebook Inc. osquery performant endpoint visibility. Accessed 13 Sept 2016
13. Kent, K., Chevalier, S., Grance, T., Dang, H.: Guide to integrating forensic tech-

niques into incident response. NIST Spec. Publ. 10, 800–886 (2006)
14. Kolbitsch, C., Comparetti, P.M., Kruegel, C., Kirda, E., Zhou, X.-Y., Wang, X.:

Effective and efficient malware detection at the end host. In: USENIX Security
Symposium, pp. 351–366 (2009)

15. Mosendz, P.: Lets calculate how much money Facebook just lost during todays
outage. Accessed 13 Sept 2016

16. Moser, A., Cohen, M.I.: Hunting in the enterprise: forensic triage and incident
response. Digit. Invest. 10(2), 89–98 (2013)

17. Mozilla. Mig: Mozilla investigator. Accessed 13 Sept 2016
18. Neuner, S., Schmiedecker, M., Weippl, E.: Effectiveness of file-based deduplication

in digital forensics. Secur. Commun. Netw. 9(15), 2876–2885 (2016). Wiley Online
Library



32 P. Kieseberg et al.

19. National Institute of Standards, Technology (NIST), and United States of America.
Forensic examination of digital evidence: a guide for law enforcement (2004)

20. Pollitt, M.: Computer forensics: an approach to evidence in cyberspace. In: Pro-
ceedings of the National Information Systems Security Conference, vol. 2, pp. 487–
491 (1995)

21. Pollitt, M.M.: An ad hoc review of digital forensic models. In: Second International
Workshop on Systematic Approaches to Digital Forensic Engineering, SADFE
2007, pp. 43–54. IEEE (2007)

22. Ty, S.: osquery: cross-platform, lightweight, and performant host visibility. In: 7th
Annual Open Source Digital Forensics Conference (OSDFCon) (2016)

23. Wahnon, M.: Awesome-incident-response: all-one-tools. Accessed 13 Sept 2016
24. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: capturing system-

wide information flow for malware detection and analysis. In: Proceedings of the
14th ACM Conference on Computer and Communications Security, pp. 116–127.
ACM (2007)



On Locky Ransomware, Al Capone and Brexit

John MacRae1,2 and Virginia N. L. Franqueira2(&)

1 Department of Research and Impact, Ulster University,
Belfast BT37 0QB, UK

j.macrae@ulster.ac.uk
2 Department of Electronics, Computing and Mathematics,

University of Derby, Derby DE22 1GB, UK
v.franqueira@derby.ac.uk

j.macrae1@unimail.derby.ac.uk

Abstract. The highly crafted lines of code which constitute the Locky cryp-
tolocker ransomware are there to see in plain text in an infected machine. Yet,
this forensic evidence does not lead investigators to the identity of the extor-
tionists nor to the destination of the ransom payments. Perpetrators of this
ransomware remain unknown and unchallenged and so the ransomware cyber
crimewave gathers pace. This paper examines what Locky is, how it works, and
the mechanics of this malware to understand how ransom payments are made.
The financial impact of Locky is found to be substantial. The paper describes
methods for “following the money” to assess how effectively such a digital
forensic trail can assist ransomware investigators. The legal instruments that are
being established by the authorities as they attempt to shut down ransomware
attacks and secure prosecutions are evaluated. The technical difficulty of fol-
lowing the money coupled with a lack of registration and disclosure legislation
mean that investigators of this cybercrime are struggling to secure prosecutions
and halt Locky.

Keywords: Locky � Ransomware � Cryptolocker � Bitcoin � Brexit
Digital forensics � Money laundering

1 Introduction

Ransomware is not new. In fact the first reported example of a ransomware attack dates
back to around 1989 and masqueraded as AIDS education software [1]. Ransomware is
the name given to a class of software programs that prevents users from accessing their
computer resources until a ransom is paid. In the earliest instances of ransomware this
meant a screen lock or installing password protection on user’s files. More recently a
particular class of ransomware has been discovered called cryptolockers which
encrypts a user’s files using the AES and RSA algorithms [2]. Locky is an instance of
cryptolocker ransomware. The AES and RSA algorithms require keys for encryption
and decryption. The private key for decryption is provided only on payment of the
ransom. Most recent versions of cryptolocker ransomware are also able to
self-propagate and delete or encrypt backup files [3]. This means that the standard
defence against ransomware, that of restoring files from backup, may not be effective.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
P. Matoušek and M. Schmiedecker (Eds.): ICDF2C 2017, LNICST 216, pp. 33–45, 2018.
https://doi.org/10.1007/978-3-319-73697-6_3



Additional tools to perpetuate the extortion have been observed such as countdown
timers after which no ransom payments are accepted and ransom payments which
increase with time. Ransom amounts have increased with the sophistication of ran-
somware so that amounts equivalent to thousands of dollars are now commonly
demanded by the extortionists [4].

Section 2 of this paper is an overview of how Locky works. This is known as the
Locky infection chain. Section 3 looks in detail at two steps within the infection chain;
the spam email which initiates the Locky download, and the Tor page where Locky
payments are made. These steps inform how any digital forensic investigation of Locky
can be undertaken. Section 4 observes that the impact of Locky and ransomware in
general is significant. The potential cost to society goes beyond financial so there is an
urgent need to find the perpetrators and shut down attacks. Section 5 expands on the
detail of the Tor payment page, noting that the ransom payments are in Bitcoin. Bitcoin
is particularly attractive to ransomware perpetrators due to its anonymity. Section 6
evaluates what tools are presently available and their likely effectiveness against Bit-
coin anonymity. Tools are one way of supporting investigators, legal instruments and
cooperation between jurisdictions are another. Efforts to introduce legislation and
information sharing within the EU is described in Sect. 7. Consideration is given to the
consequences of Brexit for the UK’s legislation and participation in these EU
arrangements. In the concluding section the combined value of tools, legislation and
cooperation arrangements are assessed against the backdrop of cryptocurrency money
laundering techniques being increasingly used by ransomware cybercriminals. It is
shown that virtual currency processors located beyond the reach of legislation and
information sharing agreements remain an unsolved problem.

2 How Locky Works

A diagrammatic summary of the Locky infection chain is shown in Fig. 1 [5]. Locky is
delivered as an email attachment, ostensibly an invoice for payment. The email itself
could be spam email, or the victim’s email address could have been collected as part of
a preliminary phishing attack. The attachment is a Word document with an embedded
macro function. The function can only execute if Word macros are enabled. In order to
encourage the user to enable macros, distorted text is shown along with the message
“enable macro if data encoding is incorrect”. When the Word document is opened the
macro downloads the Locky code which then encrypts files on the machine and
simultaneously renames the filenames and changes the file extension to .locky. The first
instances of Locky appeared early in 2016 and a number of variants have appeared
since, namely bart, odin and thor. Bart simply moves the victim’s files into a password
protected zip archive and demands 3 Bitcoin for the password, unless the default
language of the computer is Russian or Ukrainian in which case bart uninstalls itself.
Emails with an odin malware payload have a slightly different subject line and append
the extension .odin to the encrypted files. The thor variant of Locky was released in
October 2016 [6] and is distributed using a javascript-based downloader and a DLL
file. The DLL is executed using the rundll32.exe file. rundll32.exe is a normal windows
executable which enables the thor variant of Locky to install itself stealthily [7].

34 J. MacRae and V. N. L. Franqueira



3 Mechanics of the Locky Malware

The distribution and activation mechanism for Locky mirrors that of the dridex botnet
and in fact may use a subnet of this botnet [8]. It is reported that this botnet has a
database of 385 million email addresses so can generate significant amounts of spam
targeted mainly at accounts departments of companies and enterprises rather than
individuals. A typical Locky spam email is shown in Fig. 2 [9]. Note how the email
masquerades as a payment invoice with a spurious purchase order reference in the
subject line. The phraseology of the email is deliberately worded so that the invoice
cannot readily be disregarded as fake unless the details are checked by opening the
attachment.

The actual download code for Locky is obfuscated meaning that it is not directly
visible within the Word macro. Instead a function CallByName is passed a string, the
output of which is a visual basic script similar to that in Fig. 3 [9]. Note the section

Fig. 1. The Locky infection chain [5]

On Locky Ransomware, Al Capone and Brexit 35



highlighted in red which shows the construction of the URL from which Locky is to be
downloaded. For forensics investigators trying to find the download source of Locky,
this is the start of the trail.

Once Locky is downloaded it renames itself svchost.exe so that it looks like a
regular windows executable. The renamed process initiates a secondary process to
delete backup files and prevent a system restore. Before file encryption can commence
the ransomware must communicate with the command and control servers to report that
a system has been infected and to obtain the RSA public key. A unique ID of the
infected machine is generated and stored on the command and control server. However
even this communication is encrypted so as to prevent ethical hackers observing the
traffic. As of 2016, nine of the command and control servers were reported to be in
Russia and therefore beyond EU law enforcement [9].

Locky can encrypt a wide range of file types – 164 according to Threat Intelligence
Team [9] – which means that a very wide range of businesses can be impacted. The
strength of the encryption algorithm is such that it is not possible to decrypt the affected
files without the matching private key downloaded from the command and control
servers. The servers provide the correct private key by cross referencing against the
unique system ID provided when the infection process commenced. Figure 4 shows the
ransomware payment page within the tor network [9]. Note the payment instructions in
Bitcoin. This payment mechanism has substantial implications for forensic investiga-
tors whose task is to “follow the money”. These implications are discussed throughout
the remainder of this paper.

Fig. 2. Sample email with which Locky has been associated [9] (Color figure online)

36 J. MacRae and V. N. L. Franqueira



Fig. 3. Visual basic script showing the Locky download code [9]

Fig. 4. Locky payment page within the Tor dark web [5]

On Locky Ransomware, Al Capone and Brexit 37



4 Impact of Locky is Substantial

A Symantec report on ransomware published in 2016 [4] makes the point that it is
impossible to measure how much money has been paid to ransomware extortionists.
Anubis Networks detected 4500 infected machines between 16th and 18th February
2016 [10]. If every machine pays a decryption cost of 1 bitcoin, which is worth £800 in
February 2017, then that adds up to £1.2 million per day. However that infection rate is
a 2016 figure: since then more sophisticated versions of Locky have been released
which encrypts backups and shared drives. Accordingly the cost of decryption has
increased. FBI researchers have estimated that the revenue from ransomware collec-
tively could be as high as a billion dollars annually [11].

However the revenue being collected by the extortionists is only part of the eco-
nomic cost of Locky. The other part is the cost incurred by organisations that have their
work disrupted. Hospitals have been a particular target for Locky. In February 2016
Hollywood Presbyterian Medical Centre in Los Angeles paid $17,000 to regain access
to their patients data [12]. There were attacks on other US and Japanese hospitals [13].
Attacks on hospitals mean that patients medical records may be inaccessible leading to
delays in administering treatments and medications. This has the consequence of
putting lives at risk and exposing the hospital to fines and legal claims.

5 Ransomware and Cryptocurrency Have Become Either
Side of the Same (Bit)Coin

For cyber criminals the most problematic aspect of the ransomware model has always
been that of receiving payment in a way that did not lead to their detection. Early
methods involved sending an SMS message to a premium account or use of an
anonymous PO Box mailing address. Law enforcement soon learnt to stake out the PO
Box until someone came along to pick up the payments. PayPal, Western Union,
iTunes and gift cards have also been used as payment methods but they all suffer from
limited anonymity; the money cannot be spent unless it ultimately goes through a
conventional bank account or online retailer.

The scale and sophistication of ransomware attacks has accelerated in recent years.
This is partly due to the spread of botnets that are distributing the Locky infection
email. It is partly due to reorganisation within the crime gangs which have turned to
offering cybercrime-as-a-service business models. Philadelphia [14] is an example of
ransomware-as-a-service in which the ransomware attack and payment infrastructure is
leased out, allowing criminals with no IT knowledge to take advantage of the ran-
somware extortion. However the success of ransomware is mostly to do with the
technical sophistication of ransomware itself. This means efficient implementation of
the public private key encryption so that infected computers cannot be decrypted
without the private key. It means traffic between infected computers and the command
and control computers (C&C) is encrypted so that the URL of the C&C computers
cannot be traced, and it means virtually untraceable payments made in Bitcoin or
another cryptocurrency.

38 J. MacRae and V. N. L. Franqueira



Bitcoin is a peer-to-peer cryptocurrency in which transactions are recorded in a
distributed ledger called blockchain. There is no central repository or single adminis-
trator. The information which is used to perform Bitcoin transactions is stored in a
software application called a wallet. Bitcoin uses public key cryptography: the infor-
mation contained in the wallet is essentially the public and private keys relating to a
user’s Bitcoin ownership. Blockchain contains the public key hashes of all Bitcoin
transactions. Since there is no single administrator the entire blockchain must be dis-
tributed across the internet and these public key hashes are visible.

The connection between visible public key hashes and the private keys only takes
place in whatever way the wallet is implemented. Increasingly the function of the
wallet is provided by Bitcoin processors. Such processors can move money between
the Bitcoin virtual currency and real bank accounts. They can take the form of ATMs or
of online payment intermediaries similar to the services provided by MasterCard and
VISA as used by merchants. Wallets are also implemented as smartphone applications
that can be used to pay for goods and services directly. An example of the rich
functionality that such smartphone wallets now provide can be seen in the CoinsBank
wallet app [15].

6 Review of Tools for Bitcoin and Blockchain
Deanonymisation

Strictly speaking, Bitcoin transactions are pseudonymous rather than anonymous. The
public key hashes of the transactions are visible, but the link between the public keys
and their owners is not visible or accessible. Deanonymisation is the process of using
other sources of information to try to connect public key hashes to Bitcoin owners or to
their bank accounts. This process uses a combination of traditional policing methods
otherwise known as the classical forensic approach [16] and more recently dedicated
tools such as BitIodine [17], BitCluster [18], Elliptic [19] and Chainalysis [20] all of
which involve collection to some extent of open source forensics. The term open source
forensics refers to information and potential evidence publically available from internet
blogs, forums and social media.

The so-called classical approach is analogous to a blunt instrument in which a legal
demand is served on Bitcoin processing businesses to reveal the owner or bank account
of public key hashes of interest to investigators. As it is the purpose of Bitcoin pro-
cessors to enable the transfer of money from Bitcoin to and from traditional currencies,
these processors hold the link between the anonymous public key hashes and their
owners. However the classical forensic method is fraught with difficulty. A particular
problem is connecting a public key hash suspected to be associated with cyber crim-
inality with a specific Bitcoin processor on which to serve the information demand. The
Bitcoin processors may themselves be illegal and may be operating outside of the legal
jurisdiction of the investigators such that they cannot be compelled to provide infor-
mation. This problem is discussed in Sect. 7.

In contrast BitIodine could be described as a covert approach to Bitcoin forensics.
This method, which relies on open source forensics, is described as trying to correlate
Bitcoin transaction activity with Facebook account activity [15]. A more comprehensive

On Locky Ransomware, Al Capone and Brexit 39



description of BitIodine is that it consists, inter alia, of a set of “crawlers” which search
the web for Bitcoin addresses which can be associated with real users. The types of
domains that are searched include usernames on Bitcoin forums, details of known
scammers and tagged data from blockchain.info, news sites and from social media.

Meiklejohn et al. [21] describe the application of BitIodine to a ransomware
investigation. It is not stated in the paper if the destination of the ransom money was
ultimately determined, but BitIodine was able to detect Bitcoin clusters belonging to
the ransomware perpetrators and cross reference that to a reddit thread where victims
had been posting addresses.

BitCluster is an open-source data mining tool which allows its users to group
Bitcoin transactions by their participants. The goal of BitCluster according to [18] was
to gather data on users of the Bitcoin network, and attempt to aggregate Bitcoin wallets
which otherwise would seem to be anonymous and isolated from one another.
BitCluster therefore enables investigators to detect significant payment patterns which
could be linked to ransomware schemes. BitCluster is a way to link public key hashes
to campaigns using the scale of transactions linked to the timing of spam attack. If the
relevant public key hashes can be determined then investigators can follow-up with the
classic forensics approach of demanding information from the Bitcoin processors.
However BitCluster only works as long as the same public key hashes are used for
ransom payments. The effectiveness of the tool is defeated if each new ransom payment
uses a new public key hash.

Elliptic is a startup company founded in 2013. The Elliptic product is a data mining
tool with similarities to BitCluster but with ongoing development and support com-
mensurate with a commercial product [19]. Elliptic started life as a Bitcoin vault
platform but found that Bitcoin forensics was of particular interest to financial insti-
tutions worried about the consequences of anti-money laundering regulations that
would leave them exposed were they inadvertently be involved in processing of Bit-
coins obtained as proceeds of crime. The technology underlying Elliptic is not
described in the public domain. However according to a 2017 paper [15] it traces
transactions through the blockchain, uncovers relationships between different entities
and uses artificial intelligence techniques to enable mapping between public hash keys
and their real owners. It is a logical step from Elliptic’s history as a Bitcoin vault, that is
as a store of Bitcoin transaction, to analysing and visualising the transaction history.

A typical Elliptic screenshot is shown in Fig. 5 [19]. This visualisation indicates the
relationships between the illegal marketplace “Silk Road” and other entities processing
Bitcoins. Elliptic claims to provide forensics intelligence to ransomware investigators
and thus facilitate the arrest of ransomware cybercriminals and assist financial insti-
tutions in refusing to process Bitcoins collected through ransomware attacks.

Chainalysis was formed in 2014 and has already signed an MoU with Europol [22]
on the provision of technical services to spot connections between Bitcoin transactions
and cyber criminals. The Chainalysis Reactor tool is specifically aimed at forensics
investigation of virtual currency transactions.

There is little material in the public domain linking these data mining tools to
successful prosecutions of cyber criminals. The most convincing is the application of
the BitIodine tool to the Dread Pirate Roberts case described by Meiklejohn et al. [21].

40 J. MacRae and V. N. L. Franqueira



This might be due to the need to maintain confidentiality for prosecutions which have
not yet come to court. Or it might be the case that cyber criminals have already learnt to
outwit the data mining tools by changing transaction patterns: essentially money
laundering within virtual currencies. For forensic investigators, these tools are unlikely
to possess the specificity to withstand court scrutiny - if they provide any evidence at
all - and at best may provide some complementary investigative direction.

7 Legal Instruments Facilitating Ransomware Digital
Forensics

On the 30th November 2016 a federal court in the northern District of California
authorised the tax authorities in the US, known as the Internal Revenue Service (IRS),
to serve a “John Doe” summons [23] on the Bitcoin processor Coinbase Inc [24]. The
purpose of the summons is to demand that Coinbase releases the names and financial
trading history of owners of Bitcoin and other cryptocurrencies so that the IRS can
collect any unpaid taxes. The John Doe summons is considered a brute force approach
by the IRS yet is also an acknowledgement that the pseudonymous nature of cryp-
tocurrencies means that it is otherwise difficult for the tax authorities to detect hidden
wealth and potentially taxable capital gains. Note that the IRS have chosen the
approach of forcing the cryptocurrency processor to disclose information rather than
using other means - such as the data mining tools described above - to try to link the
public key hashes that are visible on the bitcoin exchanges with their owners and bank
accounts.

There is an interesting parallel with the notorious American prohibition-era gang-
ster Al Capone. Despite Capone’s involvement in a criminal syndicate that supplied
illegal alcohol, he was eventually tried and convicted by the FBI on a charge of tax
evasion. This was considered a novel strategy by the FBI in 1931. The suspicion of tax
evasion is therefore being used to challenge the pseudo-anonymity of cryptocurrencies
in a strategy which may provide information and lead prosecutors to the recipients of

Fig. 5. Elliptic screenshot showing Bitcoin trading relationships [19]

On Locky Ransomware, Al Capone and Brexit 41



the proceeds of ransomware. The strategy relies on being able to link public key hashes
with ransomware payments, and it relies on the relevant cryptocurrency processors
operating within the jurisdiction covered by the US court summons.

The UK’s first money laundering national risk assessment was published by UK
Government in 2015 [25]. Although the report is concerned with money laundering in
all its respects, it acknowledges the speed of trade, anonymity and cross border nature
of virtual currency transactions. It assesses this threat as principally related to the
activities of cyber criminals. The report concluded that there was a strong case for
anti-money laundering legislation in order to create a hostile environment for illicit
users of virtual currencies. Contemporaneously, legislation was being developed by the
European Commission known as the 4th Money Laundering Directive (4MLD). The
4MLD was published on 20th May 2015 and was essentially implementing the rec-
ommendations of the international Financial Action Task Force dating back to 2012
[26]. The Commission proposed that 4MLD was implemented into the national leg-
islation of EU member countries by 26 June 2017. 4MLD did not, at this stage, make
any reference to disclosure requirements for virtual currencies.

In response to terrorist attacks across Europe during 2015, a number of European
bodies, specifically the Justice and Home Affairs Council [27], the Economic and
Financial Affairs Council [28] and the European Council [29] stressed the need to
intensify the work within the EU on addressing terrorism and enhancing the provisions
within 4MLD. This led, on 5th July 2016, to the Commission adopting an Action Plan
[30] as amendments to 4MLD to tackle the abuse of the financial system for terrorist
financing purposes. This document also brought forward to 1st January 2017 the date
by which the 4MLD including these amendments was to be implemented in member
states.

The effect of the amendments is to add virtual currencies and wallet providers as
entities to whom the obligations of the 4MLD apply. These obligations are, inter alia,
know-your-customer requirements, suspicious activity reporting, licensing and regis-
tration. The consequence of these additional obligations on virtual currency processors
is that anonymous virtual currency ownership and trading will no longer be possible
within EU-based entities. The 4MLD legislation will therefore increase the forensic
material available to ransomware investigators. This information will have to be used
alongside other sources of forensics, such as the data mining tools described above in
Sect. 6, in order for investigators and cryptocurrency processors to identify and link
ransomware payments with cryptocurrency transactions.

The European Commission’s action plan of amendments to 4MLD states that the
proposed objectives cannot be achieved by member states alone and can be better
achieved at the European Union level: the lack of an effective anti-money laundering
framework in one member state can have consequences across the other member states
and undermine the disclosure and transparency aims of 4MLD. As well as the leg-
islative momentum for 4MLD and its later amendments coming from the EU, the
proposed information sharing mechanisms will be EU-wide under the proposal to
establish and then interconnect national central registers which would hold information
on virtual currency transactions.

42 J. MacRae and V. N. L. Franqueira



Despite Brexit, the UK Government has given a commitment to implement the
4MLD in the UK as the Money Laundering and Transfer of Funds (Information on the
Payer) Regulations 2017. As yet unanswered is the question of the UK’s participation
post Brexit in the information sharing aspects of 4MLD between EU Financial Intel-
ligence Units. Information sharing is an important aspect in achieving the desired
transparency on ownership of virtual currency. Also unanswered is the UK’s ongoing
participation, post Brexit, in the various European bodies from which legislative
momentum is derived. Post Brexit, without participation in such European bodies,
without the legislative momentum derived from European Commission proposals and
without access to shared information, there is a risk that ransomware forensic inves-
tigators in the UK are substantially blindfolded compared with their European coun-
terparts. There is a corresponding risk that outside of European frameworks of
cooperation the UK could become a preferred destination for the cryptocurrency
transactions of cybercriminals.

8 Conclusions

According to Cisco, the ability to demand payment in Bitcoin, a pseudonymous virtual
currency not controlled by any country, was ‘the birth of ransomware’ and has led to a
substantial increase in number of ransomware attacks since the currency’s introduction
in 2009. Since the source and control of ransomware involves botnets and servers
invariably hidden in uncooperative jurisdictions, the best strategy for digital forensics
investigators is to “follow the money” to see if recipients of the Bitcoin ransomware
payments can be identified. Some research projects and corresponding tools were
identified and examined.

The commercial tools especially make bold claims concerning the deanonymisation
of Bitcoin public key hashes, but there is little in the public domain about how they
work. There are no case studies with demonstrated convictions. The exception is
Meiklejohn et al. [21] who describe in detail the algorithms and approaches designed
into the BitIodine open source tool and demonstrate its effectiveness in several real
world use cases. It can be inferred from the terminology used that the commercial tools
use similar approaches with similar outcomes.

The best that might be said of the state of the art in Bitcoin forensics tools is that
they can provide leads for investigators to follow alongside investigative processes.
However since the tools are based on the data mining techniques of pattern matching
and clustering, these algorithms can be defeated if the cyber criminals start to use
multiple independent Bitcoin keys, each transaction being of a small Bitcoin amount.
A further obfuscation technique the criminals use is to vary transaction patterns: the
cryptocurrency version of money laundering. Clearly data mining tools are not a
panacea for ransomware investigators, although it is worth keeping an eye on the
capabilities of the commercial tools as a complement to traditional investigative
processes.

In the US and Europe the experience of chasing Al Capone has not been forgotten
and so the approach to increasing the forensics available to ransomware investigators is
not on the crime itself, but via the financial crimes of tax evasion and money

On Locky Ransomware, Al Capone and Brexit 43



laundering. However enabling legislation in cooperating jurisdictions is not yet in
place. In Europe the provisions within the 4th Anti-Money Laundering Directive were
substantially amended following the terrorist attacks in Europe in 2015 to include
disclosure and information sharing requirements on virtual currency processors. It is
not clear how Brexit will affect the UK’s long term participation in this information
sharing, but it will be important for ransomware investigators that the UK continues to
participate in the cooperation arrangements proposed by the EU. This desire was
formally expressed in the UK Prime Minister’s letter to the EU President on 29th March
2017 which triggered Article 50, that is, the UK intention to leave the European Union
[31].

Regardless of Brexit or 4MLD, the legislation does not address the problem of
illegal processors or those operating outside the frameworks of cooperation. For
example, a close examination of the CoinsBank bitcoin processor described in Sect. 5
reveals that the website is operated by CB Exchange LP with an address in Edinburgh.
The underlying financial services of CoinsBank are provided by XBIT Ltd which is
registered and regulated in Belize. It is not yet clear if this structure will fall within the
jurisdiction of the UK’s 4MLD. Virtual currency processors resident and regulated
outside the jurisdiction of 4MLD will continue to represent a formidable obstacle for
ransomware forensic investigators.

References

1. Alina, S.: Ransomware’s stranger-than-fiction origin story (2015). https://medium.com/un-
hackable/the-bizarre-pre-internet-history-of-ransomware-bb480a652b4b-.z5qxcdeyy

2. Calderbank, M.: The RSA Cryptosystem: History, Algorithm, Primes. http://www.math.
uchicago.edu/*may/VIGRE/VIGRE2007/REUPapers/FINALAPP/Calderbank.pdf

3. Trendmicro.co.uk: Ransomware - Definition - Trend Micro UK. http://www.trendmicro.co.
uk/vinfo/uk/security/definition/ransomware

4. Symantec: ISTR2016 Ransomware Report. http://www.symantec.com/content/en/us/enterprise/
media/security_response/whitepapers/ISTR2016_Ransomware_and_Businesses.pdf

5. Valdez, J.: Meet the latest member of the Locky family: odin. https://blog.gdatasoftware.
com/2016/10/29245-meet-the-latest-member-of-the-locky-family-odin

6. State of Security: The Thor Variant of Locky Virus. https://www.tripwire.com/state-of-
security/latest-security-news/thor-variant-locky-virus

7. It-b.co.uk: What is Thor. http://www.it-b.co.uk/blog/what-is-thor
8. Zorz, Z.: Dridex botnet alive and well, now also spreading ransomware - Help Net Security.

Help Net Security. https://www.helpnetsecurity.com/2016/02/17/dridex-botnet-alive-and-
well-now-also-spreading-ransomware/

9. Intelligence Threat Team: A closer look at the Locky ransomware. Blog.avast.com, https://
blog.avast.com/a-closer-look-at-the-locky-ransomware

10. Blog.anubisnetworks.com: Locky ransomware, metrics and protection. http://blog.
anubisnetworks.com/blog/locky-ransomware-metrics-and-protection

11. Griffin, D.: Cyber-extortion losses skyrocket, says FBI. CNNMoney. http://money.cnn.com/
2016/04/15/technology/ransomware-cyber-security/

12. Yadron, D.: Los Angeles hospital paid $17,000 in bitcoin to ransomware hackers. The
Guardian. https://www.theguardian.com/technology/2016/feb/17/los-angeles-hospital-hacked-
ransom-bitcoin-hollywood-presbyterian-medical-center

44 J. MacRae and V. N. L. Franqueira

https://medium.com/un-hackable/the-bizarre-pre-internet-history-of-ransomware-bb480a652b4b-.z5qxcdeyy
https://medium.com/un-hackable/the-bizarre-pre-internet-history-of-ransomware-bb480a652b4b-.z5qxcdeyy
http://www.math.uchicago.edu/%7emay/VIGRE/VIGRE2007/REUPapers/FINALAPP/Calderbank.pdf
http://www.math.uchicago.edu/%7emay/VIGRE/VIGRE2007/REUPapers/FINALAPP/Calderbank.pdf
http://www.trendmicro.co.uk/vinfo/uk/security/definition/ransomware
http://www.trendmicro.co.uk/vinfo/uk/security/definition/ransomware
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/ISTR2016_Ransomware_and_Businesses.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/ISTR2016_Ransomware_and_Businesses.pdf
https://blog.gdatasoftware.com/2016/10/29245-meet-the-latest-member-of-the-locky-family-odin
https://blog.gdatasoftware.com/2016/10/29245-meet-the-latest-member-of-the-locky-family-odin
https://www.tripwire.com/state-of-security/latest-security-news/thor-variant-locky-virus
https://www.tripwire.com/state-of-security/latest-security-news/thor-variant-locky-virus
http://www.it-b.co.uk/blog/what-is-thor
https://www.helpnetsecurity.com/2016/02/17/dridex-botnet-alive-and-well-now-also-spreading-ransomware/
https://www.helpnetsecurity.com/2016/02/17/dridex-botnet-alive-and-well-now-also-spreading-ransomware/
https://blog.avast.com/
https://blog.avast.com/a-closer-look-at-the-locky-ransomware
https://blog.avast.com/a-closer-look-at-the-locky-ransomware
http://blog.anubisnetworks.com/blog/locky-ransomware-metrics-and-protection
http://blog.anubisnetworks.com/blog/locky-ransomware-metrics-and-protection
http://money.cnn.com/2016/04/15/technology/ransomware-cyber-security/
http://money.cnn.com/2016/04/15/technology/ransomware-cyber-security/
https://www.theguardian.com/technology/2016/feb/17/los-angeles-hospital-hacked-ransom-bitcoin-hollywood-presbyterian-medical-center
https://www.theguardian.com/technology/2016/feb/17/los-angeles-hospital-hacked-ransom-bitcoin-hollywood-presbyterian-medical-center


13. Theregister.co.uk: FireEye warns ‘massive’ ransomware campaign hits US, Japan hospitals.
http://www.theregister.co.uk/2016/08/18/fireeye_warns_massive_ransomware_campaign_
hits_us_japan_hospitals/

14. Krebsonsecurity.com: Ransomware for Dummies: Anyone Can Do It — Krebs on Security.
https://krebsonsecurity.com/2017/03/ransomware-for-dummies-anyone-can-do-it/

15. Coinsbank.com: CoinsBank - the bank of Blockchain future. https://coinsbank.com/wallet
16. InfoSec Resources: The End of Bitcoin Ransomware? http://resources.infosecinstitute.com/

the-end-of-bitcoin-ransomware/#gref
17. Spagnuolo, M., Maggi, F., Zanero, S.: BitIodine: extracting intelligence from the Bitcoin

network. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 457–468.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_29

18. Bit-cluster.com: BitCluster. http://www.bit-cluster.com
19. Elliptic: Elliptic. https://www.elliptic.co/
20. chainalysis.com: Chainalysis - Blockchain analysis. Chainalysis. https://www.chainalysis.

com/
21. Meiklejohn, S., Pomarole,M., Jordan, G., Levchenko, K.,McCoy, D., Voelker, G., Savage, S.:

A fistful of Bitcoins. Commun. ACM 59(4), 86–93 (2016)
22. Europol: Europol and Chainalysis Reinforce Their Cooperation in The Fight Against

Cybercrime. https://www.europol.europa.eu/newsroom/news/europol-and-chainalysis-reinforce-
their-cooperation-in-fight-against-cybercrime

23. Justice.gov: Court Authorizes Service of John Doe Summons Seeking the Identities of U.S.
Taxpayers Who Have Used Virtual Currency. https://www.justice.gov/opa/pr/court-authorizes-
service-john-doe-summons-seeking-identities-us-taxpayers-who-have-used-virtual-currency

24. Coinbase.com: Bitcoin & EthereumWallet - Coinbase. https://www.coinbase.com/?locale=en
25. UK Treasury: UK national risk assessment of money laundering and terrorist financing.

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/468210/UK_
NRA_October_2015_final_web.pdf

26. Fatf-gafi.org: Documents - Financial Action Task Force (FATF) (2017). http://www.fatf-
gafi.org/publications/fatfrecommendations/documents/fatf-recommendations.html

27. Consilium.europa.eu: Economic and Financial Affairs Council configuration (Ecofin) -
Consilium. http://www.consilium.europa.eu/en/council-eu/configurations/ecofin/. Accessed
15 Mar 2017

28. Consilium.europa.eu: Justice and Home Affairs Council configuration (JHA) - Consilium.
http://www.consilium.europa.eu/en/council-eu/configurations/jha/

29. Consilium.europa.eu: The European Council - Consilium. http://www.consilium.europa.eu/
en/european-council/

30. European Union: AML Directive. http://ec.europa.eu/justice/criminal/document/files/aml-
directive_en.pdf

31. BBC News: Teresa May Article 50 letter. http://news.bbc.co.uk/1/shared/bsp/hi/pdfs/29_03_
17_article50.pdf

On Locky Ransomware, Al Capone and Brexit 45

http://www.theregister.co.uk/2016/08/18/fireeye_warns_massive_ransomware_campaign_hits_us_japan_hospitals/
http://www.theregister.co.uk/2016/08/18/fireeye_warns_massive_ransomware_campaign_hits_us_japan_hospitals/
https://krebsonsecurity.com/2017/03/ransomware-for-dummies-anyone-can-do-it/
https://coinsbank.com/wallet
http://resources.infosecinstitute.com/the-end-of-bitcoin-ransomware/#gref
http://resources.infosecinstitute.com/the-end-of-bitcoin-ransomware/#gref
http://dx.doi.org/10.1007/978-3-662-45472-5_29
http://www.bit-cluster.com
https://www.elliptic.co/
https://www.chainalysis.com/
https://www.chainalysis.com/
https://www.europol.europa.eu/newsroom/news/europol-and-chainalysis-reinforce-their-cooperation-in-fight-against-cybercrime
https://www.europol.europa.eu/newsroom/news/europol-and-chainalysis-reinforce-their-cooperation-in-fight-against-cybercrime
https://www.justice.gov/opa/pr/court-authorizes-service-john-doe-summons-seeking-identities-us-taxpayers-who-have-used-virtual-currency
https://www.justice.gov/opa/pr/court-authorizes-service-john-doe-summons-seeking-identities-us-taxpayers-who-have-used-virtual-currency
https://www.coinbase.com/?locale=en
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/468210/UK_NRA_October_2015_final_web.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/468210/UK_NRA_October_2015_final_web.pdf
http://www.fatf-gafi.org/publications/fatfrecommendations/documents/fatf-recommendations.html
http://www.fatf-gafi.org/publications/fatfrecommendations/documents/fatf-recommendations.html
http://www.consilium.europa.eu/en/council-eu/configurations/ecofin/
http://www.consilium.europa.eu/en/council-eu/configurations/jha/
http://www.consilium.europa.eu/en/european-council/
http://www.consilium.europa.eu/en/european-council/
http://ec.europa.eu/justice/criminal/document/files/aml-directive_en.pdf
http://ec.europa.eu/justice/criminal/document/files/aml-directive_en.pdf
http://news.bbc.co.uk/1/shared/bsp/hi/pdfs/29_03_17_article50.pdf
http://news.bbc.co.uk/1/shared/bsp/hi/pdfs/29_03_17_article50.pdf


Deanonymization



Finding and Rating Personal Names on Drives
for Forensic Needs

Neil C. Rowe(&)

Computer Science, U.S. Naval Postgraduate School, Monterey, CA 93940, USA
ncrowe@nps.edu

Abstract. Personal names found on drives provide forensically valuable
information about users of systems. This work reports on the design and
engineering of tools to mine them from disk images, bootstrapping on output of
the Bulk Extractor tool. However, most potential names found are either
uninteresting sales and help contacts or are not being used as names, so we
developed methods to rate name-candidate value by an analysis of the clues that
they and their context provide. We used an empirically based approach with
statistics from a large corpus from which we extracted 303 million email
addresses and 74 million phone numbers, and then found 302 million personal
names. We tested three machine-learning approaches and Naïve Bayes per-
formed the best. Cross-modal clues from nearby email addresses improved
performance still further. This approach eliminated from consideration 71.3% of
the addresses found in our corpus with an estimated 67.4% F-score, a potential
3.5 times reduction in the name workload of most forensic investigations.

Keywords: Digital forensics � Personal names � Extraction � Email addresses
Phone numbers � Rating � Filtering � Bulk Extractor � Naïve Bayes
Cross-modality

1 Introduction

When we scan raw drive images we can often find information about people who have
used the drives and their contacts, and this information is often important in criminal
and intelligence investigations using digital forensics. We call these “personal artifacts”
and others have called them “identities” [8].

Our previous work [14] developed a methodology for finding interesting email
addresses on drives using Bayesian methods and graphing their social networks. Per-
sonal names could provide more direct information than email addresses about users of
a drive and their contacts. Candidates can be found using lists of known names. They
can be combined with the email data and other information to build a more complete
picture of users. However, we only are interested in “useful” names, names relevant to
most criminal or intelligence investigations. We define “useful” to exclude those not
being used as names, those that are business and organizational contacts, those asso-
ciated with software and projects, those in fiction, and those that occur on many drives.
(These criteria would need modification for an investigation involving an associated
organization or an important common document.) We estimate that useful names are

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
P. Matoušek and M. Schmiedecker (Eds.): ICDF2C 2017, LNICST 216, pp. 49–63, 2018.
https://doi.org/10.1007/978-3-319-73697-6_4



only 30% of the names found on drives. We shall test the hypothesis that a set of easily
calculable local clues can reliably rate usefulness of name candidates with precision
well beyond that of name-dictionary lookup alone, so that most candidates irrelevant to
most investigations can be excluded.

2 Previous Work

Finding personal data is often important in forensics. Web sites provide much useful
information about people, but only their public faces, and email servers provide much
semi-public data [9]. Registries, cookie stores, and key chains on drives can provide
rich sources of personal data including names [11], but they often lack the deleted and
concealed information that may be critical in criminal and intelligence investigations.
Thus this work focuses on more thorough search of a drive image for personal names.

Tools for “named entity recognition” in text [1] can find locations and organiza-
tions as well as personal names. Most learn sequences of N consecutive words in text
that include named entities [12]. This has been applied to forensic data [15]. Capi-
talization, preceding articles, and absence from a standard dictionary are clues. But
these methods do not work well for forensic data since our previous work estimated
that only 21.9% of the email addresses in our corpus occurred within files. Secondly,
only a small fraction of the artifacts within files occur within documents or document
fragments for which linguistic sequence models would be helpful; for instance, articles
like “the” are rare in most forensic data. Instead, other clues from the local context are
needed to find artifacts. Thirdly, most forensic references to people are business and
vendor contacts, not people generally worth investigating, a weakness in the otherwise
interesting work of [8]. For these reasons, linguistic methods for named-entity recog-
nition do not work well for forensic tasks.

An alternative is to make a list of names and scan drives for them using a keyword
search tool. We explored this with the well-known Bulk Extractor tool [2] and its –F
argument giving a file of the names. But full scans are time-consuming. An experiment
extracting all delimited names from a single 8.92 gigabyte drive image in EWF (E01)
format took around ten days, given the additional requirement of breaking the names
into 927 runs to satisfy Bulk Extractor’s limit of 300 per run. Furthermore, the per-
centage yield of useful names was low. Because names had to be delimited, the output
did not include run-on personal-name pairs in email addresses, so it found only 21% of
the name occurrences found by the methods to be described. It did find a few new name
candidates beyond those of our methods since it searched the entire drive, but 98.7% of
these candidates in a random sample were being used as non-names (e.g. “mark” and
“good”). Another criticism of broad scanning is that finding an isolated personal name
is less useful than finding it near other personal information, since context is important
in an investigation; [14] showed that email addresses more than 22 bytes distant on a
drive were statistically uncorrelated, and names are probably similar. It is also difficult
to confirm the validity of names without other nearby personal artifacts, making it hard
to train and test on them.

This work will thus pursue an approach of examining context in which useful
personal names are more likely to occur in routine Bulk Extractor output, rating the

50 N. C. Rowe



candidates using machine-learning methods, and selecting the best ones. The ultimate
goal of extraction of personal artifacts in forensics will be to construct graphs mod-
elling human connections. This can provide a context for the artifacts as well as aid in
name disambiguation [3], and permits cross-drive analysis to relate drives [4].

3 Test Setup

This work used the Real Data Corpus [6], a collection of currently 3361 drives from 33
countries that is publicly available subject to constraints. These drives were purchased
as used equipment and represent a range of business, government, and home users. We
supplemented this with images of twelve substantial computers of seven members of
our research team.

The first step was to run the Bulk Extractor tool [2] to get all email addresses
(including cookies), phone numbers, bank-card numbers, and Web links (URLs), along
with their offsets on the drive and their 16 preceding and 16 following characters. Such
data extraction is often routine in investigations, so we bootstrapped on generally
available data. Such extraction can exploit regular expressions effectively and can be
significantly faster than name-set lookup. Bulk Extractor can find data in deleted and
unallocated storage as well as within many kinds of compressed files [5]. It found 2442
of the drives had email addresses, 1601 had phone numbers, and 10 had bank-card
numbers. In total we obtained 303,221,117 email addresses of which 17,484,640 were
distinct, and 21,184,361 phone numbers of which 1,739,054 were distinct. As dis-
cussed, this research assumed that most useful personal names are near email
addresses, phone numbers, and personal-identification numbers. Thus we wrote a tool
to extract names from the Bulk Extractor “context” output using a hashed dictionary of
possible names. We segmented words at spaces, line terminators, punctuation marks,
digits, lower-to-upper case changes, and by additional criteria described in Sect. 4.1.

Our hashed name dictionary had 277,888 personal names obtained from a variety
of sources. The U.S. Census Bureau (www.census.gov) has published 95,025 distinct
surnames which occurred at least five times in their data 1880-2015 and 88,799 last
names in 1990. For international coverage, tekeli.li/onomastikon provided more names.
We supplemented this with data from email user names in our corpus split at punc-
tuation marks, looking for those differing in a single character from known names;
this found variant names not in existing lists, but had to be manually checked to
remove a few errors. We also mined our corpus for the formats like “John Smith
<jsmith@hotmail.edu>” and “‘John Smith’ 555-123-4567” that strongly suggest names
in the first two words. Most dictionary names were Ascii, as non-Ascii user names were
not permitted by email protocols for a long time and rarely appear in our corpus. We
did not distinguish surnames and family names since many are used for both purposes.
Note this is a “whitelisting” approach to defining names; a blacklisting approach
storing non-names is unworkable because the number of such strings is unbounded and
they have too much variety to define with regular expressions.

We also created a list of 809,216 words from all our natural-language dictionaries
[13], currently covering 23 languages and 19 transliterations of those, together with
counts of words in the file names of our corpus to get a rough estimate of usage rates.

Finding and Rating Personal Names on Drives for Forensic Needs 51

http://www.census.gov


We created another list of 54,918 generic names like “contact” and “sales” from
manual inspection of our corpus and translation of those words into all our dictionary
languages, to serve as definite non-names for our analysis.

Bulk Extractor provides offsets (byte addresses) on the drive for the artifacts it
finds. Offsets for nearby personal names can be computed from these; nearby artifacts
are often related. Bulk Extractor gives at least two offsets for compressed files, one of
the start of the compressed file and one within the file if it were decompressed; a few
files were multiply compressed and had up to six offsets. It is important not to add these
numbers since the sums could overlap into the area of the next file on the drive when
compression reduced the size of a file. We separate the container address space by
taking −10 times the offset of the container and adding to it the sum of the offsets of the
artifact within the decompressed container. Since few compressions exceed a factor of
10, this maps offsets of compressed files to disjoint ranges of negative numbers.

4 Analysis of Personal-Name Candidates

Overall, 95.6% of the personal-name candidates our methods extracted were found in
Bulk Extractor email records, 1.0% in phone-number records, 0.0% in ccn (bank-card)
records, and 3.4% in URL records when we included them. URL paths can refer to
personal Web pages, but a random sample of 1088 candidate personal-name candidates
found only 71 or 6.5% useful personal names since it found many names of celebrities,
fictional characters, and words that are predominantly non-names. It appeared that the
“url” plugin provides too many false alarms to be useful. Output of other Bulk
Extractor plugins was also unhelpful.

We obtained in total 302,242,805 personal names from 2222 drives with at least
one name in our corpus, of which 5,921,992 were distinct (though names like “John”
could refer to many people). The number of files on these drives was 61,365,153, so
only a few files had personal names. Interestingly, several hundred drives had no
recoverable files but many names, apparently due to imperfect disk wiping.

4.1 Splitting Strings to Find Names

Personal names are often run together in email addresses, e.g. “johnjsmith”. We can
segment these by systematically examining splits of unrecognized words. Usually one
should prefer splits that maximize the size of the largest piece since this increases the
reliability of the names found. For instance, there are 10,785 personal names of length
4 in our name wordlist (fraction 0.024 of all possible 4-character Ascii words), 39,548
of length 5 (fraction 0.0033), 62,114 of length 6 (fraction 0.00020), 58,119 of length 7
(fraction 0.0000072), and 37,461 of length 8 (fraction 0.00000018). That suggested the
following algorithm for splitting to find names:

1. Check if the string is a known word (personal name, generic name, or dictionary
word); if so, return it and stop. For instance, “thompson”, “help”, and “porcupine”.
However, there must be an exception for hexadecimal strings using digits and the
characters “abcdef” for which there can be false alarms for names like “ed” and

52 N. C. Rowe



“bee”. So we exclude words preceded by a digit, but not names followed by a digit
since these can be numberings of identical names like “joe37”.

2. Check whether the string minus its first, last, first two, last two, first three, or last
three characters (in that order) is a known personal name; if so, return the split and
stop. For instance, “jrthompson” and “thompsonk”.

3. Split the string into two pieces as evenly as possible, and then consider successively
uneven splits. Check whether both pieces can be recognized as personal names or
dictionary words, and stop splitting if you do. For instance, “johnthompson” and
“bigtable” can be split into “john thompson” and “big table”, but only the first is a
personal name.

Unicode encodings raise special problems. Bulk Extractor often represents these
with a “\x” and number, and these can be easily handled. But sometimes it encodes
characters in languages like Arabic, Cyrillic, and Hebrew as two characters with the
first character the higher-order bits, appearing usually as a control character. We try to
detect such two-character patterns and correct them, though this causes difficulties for
subsequent offset-difference calculations. More complex encodings of names and
addresses used with phishing obfuscation [10] need additional decoding techniques.

4.2 Combining Adjacent Personal Names

Once names are extracted, it is important to recognize multiword names that together
identify an individual since these are more specific and useful than the individual
names, e.g. “Bobbi Jo Riley”. We do this with a second pass through the data, which
for our corpus reduced the number of name candidates from 556 million to 302 million.
After study of sample data, we determined that names could only be combined when
separated by 0 to 4 characters for the cases shown in Table 1. These cases can be
applied more than once to the same words, so we could first append “Bobbi” and “Jo”,
then “Bobbi Jo” and “Riley”.

A constraint applied was that appended names cannot be a subset of one another
ignoring case. For instance, for the input “John Smith smithjohn@yahoo.com” we can

Table 1. Cases for appending names.

Intervening characters Example Extracted
name

None johnsmith John Smith
Space, period, hyphen, or underscore john_smith John Smith
Period and space after single-letter name j. smith J Smith
Comma and space smith, john John Smith
Space, letter, space; or underscore, letter, underscore john a

smith
John A
Smith

Space, letter, period, space; or underscore, letter, period,
underscore

john a.
smith

John A
Smith

Finding and Rating Personal Names on Drives for Forensic Needs 53



extract “John”, “Smith”, “smith”, and “john”, and we can combine the first two. But we
cannot then combine “John Smith” and “smith” because the latter is a substring of the
former ignoring case, though we can combine “smith” with “john”. Another constraint
that eliminates many spurious combinations is that the character cases must be con-
sistent between the words appended. For instance, “smith” and “SID” cannot be
combined because one is lower-case and one is upper-case; that was important for our
corpus because “SID” occurs frequently indicating an identification number. We permit
only lower-lower, upper-upper, capitalized-capitalized, and capitalized-lower combi-
nations, with exceptions for a few name prefixes such as “mc”, “la”, and “des” that are
inconsistently capitalized.

Overlapping windows found by Bulk Extractor enable finding additional names
split across two contexts, as with one context ending with “Rich” and another context
starting with “chard”. One can also eliminate duplicate data for the same location found
from overlapping Bulk Extractor context strings.

As an example, Table 2 shows example Bulk Extractor output in which we can
recognize name candidates “John” at offset 1000008, “Smith” at 1000013, “j” at
1000021, “smith” at 1000022, “Bob” at 1000057, “Jones” at 1000061, and “em” at
1000070. Looking at adjacencies we should recognize three strong candidates for
two-word names: “John Smith” at offset 1000008, “J Smith” at 1000021, and “Bob
Jones” as 1000056. The first two-word combinations match which makes them both
even more likely in context. However, possible nickname “Em” is unlikely to be a
personal name here because its common-word occurrence is high, it is not capitalized,
and it appears in isolation.

4.3 Rating Personal-Name Candidates

Personal names matching a names dictionary are not guaranteed to be useful in an
investigation. Many names are also natural-language words, and others can label
software, projects, vendors, and organizations. So it is important to estimate the
probability of a name being useful. We tested the following clues for rating a name:

• Its length. Short names like “ed” are more likely to appear accidentally as in code
strings and thus should be low-rated.

Table 2. Example Bulk Extractor artifacts.

Artifact
offset

Artifact Context

100000021 Address jsmith@
hotmail2.com

ylor”\x0A“John Smith” <jsmith@
hotmail2.com>, 555-623-1886\x0A”Bo

100000043 Phone number
555-623-1886

smith@hotmail2.com>, 555-623-1886
\x0A”Bob Jones”, <em>Ne

6834950233 Possible bank card number
5911468437490705

222382355433193\x0A5911468437490705
\x0A101333182109778

3834394303 URL (web link) faculty.
ucdi.edu/terms.pdf

Terms of use at http://faculty.ucdi.edu/terms.
pdf

54 N. C. Rowe

http://www.ucdi.edu/terms.pdf
http://faculty.ucdi.edu/terms.pdf
http://faculty.ucdi.edu/terms.pdf


• Its capitalization type (lower case, upper case, initial capital letter, or mixed case).
The convention to capitalize the initial letter of names provides a clue to them, but is
not followed much in the digital world. Again, there must be exceptions for
common name prefixes like “Mc”, “De”, “St”, “Van”, and “O” which are often not
separated from a capitalized subsequent name.

• Whether the name has conventional delimiters like quotation marks on one or both
sides. Table 3 lists the matched pairs of delimiters on names seen at significant rates
in our corpus, based on study of random samples.

• Whether the name is followed by a digit. This often occurs with email addresses,
e.g. “joe682”.

• Whether the name is a single word or multiple words created by the methods of
Sect. 4.2.

• Whether the name frequently occurs as a non-name, like “main” and “bill”. We got
candidates from intersecting the list of known personal names with words that were
frequent in a histogram of words used in the file names of our corpus, then manually
adding some common non-names missed.

• The count of the word in all the words of the file paths in our corpus.
• The number of drives on which a name occurs. Names occurring on many drives are

more likely to be within software and thus be business or vendor contacts. How-
ever, a correction must be made for the length of the name, since short names like
“John” are more likely to refer to many people and will appear on more drives.
Figure 1 plots the natural logarithm of the number of drives against the natural
logarithm of the name length for our corpus. We approximated this by two linear
segments split at 10.0 characters (the antilog of 2.3 on the graph), which fit formulas
in the antilog domain of 59:7 � length�1:56 (left side) and 3:56 � length�0:33 (right
side). We then divided the observed number of drives for a name by this correction
factor. For instance, “john” alone occurred on 1182 drives in our corpus, and “john
smith” on 557 drives, for correction factors of 6.87 and 1.64 and normalized values
of 172 and 339 respectively, so “john smith” is twice as significant as “john”.

• The average number of occurrences of the name per drive. High counts tend to be
local names and likely more interesting.

Table 3. Matched pairs of name delimiters sought.

Front delimiter Rear delimiter Front delimiter Rear delimiter

“ “ < >
( ) [ ]
< @ ( @
[ @ > <
> @ : <
: @ ; <
; @ ‘ ‘

Finding and Rating Personal Names on Drives for Forensic Needs 55



• Whether there is a domain name in the context window around the personal name
that is .org, .gov, .mil, .biz, or a .com, where the subdomain before the .com is not a
known mail or messaging server name. This clue could be made more restrictive in
investigations involving organizations. This clue is helpful because usually people
do not mix business and personal email.

4.4 Experimental Results with a Bayesian Model

We trained and tested the name clues on a training set which was a random sample of
5639 name candidates found by Bulk Extractor on our corpus. For this sample, we
manually identified 1127 as useful personal names and 4522 as not, defining “useful”
as in Sect. 1. Some names required Internet research to tag properly.

Our previous work developed clues for filtering email addresses as to interesting-
ness using Bayesian methods, and we can use a similar approach for names. Proba-
bilities are needed because few indicators are guaranteed. This work followed a Naive
Bayes odds formulation:

o U jE1&E2&. . .&ENð Þ ¼ o UjE1ð Þo UjE2ð Þ. . .o UjENð Þo Uð Þ1�N

We used previously a correction factor of k ¼ 1 to handle odds with zero and
maximum counts:

o UjEð Þ ¼ ðn UjEð Þþ ko Eð ÞÞ=ðn �UjEð Þþ kÞ

We calculated odds for each of the clues from the training/test set by a 100-fold
cross-validation, choosing 100 times a random 80% for training and the remaining 20%
for testing. Table 4 shows the computed mean odds and associated standard deviations
for the clues in the 100 runs. We used maximum F-score as the criterion for setting

Fig. 1. Natural logarithm of number of drive appearances versus natural logarithm of name
length for our corpus.

56 N. C. Rowe



partitioning thresholds on the four numeric parameters. So when numeric thresholds are
given for the clues, they represent the values at which the maximum F-score was
obtained for our training set with that parameter alone. We also tested having more than
two subranges for each numeric clue, but none of these improved performance sig-
nificantly. F-score weights recall and precision equally; if this is not desired, a weighted
metric could be substituted.

The average best F-score in cross-validation on our training set was 0.6681 at an
average threshold of 0.2586 (with recall 80.7% and precision 57.0%). At this threshold,
we eliminate from consideration 71.3% of the 302 million personal-name candidates
found in our full corpus, and we set that threshold for our subsequent experiments. We
also could obtain 90% recall at 48.9% precision and 99% recall at 30.1% precision on the
training set, so even investigations needing high recall can benefit from these methods.

Table 4. Odds on clues for personal names.

Clue Odds on training set Standard deviation
on training set

Length � 5 characters 0.168 0.006
Length >5 characters 0.272 0.006
All lower case 0.319 0.006
All upper case 0.150 0.015
Capitalized only 0.172 0.006
Mixed case 0.134 0.012
Delimited both sides 0.361 0.009
Delimited on one side 0.301 0.013
No delimiters 0.158 0.004
Followed by a digit 1.243 0.077
No following digit 0.214 0.004
Single word 0.236 0.005
Multiple words 0.249 0.007
Ambiguous word 0.055 0.004
Not ambiguous word 0.294 0.006
� 9 occurrences in corpus file names 0.451 0.011
>9 occurrences in corpus file names 0.162 0.004
Normalized number of drives � 153 0.421 0.009
Normalized number of drives >153 0.112 0.004
� 399 occurrences per drive 0.189 0.004
>399 occurrences per drive 0.664 0.025
Organizational domain name nearby 0.009 0.001
No organizational domain name nearby 0.760 0.015
Prior to any clues 0.241 0.004

Finding and Rating Personal Names on Drives for Forensic Needs 57



Such rates of data reduction do depend on the corpus, as over half the drives in our corpus
appear to be business-related. Running time on the full corpus was around 120 h on a
five-year-old Linux machine, or about 3.2 min per drive, not counting the time for Bulk
Extractor.

All the clues except multiple words appear to be significant alone, either positively
or negative. However, it is also important to test for redundancy by removing each clue
and seeing if performance is hurt. We found that the capitalization clue was the most
redundant since removing it helped performance the most, improving F-score by 0.94%
on the full training set, and 0.6744 on 100-fold cross-validation. After capitalization
was removed, no other clues were found helpful to remove. So we removed it alone
from subsequent testing.

4.5 Results with Alternative Conceptual Models

We also tested a linear model for of the form t ¼ w0 þw1x1 þw2x2 þ . . .þw11x11
where the wi values are relative likelihoods. We fit this formula to be 1 for tagged
personal names and 0 otherwise. This required converting all clues to probabilities, for
which we used the logistic function 1=½1þ expð�c � ðx� kÞÞ� with two parameters k
and c set by experiments. We obtained a best F-score of 0.6435 and a best threshold of
0.3807 with ten-fold cross-validation, similar to what we got with Naïve Bayes. The
best weights were 0.1678 on length in characters (with best k = 6 and c = 6), 0.0245
for capitalization, −0.0380 for dictionary count (with best k = 5000 and c = 5000),
−0.2489 for adjusted number of drives (with best k = 2000 and c = 2000), −0.0728 for
rate per drive (with best k = 10 and c = 10), −0.0234 for number of words, 0.1383 for
lack of explicit non-name usage, 0.1691 for having a following digit, 0.3823 for lack of
having a nearby uninteresting site name, 0.0285 for number of delimiters, with
w0 ¼ �0:1695.

We also tested a case-based reasoning model with the numeric clues, using the
training set as the case library. We took the majority vote of all cases within a multiplier
of the distance to the closest case. With ten-fold cross-validation, we got an average
maximum F-score of 0.6383 with an average best multiplier of 1.97, but it took
considerable time. We also tested a set-covering method and got an F-score of 0.60
from training alone, so we did not pursue it further. Thus Bayesian methods were the
best, but it appears that the choice among the first three conceptual models does not
affect performance much.

5 Cross-Modal Clues

Important clues not yet mentioned for personal names are the ratings on a nearby
recognized artifact of a different type such as email addresses and phone numbers. For
instance, “John Smith” is a common personal name, but if we find it just before
“jsmith@officesolutions.com” we should decrease its rating because the address sounds
like a vendor contact, and people usually separate their business mail and personal
mail. Similarly, if we see the common computer term “Main” is preceded by interesting
address “bjmain@gmail.com”, we should increase its rating since Gmail is primarily a

58 N. C. Rowe



personal-mail site. These can be termed cross-modal clues. Our previous work [14]
rated email addresses on our corpus, so those ratings can be exploited.

5.1 Rating Phone Numbers

Other useful cross-modal clues are nearby phone numbers, and their restricted syntax
makes them easy to identify. Bulk Extractor finds phone numbers, but it misidentified
some numeric patterns like IP numbers as phone numbers, and erred about 5% of the
time in identifying the scope of numbers, most often in missing digits in international
numbers. Code was written to ignore the former and correct the latter by inspecting the
adjacent characters. For example, “123-4567” preceded by “joe 34-” is modified to
“+34-123-4567” and “12345-” followed by “6789 tom smith” is modified to
“12345-6789”. Since the country of origin for each drive was known, its code was
compared to the front of each phone number and the missing hyphen inserted if it
matched. Some remaining 889,158 candidates proffered by Bulk Extractor were
excluded because of inappropriate numbers of digits and invalid country codes. The
code also regularized the format of numbers to enable recognition of different ways of
writing the same number. U.S. numbers were converted to the form of ###-###-####
and international numbers to +##-######## and similar variants. Some U.S. numbers
were missing area codes, and “?” was used for the missing digits.

The main challenge was in identifying the forensically interesting phone numbers,
those that were personal and not of businesses or organizations, since the numbers
themselves provide few clues. We evaluated the following clues for a Bayesian model:

• Whether the area code indicated a business or informational purpose as publicly
announced (e.g., 800 numbers for businesses in the United States).

• Whether the number appeared to be artificial (e.g. 123-4567).
• Whether the number was in the United States.
• The number of drives on which the phone number occurred.
• Whether the number occurred on only one drive and at least four times, which

suggests a localized number.
• Whether the number was preceded by “phone” or something equivalent.
• Whether the number was preceded by “fax” or something equivalent.
• Whether the number was followed by “fax” or something equivalent.
• Whether the number was preceded by “cell” or something mobile-related.
• Whether the last character preceding the number was a digit (usually an indicator of

a scope error).
• Whether any of the words in the preceding 16 characters could be names.

Table 5 shows the calculated odds for each of the clues using 100 runs on random
partitions of a training set of 4105 tagged random selections from our corpus, 3507
uninteresting and 446 interesting. Each of the 100 runs chose 50% of the training set
for training and 50% for testing (an even split because we had little training data with
positive examples). We then averaged the resulting odds over the runs. Either the clue
or its absence was statistically significant, so all clues are justified to be included the
model. For these tests the average best F-score with the model using all clues was 0.403
with an average best threshold of 0.0214, so most phone numbers are uninteresting and

Finding and Rating Personal Names on Drives for Forensic Needs 59



thus negative clues to nearby personal names, but there are not many. The output is also
useful for rating phone numbers.

5.2 Combining Cross-Modal Clues

We explored three cross-modal clues to personal names: the rating on nearby email
addresses with words in common, the rating on closely nearby email addresses, and the
rating on closely nearby phone numbers. Preliminary experiments showed that personal
name ratings only correlated over the entire corpus with email ratings within a gap of
10 or less bytes or if they had at least half their words in common; personal name
ratings only correlated with phone numbers within 20 or less bytes. So we used those
results to define “closely nearby”. There were 708 instances of email addresses with
common words within 50 bytes, 690 instances of email addresses within 10 bytes, and
21 instances of phone numbers within 20 bytes.

Since the ratings were widely varying probabilities, for these cross-modal candidates
we fit a linear rather than Bayesian model of the form t ¼ w0 þwnrn þwewrew þ

Table 5. Odds of interesting phone numbers based on particular clues.

Clue Odds on training
set

Standard deviation
of odds

US 0.204 0.009
Non-US 0.121 0.045
Informational area code 0.008 0.004
Not informational area code 0.231 0.010
Artificial 0.018 0.004
Not artificial 0.204 0.009
Occurred on only one drive in corpus 0.246 0.016
Occurred on 2–4 drives in corpus 0.405 0.029
Occurred on 5 or more drives in corpus 0.012 0.004
Whether it occurred on only one drive and at least
4 times

0.378 0.061

Whether it occurred on multiple drives or less
than 4 times

0.194 0.009

Personal name preceding 0.393 0.045
No personal name preceding 0.186 0.009
Preceded by “phone” or similar words 0.203 0.009
Preceded by “fax’ or similar words 0.138 0.022
Followed by “fax” or similar words 0.203 0.009
Preceded by mobile-related words 0.630 0.242
No useful preceding or following words 0.209 0.010
Preceded by a digit after all possible corrections 0.136 0.011
No preceding digit after all possible corrections 0.238 0.012
Prior to any clues 0.203 0.009

60 N. C. Rowe



weoreo þwporpo. Here t was 1 for valid personal names and 0 otherwise, rn is the rating
on the personal name, rew is the rating on the nearby email address sharing words, reo is
the rating on the closely nearby email address, and rpo is the rating on closely nearby
phone number. The w values were the weights on the corresponding ratings, and cew, ceo,
and cpo were default constants for rew, reo, and rpo when there was no nearby
cross-modal clue. Evidence from more than one candidate could be used for a single
personal name. We computed the least-squares fit of the linear model for the four
weights and three constants applied to the training set. This gave a model of t ¼
�0:328þ 0:590rn þ 0:157rew þ 0:005reo þ 0:006rpo with cew ¼ 0:300, ceo ¼ �0:121,
and cpo ¼ 0:476. Using these values we achieved a best F-score of 0.7990 at a threshold
of 0.2889, a 19% improvement over rating without cross-modal clues. Using this model
we could now achieve 90% recall with 69.5% precision and 100% recall with 66.5%
precision, albeit in testing only on the subset of the training set that had evidence for at
least one of the cross-modal clues. We also tested clues from the ratings on other nearby
personal names, but found their inclusion hurt performance, reducing F-score to 0.7576.

6 Identifying the Principals Associated with a Drive

A secondary use of name extraction from a drive is quick identification of the main
people associated with a drive, something important for instance when drives are
obtained in raids apart from their owners. The most common names on a drive are not
necessarily those of the owner and associates since names of vendor contacts and
common words that can be used as names occur frequently. User-directory names (e.g.
in the “Users” directory in Windows) can be misleading because they can be aliases,
they only show people who log in, and do not give frequencies of use.

A better criterion for the owner and associates that we found is the highest-count
personal names with a rating above a threshold, where the rating is computed by the
methods of Sect. 5. We applied this this to 12 drives we obtained from co-workers, the
only drives for which we could confirm the owner. For 8 of those 11, the owner name
was the top-rated name over a 0.2 rating, for one it was second, for one it was fourth,
and for one it was twentieth (for apparently a drive used by many people). So the rating
threshold criterion appears to be reliable. For instance for an author’s old drive, the first
name rated above 0.2 was the author’s first initial and last name, though it was the fifth
most common name on the drive, and the second rated above 0.2 was the author’s
wife’s name, even though it was the tenth most common name on the drive.

7 Conclusions

Personal names are among the most valuable artifacts an investigator can find on a
drive as they can indicate important personal relationships not otherwise made public.
This paper has shown that 71.3% of name candidates near email addresses and phone
numbers can be eliminated from consideration from a representative corpus with an
estimated average F-score of 67.4%. With cross-modal clues, F-score can be improved
to 79.9%. Since our assumptions and methods apply to nearly any criminal or

Finding and Rating Personal Names on Drives for Forensic Needs 61



intelligence application of forensics, our methods permit a 3.5 times reduction in the
workload of such investigators looking for personal names on drives who need no
longer examine everything that matches a dictionary of names. At the same time, our
ability to bootstrap on existing output of Bulk Extractor means our methods require
only an additional few minutes per drive, far better than the days needed to do keyword
search for names on a typical drive image (see Sect. 2). The work could be extended by
developing a more specialized and efficient Bulk Extractor plugin; exploiting street
addresses, IP addresses, names of associated organizations, and file names as additional
cross-modal clues; and testing differences in strategy for different types of drives.

Acknowledgements. This work was supported in part by the U.S. Navy under the Naval
Research Program and is covered by an IRB protocol. The views expressed are those of the
author and do not represent the U.S. Government. Daniel Gomez started the implementation, and
Janina Green provided images of project-team drives.

References

1. Bikel, D., Miller, S., Schwartz, R., Weischedel, R.: Nymble: a high-performance learning
name-finder. In: 5th Conference on Applied Natural Language Processing, Washington DC,
US, March, pp. 194–201 (1997)

2. Bulk Extractor 1.5: Digital Corpora: Bulk Extractor [Software] (2013). http://digitalcorpora.
org/downloads/bulk_extractor. Accessed 6 Feb 2015

3. Fan, X., Wang, J., Pu, X., Zhou, L., Bing, L.: On graph-based name disambiguation.
ACM J. Data Inf. Qual. 2(2), Article No. 10 (2011)

4. Garfinkel, S.: Forensic feature extraction and cross-drive analysis. Digit. Invest. 3S
(September), S71–S81 (2006)

5. Garfinkel, S.: The prevalence of encoded digital trace evidence in the nonfile space of
computer media. J. Forensic Sci. 59(5), 1386–1393 (2014)

6. Garfinkel, S., Farrell, P., Roussev, V., Dinolt, G.: Bringing science to digital forensics with
standardized forensic corpora. Digit. Invest. 6(August), S2–S11 (2009)

7. Gross, B., Churchill, E.: Addressing constraints: multiple usernames, task spillage, and
notions of identity. In: Conference on Human Factors in Computing Systems, San Jose, CA,
US, April–May, pp. 2393–2398 (2007)

8. Henseler, H., Hofste, J., van Keulen, M.: Digital-forensics based pattern recognition for
discovering identities in electronic evidence. In: European Conference on Intelligence and
Security Informatics, August (2013)

9. Lee, S., Shishibori, M., Ando, K.: E-mail clustering based on profile and multi-attribute
values. In: Sixth International Conference on Language Processing and Web Information
Technology, Luoyang, China, August, pp. 3–8 (2007)

10. McCalley, H., Wardman, B., Warner, G.: Analysis of back-doored phishing kits. In:
Peterson, G., Shenoi, S. (eds.) DigitalForensics 2011. IAICT, vol. 361, pp. 155–168.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24212-0_12

11. Paglierani, J., Mabey, M., Ahn, G.-J.: Towards comprehensive and collaborative forensics
on email evidence. In: 9th IEEE Conference on Collaborative Computing: Networking,
Applications, and Worksharing, pp. 11–20 (2013)

62 N. C. Rowe

http://digitalcorpora.org/downloads/bulk_extractor
http://digitalcorpora.org/downloads/bulk_extractor
http://dx.doi.org/10.1007/978-3-642-24212-0_12


12. Petkova, D., Croft, W.: Proximity-based document representation for named entity retrieval.
In: 16th ACM Conference on Information and Knowledge Management, Lisbon, PT,
November, pp. 731–740 (2007)

13. Rowe, N., Schwamm, R., Garfinkel, S.: Language translation for file paths. Digital Invest.
10S(August), S78–S86 (2016)

14. Rowe, N., Schwamm, R., McCarrin, M., Gera, R.: Making sense of email addresses on
drives. J. Digit. Forensics Secur. Law 11(2), 153–173 (2016)

15. Yang, M., Chow, K.-P.: An information extraction framework for digital forensic
investigations. In: Peterson, G., Shenoi, S. (eds.) DigitalForensics 2015. IAICT, vol. 462,
pp. 61–76. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24123-4_4

Finding and Rating Personal Names on Drives for Forensic Needs 63

http://dx.doi.org/10.1007/978-3-319-24123-4_4


A Web-Based Mouse Dynamics Visualization
Tool for User Attribution in Digital Forensic

Readiness

Dominik Ernsberger1(&), R. Adeyemi Ikuesan2, S. Hein Venter2,
and Alf Zugenmaier1

1 Department of Computer Science and Mathematics,
Munich University of Applied Sciences, Munich, Germany

ernsberger.dominik@gmail.com, alf.zugenmaier@hm.edu
2 Department of Computer Science, Faculty of EBIT,

University of Pretoria, Pretoria, South Africa
{aikuesan,hsventer}@cs.up.ac.za

Abstract. The Integration of mouse dynamics in user authentication and
authorization has gained wider research attention in the security domain,
specifically for user identification. However, same cannot be said for user
identification from the forensic perspective. As a step in this direction, this paper
proposes a mouse behavioral dynamics visualization tool which can be used in a
forensic process. The developed tool was used to evaluate human behavioral
consistency on several news-related web pages. The result presents promising
research tendency which can be reliably applied as a user attribution mechanism
in a digital forensic readiness process.

Keywords: Mouse-dynamics � Event-visualizer � Digital forensic readiness
User identification and attribution � Behavioral dynamics

1 Introduction

A substantial aspect of Human-Computer interaction is based on pointing devices,
either with the mouse, touch screens or other forms of pointing devices. The study of
the behavioral components of human-mouse movement is generally referred to as
mouse dynamics [1–3]. Mouse dynamics have been widely applied in user identifi-
cation through authentication [3–7] or authorization [1, 8]. The integration of mouse
behavioral dynamics as a biometrics for continuous and one-time authentication has
gained wider attention in the recent years. This is generally attributed to the relatively
cheap requirement specification, ease of data collection, and the high probability of
individual uniqueness in mouse dynamics. In terms of the requirement specification,
the study of mouse dynamics relies on the existing device, without a need for a
specialized device. Furthermore, it does not require any specific positioning or intrusive
setting for data acquisition.

Given this flexibility and robustness, the mouse-dynamics is gradually being
considered as a suitable forensic mechanism [3, 9] through which human identification

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
P. Matoušek and M. Schmiedecker (Eds.): ICDF2C 2017, LNICST 216, pp. 64–79, 2018.
https://doi.org/10.1007/978-3-319-73697-6_5



can be evaluated in a human-computer interaction. User attribution, as a mechanism for
identification of the actual user in an interaction/event in digital forensics [10, 11],
relies on the reliability of the underlying identification mechanism. User attribution is
generally referred to as the process of identifying a user on a digital device; the act of
appending a given action/activity to a known user without ambiguity. The underlying
mechanism implemented for continuous authentication based on mouse dynamics can,
therefore, be adopted as a forensics attribution mechanism. However, the current
reliability in the existing studies on continuous mouse dynamics falls below the 0.001
false acceptance rate, and 1.00 false rejection rate, of the European Standard for
Commercial biometric technology [3]. As a step towards the actualization of this
reliability, this study, a part of an ongoing behavioral biometrics for user attribution,
aims to explore other probable underlying intuition of mouse dynamics for user
attribution. To achieve this aim, this study developed a tool that can be used to track
and visualize the behavior of human mouse actions on different websites. Various news
websites were used as a means to conduct this research study. However, the integration
of such mechanism into user attribution for forensics purpose can be feasible, through a
digital forensic readiness framework. A digital forensic readiness framework is defined
in this context in accordance with the findings from different stakeholders as presented
in [12]. Digital forensic readiness is the proactive process of collecting, reliably storing,
preprocessing and preservation of digital information which would otherwise be
unavailable in a postmortem forensic process. A digital forensic readiness framework
(DFRF) is therefore defined as a structural capability designed by an organization to
maximize the usage of the available digital information in the event of an incident
whilst minimizing the eventual cost to such an organization [13]. Given that the DFRF
provide a reliable platform for user attribution, a forensic investigation process can
significantly benefit from a behavioral biometrics profiling mechanism that is based on
either a greater sample size of users (� 205-users), or a relatively smaller sample size
of user (� 4 users) [14, 15]. This further implies that the performance of a mouse-based
behavioral-biometrics is not necessarily dependent on the sample size under consid-
eration, rather, on the capability of the mechanism adopted.

The remainder of this paper is organized as follows: a review of related works on
continuous authentication and forensics, based on mouse dynamics, is shown in
Sect. 2. This is then followed by the methodology employed to develop the tool and
evaluation of human action. In addition, the exploratory process of other feasible
intuitions which can be used to observe individual uniqueness during interaction with a
mouse (or any other pointing device) is presented in Sect. 3. Analysis of result is
presented in Sect. 4. Discussion and limitation of the findings of this study are pre-
sented in Sect. 5 of this paper, while the conclusion is presented in Sect. 6.

2 Related Work

Research works on behavioral biometrics (a nonintrusive method of identifying a user)
in relation to human-computer interaction is gaining wider attention from the research
community. Keystroke dynamics [16] and mouse dynamics are the two major focus of
research in user identification. While some research focused on either mouse dynamics

A Web-Based Mouse Dynamics Visualization Tool 65



or keystroke dynamics, a few have attempted to integrate both mechanisms for user
identification or authentication using a multimodal approach [1, 17]. A study in [18],
which builds on the works in [19–21], investigated the probability of adopting mouse
dynamics as a behavioral biometrics which can be used for user authentication. Raw
mouse data was aggregated into high-level actions such as point-and-click,
drag-and-drop. This is then characterized by action type, distance, angle, frequency,
speed, duration, and direction. The aggregation process resulted in a segmentation of
the raw mouse event into sessions of mouse strokes. A total of 39 mouse-action
features, were further computed. Evaluation metrics include the false acceptance rate
(FAR), false rejection rate (FRR), equal error rate (EER), accuracy, and pattern veri-
fication time. With an additional aim of verifying the influence of mouse device type,
the study dichotomized mouse dynamics based on device. Findings from the study
suggest that the type of mouse device used by a user can influence the behavior of the
user. The dichotomy based on the type of device hardware yielded an accuracy of
96.7% and 97.8% respectively. Similarly, a study in [3] which builds on [22], explored
the probability of user authentication based on mouse dynamics. Additional features
such as single-click, double-click were included in the study. The study asserted that
authentication can be performed in 11.8 s of mouse action, with a FAR and FRR of
8.74% and 7.69% respectively. This was based on 5550-data samples on 37 respon-
dents. Recent findings in [1] observed that the multimodal approach based on C4.5
decision tree algorithm, LibSVM and Bayes Net classifiers can be used to improve the
identification performance of mouse dynamics. The findings from the study showed
that when authentication was based solely on mouse dynamics, the C4.5, LibSVM, and
BayesNet resulted in an average accuracy of 74.26 ± 5.55, 85.53 ± 4.26, and
82.77 ± 2.96 respectively. The study was also anchored on the earlier studies of [22]
and [20]. All identified existing still suffers from the limitation of poor error rate, and
classification accuracy. In addition, these studies are targeted at user authentication,
which does not cover some forensic processes. Whilst user authentication can be
integrated into forensics, there is a need for a forensic perspective on mouse dynamics.
This perspective includes the ability to visualize individual mouse paths, correlate
individual mouse action from the different timeline (consistency checker), generate
individual mouse dynamics for storage, subsequent analysis, as well as correlation with
other users. Research targeted at improving these evaluation parameters remains a
major focus, especially for usage in digital forensic readiness.

2.1 Purpose and Contribution of this Study

In addition to the development of a tool for mouse dynamics visualization and analysis,
this study differs from existing studies on mouse dynamics in terms of its aim and the
fundamental unit of measurement. A pixel-based single path property is considered as
the fundamental unit of measurement of mouse dynamics in this study. This is intu-
itively distinct from the click-based [18, 21, 22], and stroke-based [1, 3] approach which
is aggregated over sessions, as observed in existing studies. The current approach is
based on the observation of individual path, and their corresponding behavioral
characteristics. Based on the structural characteristics of an individual path in a given
mouse dynamics data, this study explored the behavioral consistencies in users.

66 D. Ernsberger et al.



This consistency will thereafter be integrated into a forensic readiness framework. As an
illustration of the forensic application, an illicit behavior can be mapped to an unknown
subject within an organization based on the pre-defined template of each user gathered
through a reliable forensic readiness process, within the organization. Furthermore, a
deviation from the known behavioral consistency of a user can be used as a trigger for
incident response and investigation. Such can also be applied to sniff out a malicious
insider in an organization, by surreptitiously monitoring a triggered malicious-flag on a
system. The digital forensic readiness approach defined in [23] identified event logs as
a major aspect of the technology-enabled forensic process. This approach to forensics
is also supported by the recommendation in [18] on the application of mouse dynamics
in user attribution. User attribution in this context refers to the process of identifying a
user based on their mouse dynamics. The methodology used to achieve this aim is
presented in the next section.

3 Research Methodology

The approach employed to address the aim of this study is detailed in this section. The
overall design process of the proposed path-pattern visualization is divided into four
main parts, as depicted in Fig. 1.

1. Tracking and recording of the computer cursor and the corresponding web page
elements during surfing on news web pages. This includes the mouse click,
scrolling as well as the cursor movement. The extraction of the HTML objects
which the user clicked or hovered over during the recording.

2. Extracting relevant information and calculating human behavior attributes based on
the data captured. Furthermore, arrange and store the results in a way to provide
easy access and evaluate it afterward.

Fig. 1. Overall design approach

A Web-Based Mouse Dynamics Visualization Tool 67



3. Visualize the stored data with re-drawn trajectories, tables, and timelines such that
an investigator can quickly search and compare different paths.

4. Identification of user patterns based on the extracted features from the mouse
actions of the user.

3.1 Mouse Navigation Tracking Process

To achieve the first goal, a client-side JavaScript is needed. It is embedded in the header
of the loaded HTML page while running in the background. Two respective third-party
browser extensions, i.e. Chrome: RunJS [24] and Firefox: Custom Style Script [25],
which includes the stored JavaScript in the loaded pages, was used in this study. It
would also be possible to use a specific proxy, which inserts the JavaScript code on the
fly, into every page accessed through it, as implemented in [26]. As soon as an event
(Mouse-Click-Down, Mouse-Click-UP, Scroll-Up, Scroll-Down, or Mouse-Move)
occurs, the corresponding event listener is evoked. It captures the coordinates of the
cursor, the precise timestamp, the HTML object of the page where the cursor is
currently located, the delay (flight) between Mouse-Click-Down and Mouse-click-Up
as well as the Uniform Resource Locator (URL) of the current web page. On the first
Mouse-Click-Down event, it captures an additional basic user-agent information like
the resolution of the page, time stamp, the type of browser and the browser version. In
terms of scrolling, it captures, besides the location and timestamp, the number of
scrolled pixels in the y-direction.

The coordinates, resolution and scrolled pixels are captured with clientX, clientY,
clientWidth, clientHeight and pageYOffset methods. These methods return the value in
Cascading Style Sheets (CSS) pixels. A CSS pixel is a software pixel which forms the
unit of measurement, whereas a hardware pixel is an individual dot of light on the
screen. A CSS pixel can contain a few hardware pixels and is designed to be the same
size across different devices. Therefore, CSS pixels are generally used for web pages to
define uniform size irrespective of the hardware pixel resolution. We considered these
characteristics as an added advantage to ensure the uniformity of pixels across all
devices on which data is being captured. In addition, the coordinates are relative to the
upper-left edge of the content area of the browser and do not change even if the user is
scrolling. This was used as a measure to distinguish between a mouse movement and
scrolling.

The captured information is transmitted directly afterward to the main Java program
via XMLHttpRequests to a local HTTP Server running on localhost:8080/EventLis-
tener. Given that the security model of a web browser (known as same-origin-policy),
prevents the feasibility of sending web requests from one location to another outside
the same domain, a Cross-Domain request with Cross-Origin Resource Sharing
(CORS) [27], was implemented. The same-origin-policy of a web application is a
security mechanism. This mechanism states that inter-access data is permitted from one
web page to another if and only if both web pages have the same origin constrained by
the same uniform resource identifier (URI) scheme, hostname, and port number. One of
the downsides of bypassing this mechanism is server-flooding, a situation in which the
server has no control over which packet to receive [28]. To prevent server flooding, the
study implemented a threshold for the movement of the cursor. Whenever the

68 D. Ernsberger et al.



EventListener for the Mouse action is triggered, it calculates the distance between the
former (position of the last data transmission request) and the new position of the
mouse cursor. The data transmission request is considered acceptable if the distance of
the mouse cursor is greater than the pre-defined threshold of 10-CSS Pixels, otherwise,
it is rejected.

3.2 Data Pre-processing and Feature Extraction

The raw data dumped from the web browser is parsed through a preprocessing module
as shown in phase 2 of Fig. 1. Feature extraction is based on the individual mouse path.
A path is defined as a sequence of mouse events delineated by a time delay threshold,
and/or any two consecutive mouse event clicks without the delimited threshold. A new
path always starts from the last event of the preceding path, as shown in Fig. 2. A time
delay threshold is defined as the idle time that satisfies the condition confined by Eq. 1.

Path ¼def Delay
min � 3 s
max� 10 s

�
2 consecutive clicks

8<
: ð1Þ

Based on the mouse events, four different types of path attributes can be extracted
as shown in Table 1. These attributes are consistent with features in existing studies
[1, 3, 29]. A mouse click ends a current path because a click symbolize a new intention
of the user (e.g. clicking on a link to open a new page). Furthermore, a movement delay
(silent time) of more than 10 s between two points is interpreted as a new user
intention, and consequently, starts a new path. Preliminary observation of the mouse
movement showed that two consecutive mouse movement have delays � 10-s.
Existing studies considered aggregation of mouse sequence, which neither indicates a
path as the fundamental unit of mouse measurement nor defined the delay between
mouse actions. For instance, the exposition in [3] defined the minimum, average and
maximum mouse operation task as 6.2 s, 11.8 s, and 21.3 s respectively. This does not
show the actual delay between the mouse operations. However, it is logical to consider
a fundamental unit of mouse movement measurement, through which pattern obser-
vation can be measured. A mouse movement path presents such an intuition.

A path is stored as a trajectory which contains several sequences. It includes the
x-coordinate, y-coordinate, timestamp, angle of inclination, speed, mouse-click-up and
mouse-click-down events, HTML object, weight, silent time, scrolled Pixel as well as

Table 1. Labels of path

Number Actions of a path begin Actions of a path end Label

1 Click Click cc
2 Click Movement (>10 s) cm
4 Movement Click mc
5 Movement Movement (>10 s) mm

A Web-Based Mouse Dynamics Visualization Tool 69



the time delay between mouse-click-down and mouse-click-up events [1, 3, 18].
Furthermore, it contains the overall delay, direct distance between the start- and end-
point, a distance of the path (length), average speed, overall weight, overall direction,
label, and URL. Description of the relevant features and human behavioral attributes
adapted in this study are explained in more detail in the proceeding subsections as.

3.2.1 Speed
The speed of mouse movement is computed for every distance between two points of
movement, as well as for the scrolled pixel. For the average speed, the study excludes
the scrolling points, to separate the movement speed. The speed for the i th mouse-point
is described by Eq. 2. The intuition upon which speed is computed is based on existing
studies [1, 3]. The average speed for the i th mouse path with n-points is defined with
the expression presented in Eq. 3, where x and y represents the coordinates, and
t represents the timestamp at that coordinate.

Dvi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xi�1ð Þ2 þ yi � yi�1ð Þ2

q
ti � ti�1

ð2Þ

Dvi average ¼ 1
n

Xn

k¼2
Dvk ð3Þ

3.2.2 Distance or Path Length
This study considered the shortest distance between two points, based on the general
definition of slope (Euclidean distance). This can also be referred as the direct distance
between two points. The shortest distance between two points (ith and ith−1) in a path is
given by the expression presented in Eq. 4.

Ddi direct ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xi�1Þ2 þðyi � yi�1Þ2

q
ð4Þ

Logically, a mouse path length can be defined as the summary of the distance
between all points in the path: The length of the i th path with n-points is defined by the
expression in Eq. 5. This expression considers the transition from the point of path
beginning to the point of path ending. This thus implies that the path length is a vector
quantity. A path direction is considered with respect to the expression is Eq. 8.

Ddi path
����! ¼

Xn

k¼2
Ddk direct ð5Þ

3.2.3 Time Delay/Silent Time/Click Delay
The delay is calculated for every point in the path. The silent time is the number of
milliseconds within which the cursor was not moved. It captures the duration of all
connected scrolling events. Furthermore, the click delay (flight) is computed for every
click (start and end). This measures the time (t) in milliseconds between the mouse

70 D. Ernsberger et al.



down and mouse up event. The delay at the i th point between time ti and ti�1 is
depicted by the expression shown in Eq. 6.

Dti ¼ ti � ti�1 ð6Þ

3.2.4 Angle of Inclination
The angle of inclination (the arctangent of the slope between two points) is calculated
for every distance between two points. It is the angle between the horizontal axes of
two the points, with the x-axis, measured in a counterclockwise direction from
0� � h \ 180�. It is defined by the expression in Eq. 7.

Dhi ¼ tan�1 Dyi
Dxi

ð7Þ

3.2.5 Direction and Weight
The direction of a mouse is calculated for the whole path as well as for the distance
between two points. To compute this direction, the angle is logically assumed to have a
right and a left quadrant. A left direction covers the negative left axis of a quadrant,
while the converse is the right. For the direction, a path which ends with the Left = −1;
Right = 1; Neutral = 0 is defined by Eq. 8, where x = the x-coordinate, n = start point,
k = end.

Ddirectioni ¼
�1; xk \ xn
1; xk [ xn
0; xk ¼ xn

8<
: ð8Þ

The weight of a path is calculated, from the intuition in kinematics [29], for every
distance between two points as well as for the entire path length. The weight for the i th

path is defined by the expression in Eq. 9. The overall weight for the i th path with
n points is defined by the expression in Eq. 10.

Dwi point ¼ Dvi �
Ddi direct � sinðhiÞ; direction ¼ 1

Ddi direct � cos 360� hið Þ; direction ¼ �1
Ddi direct; direction ¼ 0

8<
: ð9Þ

Dwi path ¼
Xn

k¼2
Dwk point ð10Þ

3.2.6 Skewness and Kurtosis
Higher order moments as defined in [30], are statistical properties that can provide
representative properties of a distribution. Skewness and kurtosis are described in this
section. However, first, and second order of moment are computed using the gener-
alized expression. Skewness is calculated for the silent time, angle of inclination and

A Web-Based Mouse Dynamics Visualization Tool 71



speed of a path. The skewness of the i th path is defined by Eq. 11 where n = count of
values, �x = mean and xi = the i th value.

skewi ¼
1
n

Pn
i¼1ðxi � �xÞ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n�1

Pn
i¼1ðxi � �xÞ2

q� �3 ð11Þ

Similarly, the kurtosis is computed for the silent time, angle of inclination and speed of
a path. The kurtosis of the i th path is represented by the expression in Eq. 12: Where
n = count of values, �x = mean and xi = the i th value.

kurti ¼
1
n

Pn
i¼1ðxi � �xÞ4

1
n

Pn
i¼1ðxi � �xÞ2

� �2 � 3 ð12Þ

A total of 37 unique features for every path, as shown in Table 2, are generated. In
order to provide the desired systematic visualization process (as shown in Fig. 2), the
raw data of the mouse action is segmented through preprocessing, into different files.
The data from these files are then used for subsequent data analysis processes. The raw
data includes the captured page resolution, user-agent information, x-coordinates,
y-coordinates, HTML objects, mouse events, time stamps, click delay (flight) as well as
the URL. Summary of the overall features used in this study is presented in Table 2.

Table 2. Human behaviour attributes

Number Features/human behavior attributes

F1 Number of the path
F2 Duration of the path
F3 Number of points in the path
F4–F6 Properties of scrolls (number of scrolls, scroll up and scroll down)
F7 Number of clicks in the path
F8 Number of movement in the path
F9–F16 Statistics of silent points (number of silent periods, mean, std. deviation,

min, max, variance, skewness, and kurtosis)
F17 Flight of first click (duration between mouse down and mouse up)
F18 Flight of the last click
F19 Length of path
F20 Overall weight of the path
F21 Direction of the path
F22–F29 Statistics of angle of inclination (mean, std. deviation, min, max, variance,

skewness, kurtosis, and mode)
F30–F37 Statistics of speed movement (mean, std. deviation, min, max, variance,

skewness, kurtosis, and mode)

72 D. Ernsberger et al.



3.3 Visualization

To achieve the third design goal, it is necessary to read the stored data and visualize
them. The developed tool accepts an input from a CSV file. The features and attributes
of the corresponding file are loaded into the tool for visualization. The GUI offers the
option to display an overview of the whole mouse action capture, as shown in Fig. 2.
Furthermore, it is possible to choose a path directly in the drop-down menu to see the
corresponding details. When a new path is selected and added, it creates a new internal
frame in the main window frame. These internal windows are adjustable, resizable as
well as closable, as shown in Fig. 3. From this, a comparison can be made among any
number of paths. The layout of the internal path window in Fig. 3 is as followed. On
the bottom right side is a zoomable area where the selected path is drawn from the
recorded data. It is possible to zoom in and out on every drawn path, by scrolling the
mouse wheel, to magnify or minimize individual points. For scroll events, it displays
the scrolled number of pixels. Furthermore, on the bottom of the window, the GUI
provides a table which displays the overview of the data. A tabular display of the
individual features and values of each point in the path is also provided. The drawings
of the paths are scaled based on the size of the window. The stored page resolution of
the browser during the recording is also provided. This visualization process can be
instrumental in the reconstruction of user-event which can be used to observe user
activity. This can be particularly useful in tracing the action of a user in the event of
insider misuse and investigation. In addition to the probability of attributing a user, the
inclusion of the visualization process can be used to trace the exact path, within a
specified period of an event.

Fig. 2. Overview of visualization of all paths in a recording. Every colored dot displays a start
and end point of a path. The bigger black dot (in the center) displays the start point of the whole
recording. The blue points are displaying a click, red is for an expired session and green is for a
movement. (Color figure online)

A Web-Based Mouse Dynamics Visualization Tool 73



3.4 Experimental Set-up

To further validate the feasibility of the developed tool, an experimental process was
set up in a computer laboratory. Eleven volunteers were recruited for this purpose. The
laboratory comprises numerous workstations, each with the same configuration of
hardware, software, and each operates a Deep Freeze enterprise software, which
restores the workstation to a pristine state, upon workstation reboots. The forensic-tool
developed for this research was installed on the workstation for three consecutive days.
Initial evaluation of the capability of forensic-tool was assessed. Users were monitored
for action taken and the resultant output from the forensic-tool was evaluated. The
result showed consistency between the observation and the action of the users. Three
users participated in the lab section, while the other eight users installed the
forensic-tool on their personal computers. Each user was asked to freely surf the web
using either a Chrome or Mozilla Firefox browser, based on a given list of news
websites. The tool works on all operating systems. Free web surfing was encouraged so
as to mimic, as nearly as possible, a real life browsing behavior. This is in contrast to a
fully controlled experimental environment. A controlled environment is asserted to
prevent the influence of extraneous variables. The notion of the introduction of
extraneous variables, as suggested by [3], is deemed non-practicable in the behavioral
analysis of human action. In practice, human actions are generally guided by
self-interest and discretion which cannot be limited to a controlled environment. Using
the behavioral features defined in Table 2, feature extraction was performed on the
dataset from all users, followed by a pattern observation process. Summary of the data
description is presented in Table 3. For each path, the feature summarized in Table 2
were extracted to generate individual datasets.

Fig. 3. Working space of the forensic-visualization tool with four open windows to compare
movement paths of a user. Three (left and bottom right) displaying the overall path information
and one (right top) displays a detailed table of the first path.

74 D. Ernsberger et al.



The pattern identification mechanism for a user attribution process was carried out
in two phases. In the first phase, pattern consistency; intra-user pattern consistencies,
was observed for all users (excluding user-1, who had only one session of data) based
on the daily activity, using a non-supervised machine learning method: the X-Means
(an extension of K-means) clustering algorithm. In order to perform the cluster anal-
ysis, feature selection was carried out on the 37-features defined in Table 2. Based on
this dimension reduction process, 8-base-features were observed to provide a signifi-
cant discriminatory factor for the intra-user analysis. These include the duration,
number of points, flight, length, and weight of path. Thereafter, inter-user variation
(through dissimilarity in the pattern) observation based on a supervised classification
process was carried out on the three laboratory users (hereinafter referred to as the
Tier-2 dataset, using each user as the class). The study explored a nonlinear support
vector machine (LibSVM), artificial neural network, C4.5 decision tree and Ran-
domForest classifiers. These classifiers were selected due to their general usage in
mouse dynamics studies [3, 18]. This exploration was carried out in the entire feature
space as described in Table 2, with the assertion that such process can harness the
semantic relation in the data, in addition to its potential to harness the syntactic relation
in the data.

4 Results and Analysis

On the evaluation process, an optimization process was performed on the clustering
algorithm. A Manhattan-distance (also referred to as the taxicab geometry) was used
for the cluster optimization. X-means successfully generated a single cluster (0% error
rate) for one user (user 3: U-3), while other users show significant intra-cluster simi-
larity as shown in Table 4. The table shows the total number of observed cluster for
each user. The number of the class represents the different dataset for each user.

Table 3. Summary of the data

Users Duration (min) Number of instance (path)

1 30 31
2 90 158
3 60 67
4 120 173
5 90 147
6 150 407
7 150 434
8 150 259
9 250 309
10 150 321
11 90 977

A Web-Based Mouse Dynamics Visualization Tool 75



In order to study the inter-user dissimilarity, the supervised classifiers were applied
to the laboratory users. The choice of the laboratory users was based on the uniform
experimental condition across device and operating condition. RandomForest was
subsequently observed to perform relatively better than the other explored classifiers on
the Tier-2 dataset, extracted from the laboratory users. The true acceptance rate for the
users are 0.935, 0.938 and 0.439 for users U-1, U-2 and U-3 respectively. Conversely,
the false acceptance rate of 0.034, 0.361, and 0.035 was obtained for Users U-1, U-2
and U-3 respectively. Based on class distribution, the highest class prior probability of
53.81% and an average accuracy of 78.1% was obtained. The analysis was carried out
on a 10-fold cross-validation process. The obtained result of the classification process
falls below the European standard for commercial biometrics. However, this result
shows a promising technique through which user attribution can be established.

5 Discussion

The result from the experimental process shows that the forensic-tool was able to
capture every mouse action of each user. Furthermore, the visual representation shown
in Fig. 3, presents a very flexible process of visualizing the mouse activity of a user.
A graphical plot of the features can also be carried out on the user-interface of the tool.
These characteristics further extend the tool in examining individual difference and
similarity, at a higher abstraction. On a lower abstraction, the tools support the pre-
processing and generation of mouse dynamics features. The features considered in this
study attempt to expand the repository of mouse dynamics attributes. More specifically,
the specific features considered include the path characteristics, flight duration, and the
overall weight of the path.

These features were observed to significantly influence the observed accuracy of
the classifiers. In terms of the behavioral characteristic feature, which can be adapted
for user attribution, the path characteristics present a measurable and reliable feature.
The result from the unsupervised learning process shows a very high probability of the
existence of a unique behavioral signature for each user. Such signature could represent
the principal component needed for user attribution based on mouse dynamics. The
result of the unsupervised learning approach also debunks the assertion that an
uncontrolled experimental environment is not suitable for user authentication research
based on mouse dynamics. Based on the empirical assertion and fundamental
assumption on variables that could induce experimental bias on mouse dynamics study,
the current study heeded several recommendations from [18] on the extraneous vari-
ables that could influence mouse behavior.

Table 4. Result of intra-user similarity

User U-2 U-3 U-4 U-5 U-6 U-7 U-8 U-9 U-10 U-11

No. of class 3 2 4 3 5 5 5 7 5 3
No. of observed cluster 2 1 2 2 2 2 2 2 2 2
Cluster similarity (%) 87 100 83 83 87 83 80 81 93 89

76 D. Ernsberger et al.



This includes the type of mouse device, screen resolution, acceleration setting of a
computer system, the perpetual delay caused by the load on the CPU, and properties of
the surface area on which the mouse is placed. The psychological state of the user was
not considered in this study. However, the users were not subjected to any experimental
pressure. In addition, the study assumed that the list of the website used in this study
will not inject any negative psychological episode on the respondents. To prevent data
loss due to encryption protocols, the experimental websites considered in this study
were all HTTP-based websites. This is because the HTTPS does not work with the
developed JavaScript of the forensic-tool.

The application of the findings of this study in a digital forensic readiness frame-
work falls within the architecture sub-module of the forensic infrastructure in Fig. 4, as
asserted in [12]. A mouse dynamics signature database was introduced as an addition to
the initial framework as shown in Fig. 4. The integration of the mouse dynamics
signature database into the framework will complement other existing forensic archi-
tectures. This could include the installation of the forensic-tool on the existing hard-
ware of an organization. The preparation of such contingency policy remains a viable
complementary process to a postmortem forensic mechanism.

5.1 Limitation and Future Works

Given that the baseline for FAR and FRR are 0.001 and 1.00 respectively [3], it is
obvious that the obtained accuracy based on the Tier-2 dataset is relatively low. This
can be attributed to the relatively smaller sample size of respondents, shorter experi-
mental duration, and smaller number of experimental sections. In terms of features, the

Fig. 4. Digital forensic readiness framework (adapted from [12])

A Web-Based Mouse Dynamics Visualization Tool 77



study could integrate discriminative features such as double click, drag and drop, event
thresholding, and other probable behavioral attributes. Considering that the
HTTPS-based website is gaining wider adoption in typical client-server communica-
tion, the non-inclusion of an HTTPS server to capture a secure-web-page-response is
one of the major limitations of this study. In defining the path delimiter, the study
utilized a 10-s threshold. An adaptive threshold could be developed in future works. In
terms of the development of behavioral signature and the eventual development of an
updateable database for DFR, future works will explore modalities towards the
extraction of unique behavioral fingerprints based on mouse action which can be
adapted for user attribution. A reliable user attribution model will be considered in
future works. Models that aim to establish a reliable mechanism for a user identification
process is a critical component in this area of forensic analysis.

6 Conclusion

On a general note, mouse dynamics satisfy the underlying characteristics – reasonably
permanent, easy to collect and easy to measure – of biometric modalities for user
identification. Studies on biometric verification, whether on physiological or behavioral
topics, require sufficient sample sizes for the effective evaluation of their parameters
and of their performance. The tool developed in this study presents a step towards the
actualization of the goal of establishing mouse dynamics research for user identifica-
tion. This, in turn, will create a platform for an effective user-attribution process in the
digital forensic analysis. The findings presented in this manuscript are part of an
ongoing research which aims to provide a reliable model for the user attribution process
based on mouse dynamics.

References

1. Bailey, K.O., Okolica, J.S., Peterson, G.L.: User identification and authentication using
multi-modal behavioral biometrics. Comput. Secur. 43, 77–89 (2014)

2. Chudá, D., Krátky, P., Tvarožek, J.: Mouse clicks can recognize web page visitors! In:
Proceedings of 24th International Conference on World Wide Web, pp. 21–22 (2015)

3. Shen, C., Cai, Z., Guan, X., Du, Y., Maxion, R.A.: User authentication through mouse
dynamics. IEEE Trans. Inf. Forensics Secur. 8(1), 16–30 (2013)

4. Kasprowski, P., Harezlak, K.: Fusion of eye movement and mouse dynamics for reliable
behavioral biometrics. Pattern Anal. Appl., 1–13 (2016). https://doi.org/10.1007/s10044-
016-0568-5

5. Khalifa, A.A., Hassan, M.A. Khalid, T.A. Hamdoun, H.: Comparison between mixed binary
classification and voting technique for active user authentication using mouse dynamics. In:
Proceedings of - 2015 International Conference on Computing Control Networking,
Electronics and Embedded Systems Engineering, ICCNEEE 2015, pp. 281–286 (2016)

6. Traore, I., Woungang, I., Obaidat, M.S., Nakkabi, Y., Lai, I.: Combining mouse and keystroke
dynamics biometrics for risk-based authentication in web environments. In: Proceedings of
4th International Conference on Digital Home, ICDH 2012, pp. 138–145 (2012)

7. Traore, I., Woungang, I., Obaidat, M.S., Nakkabi, Y., Lai, I.: Online risk-based
authentication using behavioral biometrics. Multimed. Tools Appl. 71(2), 575–605 (2014)

78 D. Ernsberger et al.

http://dx.doi.org/10.1007/s10044-016-0568-5
http://dx.doi.org/10.1007/s10044-016-0568-5


8. Bevan, C., Fraser, D.S.: Different strokes for different folks? Revealing the physical
characteristics of smartphone users from their swipe gestures. Int. J. Hum. Comput. Stud. 88,
51–61 (2016)

9. Alzubaidi, A., Kalita, J.: Authentication of smartphone users using behavioral biometrics.
IEEE Commun. Surv. Tutorials 18(3), 1998–2026 (2016)

10. Olivier, M.S.: On metadata context in database forensics. Digit. Invest. 5(3–4), 115–123
(2009)

11. Adeyemi, I.R., Razak, S.A., Azhan, N.A.N.: A review of current research in network
forensic analysis. Int. J. Digit. Crime Forensics 5(1), 1–26 (2013)

12. Elyas, M., Ahmad, A., Maynard, S.B., Lonie, A.: Digital forensic readiness: expert
perspectives on a theoretical framework. Comput. Secur. 52, 70–89 (2015)

13. Valjarevic, A., Venter, H.S.: Towards a digital forensic readiness framework for public key
infrastructure systems. In: 2011 Information Security South Africa, pp. 1–10 (2011)

14. Anjomshoa, F., Aloqaily, M., Kantarci, B., Erol-Kantarci, M., Schuckers, S.: Social
behaviometrics for personalized devices in the internet of things era. IEEE Access 5, 12199–
12213 (2017)

15. Alsultan, A., Warwick, K.: Keystroke dynamics authentication: a survey of free-text
methods. Int. J. Comput. Sci. 10(4), 1–10 (2013)

16. Pisani, P.H., Lorena, A.C.: A systematic review on keystroke dynamics. J. Brazilian
Comput. Soc. 19(4), 573–587 (2013)

17. Saevanee, H., Clarke, N., Furnell, S., Biscione, V.: Continuous user authentication using
multi-modal biometrics. Comput. Secur. 53, 234–246 (2015)

18. Jorgensen, Z., Yu, T.: On mouse dynamics as a behavioral biometric for authentication. In:
Proceedings of the 6th ACM Symposium on Information, Computer and Communications
Security - ASIACCS 2011, pp. 476–482 (2011)

19. Gamboa, H., Fred, A.: A behavioural biometric system based on human computer
interaction. In: Proceedings of SPIE - International Society Optical Engineering, vol. 5404
(i), pp. 381–392 (2004)

20. Pusara, M., Brodley, C.E.: User re-authentication via mouse movements. In: Proceedings of
2004 ACM Workshop on Visualization and Data Mining for Computer Security,
VizSECDMSEC 2004, pp. 1–8 (2004)

21. Gamboa, H., Fred, A.L.N., Jain, A.K.: Webbiometrics: user verification via web interaction.
In: 2007 Biometrics Symposium on BSYM (2007)

22. Ahmed, A.A.E., Traore, I.: A new biometric technology based on mouse dynamics. IEEE
Trans. Dependable Secur. Comput. 4(3), 165–179 (2007)

23. Barske, D., Stander, A., Jordaan, J.: A digital forensic readiness framework for South
African SME’s. In: Proceedings of 2010 Information Security South Africa Conference ISSA
2010 (2010)

24. Bell Global Technologies, “RunJS - Run Javascript on Page Load.”
25. Noe, R.: Execute JS
26. Sedlar, U., Bešter, J., Kos, A.: Tracking mouse movements for monitoring users’ interaction

with websites: implementation and applications. Elektrotehniski Vestnik/Electrotechnical
Rev. 74(1–2), 31–36 (2007)

27. HTTP access control (CORS)
28. Lakshminarayanan, K., Adkins, D., Perrig, A., Stoica, I.: Taming IP packet flooding attacks.

ACM SIGCOMM Comput. Commun. Rev. 34(1), 45–50 (2004)
29. Martín-Albo, D., Leiva, L.A., Huang, J., Plamondon, R.: Strokes of insight: user intent

detection and kinematic compression of mouse cursor trails. Inf. Process. Manag. 52, 989–
1003 (2015)

30. Adeyemi, I.R., Razak, A.S., Salleh, M.: A psychographic framework for online user
identification. In: International Symposium on Biometrics and Security Technologies
(ISBAST), pp. 198–203 (2014)

A Web-Based Mouse Dynamics Visualization Tool 79



Digital Forensics Tools I



Open Source Forensics for a Multi-platform
Drone System

Thomas Edward Allen Barton and M. A. Hannan Bin Azhar(&)

Computing, Digital Forensics and Cybersecurity,
Canterbury Christ Church University, Canterbury, UK
{tb1150,hannan.azhar}@canterbury.ac.uk

Abstract. Drones or UAVs (Unmanned Air Vehicles) have a great potential to
cause concerns over privacy, trespassing and safety. This is due to the increasing
availability of drones and their capabilities of travelling large distances and
taking high resolution photographs and videos. From a criminological per-
spective, drones are an ideal method of smuggling, physically removing the
operator from the act. It is for this reason that drones are also being utilised as
deadly weapons in conflict areas. The need for forensic research to successfully
analyse captured drones is rising. The challenges that drones present include the
need to interpret flight data and tackling the multi-platform nature of drone
systems. This paper reports the extraction and interpretation of important arte-
facts found in the recorded flight logs on both the internal memory of the UAV
and the controlling application, as well as analysis of media, logs and other
important files for identifying artefacts. In addition, some basic scripts will be
utilised to demonstrate the potential for developing fully fledged forensics tools
applicable to other platforms. Tests of anti-forensics measures will also be
reported.

Keywords: Drone forensics � Open source � Mobile forensics � DJI Phantom
Android � UAV � Anti-forensics

1 Introduction

Drone crime is a recent phenomenon. In the UK, there was a sharp rise in reported
incidents between 2014 and 2015 [1]. The most widespread crime being committed is
the transport of contraband, also known as smuggling [1, 2]. The capabilities of drones
to carry items [3] and their remote operation makes drones ideal for this type of crime,
which has become prolific in the UK and around the world [4]. The cost of even a
high-end drone is far outweighed by the inflated value of the cargo [5, 6] meaning
drones can be discarded after use. This type of crime has serious impact, and drones
used in crime will need to be forensically analysed if caught or shot down. The
potential for the misuse of drones to disrupt large scale operations as well as assist in
major crime means the identification of suspects is of paramount importance in pre-
vention of further crime. The vulnerability of many sensitive targets to a drone attack
should not be ignored, again raising the need for forensic research to successfully
analyse captured drones.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
P. Matoušek and M. Schmiedecker (Eds.): ICDF2C 2017, LNICST 216, pp. 83–96, 2018.
https://doi.org/10.1007/978-3-319-73697-6_6



Open Source techniques provide a number of advantages as they are flexible and
meet guidelines on the admissibility of evidence [7]. This paper will cover the use of
open source tools and development of some basic scripts to aid forensic analysis of a
multi-platform drone system, which include not only the UAV itself but the accom-
panying mobile platform, application and controlling hardware. The UAV system
chosen for analysis was the DJI Phantom 3 Professional (DJI) [8], a quadcopter drone
with a variety of features and capabilities. Among commercially available drones, DJI
has taken the largest market share of 36% [9] with its Phantom series setting the
benchmark for professional drone use. The extensive capabilities of the Phantom
include vision, GPS, automatic flight and homing, obstacle avoidance and long range
control. These capabilities give the Phantom the potential to be used in various drone
related crimes. The remainder of the paper is organised as follows: Sect. 2 describes
literature reviews on crimes involving drones and in the area of drone forensic analysis,
including techniques used for data extraction and interpretation. Section 3 discusses the
methodology used to analyse the UAV and accompanying mobile platform. Section 4
reports the results of analysis, finally Sect. 5 concludes the paper.

2 Literature Review

Although drones are a relatively new technology, some literature exists on both the
forensic analysis and their cybersecurity implications. Another technology that goes
hand in hand with drones is cameras, implemented either as static recording devices, or
for live streaming (sometimes known as vision). This raises a host of privacy concerns
for organisations, as well as the public. Many different areas of airspace in the UK are
designated no-fly zones [10] because they are considered sensitive areas – these include
sites such as airports, military bases and power stations. The ability of drones to capture
pictures and videos of operations in these sites presents a significant security threat. As
well as the security of infrastructure, individual security may also be compromised. Of
the reported incidents mentioned [1], many were simply concerns for public safety. As
well as these general incidents, drones are also being used to aid traditional crime, a
common example of which is burglary. Using drones, a burglar can survey a potential
target site for entrances or exits and security features such as dogs, alarms and cameras
in a process known as “casing” or keep an eye out for police [11]. Drones are being
utilised as deadly weapons in the countries involved in conflicts [12]. A set of videos
released by various forces and militants showed the use of commercially bought and
homemade drones as bombers, hitting soft targets such as groups of exposed soldiers
and vehicles with customised grenades and High Explosive Dual Purpose (HEDP)
rounds [12]. These type of attacks are mostly performed with hovering-type drones,
with modifications to add the capacity of dropping bombs [12].

Some important aspects of UAV forensic analysis were highlighted including
establishing flight data and establishing ownership [13]. The identification of mobile
devices, for comparison, is aided by the presence of artefacts such as account names
and details whereas it is possible to operate a drone with little or no identifying artefacts
left on it. The digital forensic investigator will also have to interpret recorded flight
data. In order to successfully re-create the actions taken by the drone, the understanding

84 T. E. A. Barton and M. A. H. B. Azhar



of timestamped latitude, longitude and altitude measurements is required, as well as
speed, battery level and other data from a host of on-board sensors. A drone system is
comprised of a number of different hardware platforms, each containing different
artefacts. Some of these component platforms are shown to have physically identifiable
artefacts such as serial numbers printed on the casing, which can later be matched up to
artefacts recovered using digital forensics [14]. Artefacts related to flight data were
successfully recovered from various components of the DJI Phantom 2 Vision+,
including the controller, mobile application and the UAV itself [15]. Analysis of
recorded media such as photos and videos, stored on the UAV’s removable SD card,
showed they possessed Exchangeable Image Format (EXIF) metadata that included
GPS readings. This can be used in the absence of flight logs, for example if the images
were copied to a separate storage media or the UAV was damaged in some way. An
analysis of the DJI Phantom 3 Standard version revealed multiple security vulnera-
bilities [16], as well as establishing how the various components of the DJI Phantom 3
operate with each other. The controller, in this case, is essentially a range extender for
sending commands to the UAV via 5 GHz radio signal. The smartphone running the
DJI GO application connects to the controller via 2.4 GHz Wi-Fi or by USB con-
nection, which provides access to a network created between the various components.
Accessing this network may provide useful in acquiring data, where chip-off analysis is
not available [16].

Open source and custom forensics tools provide some significant advantages over
commercial toolkits, primarily the ability to be tested by the open source community,
meeting what are known as the “daubert” guidelines for the admissibility of evidence
provided by expert witnesses [7]. Furthermore, custom tools created by the forensic
investigator to perform a specific job are extremely adaptable and, where successful,
can be used again in other cases involving similar technology. The rising cost of
commercial toolkits can be a barrier to use [17], which makes a stark comparison to the
freedom of open source tools. However, commercial status does offer the advantage of
support in the form of updates, bug reporting and additional documentation. While
previously reported work [13–16] focussed on the extraction of automated flight plans
and analysis of media, the investigation presented in this paper will primarily focus on
the extraction and interpretation of wider range of important artefacts found both on the
internal memory of the professional edition of the Phantom 3 and the controlling
application with the use of open source tools. Anti-forensics measures will also be
tested.

3 Methodology

The study reported in this paper focusses on the DJI Phantom 3 Professional Edition [8]
and the accompanying mobile platform - a Motorola Moto G 3rd Generation, as shown
in Tables 1 and 2. The choice of mobile platform in this case reflects the current state of
the worldwide smartphone market, which is dominated by Android [18]. Another
reason Android was chosen was its huge online developer community, which stems
from its open source status. A custom community built version of Android, Cyano-
genMod [19], was installed on the platform prior to analysis, which included features

Open Source Forensics for a Multi-platform Drone System 85



such as forensically sound rooting without extra modification. The scenario creation
was performed before rooting took place. CyanogenMod is based on universal
open-source Android software, tested to the same standards as stock operating systems
[20]. A secondary platform - a Samsung Galaxy S4 Mini running a stock Android 4.4.4
operating system was tested alongside the main platform to ensure consistency between
results, with the same version of the DJI GO application installed. The secondary
platform was rooted using a rootkit, Kingo Root [21], which exploits weaknesses in the
operating system - a method commonly used on Android systems where native rooting
is not supported [22]. Upon examination, there was no noticeable difference in the data
structures created by both applications on the internal storage media of the platforms.

In order to test the devices and generate artefacts, a scenario must be created using
the devices. This is a necessary and established part of forensic research [22]. A sce-
nario, in a digital forensics context, is a simulation of a crime using the device to be
tested. Because drones, as mentioned earlier, have a great potential to cause concerns
over privacy, trespassing and safety, all tests of the devices were to follow legal
guidelines on drone safety [10]. The location in which the flights were conducted was
suitable for safely testing the capabilities of the drone away from congested areas, and
possessed some useful features such as tall building structures and large open space.
A chosen standard flight path, consisting of four waypoints within an approximate
150 m radius was established. A number of flights were conducted testing both the
manual and automatic function of the drone.

The analysis performed on the UAV and the mobile platform was artefact-driven.
Artefacts related to drones were divided into three categories relating to the identifi-
cation of suspects, interpretation of flight data and the extraction of artefacts from
recorded media. The main identification aspect was the method of control of the drone
via a smartphone. The DJI Phantom uses a physical controller in conjunction with
commands from the smartphone, transmitted to the drone over radio [8]. These
methods of control leave footprints on the drone. Identifying artefacts such as MAC
(Media Access Control) address, phone model, operating system etc. will be crucial in
reducing a suspect pool in investigations.

Table 1. Drone.

Name Price Weight Camera resolution Range

DJI Phantom 3 Professional Edition £699.99 1280 g 4K (12 Megapixels) 5 km

Table 2. Mobile platform.

Name Model
number

Android
version

CyanogenMod
version

Kernel version Installed
application

Motorola Moto G
3rd Generation

Moto G 5.1.1
(Lollipop)

12.1 (Osprey) 3.10.49-g55f6ac8 DJI GO
v3.1.4

Samsung Galaxy
S4 Mini

GT-I9195I 4.4.4
(Kitkat)

N/A 3.10.28-5334500 DJI GO
v3.1.4

86 T. E. A. Barton and M. A. H. B. Azhar



Flight data was collected during flight via various sensors present in the drone
platform including but not limited to GPS, altitude, speed and battery levels. These can
reveal details about the flight of the drone that may prove crucial in an investigation, for
example the “home” GPS co-ordinate is where the drone took off. Another example is
in the event of a drone crash, as battery levels can be correlated with the time that the
drone failed.

Media includes any photos or videos taken by the device’s camera. The use of
drones as bombers mentioned earlier [12] was all recorded via the drone’s on-board
camera in order to produce videos, and the capture and analysis of such a bombing
drone would be able to reveal important intelligence. The DJI phantom is equipped
with a high-end camera capable of high resolution photos and videos, making it
suitable for this kind of activity.

Because the analysis performed comprised UAV systems, mobile devices, and
removable storage, a variety of file systems and interfaces were encountered. Devel-
opment environments for forensics tools include scripting tools for the Linux operating
system such as Bash, Perl and Python, as well as compiled programming languages
such as “C”. A forensic workstation running Kali, a distribution of Linux, with several
forensics and cybersecurity tools was used, as listed in Table 3.

3.1 Mobile Forensics

Mobile forensics was performed to analyse the data of the DJI GO application [23],
which was installed via the Android app store. The test mobile platform was a Motorola
Moto G 3rd Generation running a customised version of Android, CyanogenMod
version 12.1 [19]. This operating system allows for extensive customisation including
rooting of the device without needing to subvert operating system security. With the
customised operating system, rooting was achieved simply by activating root requests
from the developer settings of the phone. Rooting is necessary to acquire portions of
the Android internal storage that are protected by the operating system [22], it is the
most forensically sound way of acquiring data when chip-off analysis is not available.

Table 3. Forensic utilities.

Computer used Operating system Utilities

Toshiba Satellite L450D Kali
Linux
Rolling
Update

ls: Listing
dd: Data Dump
mount: Mount command
dmesg: System Logging
file: File signature identification
script: Terminal recording feature
arp: Address Resolution Protocol
telnet: Remote Access
uname: Version Identification
cp: Copy
cat: Print file contents
bash: Scripting environment

Open Source Forensics for a Multi-platform Drone System 87



After connecting the test platform to the forensic workstation via USB, access was
established through an instance of Android Debug Bridge [24]. Running the command
“ls/dev/block/bootdevice/by-name” gave a listing of the mounted partitions on the
device, as shown in Fig. 1.

The mount point for the “userdata” partition, which contains all user-created data
including application data, is shown as “/dev/block/mmcblk0p42”. A forensic image of
this partition was created using the “dd” command, as shown in Fig. 2. This is a type of
physical acquisition, which creates an exact copy of the digital storage media. Before this
could take place, a few conditions needed to be met. Firstly the ADB access needed to
have root permissions, which was granted by an operating system root request. Secondly,
the SD card used to store the image was formatted in the ExFAT (Extended FAT) file
system, which has no restrictions on file sizes. Once completed, this created an image on
a removable microSD card, which was copied to the forensic workstation for analysis.

3.2 UAV

A number of flights were performed with the Phantom, as listed in Table 4. The source
of this list is the practical log of flights taken on the day rather than data obtained from
analysis of the UAV. Once the flights had been performed, the DJI was taken back to a
forensics lab for analysis. The primary method of data storage for the DJI Phantom is the
removable micro SD card slot. During the test flight, a 16 GB micro SD card was
inserted, which was provided with the UAV itself. To analyse this media, the card was
mounted to the forensic workstation and an image was created using the “dd” command.
This is a forensically sound method of acquisition as the device does not need to be

Fig. 1. Sample listing of mounted partitions on Android platform.

Fig. 2. Forensic imaging of “mmcblk0p42” partition using “dd” command.

88 T. E. A. Barton and M. A. H. B. Azhar



powered on. An initial check of the image using the Linux “file” command shows the
card is formatted in the 32 bit File Allocation Table (FAT32) file system. The SD card’s
format is commonly found on many mass storage devices and it was analysed using
various Linux utilities. The recorded media produced by the phantom stores some useful
information, including GPS data, in the EXIF portion of the file. In order to interpret this
data, the command line tool “exiftool” [25] was used. Data extracted from the UAV’s
mass storage devices was correlated with artefacts extracted from the DJI GO mobile
application, to highlight links between the controlling application and the UAV.

Along with the removable storage, the Phantom also has an internal storage media,
a micro SD card, glued on to the centre board of the UAV [14]. To access this storage
device, the UAV must be switched on and put into “Flight Data Mode” through the
DJI GO application. The UAV was then connected to the forensic workstation via USB
and the internal storage was mounted. Analysis of the file system using “fsstat” [26]
showed the drive was formatted in FAT32, and a forensic image of the drive was
acquired using the “dd” command. Upon examination, the drive contained a number of
“FLYXXX.DAT” files - detailed flight logs, created by the Phantom’s internal oper-
ating system and stored in a proprietary format [14]. These files were logically copied
to a removable storage device for further analysis. There are many online services
offering interpretation of these files, however uploading evidence to a third party server
is not appropriate for a forensic investigation or intelligence purposes, so a tool
designed to interpret and visualise these files, “CsvView” [27] was downloaded and

Table 4. Flight record.

Flight Start
time

Waypoints End
time

Description, notes and recorded
media

1 13:57 Travelled a short distance north
of the home point before
returning

13:18 Test flight for compass calibration

2 14:05 Waypoint 1: 14:06
Waypoint 2: 14:07
Waypoint 3: 14:12
Waypoint 4: 14:14

14:15 Manual flight, GPS assisted, 1 photo
and one short video taken at each
waypoint

3 14:17 Automatic reconnaissance flight
Auto land (return to home) 14:22

14:22 Automatic flight, GPS assisted,
using DJI’s built-in Point Of Interest
(POI) function, which makes the
drone rotate around a specified
point. Video was recorded the entire
flight

4 14:34 (Same waypoints at flight 2, time
not recorded due to operator
concentrating on flight)
Manual landing

14:37 In this flight, foil was attached to the
drone covering the GPS module.
The drone was operated completely
manually independent of GPS. This
simulated the intentional
obfuscation of GPS signals as
mentioned in related work [15, 16]

Open Source Forensics for a Multi-platform Drone System 89



installed to a separate machine running Windows, connected to the internet. The tool
was established with a Google Maps API key, allowing it to download imagery from
the Google Maps database.

4 Results

This section covers the key findings from the analysis described in Sect. 3. The results
are broken down into three different areas of interest; the removable SD card used by
the UAV, the internal storage of the UAV and the results of the mobile forensic
analysis on the DJI GO application.

4.1 SD Card

The DJI Phantom micro SD card image acquired as described in Sect. 3.1 was mounted
to the forensic workstation. Output from the “tree” [28] command lists the files and
directories of this image. There are two directories, DCIM and MISC, as shown in
Fig. 3. The DCIM directory contains a wealth of .JPG, .DNG and .MP4 files, all of
which are common media file formats.

The file found under the LOG directory was a firmware upgrade log for the UAV. It
refers to the file “P3S_FW_v01.10.0090.bin”, located on the root of the SD card,
meaning that file is the firmware update itself. Other useful information in this log
includes a version history of the firmware, up to the current version. The THM
directory appears to contain thumbnails generated from each flight. To analyse the
EXIF Data of the stored media files, “exiftool” [25] was run against the
DCIM/100MEDIA directory. On initial inspection, GPS co-ordinates are stored under a
“GPS Position” EXIF tag. To automate the process of extracting the GPS co-ordinates

Fig. 3. Sample output of “tree” command.

90 T. E. A. Barton and M. A. H. B. Azhar



and to create a timestamped GPS flight log, a simple script was created, as shown in
Fig. 4. The script executes “exiftool” on all files in the directory, formatting the GPS
data to 6 decimal places. The output is then filtered to only contain the GPS Position
and Create Date, which denotes when the picture or video was taken.

4.2 Internal Storage

The files extracted from the internal storage of the DJI Phantom were analysed using
the “CsvView” tool [27]. The DJI Phantom 3 Operating system begins recording flight
data from the moment the UAV is switched on. This meant as flights 1–3 listed in
Table 4 were performed in the same session of drone activity, the data for those flights
were recorded in one file, “FLY012.DAT”. After processing using “CsvView” [27],
which converts the file from a “.DAT” to a “.csv” format, the flights were visualised
using the “GeoPlayer” function, which utilised the Google Maps API Key mentioned
in Sect. 3.2. A copy of this visualisation is shown in Fig. 5, with each flight and
waypoints 1–4 and the point of interest (POI) highlighted. Because it is constantly
recorded, the GPS data alone is not enough to distinguish between individual flights.

The DJI Phantom flight recorder produces a host of other artefacts. Plotting these
artefacts against each other using the “CsvView” [27] tool provides a comprehensive
understanding of the actions taken by the drone. Figure 6 shows the flight time (green),
which remains constant under periods of non-activity, increasing in a linear function
when the drone is in flight, as well as the barometric altitude (blue) and the total voltage
level of the battery (purple) of the UAV. When compared with each other, it can be

Fig. 4. Script to retrieve GPS data from media EXIF information.

1 

2 

3 

4 POI

Fig. 5. Annotated visualisation of flights 1–3.

Open Source Forensics for a Multi-platform Drone System 91



deduced that there was three distinct periods of movement and altitude changes by the
drone, were interpreted as flights. The possible artefacts recoverable from these logs are
extremely detailed, and are more than necessary to recreate a flight.

The file “FLY014.DAT” file was identified as being the log for the Flight 4, listed in
Table 4. The “GeoPlayer” visualisation for this flight showed that the GPS data recorded
was mostly garbage data that had no relation to the actual flight, as shown in Fig. 7.

According to the operator’s previous experience, the recommended amount of GPS
signals was about 11, but with the foil obstructing the unit, the Phantom struggled to
receive enough GPS data to successfully triangulate a position. To confirm this was the
case, the flight time and “numSats” (number of satellites) readings from the flight logs
were compared, and showed that during flight, the “numSats” reading was 0, as shown
in the time period (X-Axis) of 0 to 370 in Fig. 8. This is interpreted as a lack of

Fig. 6. Flight time, barometric altitude and battery voltage. (Color figure online)

Fig. 7. Garbage GPS data from flight 4.

Fig. 8. GPS health plotted against flight time for flight 4.

92 T. E. A. Barton and M. A. H. B. Azhar



available satellites for the UAV to receive data, which was true when the drone was in
flight, as described by the flight time. The foil was removed after the flight due to fears
of overheating the drone through obstruction of the cooling vents. The data shown in
Figs. 7 and 8 confirms findings from related work [15] that the GPS can be obstructed
simply by covering the module with aluminium foil. It is quite likely that in a crime
scenario, this measure would be taken to prevent later forensic analysis of the flight
path, or to evade no fly zones. In this case, investigators must instead rely on other data
from the flight log. The DJI Phantom 3 Professional is equipped with accelerometers,
which record the acceleration in an axis relative to the UAV in metres/second2.
Accelerometer measurements can be used to reconstruct a flight in 3D space, relative to
an arbitrary home point. Inspection of the accelerometer readings showed a period of
movement while the UAV was in flight. While it would be possible to perform analysis
of this manually, the frequency of measurements taken by the Phantom makes it
unreasonable, and it would be better to develop a tool to do this.

4.3 DJI GO Application

Artefacts from the DJI GO application [23] were located in different locations within
the “userdata” partition of the Android test platform, which was acquired using
methods described in Sect. 3.1. A list of these directories is shown in Table 5.

Table 5. Useful directories from the DJI GO application.

Path Type of
artefact

Description

/media/0/DJI/dji.
pilot/LOG/CACHE

Flight data Contains a number of logs relating to drone
activity

/media/0/DJI/dji.
pilot/LOG/CACHE/NFZ

Flight data This is a log of activity relating to the DJI’s
built-in no fly zone function, and contains
information such as GPS location

/media/0/DJI/dji.
pilot/LOG/ERROR_POP_LOG

Flight data An error log from the UAV

/media/0/DJI/dji.
pilot/DJI_RECORD

Media A number of video taken during flight
named as a date in the format
“YYYY_MM_DD_ hh_mm_ss” and stored
with the “mp4” file extension. For each
video file, there is also a corresponding text
file, which contains GPS data,
manufacturing information and capture
dates

/media/0/DJI/dji.
pilot/FlightRecord

Flight data,
personally
identifying
information,
serial number

Flight data relating to a number of flights.
A string search revealed the presence of the
“cccu phantom” string, which was the name
assigned to the UAV during setup

/media/0/DJI/dji.
pilot/CACHE_IMAGE

Media Thumbnails of various images and videos
taken during flight, seemingly random

Open Source Forensics for a Multi-platform Drone System 93



The serial number for the UAV can be extracted from the contents of the DJI GO
application and linked to track the specific device used in flight. The data reveals
information about the UAV’s internal system operations such as updates and errors.
A log is also kept of instances when the UAV encountered a no fly zone (NFZ) during
flight. Media is present as copies of videos captured during flight are locally stored by
the application. Flight data files with the “.txt” extension were extracted from the
“FlightRecord” directory. The flight record files extracted from the “FlightRecord”
directory were analysed using the “CsvView” [27] tool for comparison to the “.DAT”
flight logs extracted from the Phantom’s internal storage. Upon inspection, the files
were confirmed to be flight data stored in a similar format to the “.DAT” files, but with
notable differences. Firstly, the resolution of the recorded data is much lower, with the
DJI GO application flight records being between 1 Kb and 1 Mb, whereas the “.DAT”
files from the UAV were much larger, often several hundred megabytes. Secondly, files
were recorded per flight from take-off to landing rather than per session of activity,
meaning it was clearer when distinguishing between flights. The “.txt” files also had
noticeably more metadata than the “.DAT” files – including serial numbers of the UAV
and the DJI smart battery, application version information and the operating system of
the test platform, as shown in Fig. 9.

As well as the metadata shown in Fig. 9, several other streams of flight data relating
to use of the DJI GO application were also available. The “flyCState” attribute
described whether the Phantom was in manual or automatic mode. Figure 10 shows the
distance of the UAV from the home point plotted against the “flyCState” attribute
during the Flight 3.

Fig. 9. Metadata from DJI GO application flight log.

Fig. 10. Flight state plotted against distance from home point for flight 3.

94 T. E. A. Barton and M. A. H. B. Azhar



The automatic POI function mentioned in Table 4 generated a clearly visible sine
wave (Fig. 10) in the distance measurements during the time when the UAV was in
automatic flight mode. This useful artefact identifies when the POI function has been
used in a flight. While the GPS data for Flight 4 was also destroyed by the foil covering
the GPS receiver, it was also possible to extract the GPS location of the controlling
application. This is a crucial finding as it allows for the location of the operator at the
time of flight. Anti-forensics measures to counteract this may include GPS spoofing on
a software level on the mobile platform, which is possible with free applications
available on app markets such as google play.

5 Conclusion

The results from the DJI Phantom 3 Professional show a number of successful methods
to retrieve data from the UAV and controlling devices using open source tools.
Artefacts present in the flight record data were used to identify key actions taken by the
drone using some heuristics and pattern detection. Correlation of these and other
artefacts extracted from the mobile platform were enough to establish a connection
between the drone and the controlling application. With every drone system, there are
many different artefacts spread across a number of devices, file systems, and networks.
The forensic analysis of drones requires a correlation of these artefacts to retrieve the
actions of the drone. The DJI phantom had an extraordinarily large amount of artefacts
associated with it. This was due to having more sensors and a higher resolution of data
capture, which stems from its status as a professional device. To recreate the actions of
the drone, it was necessary to interpret flight data collected by the UAV. This involved
interpreting the movements of the UAV in three dimensional space, as well as data
from on-board sensors including accelerometer data and battery levels. A number of
useful artefacts were found on the controlling application, and would be enough to
identify a suspect.

Further work needs to be done in developing and exploring methods for analysing
drone systems in the future, especially integrating the methods discussed in this paper
into commercial forensics toolkits. The extraction of data from controlling applications
on iOS devices should be explored for comparison to the Android mobile forensics
methods demonstrated in this paper. Newer drones, such as the Phantom 4 and the
Mavic, will also need to be analysed to explore the differences with previous versions.

References

1. Yeung, P.: Drone reports to UK police soar 352% in a year amid urgent calls for regulation,
The Independent (2016). http://www.independent.co.uk/news/uk/home-news/drones-police-
crime-reports-uk-england-safety-surveillance-a7155076.html. Accessed 7 Aug 2017

2. BBC news: big rise in drone smuggling incidents (2016). http://www.bbc.co.uk/news/uk-
35641453. Accessed 7 Aug 2017

3. UAV Systems international: Tarot T-18 Ready to Fly Drone. https://uavsystemsinternational.
com/product/tarot-t-18-ready-fly-drone/3. Accessed 7 Aug 2017

Open Source Forensics for a Multi-platform Drone System 95

http://www.independent.co.uk/news/uk/home-news/drones-police-crime-reports-uk-england-safety-surveillance-a7155076.html
http://www.independent.co.uk/news/uk/home-news/drones-police-crime-reports-uk-england-safety-surveillance-a7155076.html
http://www.bbc.co.uk/news/uk-35641453
http://www.bbc.co.uk/news/uk-35641453
https://uavsystemsinternational.com/product/tarot-t-18-ready-fly-drone/3
https://uavsystemsinternational.com/product/tarot-t-18-ready-fly-drone/3


4. Noel, A.: Drone Carrying Three Kilos of Meth Crashes in Tijuana, Vice News (2015).
https://news.vice.com/article/drone-carrying-three-kilos-of-meth-crashes-in-tijuana. Acces-
sed 7 Aug 2017

5. Francis, D.:Want to Smuggle Drugs into Prison? Buy a Drone, The Cable - The Foreign Policy
Group (2016). http://foreignpolicy.com/2015/08/04/want-to-smuggle-drugs-into-prison-buy-
a-drone. Accessed 7 Aug 2017

6. Sullivan, J.P., Bunker, R.J.: Mexican Cartel Strategic Note No. 18: Narcodrones on the
Border and Beyond. Small Wars J. (2016). http://smallwarsjournal.com/jrnl/art/mexican-
cartel-strategic-note-no-18-narcodrones-on-the-border-and-beyond. Accessed 7 Aug 2017

7. Carrier, B.: Open source digital forensics tools: the legal argument, @stake research report.
http://www.digital-evidence.org/papers/opensrc_legal.pdf. Accessed 7 Aug 2017

8. DJI Phantom 3 Professional. https://www.dji.com/phantom-3-pro. Accessed 7 Aug 2017
9. Glaser, A.: DJI is running away with the drone market, recode technology website.

https://www.recode.net/2017/4/14/14690576/drone-market-share-growth-charts-dji-forecast.
Accessed 7 Aug 2017

10. CAA: Flying Drones. https://www.caa.co.uk/Consumers/Guide-to-aviation/Airspace/Who-
manages-UK-airspace-/. Accessed 7 Aug 2017

11. Barrett, D.: Burglars use drone helicopters to target homes, The Telegraph. http://www.
telegraph.co.uk/news/uknews/crime/11613568/Burglars-use-drone-helicopters-to-identify-
targe-homes.html. Accessed 7 Aug 2017

12. Waters, N.: Death From Above: The Drone Bombs of the Caliphate, Bellingcat open
source intelligence. https://www.bellingcat.com/uncategorized/2017/02/10/death-drone-
bombs-caliphate. Accessed 7 Aug 2017

13. Horsman, G.: Unmanned aerial vehicles: a preliminary analysis of forensic challenges. Digit.
Invest. 16, 1–11 (2016)

14. Kovar, D.: UAV (aka drone) Forensics, SANS DFIR summit (2015). https://www.sans.org/
summit-archives/file/summit-archive-1492184184.pdf. Accessed 7 Aug 2017

15. Maarse, M., Sangers, L., van Ginkel, J., Pouw, M.: Digital forensics on a DJI Phantom 2
Vision+ UAV. MSc System and Network Engineering, University of Amsterdam (2016)

16. Trujano, F., Chan, B., Beams, G., Rivera, R.: Security Analysis of DJI Phantom 3 Standard,
Massachusetts Institute of Technology (2016). https://courses.csail.mit.edu/6.857/2016/files/
9.pdf. Accessed 7 Aug 2017

17. Huebner, E., Zanero, S.: The case for open source software in digital forensics. In: Huebner,
E., Zanero, S. (eds.) Open Source Software for Digital Forensics, pp. 3–7. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-1-4419-5803-7_1

18. Woods, V., Meulen, R.V.D.: Gartner Says Worldwide Smartphone Sales Grew 3.9 Percent in
First Quarter of 2016. http://www.gartner.com/newsroom/id/3323017. Accessed 7 Aug 2017

19. CyanogenMod android operating system. https://cyngn.com/. Accessed 7 Aug 2017
20. Karlsson, K.J.: Android anti-forensics at the operating system level. M.Sc. thesis, University

of Glasgow (2012)
21. Kingo Root Tool. https://www.kingoapp.com. Accessed 7 Aug 2017
22. Barton, T., Azhar, M.H.B.: Forensic analysis of the recovery of Wickr’s ephemeral data on

Android platforms. In: The First International Conference on Cyber-Technologies and
Cyber-Systems, pp. 35–40. IARIA (2016)

23. DJI GO application. http://www.dji.com/goapp. Accessed 7 Aug 2017
24. ADB tool – Android Debug Bridge tool. https://developer.android.com/studio/command-

line/adb.html. Accessed 7 Aug 2017
25. Exiftool. http://www.sno.phy.queensu.ca/*phil/exiftool/. Accessed 7 Aug 2017
26. Sleuthkit – fsstat. https://www.sleuthkit.org/. Accessed 7 Aug 2017
27. CsvView tool. https://datfile.net/CsvView/downloads.html. Accessed 7 Aug 2017
28. The “tree” tool. http://www.easydos.com/tree.html. Accessed 7 Aug 2017

96 T. E. A. Barton and M. A. H. B. Azhar

https://news.vice.com/article/drone-carrying-three-kilos-of-meth-crashes-in-tijuana
http://foreignpolicy.com/2015/08/04/want-to-smuggle-drugs-into-prison-buy-a-drone
http://foreignpolicy.com/2015/08/04/want-to-smuggle-drugs-into-prison-buy-a-drone
http://smallwarsjournal.com/jrnl/art/mexican-cartel-strategic-note-no-18-narcodrones-on-the-border-and-beyond
http://smallwarsjournal.com/jrnl/art/mexican-cartel-strategic-note-no-18-narcodrones-on-the-border-and-beyond
http://www.digital-evidence.org/papers/opensrc_legal.pdf
https://www.dji.com/phantom-3-pro
https://www.recode.net/2017/4/14/14690576/drone-market-share-growth-charts-dji-forecast
https://www.caa.co.uk/Consumers/Guide-to-aviation/Airspace/Who-manages-UK-airspace-/
https://www.caa.co.uk/Consumers/Guide-to-aviation/Airspace/Who-manages-UK-airspace-/
http://www.telegraph.co.uk/news/uknews/crime/11613568/Burglars-use-drone-helicopters-to-identify-targe-homes.html
http://www.telegraph.co.uk/news/uknews/crime/11613568/Burglars-use-drone-helicopters-to-identify-targe-homes.html
http://www.telegraph.co.uk/news/uknews/crime/11613568/Burglars-use-drone-helicopters-to-identify-targe-homes.html
https://www.bellingcat.com/uncategorized/2017/02/10/death-drone-bombs-caliphate
https://www.bellingcat.com/uncategorized/2017/02/10/death-drone-bombs-caliphate
https://www.sans.org/summit-archives/file/summit-archive-1492184184.pdf
https://www.sans.org/summit-archives/file/summit-archive-1492184184.pdf
https://courses.csail.mit.edu/6.857/2016/files/9.pdf
https://courses.csail.mit.edu/6.857/2016/files/9.pdf
http://dx.doi.org/10.1007/978-1-4419-5803-7_1
http://www.gartner.com/newsroom/id/3323017
https://cyngn.com/
https://www.kingoapp.com
http://www.dji.com/goapp
https://developer.android.com/studio/command-line/adb.html
https://developer.android.com/studio/command-line/adb.html
http://www.sno.phy.queensu.ca/%7ephil/exiftool/
https://www.sleuthkit.org/
https://datfile.net/CsvView/downloads.html
http://www.easydos.com/tree.html


A Novel File Carving Algorithm
for EVTX Logs

Ming Xu1,2(B), Jinkai Sun1, Ning Zheng1, Tong Qiao2, Yiming Wu2, Kai Shi1,
Haidong Ge1, and Tao Yang3(B)

1 Internet and Network Security Laboratory, School of Computer Science
and Technology, Hangzhou Dianzi University, Hangzhou, China
{mxu,152050160,nzheng,12084232,151050149}@hdu.edu.cn

2 School of Cyberspace, Hangzhou Dianzi University, Hangzhou, China
{tong.qiao,ymwu}@hdu.edu.cn

3 Key Lab of the Third Research Institute of the Ministry of Public Security,
Shanghai, China

yangtao@stars.org.cn

Abstract. The Microsoft Windows system provides very important
sources of forensic evidence. However, few attention has been paid to
the recovery of the deleted EVTX logs. Without using system metadata,
a novel carving algorithm of EVTX logs is proposed by analyzing the
characteristics and intrinsic structure. Firstly, we reassemble binary data
belonging to fragments of complete EVTX logs to reconstruct the deleted
logs. Secondly, extracting records for the corrupted logs can make the
algorithm robust through the special features of template and substitu-
tion array. Finally, some experiments are given to illustrate the effective-
ness of the proposed algorithm. Moreover, when the logs are fragmented
or corrupted, our algorithm can still perform well.

Keywords: Windows forensics · Windows XML event logs
EVTX Files · File carving · Fragmented files

1 Introduction

Since log files generally link a certain event to the special time, they can provide
very important sources of forensic investigation. It is very easy for an internal
employee to steal or destroy the information of the company computers. During
committing illegal activities, a criminal possibly removes or hides traces after his
crime behavior. It makes operations untraceable with no digital evidence left.
Therefore, the technique which can help us to recover maliciously deleted logs
has received significant attention over the past few years [1].

As a replacement for the Windows event log (EVT) format, the Windows
XML event log (EVTX) format was first introduced in Vista for less storage
through binary XML technology. EVTX logs provide a great deal of basic and
valuable information such as name of the account, created time, record number
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

P. Matoušek and M. Schmiedecker (Eds.): ICDF2C 2017, LNICST 216, pp. 97–105, 2018.

https://doi.org/10.1007/978-3-319-73697-6_7



98 M. Xu et al.

and event ID which could be used to identify the specific kind of an event. For
instance, event ID 4624 means that an account was logged on. It is confirmed
that a criminal logged on a computer at a certain time associating with the
included time and username.

Nevertheless, criminals are always expected to conceal their criminal records
by deleting logs. Because of file fragmentation on actual file systems [2], it is
too time consuming to use a brute-force approach dealing with each possible
order without file system information. Thus we present a novel carving algorithm
to extract deleted records and demonstrate the effectiveness of our proposed
algorithm by comparing it with the commercial forensic software Encase1.

2 Related Work

Several researchers have noted that logs of Windows contain a large amount of
useful digital evidence [3,4]. Schuster first provides description about the newer
EVTX format [5], and XML technology is adopted to parse Vista event log files
[6]. For different Windows systems, Windows 8 event log format is introduced
[7]. In addition, Do et al. present a Windows event forensic process for analyzing
log files [8].

Moreover, researchers focus on caving contiguous files firstly [9,10]. For frag-
mented files, some carving algorithms based on file signature are proposed [11,12]
and a novel framework is designed to resolve this problem [2,13]. Unfortunately,
there has been relatively few papers published for file carving of the EVTX logs.
Therefore, in this context, we propose a novel file carving algorithm to deal with
this challenge.

3 Description of EVTX Logs

By investigating the characteristics and internal structure of EVTX Logs (see
Fig. 1), we can smoothly establish our algorithm for realizing forensics.

3.1 File Header

Each log file contains a file header, which describes the basic information of
the file. A file header occupies 4096 bytes space which is a complete cluster,
but uses only 128 bytes actually. In our algorithm, the checksum which verifies
integrity of the file header is gained through the CRC32 (Cyclic Redundancy
Check) method to calculate the first 120 bytes of the file header. We use magic
string “ElfFile” and checksum to find a integrated file header for marking the
following chunk as the first chunk of the file.

1 EnCase offers investigators the flexibility to collect critical evidence including text
messages, call records, pictures, graphics, and much more.



A Novel File Carving Algorithm for EVTX Logs 99

Fig. 1. File structure

3.2 Chunk Header

Each chunk consists of a smaller header and a series of event records. It starts
with the magic string “ElfChnk”, which helps to identify the chunk. Chunk
header provides two different sets of counters for record ID2, and for the same
chunk it is safe to assume that record ID of the included record is in the range
between number of first record in file and number of last record in file. It can
contribute to determining whether a record belongs to the original chunk by the
information of the chunk header.

Checksum is important for guaranteeing the integrity of the chunk. Data
checksum is calculated for the CRC32 of all the records data belonging to this
chunk. In addition, header checksum is the CRC32 of the first 120 bytes and
bytes 128 to 512 of the chunk header. Therefore, we can use header checksum to
confirm the integrity of the chunk header and data checksum to check whether
the records of chunk are found completely.

3.3 Record

Each event record contains basic information. A fragment belongs to a record
potentially for the existence of the magic string “**”. Length and repeated length
allow us to find a complete record.

The main content of the record is coded through the binary XML technology.
Binary XML mainly involves two concepts: template and substitution array.
Binary XML starts with a template which is transformed from a sequence of
tokens and a template has some substitution tokens which are needed to be
filled with the value of substitution array (see Fig. 2). Template is immediately
followed by the substitution array. For each substitution, it lists size and data
type (see Fig. 3), and uses actual value to fill into the corresponding substitution
token to comprise complete plain text XML. For one chunk, most of records only

2 Record ID is the same as record number.



100 M. Xu et al.

have a reference of the template to reduce storage space. Probably a record in the
fragment cannot be recovered for its dependence of the template. It is observed
that the count of the substitution array is 18 or 20. Additionally, length and type
should be followed by the hexadecimal value 0x00 [5]. Therefore we can locate
the position of the substitution array, and even determine whether the record is
complete by checking integrity of the substitution array.

Fig. 2. Template with unfilled substitution array Fig. 3. Substitution array

4 The Proposed Approach

In this section, it is proposed to introduce our algorithm showed in Fig. 4. The
algorithm mainly includes three parts: pre-processing data, reassembling frag-
ments and extracting corrupted records.

4.1 Data Pre-processing

In this stage, the fragments belonging to logs should be effectively classified with
others. The fragmentation points which normally bring challenge in file carving
can only be present at the boundary between two clusters [2]. Since the log data
may be scattered in any part of the image, we need to locate all the fragments
belonging to EVTX logs by using different magic string to finding the first cluster
of the fragment. We recommend to use 4 KB cluster as the size of per scanning,
since 4 KB cluster is default for all NTFS file systems since Windows NT 4.0.

Separate lists are designed base on the mentioned file structures. Each
included element of the lists which can be regraded as the fragment will store cor-
responding binary data. Figure 5 illustrates the flowchart of data pre-processing,
and these lists are as follows:

– File list (simply as Listf ): in Listf , each elementf as the start of file contains
a file header, a chunk header and included records.

– Chunk list (simply as Listc): in Listc, each elementc as an potential chunk
contains a chunk header and included records.

– Record list (simply as Listr): in Listr, each elementr is regarded as an assem-
blage of fragmented records.



A Novel File Carving Algorithm for EVTX Logs 101

Fig. 4. Illustration of architecture Fig. 5. The flowchart of data pre-
processing

4.2 Fragmentation Reassembly

Before reassembly, we need to process the pinpointed fragments and reassemble
them to reconstruct original files. Only the complete chunks can be combined
into a valid log file, so we have to recover chunks belonging to the original file
in the first step.

Afterwards, we generate log files by using complete chunks. Field Channel of
the binary XML is used to determine whether a chunk belongs to the original
file. It should be noted that the value of field Channel is not only stored in the
substitution array but also in template. In order to acquire templates, we need
to adopt XML technology to parse the complete chunks based on the previous
research [5,6]. If one element cannot be used to reassemble finally, it will be
added to Broken list.

For clarity, we introduce a discriminator for merging and a simplified algo-
rithm is presented in Algorithm 1.

– Record ID: the record ID sequence of records in one chunk will be consistent
and two adjacent chunks are supposed to have consecutive record ID.



102 M. Xu et al.

– Channel: probably two logs have many same record ID, but different chunks
from the same file will have the same value of the field Channel which can be
used to reassemble chunks from the same log.

– Integrity of the substitution array: if length of the record which is to be con-
nected is larger than 4 KB, the only way is to try all the situations of frag-
mentation to check the integrity of the substitution array. A simple instance
uses Fig. 6 to illustrate it. If the size of uncertain data is 4 KB, we need to
determine which cluster the potential 4 KB cluster is adjacent to the previous
cluster or the next cluster by verifying the integrity of the substitution array.

– Checksum: we need to calculate the checksum of all the records data belonging
to this chunk when finding the last record of the chunk.

Algorithm 1. Fragmentation Reassembly Algorithm
Input: Listf , Listc, Listr
Output: Log files, Broken list

for elementf , elementc ∈ Listf , Listc do
for elementr ∈ Listr do

merge elementr into elementf , elmentr based on discriminator
if the last record of the chunk is found then

mark elementf , lementc as complete

end if
end for

end for
parse templates of the complete chunks
for elementf ∈ Complete listf do

for elementc ∈ Complete listc do
merge elementc into listf based on discriminator
generate a log file using corresponding binary data

end for
end for
Broken list ← rest of elment
return Log files, Broken list

Fig. 6. Reassembly of a record larger than 4 KB

4.3 Corrupted Records Extracting

Since EVTX log have three types of checksum to verify the integrity of a EVTX
format file, any corruption results in that a log cannot be open by Windows.
And a corrupted log file make its fragments not be merged. The only way to
collect information of corrupted files is to match original templates and store



A Novel File Carving Algorithm for EVTX Logs 103

generated plain text XML in other format files (e.g. text file). A warning is that
this process may recover the incorrect records which are generated by Windows
event logging service randomly.

Experimentally, the same template shared by different records in the same
chunk must have only one template id. Only if the type of each substitution
is compatible with template can the substitution array use value to fill into
the corresponding substitution tokens. For each record in the Broken list, we
consider a brute force approach to search its original template and write plain
text XML into a text file.

5 Experiment and Evaluation

These experiments are designed to demonstrate the effectiveness of cav-
ing algorithm in dealing with the situation of unavailable file system meta-
data. In Windows, all computers event logs are normally found in: C :
Windows\System32\winevt\Logs\. Due to the limitation of the public Win-
dows images, we use our own 20 GB system disk images collected from three
operating systems (Windows 7, Windows 8 and Windows 10). Note that, we use
WinHex3 to acquire the system disk image of computers for guaranteeing the
reliability and integrity of raw data [14].

First of all, we save original files for calculating accuracy. We use regular
deletion method to remove all the log files and make forensic images of system
disk from each operation systems. The common evaluation method is to compare
whether there exists the same record. First, all the records acquired from the
original log files are to be gathered manually and analysed statistically. Then we
use the same method in the recovered log files. Finally, by comparing the records
from the original log files with recovered ones, we can determine whether the
experimental result is effective or not.

We draw support from EnCase which is a widely-used commercial forensic
software utilized by some law enforcement agencies. Unfortunately, no records
are recovered by EnCase for the dependance of system metadata. Because of
three types of verification in the EVTX format file, the recovered log files can
guarantee their correctness. Zero-error carving strategy means that we only try
to recover complete log files as far as possible, thus no error records will be recov-
ered. Complete carving strategy means we also recover records from the log files
which are overwritten or corrupted during deleting to write plain text XML
into text files. Moreover, the precision rate might decrease with the increase-
ment of recall rate. All things considered (see Table 1)4, if there can exist error
records, we recommend to use complete carving during investigation for better
comprehensive evaluation.

3 WinHex is a disk editor and a hex editor useful in data recovery and forensics.
4 We use R/O(Recovered/original), PR(Precision rate), RR(Recall rate), F(F-value)

and Time to evaluate the quality of results accurately.



104 M. Xu et al.

Table 1. Results of different carving strategies

(a) After zero-error carving
System R/O PR RR F Time
Win 10 15105/15248 100% 99.06% 99.53% 158s
Win 8 5124/6020 100% 85.11% 91.96% 159s
Win 7 4006/5210 100% 76.89% 86.94% 162s

(b) After complete carving
System R/O PR RR F Time
Win 10 15292/15248 98.85% 99.13% 98.99% 160s
Win 8 5777/6020 100% 95.96% 97.94% 165s
Win 7 4842/5210 97.44% 90.57% 93.88% 171s

6 Summary

Since EVTX log files have tremendous forensic potential data in Windows foren-
sic investigation, we present a carving algorithm for them without using the
file system metadata in this paper. The traditional recovery method is highly
dependent on file system metadata, thus the deleted files can not be recovered.
By exploring the characteristics of Windows XML event log files, we design a
caving algorithm to recover fragmented log files and extract corrupted records
into text files. The numerical experiments reveal that our algorithm can perform
well under the situation that log files are fragmented even corrupted.

Acknowledgment. This work is supported by the National Key R&D Plan of China
under grant no. 2016YFB0800201, the Natural Science Foundation of China under
grant no. 61070212 and 61572165, the State Key Program of Zhejiang Province Natural
Science Foundation of China under grant no. LZ15F020003, the Key research and
development plan project of Zhejiang Province under grant no. 2017C01065, the Key
Lab of Information Network Security, Ministry of Public Security, under grant no.
C16603.

References

1. Sharma, H., Sabharwal, N.: Investigating the implications of virtual forensics. In:
2012 International Conference on Advances in Engineering, Science and Manage-
ment (ICAESM), pp. 617–620. IEEE (2012)

2. Garfinkel, S.L.: Carving contiguous and fragmented files with fast object validation.
Digit. Invest. 4, 2–12 (2007)

3. Murphey, R.: Automated windows event log forensics. Digit. Invest. 4, 92–100
(2007)

4. Al-Nemrat, A., Ibrahim, N., Jahankhan, H.: Sufficiency of windows event log as
evidence in digital forensics. University of East London, London

5. Schuster, A.: Introducing the Microsoft Vista event log file format. Digit. Invest.
4, 65–72 (2007)

6. Xiaoyu, H., Shunxiang, W.: Vista event log file parsing based on XML technology.
In: 4th International Conference on Computer Science & Education, ICCSE 2009,
pp. 1186–1190. IEEE (2009)

7. Talebi, J., Dehghantanha, A., Mahmoud, R.: Introducing and analysis of the
Windows 8 event log for forensic purposes. In: Garain, U., Shafait, F. (eds.) IWCF
2012/2014. LNCS, vol. 8915, pp. 145–162. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-20125-2 13

https://doi.org/10.1007/978-3-319-20125-2_13
https://doi.org/10.1007/978-3-319-20125-2_13


A Novel File Carving Algorithm for EVTX Logs 105

8. Do, Q., Martini, B., Looi, J., Wang, Y., Choo, K.-K.: Windows event forensic pro-
cess. In: Peterson, G., Shenoi, S. (eds.) DigitalForensics 2014. IAICT, vol. 433, pp.
87–100. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44952-3 7

9. Mikus, N.: An analysis of disc carving techniques. Technical report, DTIC Docu-
ment (2005)

10. Richard III, G.G., Roussev, V.: Scalpel: a frugal, high performance file carver. In:
Refereed Proceedings of the Digital Forensic Research Workshop, DFRWS 2005,
pp. 1–10, Astor Crowne Plaza, New Orleans, Louisiana, USA, August (2005)

11. Karresand, M., Shahmehri, N.: Reassembly of fragmented JPEG images containing
restart markers. In: European Conference on Computer Network Defense, EC2ND
2008, pp. 25–32. IEEE (2008)

12. Na, G.-H., Shim, K.-S., Moon, K.-W., Kong, S.G., Kim, E.-S., Lee, J.: Frame-based
recovery of corrupted video files using video codec specifications. IEEE Trans.
Image Process. 23(2), 517–526 (2014)

13. Cohen, M.I.: Advanced carving techniques. Digital Invest. 4(3), 119–128 (2007)
14. Boddington, R., Hobbs, V., Mann, G.: Validating digital evidence for legal argu-

ment, p. 42 (2008)

https://doi.org/10.1007/978-3-662-44952-3_7


Fuzzy System-Based Suspicious Pattern
Detection in Mobile Forensic Evidence

Konstantia Barmpatsalou(B), Tiago Cruz, Edmundo Monteiro,
and Paulo Simoes

Pólo II-Pinhal de Marrocos, CISUC/DEI, University of Coimbra,
3030-290 Coimbra, Portugal

{konstantia,tjcruz,edmundo,psimoes}@dei.uc.pt

Abstract. Advances in Soft Computing have increased the probabilities
of implementing mechanisms that are able to predict human behaviour.
One of the fields that benefits more from the particular improvements are
Digital Forensics. Criminal activity involving smartphones shows inter-
esting behavioural variations that led the authors to create a technique
that analyzes smartphone users’ activity and recognizes potentially sus-
picious patterns according to predefined expert knowledge in actual use
case scenarios by the use of fuzzy systems with different configurations.

Keywords: Mobile forensics · Fuzzy systems · Membership functions

1 Introduction

In the recent years, new Digital Forensic (DF) techniques emerged with the aid
of Hard Computing (HC) [1]. However, activity driven by human behaviour is
characterized by uncertainty [2] and renders them inefficient. Actions performed
by individuals that are depicted in the digital fingerprint of a mobile device
cannot be strictly characterized as innocent or guilty, but as entities that pro-
voke different degrees of suspiciousness concerning specific criminal actions. This
paper is the first part of a two-step approach aiming to create a semi-automated
decision-making methodology for Mobile Forensic (MF) investigation purposes.
Firstly, expert knowledge is used in order to create the ground truth and gen-
erate suspicious patterns concerning the outcome of user actions in data types
retrieved during a forensic acquisition. Afterwards, the knowledge is diffused to
the creation of fuzzy systems and their equivalent rules. Finally, the fuzzy sys-
tem outputs are evaluated against the ground truth. However, the schema will
be complete in the second part, which consists of the use and performance eval-
uation [3] of a Neuro-Fuzzy System (NFS) or a back-propagation neural network
(NN) in comparison to the fuzzy systems and is the authors’ future work.

The rest of the paper is presented in the following manner. Section 2 contains
the related work in the field, while Sect. 3 presents the respective methodology
the authors followed. Section 4 performs the results evaluation and Sect. 5 con-
cludes the paper.
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

P. Matoušek and M. Schmiedecker (Eds.): ICDF2C 2017, LNICST 216, pp. 106–114, 2018.

https://doi.org/10.1007/978-3-319-73697-6_8



Fuzzy Suspicious Pattern Detection in Mobile Forensic Evidence 107

2 Related Work

To the best of the authors’ knowledge, noteworthy research has been conducted
in the area of fuzzy and Neuro-Fuzzy data analysis for MF and similar disci-
plines, such as Intrusion Detection. Stoffel et al. [4] applied the fuzzy sets the-
ory to evidence deriving from criminal activity in Switzerland and proved that
their methodology is appropriate for “inferring expert-system-like rules from a
forensic database” [4]. In order to detect Denial of Service (DoS) attacks in a
computer network infrastructure, Kumar and Selvakumar [5] profited from the
combination of the precise rule definition of fuzzy systems and the automatic rule
acquisition of NNs. Automatic rule definition by a Neuro-Fuzzy system was also
successful in cases of Android malware detection [6]. The next section describes
the methodology the authors followed in order to develop the fuzzy systems for
detecting suspicious patterns in mobile data.

3 Methodology

This section presents the proposed methodology concerning suspicious pattern
detection from mobile datasets. The procedure consists of the construction of a
use case scenario, the rule inference and the ground truth generation. Further
details concerning the used datasets are provided and the fuzzy systems for the
use case are configured.

3.1 Use Case Scenario

The authors used the FP 7 Project SALUS D2.3 publicly available deliverable [7]
so as to determine a use case scenario with potential criminal activity occur-
rences. One of the use cases of the deliverable, public order demonstration or
riot, was considered as the most suitable for the research purposes, due to the
high probability of occurrence of unfortunate events involving mobile devices
belonging to Protection and Disaster Relief (PPDR) officers. The case under
examination concerns PPDR officers infiltrating the rioting forces and how this
can be proved by their device seizure. The investigation authorities capture an
image of the device at a given moment after the rioting incident, which is used as
the base for further investigation. However, no assumptions can be made without
the presence of expert knowledge, which is elaborated in detail below.

3.2 Expert Knowledge

The knowledge base encountered in the current paper is a hybrid compilation
of incidents the use cases provided in the SALUS FP7 Project deliverables [7]
and of on-field investigation practices provided by an officer of the Greek Police
Escort Teams Department (GPETD). The authors structured the rules of each
fuzzy system present in the research. Due to space limitations, only the example
of SMS data deriving from three devices will be presented. Another challenge



108 K. Barmpatsalou et al.

that the authors faced was the lack or unavailability of actual evidence retrieved
from devices involved in criminal activities. As a result, delinquent actions had
to be simulated and injected in the datasets as standalone patterns. The a-priori
expert knowledge served as a solid background for the rule generation, which is
analyzed in the following subsection.

3.3 Rule Inference

Using the aforementioned expert knowledge, the authors created the respective
rules from a combination of the available data and the investigation directives
for the use case. For the scenario of the rioting infiltration by PPDR officers, the
following setup was created. Sent SMS texts retrieved from a device of a potential
infiltrator may have the following attributes. If officers are infiltrators, they will
use their devices to communicate with their accomplices only in cases of extreme
necessity. As a result, the rate with which a sent message will appear is going
to be very low. Most of the accomplices may use one-time payphones, which are
equipped with SIM modules from the same country the incidents occur. Thus,
recipients with local numbers are considered more suspicious. Finally, messages
exchanged right before or during rioting are very short in length. Consequently,
the sent SMS pattern (very low appearance frequency–very short length–local
country code source) is considered the most suspicious. Nonetheless, the rule
inference procedure needs a functioning dataset that is able to fulfil the research
requirements in size and content. The following subsection covers in detail the
challenges the authors faced in the quest of a suitable data source.

3.4 Datasets and Ground Truth Generation

Due to the increased sensitivity of mobile device data, there are not many avail-
able sources of mobile device images. A more appropriate alternative was the
“Device Analyzer Dataset” [8], a collection of real-time usage data from Android
devices. Each dataset is a compilation of snapshots belonging to a certain device
and contains lists of attributes such as call logs, SMS texts, network usage statis-
tics, location data, etc., retrieved during a considerable period of time. All the
information is stored in a Comma Separated Value (.csv) file and each row con-
sists of the data type header, alongside with the existing data. Pre-processing is
essential in order to separate the data types and adjust the information to the
research needs. Adapted information from three different mobile devices, namely
(Dev. 1, Dev. 2 and Dev. 3) is used for SMS data. The data are formatted in a
three-column .csv file and each column represents one attribute; message length,
receivers’ appearance frequency and receivers’ localization. Each row is a SMS
text with its equivalent characteristics, which will from now on be referred to as
a pattern. The SMS data type can be represented as follows:

SMS(Appearance Frequency, Length, Country Source) (1)

The next step is the generation of ground truth data, which included manual
labelling for all the SMS patterns. Every tuple of attributes (see Eq. 1) corre-
sponds to a suspiciousness numerical value in a scale from zero to one, where



Fuzzy Suspicious Pattern Detection in Mobile Forensic Evidence 109

zero is the lowest and one is the highest value. Since the datasets were not origi-
nally created for DF analysis purposes and the existence of potentially suspicious
patterns is unlikely, the authors injected the datasets with suspicious attribute
combinations so as to have a complete view of the future system performance.

3.5 Fuzzy System Configuration

In order to proceed to the creation of the fuzzy systems, the authors followed the
guidelines provided by Fuller [9]. One of the first factors to be taken into consid-
eration is that all input and output variables should be described approximately
or heuristically. Their fuzzy approximation is depicted in Table 1.

Table 1. Fuzzy variable ranges

Input variable Fuzzy approximation Numerical range

Length VERY SHORT, SHORT,
MEDIUM, LONG, VERY LONG

1–600 characters

Appearance frequency VERY LOW, LOW, MEDIUM,
HIGH, VERY HIGH

1–1100 appearances

Country source FOREIGN, UNDEFINED, LOCAL 0, 1 and 2

Output variable Fuzzy approximation Numerical range

Suspiciousness VERY LOW, LOW, MEDIUM,
HIGH, VERY HIGH

0.15, 0.25, 0.50, 0.75, 1

The first column represents the variable, whereas the second shows the lin-
guistic ranges attributed to it. The third column presents their numerical range.
The rules in Subsect. 3.3 have to be represented in a formal manner and be placed
in the appropriate system section so as to become structural elements of the rule
base. An example of a rule concerning suspicious patterns is presented below.
The rest of the rules are formed in a similar manner, with different variable
values.

IF (Appearance == Very Low) && (Length == Low) && (Country ==
Local) THEN (Suspiciousness == Very High)

Afterwards, the authors reviewed and verified the criteria for “readability and
interpretability of the variables and the rules that are deriving from them” [10],
as they were presented by Guillaume and Charnomordic [11]. While aiming to
maintain a high degree of semantic cohesion, every fuzzy set should represent a
well-defined and non-vague concept. The fuzzy sets and the value range of each
variable have specific meanings (See Table 1). Additionally, each fuzzy variable
should not exceed the 7± 2 range fields, which is defined as the threshold for
human perception capabilities [10]. In the current paper, the maximum number
of different value ranges is 5. There is no point within the system’s universe of



110 K. Barmpatsalou et al.

discourse that does not belong to at least one fuzzy set. Furthermore, a fuzzy
set should be normal; in a fuzzy system F , there should always exist at least
one χ, the membership degree (height) of which should be equal to 1. Lastly, it
is obligatory that “all fuzzy sets should overlap in a certain degree” [10]. After
concluding the fuzzy system configuration phase, the system evaluation takes
place.

4 Evaluation

The authors followed an evaluation methodology based on the comparison of
the fuzzy systems’ output and the ground truth values. With the ground truth
considered the target and the fuzzy output being the feature variable, the fuzzy

Table 2. Evaluation metrics per membership function for the SMS Dev. 1 dataset

M.F Algorithm AUC Accuracy Precision Recall FPR

Triangular kNN 0.583 0.267 0.811 0.267 0.175

SVM 0.578 0.809 0.800 0.809 0.169

Naive Bayes 0.567 0.805 0.649 0.805 0.174

AdaBoost 0.592 0.815 0.842 0.815 0.164

Random Forest 0.592 0.814 0.840 0.814 0.164

Trapezoidal kNN 0.573 0.808 0.799 0.808 0.172

SVM 0.573 0.808 0.799 0.806 0.172

Naive Bayes 0.561 0.802 0.648 0.802 0.176

AdaBoost 0.574 0.808 0.846 0.808 0.171

Random Forest 0.574 0.808 0.846 0.808 0.171

Bell kNN 0.923 0.951 0.951 0.9512 0.029

SVM 0.748 0.824 0.825 0.824 0.102

Naive Bayes 0.904 0.872 0.910 0.872 0.035

AdaBoost 0.974 0.981 0.981 0.981 0.009

Random Forest 0.945 0.963 0.964 0.963 0.021

Gauss kNN 0.908 0.952 0.952 0.952 0.037

SVM 0.858 0.864 0.889 0.864 0.058

Naive Bayes 0.858 0.852 0.880 0.852 0.055

AdaBoost 0.925 0.960 0.961 0.960 0.030

Random Forest 0.915 0.956 0.956 0.956 0.032

Gauss2 kNN 0.924 0.961 0.961 0.961 0.0299

SVM 0.884 0.871 0.903 0.871 0.0481

Naive Bayes 0.882 0.865 0.893 0.865 0.0450

AdaBoost 0.926 0.963 0.963 0.963 0.0305

Random Forest 0.931 0.963 0.963 0.963 0.0276



Fuzzy Suspicious Pattern Detection in Mobile Forensic Evidence 111

output values of five systems configured with different membership functions
(Triangular, Trapezoidal, Bell, Gauss and Gauss2) were classified into five dif-
ferent groups of suspiciousness using the Nearest Neighbour, SVM, Naive Bayes,
AdaBoost and Random Forest classification techniques.

The confusion matrices were created and the following metrics were calcu-
lated in average for all the groups of suspiciousness; Area Under Curve (AUC)
(higher positive-over-negative value ranking capability of a classifier), Accuracy
(amount of correctly classified patterns over the total amount of patterns), Pre-
cision (ratio of True Positive (TP) values over the sum of TP and False Positives
(FP)), Recall (TP rate or sensitivity, ratio of TP over the sum of TP and False
Negative (FN) values) and False Positive Rate (FPR) (ratio of FP values over
the sum of FP and True Negative (TN) values).

Table 2 contains the cumulative results for all the candidate membership
functions and their respective metrics. After evaluating all the datasets (See
AppendixA), the authors concluded that the Triangular and Trapezoidal mem-
bership functions perform worse than the rest of the other candidates under
every classification algorithm. Moreover, the Bell membership function shows the
best performance rates in every dataset. In the majority of the tests, AdaBoost
showed the best performance rates. On the contrary, kNN, SVM and Naive
Bayes performed poorly. Finally, the performance difference among the Bell,
Gauss and Gauss2 membership function is very low and they can be considered
as efficient alternatives. Figure 1 depicts the Receiver Operating Characteristic
(ROC) Curves for two out of the five suspiciousness values of Table 1 (S = 0.75,
S = 1) for the Dev. 3 dataset and the Bell membership function.

Fig. 1. ROC curves for the Dev. 3 dataset

5 Conclusions

The evaluation procedure was concluded successfully. The most appropriate
parameters for the fuzzy systems were selected and the detection of potentially
suspicious patterns was rather successful. Despite the satisfactory results, the
aforementioned procedure revealed the need for a mechanism that will be able



112 K. Barmpatsalou et al.

to optimize the parameters of a fuzzy system, so as to achieve the replacement
of trial and error methods by automatic approaches. Moreover, accessing real
data concerning the use case circumstances would be the best approach for eval-
uating the fuzzy systems’ efficiency. The upcoming stage of the authors’ work
comprises the experimentation with different data types and the development of
an appropriate NFS or back-propagation NN that will co-operate with the fuzzy
systems and complete the current contribution.

Acknowledgments. This work was partially funded by the ATENA H2020 EU
Project (H2020-DS-2015-1 Project 700581). We also thank the team of FP7 Project
SALUS (Security and interoperability in next generation PPDR communication infras-
tructures) and the GEPTD officer Nikolaos Bouzis for the fruitful discussions, feedback
and insights on in-field investigation practices.

A SMS Datasets Evaluation Metrics

The appendix contains the analytical metrics for all the datasets tested in Sect. 4
as supplementary resources. Table 3 corresponds to the dataset of the second
device (Dev. 2), whereas Table 4 refers to the dataset of the third device (Dev. 3).

Table 3. Evaluation metrics per membership function for the SMS Dev. 2 dataset

M.F. Algorithm AUC Accuracy Precision Recall FPR

Triangular kNN 0.888 0.864 0.885 0.864 0.045

SVM 0.875 0.822 0.840 0.822 0.052

Naive Bayes 0.791 0.740 0.691 0.740 0.078

AdaBoost 0.897 0.850 0.870 0.850 0.043

Random Forest 0.890 0.867 0.888 0.867 0.045

Trapezoidal kNN 0.801 0.665 0.850 0.665 0.082

SVM 0.587 0.514 0.307 0.514 0.168

Naive Bayes 0.727 0.684 0.606 0.684 0.107

AdaBoost 0.742 0.704 0.647 0.704 0.102

Random Forest 0.741 0.703 0.646 0.703 0.102

Bell kNN 0.984 0.980 0.977 0.980 0.005

SVM 0.976 0.968 0.966 0.968 0.008

Naive Bayes 0.846 0.809 0.743 0.809 0.054

AdaBoost 0.998 0.997 0.997 0.997 0.001

Random Forest 0.991 0.989 0.986 0.989 0.004

(continued)



Fuzzy Suspicious Pattern Detection in Mobile Forensic Evidence 113

Table 3. (continued)

M.F. Algorithm AUC Accuracy Precision Recall FPR

Gauss kNN 0.987 0.984 0.982 0.984 0.004

SVM 0.980 0.972 0.9709 0.972 0.007

Naive Bayes 0.850 0.815 0.746 0.815 0.052

AdaBoost 0.995 0.994 0.991 0.994 0.001

Random Forest 0.991 0.989 0.986 0.989 0.002

Gauss2 kNN 0.986 0.983 0.981 0.983 0.004

SVM 0.988 0.984 0.982 0.984 0.003

Naive Bayes 0.880 0.848 0.781 0.848 0.040

AdaBoost 0.989 0.986 0.983 0.986 0.003

Random Forest 0.988 0.984 0.982 0.984 0.003

Table 4. Evaluation metrics per membership function for the SMS Dev. 3 dataset

M.F. Algorithm AUC Accuracy Precision Recall FPR

Triangular kNN 0.619 0.310 0.857 0.310 0.158

SVM 0.611 0.582 0.508 0.582 0.159

Naive Bayes 0.604 0.573 0.365 0.573 0.160

AdaBoost 0.617 0.591 0.651 0.591 0.156

Random Forest 0.617 0.590 0.610 0.590 0.157

Trapezoidal kNN 0.608 0.294 0.571 0.294 0.143

SVM 0.609 0.294 0.571 0.294 0.143

Naive Bayes 0.600 0.571 0.365 0.571 0.162

AdaBoost 0.606 0.579 0.371 0.579 0.160

Random Forest 0.605 0.578 0.371 0.579 0.161

Bell kNN 0.971 0.963 0.963 0.962 0.010

SVM 0.937 0.906 0.922 0.906 0.025

Naive Bayes 0.722 0.682 0.527 0.682 0.102

AdaBoost 0.990 0.986 0.986 0.986 0.004

Random Forest 0.983 0.978 0.978 0.978 0.033

Gauss kNN 0.979 0.971 0.972 0.971 0.008

SVM 0.940 0.909 0.975 0.975 0.025

Naive Bayes 0.713 0.666 0.519 0.666 0.191

AdaBoost 0.990 0.986 0.986 0.986 0.006

Random Forest 0.981 0.975 0.975 0.975 0.006

(continued)



114 K. Barmpatsalou et al.

Table 4. (continued)

M.F. Algorithm AUC Accuracy Precision Recall FPR

Gauss2 kNN 0.975 0.967 0.968 0.967 0.009

SVM 0.944 0.915 0.931 0.915 0.023

Naive Bayes 0.716 0.671 0.521 0.671 0.108

AdaBoost 0.949 0.920 0.935 0.920 0.022

Random Forest 0.946 0.917 0.932 0.917 0.022

References

1. Barmpatsalou, K., Damopoulos, D., Kambourakis, G., Katos, V.: A critical review
of 7 years of mobile device forensics. Digit. Invest. 10(4), 323–349 (2013)

2. Gegov, A.: Fuzzy Networks for Complex Systems: A Modular Rule Base Approach,
vol. 259. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-15600-7

3. Siddique, N., Adeli, H.: Computational Intelligence: Synergies of Fuzzy Logic, Neu-
ral Networks and Evolutionary Computing. Wiley, Hoboken (2013)

4. Stoffel, K., Cotofrei, P., Han, D: Fuzzy methods for forensic data analysis. In: 2010
International Conference of Soft Computing and Pattern Recognition, pp. 23–28
(2010)

5. Kumar, P.A.R., Selvakumar, S.: Detection of distributed denial of service attacks
using an ensemble of adaptive and hybrid neuro-fuzzy systems. Comput. Commun.
36(3), 303–319 (2013)

6. Shalaginov, A., Franke, K.: Automatic rule-mining for malware detection employ-
ing neuro-fuzzy approach. In: Norsk informasjons sikkerhets konferanse (NISK)
(2013)

7. Nyanyo, A., Marques, H., Wickson, P., Brouwer, F., Blaha, M., Jelenc, D.,
Brouet, J., Junittila, K., Kolundzija, B.: Deliverable 2.3: SALUS use cases final.
Technical report, SALUS Consortium (2014)

8. Wagner, D.T., Rice, A., Beresford, A.R.: Device analyzer: understanding smart-
phone usage. In: 10th International Conference on Mobile and Ubiquitous Systems:
Computing, Networking, and Services, MOBIQUITOUS 2013, Tokyo, Japan (2013)

9. Fuller, R.: Neural Fuzzy Systems. Abo, Turku (1995)
10. de Lima, H.P., de Arruda Camargo, H.: A methodology for building fuzzy rule-

based systems integrating expert and data knowledge. In: 2014 Brazilian Confer-
ence on Intelligent Systems, pp. 300–305 (2014)

11. Guillaume, S., Charnomordic, B.: Fuzzy inference systems: an integrated modeling
environment for collaboration between expert knowledge and data using FISPRO.
Expert Syst. Appl. 39(10), 8744–8755 (2012)

https://doi.org/10.1007/978-3-642-15600-7


Cyber Crime Investigation and Digital
Forensics Triage



Digital Forensic Readiness in Critical
Infrastructures: A Case of Substation

Automation in the Power Sector

Asif Iqbal1,2(&), Mathias Ekstedt1, and Hanan Alobaidli2

1 School of Electrical Engineering, KTH Royal Institute of Technology,
Stockholm, Sweden

asif.iqbal@ee.kth.se, mekstedt@kth.se
2 Athena Labs, Dubai, UAE

Abstract. The proliferation of intelligent devices has provisioned more func-
tionality in Critical Infrastructures. But the same automation also brings chal-
lenges when it comes to malicious activity, either internally or externally. One
such challenge is the attribution of an attack and to ascertain who did what,
when and how? Answers to these questions can only be found if the overall
underlying infrastructure supports answering such queries. This study sheds
light on the power sector specifically on smart grids to learn whether current
setups support digital forensic investigations or no. We also address several
challenges that arise in the process and a detailed look at the literature on the
subject. To facilitate such a study our scope of work revolves around substation
automation and devices called intelligent electronic devices (IEDs) in smart
grids.

Keywords: Digital forensics � Forensic readiness � Substation automation
Smart grid � Forensic investigation � Critical infrastructures

1 Introduction

A critical infrastructure comprises of systems and assets, whether physical or virtual,
that are so essential to a nation that any disruption of their services could have a serious
impact on national security, economic well-being, public health or safety, or any
combination thereof [1–3]. Our modern societies depend on critical infrastructures
(CIs) to a great extent and sixteen such sectors of different critical infrastructures are
defined by Department of Homeland Security [4]. For instance, several days long failure
of power delivery in a large geographical area would not only lead to most business
activity ceasing; it would also cause long-term damage to a range of industrial processes
(e.g., animals dying in farms) and disrupt basic logistics that support our very living [5].
In the recent years, attacks on critical infrastructures and industrial control systems have
become more frequent and more sophisticated [6]. State and non-state actors in today’s
volatile cyber arena are giving rise to increased cyber-attacks including those that target
specifically critical infrastructure, like the recent attack on Ukrainian power grid [7] and
the well-known Stuxnet [8, 26]. At the same time, the proliferation of computer tools

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
P. Matoušek and M. Schmiedecker (Eds.): ICDF2C 2017, LNICST 216, pp. 117–129, 2018.
https://doi.org/10.1007/978-3-319-73697-6_9



and skills enabling individuals and teams to perform sophisticated cyber-attacks has
been increasing, which leads to the attackers having to possess less skill and resources to
launch a successful attack of a given sophistication compared to the past.

This paper zooms in onto investigative capabilities, through studying digital
forensic readiness in critical infrastructures. Digital forensic readiness is the capability
of an IT environment as a whole to determine whether or not an incriminating activity
has taken place, using the remnants of different activities (e.g., state of systems, logs).
While there have traditionally been many applications of digital forensics and forensic
readiness within the domain of personal and enterprise IT, often used in law
enforcement investigations; much less attention has been directed at applying digital
forensics to critical infrastructures. As it is evident from the [9] that digital forensic
readiness is of crucial importance but still it’s quite at its infancy as far as critical
information infrastructures are concerned. If we look through the published research as
well as industry archives we see hints of other domains present in the literature but
rarely anything to do with CIs. Here are a few examples that deal with network forensic
readiness [10, 11].

2 SCADA System Architecture

There are different hardware components that create a (Supervisory Control And Data
Acquisition) SCADA system. These components maybe considered as data sources in
an investigation. Hence this section will mention some of the main components that
might contain evidence in an investigation.

1. PLC (Programmable Logic Controller): A general control system that can function
as a standalone system or participate in a network of PLCs. It has a flexible input
and output facilities and it is programmed using techniques such as “Ladder logic”.
It is adapted to control manufacturing processes that require high reliability control
and ease of programming such as assembly line and robotic devices.

2. RTU (Remote Terminal Unit): Typically used in SCADA systems as a communi-
cation hub where it collects data from sensors and actuators in substations and
remote locations to a central system. It can also be used as a relay system for control
commands.

3. IED (Intelligent Electronic Device): A term mostly used in power industry
describing multifunction devices used for monitoring, protection and control. It is
also used for upper level communication independently without the aid of other
devices. It can receive data from sensors and power equipment’s which can be used
to issue control commands such as tripping circuit breakers if they sense voltage,
current, or frequency anomalies, or raise/lower voltage levels in order to maintain
the desired level.

4. HMI (Human Machine Interface): System engineers and operators utilize the HMI
to interpret and visualize data received from the SCADA system through a
graphical and/ or numerical presentation. It is also used to transfer algorithms,
configure set points and adjust parameters of controllers. Depending on nature of
the SCADA system controlled and monitored the HMI can be either a dedicated

118 A. Iqbal et al.



hardware containing a control panel of switch and indicators to a software version
either on a computer/ mobile application

5. Historian: A term used for a database management system that acquires and stores
data sent to the control center. It is also used to create audit logs for all activities
across a SCADA network. Hence it is considered important in any incident
investigation

6. MTU (Master Terminal Unit): Is a central server that is sometimes referred to as
SCADA server which is used to collect and process RTU/field devices data as well
as issuing commands. It can provide a communication channel with these devices
and it may be used to pre-process data before sending it to a historian. It also can
provide a graphical representation of the information to be transferred and displayed
on the HMI [12].

3 Related Work

According to the CESG Good Practice Guide No. 18, Forensic Readiness is defined as
“The achievement of an appropriate level of capability by an organization in order for it
to be able to collect, preserve, protect and analyze digital evidence so that this evidence
can be effectively used in any legal matters, in disciplinary matters, in an employment
tribunal or court of law” [9]. Implementing a forensic readiness system either specif-
ically for digital forensics in general can provide several benefits such as [11]:
Preparing for the potential need for digital evidence such as email communication,
minimizing the cost of investigations, blocking the opportunity for malicious insiders
to cover their tracks, reducing cost of regulatory or legal requirements for disclosure of
data, showing due diligence, good corporate governance, and regulatory compliance.

Hence in the context of CI, it would be of paramount importance that we determine all
such parameters that assist in such attribution to malicious activity as also defined in [13].
At the same time, digital forensics in critical infrastructure can provide benefits beyond
capturing attackers. It can be useful in the context of troubleshooting, monitoring,
recovery and the protection of sensitive data [14]. For example, it can be used to define
and verify system monitoring requirements. This is done through determining logging
conditions identifying errors and problems that can occur under failures or security
breaches. It also identifies if this is done using software or hardware security equipment.
It can also assist in the learning phase of advanced intrusion detection methods like
anomaly detection, whitelisting and deep protocol behavior inspection [15].

3.1 Challenges to SCADA Forensics

According to a white paper by Enisa [16] with the security risks facing SCADA
environment it becomes crucial to respond to critical incidents and be able to analyze
and learn from what happened. The paper identified an incident analysis process based
on good practices and recommendations for digital forensics. This process is divided
into five stages which are: Examination, Identification, Collection, Analysis of evi-
dence as well as Documentation of the process and results. Through these phases

Digital Forensic Readiness in Critical Infrastructures 119



several challenges are faced by forensic investigators. This is divided into 3 categories
of challenges: Data collection, Data Analysis and Operational.

Ahmed et al. [17] discussed some of the challenges faced while investigating a
SCADA environment. The challenges mostly lay in the range of data acquisition. They
stated that as per the sensitive nature of the SCADA environment that focuses on the
availability of the services provided techniques such as live forensics would be needed.
Nevertheless, this requires a prompt acquisition of the data as valuable information
might be lost. At the same time, an important aspect of the forensic investigation
process might be affected, this aspect is digital evidence integrity validity. As the data
acquired from a live system that needs to be kept running methods such as creating
hash value of the acquired image would be rendered apostolate. This is because data on
the system will keep changing hence no two hash values will be the same.

Another challenge to the acquisition process may be resulted from the deterministic
network traffic in SCADA environment, which might prevent forensic tools from
operating properly. For example, a firewall might have strict rules that allow com-
munication between specific SCADA components but disallow communication
between the investigator’s machine and SCADA components during data acquisition.
Also, customized operating system kernels such as the one available in PatriotSCADA
(firewall solution for SCADA networks) might affect the usability of acquisition tools.
That is because tools such as DD might not run on customized kernels unless they are
compatible with each other.

Other challenges include the unavailability of data to be acquired. For example,
resource constrained devices such as RTU and PLC have limited resources hence data
can have a limited life expectancy before being overwritten by other processes. Also
logs in these devices might be considered inadequate for forensic investigation as they
are geared toward process disturbances, not security breaches.

Ahmed et al. [17] also discussed some measures for forensic readiness in SCADA
environment. They stated that forensic process can be improved in SCADA systems
through preparedness and the selection of appropriate tools. The measure discussed
was the creation of a data acquisition plan which consists of three steps. The first step is
identifying the system environment; the second step is defining environment-specific
requirements such as the impact of vendor solutions on OS. Finally, the third step is
identification and collection of data such as activity and transaction logs.

They combined this with the need for data acquisition monitoring using tools such
as EnCase CyberSecurity. This is needed in order to ensure that the acquisition process
would not affect the availability of the SCADA system. They also recommended the
use of lightweight data acquisition by using tools that have minimal impact so that
adequate system resources are available for SCADA services to work properly.

Similar to the Enisa white paper [14] discusses investigation process of CI which
starts with the identification of possible sources of evidence. They mention some of
these sources which are engineering workstations, databases, historian, Human Man-
agement Interface (HMI), application server, Field devices like PLC, RTU, IED,
firewall logs, web proxy cache and ARP tables. The second step is the preservation of
the identified evidence, followed with data acquisition and data analysis.

Wu et al. [18] discussed a SCADA digital forensic process consisting of seven steps
which are Identification and Preparation, Identifying data sources, Preservation,

120 A. Iqbal et al.



Prioritizing and Collection of evidence, Examination Of the collected evidence,
Analysis of the collected evidence, Reporting and Presentation, and finally Reviewing
results. The paper also stated some challenges to the SCADA forensic investigation.
These challenges are live forensics and integrity of data, lack of compatible forensic
tools for field devices, lack of forensically sound storage, identifying data sources on
SCADA systems, and finally increase of sophisticated attacks.

There were also other efforts by government organizations such as the Department
of Homeland Security’s the Control Systems Security Program to provide a guideline
for the forensic investigation process [19].

Eden et al. [12] discussed a SCADA forensic incident response model consisting of
four main stages: Prepare, Detect, Triage, and Respond. The model focuses on
preparation before an incident occurs that would require a forensic investigation to
happen. These stages are Prepare, Detect, Triage, and Respond. This paper also agreed
with the SCADA forensic challenges mentioned in Ahmed et al. [17] work.

Figure 1 represents a mind map of the SCADA forensic challenges in relation to
the discussed research.

3.2 SCADA Forensics Research

Some research such as the work done by Kilpatrick et al. [21] focused on network
forensics in SCADA environment. The paper presented an architecture that is based on
introducing forensic agents to the SCADA network. These agents are positioned on
areas that will capture most of the network traffic in the SCADA network. The agents
then forward the captured packets to a data warehouse using an isolated network in
order to insure the integrity of the gathered information. The gathered information can
also be used to incorporate mechanisms for monitoring process behavior, analyzing
trends, and optimizing plant performance.

Valli [22] focused on exploit traceability during an investigation. The research
presented a framework for producing verified signatures for Snort IDS using known
and published vulnerabilities of SCADA and control systems. The research method-
ology consisted of five steps. The first step was the identification of vulnerabilities or

Fig. 1. Forensic challenges in SCADA environment [20]

Digital Forensic Readiness in Critical Infrastructures 121



traces at Black Hat, hacker, vendor, CERT or relevant cites. After identifying the
possible vulnerabilities, a replication of the attack is designed through a script or a code
base in order to ease the testing phase. These vulnerabilities are then studied from the
networking perspective by analyzing the communication using modbus or DNP3
network protocols. Afterwards based on the gathered information a rule-set for
Snort IDS is created. Finally, this ruleset is tested in an experimental environment.

Sohl et al. [23] discussed a set of vulnerabilities that can affect industrial control
systems (ICS) as well as the fundamentals of forensic investigation in ICS with relation
to these vulnerabilities. These vulnerabilities can be of low level in the control system
such as stack overflow or heap overflow memory errors. Other discussed vulnerabilities
were hardcoded credentials in control systems as well as vulnerabilities in Active X and
cross site scripting (CSS) which can be used to attack system operators when visiting a
malicious web site. An example of a SCADA system affected by the Active X vul-
nerability is MICROSYS PROMOTIC SCADA/HMI system before version 8.1.5 the
vulnerability allows remote attackers to cause a denial of service via a crafted web page
[24]. Another vulnerability to the MICROSYS PROMOTIC published is related to
heap-based buffer overflow in versions before 8.3.11 which allows remote authenti-
cated users to cause a denial of service via a malformed HTML document [25]. Sohl
et al. [23] also discussed some of the possible evidence that an investigator will sought
after while investigating an industrial control system. These evidences can be injected
shellcode, rogue OS processes, additional malware code, code injected into the address
space of existing OS processes, modifications to various kinds of data on the industrial
control system, new client or server sockets, file creation and file access data. The
author also discussed some forensic tools that can be used in control systems when
suitable such as Linux LiME forensics tool for capturing volatile data along with
Volatility Framework tool. Other tools discussed were FTK Imager, Dshell for network
packet analysis. The authors stated that most of the tools are designed to work with
general computing environment hence tools need to be designed to cope with specific
interfaces, networking, and operating systems of control systems.

Nevertheless, most of the research focuses on the network element or the HMI of
the SCADA environment but there isn’t much discussion of the PLC or RTU devices
regarding forensic investigation.

4 Discussion of the Related Work

As seen in the related work section there is variety of challenges that can affect the
digital forensic investigation in SCADA systems. Most of these challenges are related
to the fact that SCADA systems were designed at first with limited networking and
security in mind. Most of the SCADA systems were isolated from the outside network
such as the internet, but with the advancement in technology and the need for larger
and faster processing they had to be connected. As a result, they became vulnerable to
different attacks.

Also, SCADA system environment differ from traditional computing system with
regard to the emphasis of availability. This emphasis proves to be one of the main
challenges regarding digital forensics. The investigation process and technique needs to

122 A. Iqbal et al.



take this as a main consideration because if these systems went down the outcome
maybe catastrophic to the country infrastructure. Hence traditional forensic techniques
will not be suitable, but techniques such as live forensics will be of great value. Never
the less more studies need to be done regarding live forensics techniques and tools that
can be used in SCADA system.

Additionally, there are challenges related to the data created in the system, as it was
mentioned above SCADA systems were not designed with security in mind. Hence
data that can be gathered from sources such as logs may not cover all the needed
aspects of the investigation. The logs mostly are designed to answer the system
operator’s needs not the security needs. Moreover, the issue of the limited logging
capability in devices as well as limited storage makes a lot of the needed data to be
highly volatile.

To overcome some of these challenges the research field discussed the possible
investigation process. As per the author opinion the most comprehensive process were
discussed in [12, 18]. The designed process paid a great attention toward the prepa-
ration phase as it covers a challenge related to the limited knowledge of forensic
investigators about the SCADA environment. Also these two processes shed light on
the challenge of volatility of data sources by prioritizing which data sources are pro-
viding the most valuable evidence in an investigation and acquiring the data accord-
ingly. Never the less the process in [18] focused more in the investigation of the
acquired evidence while the process in [12] introduced a detect phase that is related to
identifying an attack and how it affected the system.

While in terms of other technical research in SCADA forensics filed the focus is on
the network element or the HMI. There isn’t much discussion of the PLC or RTU
devices about the forensic investigation, some discussed that these devices don’t have
forensic capability or may not provide much data to the investigation. Having said that
we consider these devices to be of value to the investigation and they should be studied
and identify the possible evidence in these systems. Along with identifying the possible
evidence the author believes that measures need to be implemented to make these
devices provide more forensic evidence.

5 Case Studies

The aim of these case studies was to approach the problem of digital forensic readiness
through an implementation point of view.

Substation automation refers to using data from intelligent electronic devices (IED),
control and automation capabilities within the substation, and control commands from
remote users to control power-system devices.

Figure 2 indicates our scope of work for this research as well as typical substation
automation architecture.

5.1 Example 1: Digital Forensic Investigation of an IED Device

Transformer protection IED is a protection, control, and monitoring IED with extensive
functional library, configuration possibilities and expandable hardware design to meet

Digital Forensic Readiness in Critical Infrastructures 123



specific user requirements. It is usually used with a protection and Control IED
manager. It helps manage protection and control equipment all the way from appli-
cation and communication configuration to disturbance handling, including automatic
disturbance reporting. The manager interacts with IEDs over fast and reliable TCP/IP
protocols through LAN or WAN (rear communication port of the IED) or alternatively
directly through the communication port at the front of the IED. It can read and write
all configuration and setting parameters of an IED.

There are several elements of a substation automation and protection system.
However, this use case will consider the interaction between only two of them.
Measurements from a physical power system process are taken using Current Trans-
formers (CTs) and Voltage Transformers (VTs). Those measurements are sampled
using a device called Merging Unit (MU). MUs merge 4 voltage and 4 current samples
per measurement point into a single IEC61850-9-2 Sampled Value (SV) packet which
is then being distributed on an Ethernet based process bus using multicast.

The IED is implemented as a transformer differential function. Essentially, the
function takes current measurements from both sides of a transformer and calculates the
difference between the two. If this difference is greater than some predefined value, it
disconnects the transformer from the grid by opening the corresponding breakers.
The IED sends the IEC 61850-8-1 GOOSE messages to the I/O devices which oversee
the opening of the transformer breakers.

Undesired opening of transformer breakers might have significant economical and
societal consequences. Therefore, this use case attempts to demonstrate how operation
of the power system can easily be disrupted by crafting GOOSE message packets. To
simulate a power system process, operation of MUs and I/O devices, a real-time
Opal-RT simulator is used. The simulator is connected to the IED via an Ethernet

Fig. 2. A detailed SCADA network with a substation network

124 A. Iqbal et al.



switch. Both IEC61850-9-2 SV packets and IEC 61850-8-1 GOOSE packets are sent
via this switch. During a normal operation, the IED would send cyclic multicast
GOOSE packets to the simulator with a Boolean value equal to False which corre-
sponds to the closed state of the breaker. Conversely, when there is a fault in the
system, IED would initially send avalanche of packets with Boolean value equal to
True. This change in value would cause I/O devices to open the breakers and clear the
fault.

However, if an attacker gains access to the network, it can craft the GOOSE
messages which will cause the breakers to open regardless of the current state of the
system. It should however be noted that, to craft the message, the structure and the
content of the GOOSE message would have to be known, see Fig. 3.

5.2 Example 2: Digital Forensic Investigation of a Phasor Measurement
Unit (PMU) Device

5.2.1 Introduction to PMU Device
Phasor Measurement Unit (PMU) is a device which measures the amplitude and phase
of a power-grid voltage and/or current, relative to a known reference [27]. Syn-
chrophasor technology uses PMUs to measure voltage and current waveforms and
calculate phasors. Each measurement is time-stamped and thus synchronized against
Coordinated Universal Time (UTC) using a time source such as the GPS [28]. PMU
data is sampled between 30 to 120 samples per second which is fairly high enough,
such that dynamics of the power-grid can be measured accurately.

Due to having high resolution data with accurate time-stamped information, Syn-
chrophasors technology is being used for Wide-Area Monitoring System (WAMS),
forensic event analysis and verification of grid model etc. [28].

5.2.2 Synchrophasor Network
As shown in Fig. 4, GPS receiver takes the timing signal from satellite. A substation
clock interprets the GPS signal and converts into a protocol which is readable by
PMUs. PMUs compute Synchrophasors using IEEE C37.118.2 standard [29] and

Fig. 3. IED attack example

Digital Forensic Readiness in Critical Infrastructures 125



streams data over Ethernet to Phasor Data Concentrator (PDC). PDC streams are sent
via Wide Area Network (WAN) to a power system control center, where different
monitoring, control and protection application utilize the PMU/PDC data.

5.2.3 Vulnerability of a PMU Device to Spoofing/Jamming Attacks
PMUs are vulnerable to cyber-attack because it uses TCP/IP and UDP/IP protocol
which make it more susceptible to various attacks [30]. For example, modification
attacks like malicious code injection, data fabrication attack in the form of data
spoofing and jamming the input signals to the PMUs etc. [30–32]. A GPS signal which
provides a time synchronization input to the PMUs, is one of the most vulnerable
signals to a cyber-attack as shown in Fig. 4. An attack on GPS signal infects PMU data,
which could adversely impact the performance of the power system applications which
utilize the infected PMU data.

The impact of loss of time synchronization signal (in case of jamming attack) on
synchrophasor based applications is investigated in [31]. As mentioned in [31], if PMU
loses its GPS signal, this results in erroneous time-stamp calculations which lead to the
wrong synchrophasors computations. This ultimately results in corrupted power system
monitoring & control results.

In [32], the impact of time synchronization spoofing attacks on synchrophasor-based
monitoring, protection and control applications has been extensively discussed. It was
identified in [32] that the current PMUs lacks the functionalities to identify between
authentic and spoofed time signals. This makes current PMU device to be highly vul-
nerable to cyber-attacks.

5.2.4 Digital Investigation of SEL-421 PMU
From [32], it can be concluded that, currently, PMU device is not smart enough to
detect any cyber attacks on GPS signal (signal loss & data spoofing). In this paper,
SEL-421 PMU device [33] is selected for a analysis in order to investigate the current
shortcomings and limitations of this device for forensic analysis in case of any cyber
attack. The data logs in a device are very important for its forensic analysis.

Fig. 4. Synchrophasor network

126 A. Iqbal et al.



Figure 5(left) shows a snapshot of SEL-421 configuration software called SEL
acSELerator QuickSet [34]. SEL-421 device is equipped with some nice data logging
features. There are different triggers to capture data in the SEL-421 which are Relay
Word bit TRIP assertions, SELOGIC® control equation ER (Event Report Trigger) and
TRI command. The two main log sources we can consider as the connection log
created using Terminal logging as well as the Sequential event Recorder (SER).

The connection log records all communications between the relay and the PC. On
the other hand SER captures and time-tags state changes of Relay Word bit elements
and relay conditions. These conditions include power-up, relay enable and disable,
group changes, settings changes, memory overflow, diagnostic restarts, and SER
auto-removal/ reinsertion. Figure 5(right) shows a snapshot about how to use data
logging functionality in SEL-421 using its configuration software.

The size of the event report length in SER affects the number of records available.
With SEL-42 recorded events can range from 4 to 239 events before they get over-
written again. Hence valuable information for an attack might be lost if it is not backed
up. Moreover, the data logs available in SEL-421 device do not help in providing any
notification or indication of any cyber attack. This leads us to a conclusion that current
PMU technology is not forensically ready for digital investigation in case of any
attacks.

6 Conclusions and Future Work

Having studied these devices for forensic purpose, it is evident that these devices are
not forensic ready and there are no established methods that could be utilized to help in
their forensic investigation.

As a future work, we intend to create a series of experiments in increasing com-
plexity to measure the forensic readiness of SCADA controls. Following are the main
points for the future work that we intend to perform:

Fig. 5. Left: a snapshot from SEL-421 configuration software and Right: data logging
functionality using SEL-421 configuration software [30]

Digital Forensic Readiness in Critical Infrastructures 127



• Development of a small suite of tools to extract and analyze the evidence from
individual components of the SCADA network

• Creating a set of experiments with a base configuration to measure the forensic
readiness of SCADA controls

• Using different configurations to measure the variance in results
• We’ll document the experiments and their results, and based on the outcomes

propose a set of recommendations to create a benchmark for SCADA forensic
readiness.

Acknowledgment. This work has received funding from the Swedish Civil Contingencies
Agency (MSB) through the research center Resilient Information and Control Systems (RICS).

References

1. U.S. General Accounting Office: Cyber security guidance is available, but more can be done
to promote its use (2011). http://www.gao.gov/assets/590/587529.pdf

2. Alcaraz, C., Zeadally, S.: Critical infrastructure protection: requirements and challenges for
the 21st century. Int. J. Crit. Infrastruct. Prot. 8, 53–66 (2015)

3. U.S. Department of Homeland Security: What is critical infrastructure? (2016). https://www.
dhs.gov/what-criticalinfrastructure

4. Critical infrastructure sectors (2016). https://www.dhs.gov/critical-infrastructure-sectors
5. KTH Royal Institute of Technology (2013). Viking: https://www.kth.se/en/ees/omskolan/

organisation/avdelningar/ics/research/cc/proj/v/viking-1.407871
6. Trend Micro Incorporated: Report on cybersecurity and critical infrastructure in the americas

(2015). http://www.trendmicro.com/cloudcontent/us/pdfs/securityintelligence/reports/
critical-infrastructures-west-hemisphere.pdf

7. SANS ICS: Analysis of the cyber attack on the Ukrainian power grid (2016). https://ics.sans.
org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf

8. Langner, R.: Stuxnet: dissecting a cyberwarfare weapon. IEEE Secur. Priv. 9(3), 49–51 (2011)
9. CESG National Technical Authority for Information Assurance: Good practice guide:

Forensic readiness (2015). https://www.cesg.gov.uk/content/files/guidancefiles/Forensic%
20Readiness%20(Good%20Practice%20Guide%2018)1.2.pdf

10. Ammann, R.: Network forensic readiness: a bottom-up approach for IPv6 networks. Ph.D.
dissertation, Auckland University of Technology (2012)

11. Sule, D.: Importance of forensic readiness (2014). http://www.isaca.org/Journal/archives/
2014/Volume-1/Pages/JOnline-Importance-of-Forensic-Readiness.aspx

12. Eden, P., Blyth, A., Burnap, P., Cherdantseva, Y., Jones, K., Soulsby, H., Stoddart, K.: A
cyber forensic taxonomy for SCADA systems in critical infrastructure. In: Rome, E.,
Theocharidou, M., Wolthusen, S. (eds.) CRITIS 2015. LNCS, vol. 9578, pp. 27–39.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33331-1_3

13. Cook, A., Nicholson, A., Janicke, H., Maglaras, L.A., Smith, R.: Attribution of cyber attacks
on industrial control systems. EAI Endorsed Trans. Indust. Netw. Intellig. Syst. 3(7), e3
(2016). https://doi.org/10.4108/eai.21-4-2016.151158

14. van der Knijff, R.M.: Control systems/SCADA forensics, what’s the difference? Digit.
Invest. 11(3), 160–174 (2014). https://doi.org/10.1016/j.diin.2014.06.007. ISSN 1742-2876

15. Etalle, S., Gregory, C., Bolzoni, D., Zambon, E.: Self-configuring deep protocol network
whitelisting. Security Matters (2013). http://www.secmatters.com/sites/www.secmatters.
com/files/documents/whitepaper_ics_EU.Pdf

128 A. Iqbal et al.

http://www.gao.gov/assets/590/587529.pdf
https://www.dhs.gov/what-criticalinfrastructure
https://www.dhs.gov/what-criticalinfrastructure
https://www.dhs.gov/critical-infrastructure-sectors
https://www.kth.se/en/ees/omskolan/organisation/avdelningar/ics/research/cc/proj/v/viking-1.407871
https://www.kth.se/en/ees/omskolan/organisation/avdelningar/ics/research/cc/proj/v/viking-1.407871
http://www.trendmicro.com/cloudcontent/us/pdfs/securityintelligence/reports/critical-infrastructures-west-hemisphere.pdf
http://www.trendmicro.com/cloudcontent/us/pdfs/securityintelligence/reports/critical-infrastructures-west-hemisphere.pdf
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://www.cesg.gov.uk/content/files/guidancefiles/Forensic%20Readiness%20(Good%20Practice%20Guide%2018)1.2.pdf
https://www.cesg.gov.uk/content/files/guidancefiles/Forensic%20Readiness%20(Good%20Practice%20Guide%2018)1.2.pdf
http://www.isaca.org/Journal/archives/2014/Volume-1/Pages/JOnline-Importance-of-Forensic-Readiness.aspx
http://www.isaca.org/Journal/archives/2014/Volume-1/Pages/JOnline-Importance-of-Forensic-Readiness.aspx
http://dx.doi.org/10.1007/978-3-319-33331-1_3
http://dx.doi.org/10.4108/eai.21-4-2016.151158
http://dx.doi.org/10.1016/j.diin.2014.06.007
http://www.secmatters.com/sites/www.secmatters.com/files/documents/whitepaper_ics_EU.Pdf
http://www.secmatters.com/sites/www.secmatters.com/files/documents/whitepaper_ics_EU.Pdf


16. Pauna, A., May, J., Tryfonas, T.: Can we learn from SCADA security incidents? – ENISA,
09 October 2013. https://www.enisa.europa.eu/publications/can-we-learn-from-scada-
security-incidents

17. Ahmed, I., Obermeier, S., Naedele, M., Richard III, G.G.: SCADA systems: challenges for
forensic investigators. Computer 45(12), 44–51 (2012). https://doi.org/10.1109/mc.2012.325

18. Wu, T., Pagna Disso, J.F., Jones, K., Campos, A.: Towards a SCADA forensics architecture.
In: Proceedings of the 1st International Symposium for ICS & SCADA Cyber Security
Research, pp. 12–21 (2013)

19. Fabro, M., Cornelius, E.: Recommended practice: creating cyber forensics plans for control
systems. DHS Control Systems Security Program (2008). https://ics-cert.us-cert.gov/sites/
default/files/recommended_practices/Forensics_RP.pdf. Accessed 15 May 2017

20. Iqbal, A.: [Extended Abstract] Digital Forensic Readiness in Critical Infrastructures:
Exploring substation automation in the power sector. Stockholm (2017). http://urn.kb.se/
resolve?urn=urn:nbn:se:kth:diva-209689

21. Kilpatrick, T., Gonzalez, J., Chandia, R., Papa, M., Shenoi, S.: An architecture for SCADA
network forensics. In: Olivier, M.S., Shenoi, S. (eds.) DigitalForensics 2006. IAIC, vol. 222,
pp. 273–285. Springer, Boston, MA (2006). https://doi.org/10.1007/0-387-36891-4_22

22. Valli, C.: SCADA forensics with Snort IDS. In: Proceedings of the 2009 International
Conference Security and Management (SAM 2009), pp. 618–621. CSREA Press (2009)

23. Sohl, E., Fielding, C., Hanlon, T., Rrushi, J., Farhangi, H., Howey, C., Carmichael, K.,
Dabell, J.: A field study of digital forensics of intrusions in the electrical power grid. In:
Proceedings of the First ACM Workshop on Cyber-Physical Systems-Security and/or
PrivaCy (CPS-SPC 2015), pp. 113–122. ACM, New York (2015)

24. CVE Details, Security Vulnerabilities, Promotic. https://www.cvedetails.com/vulnerability-
list/vendor_id-649/product_id-22225/Microsys-Promotic.html

25. Hunt, R., Slay, J.: Achieving critical infrastructure protection through the interaction of
computer security and network forensics. In: 2010 Eighth Annual International Conference
on Privacy Security and Trust (PST), pp. 23–30. IEEE (2010)

26. Langner, R.: Robust Control System Networks: How to Achieve Reliable Control after
Stuxnet. Momentum Press, New York (2011)

27. IEEE C37.118.1-2011: IEEE Standard for Synchrophasor Measurement for Power Systems
28. NASPI Technical Report: Time Synchronization in the Electric Power System, USA, March

2017. https://www.naspi.org/sites/default/files/reference_documents/tstf_electric_power_
system_report_pnnl_26331_march_2017_0.pdf

29. IEEE Standard for Synchrophasor Data Transfer for Power Systems. In: IEEE Std
C37.118.2-2011 (Revision of IEEE Std C37.118-2005), pp. 1–53, 28 December 2011

30. Beasley, C., Zhong, X., Deng, J., Brooks, R., Venayagamoorthy, G.K.: A survey of electric
power synchrophasor network cyber security. In: IEEE PES Innovative Smart Grid
Technologies, Europe, Istanbul, pp. 1–5 (2014)

31. Almas, M.S., Vanfretti, L.: Impact of time-synchronization signal loss on PMU-based
WAMPAC applications. In: 2016 IEEE Power and Energy Society General Meeting
(PESGM), Boston, MA, pp. 1–5 (2016)

32. Almas, M.S., Vanfretti, L., Singh, R.S., Jonsdottir, G.M.: Vulnerability of
synchrophasor-based WAMPAC applications’ to time synchronization spoofing. IEEE
Trans. Smart Grid 8(99), 1 (2017)

33. SEL: Protection Relays by Schweitzer Engineering Laboratories. https://selinc.com/
products/421/

34. SEL-5030 acSELerator QuickSet Software. https://selinc.com/products/5030/

Digital Forensic Readiness in Critical Infrastructures 129

https://www.enisa.europa.eu/publications/can-we-learn-from-scada-security-incidents
https://www.enisa.europa.eu/publications/can-we-learn-from-scada-security-incidents
http://dx.doi.org/10.1109/mc.2012.325
https://ics-cert.us-cert.gov/sites/default/files/recommended_practices/Forensics_RP.pdf
https://ics-cert.us-cert.gov/sites/default/files/recommended_practices/Forensics_RP.pdf
http://urn.kb.se/resolve%3furn%3durn:nbn:se:kth:diva-209689
http://urn.kb.se/resolve%3furn%3durn:nbn:se:kth:diva-209689
http://dx.doi.org/10.1007/0-387-36891-4_22
https://www.cvedetails.com/vulnerability-list/vendor_id-649/product_id-22225/Microsys-Promotic.html
https://www.cvedetails.com/vulnerability-list/vendor_id-649/product_id-22225/Microsys-Promotic.html
https://www.naspi.org/sites/default/files/reference_documents/tstf_electric_power_system_report_pnnl_26331_march_2017_0.pdf
https://www.naspi.org/sites/default/files/reference_documents/tstf_electric_power_system_report_pnnl_26331_march_2017_0.pdf
https://selinc.com/products/421/
https://selinc.com/products/421/
https://selinc.com/products/5030/


A Visualization Scheme for Network Forensics
Based on Attribute Oriented Induction Based
Frequent Item Mining and Hyper Graph

Jianguo Jiang1, Jiuming Chen1,2, Kim-Kwang Raymond Choo3,
Chao Liu1, Kunying Liu1, and Min Yu1,2(&)

1 Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China

yumin@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China
3 Department of Information Systems and Cyber Security,
University of Texas at San Antonio, San Antonio, TX, USA

Abstract. Visualizing massive network traffic flows or security logs can
facilitate network forensics, such as in the detection of anomalies. However,
existing visualization methods do not generally scale well, or are not suited for
dealing with large datasets. Thus, in this paper, we propose a visualization
scheme, where an attribute-oriented induction-based frequent-item mining
algorithm (AOI-FIM) is used to extract attack patterns hidden in a large dataset.
Also, we leverage the hypergraph to display multi-attribute associations of the
extracted patterns. An interaction module designed to facilitate forensics analyst
in fetching event information from the database and identifying unknown attack
patterns is also presented. We then demonstrate the utility of our approach (i.e.
using both frequent item mining and hypergraphs to deal with visualization
problems in network forensics).

Keywords: Visualization � Big data analysis � Network forensic � Hypergraph

1 Introduction

In our increasingly Internet-connected society (e.g. smart cities and smart grids), the
capability to identify, mitigate and respond to a cyber security incident effectively and
efficiently is crucial to organizational and national security. Existing security products
include those that enforce policies and generate situational intelligence [1, 2]. However,
existing solutions are generally not designed to deal with the increasing volume,
variety, velocity and veracity of data generated by existing security solutions [3].

Thus, in this paper, a visualization analysis scheme based on attribute oriented
induction based frequent item mining and hyper graph is proposed. The choice of
attribute oriented induction based frequent item mining algorithm and hyper graph is as
follows. In network attacks, for example, using frequent item mining algorithm only
allows us to extract records whose attributes meet the frequent character. In a host scan
attack, however, the destination port number may varies. Thus, we use attribute

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
P. Matoušek and M. Schmiedecker (Eds.): ICDF2C 2017, LNICST 216, pp. 130–143, 2018.
https://doi.org/10.1007/978-3-319-73697-6_10



oriented induction based frequent item mining algorithm instead of only frequent item
mining (FIM) algorithm to process network traffic data and security logs. This allows
us to effectively filter out the redundant data and discover interesting patterns hidden in
the data. In addition, several commonly seen attacks have a one-to-many relationship,
which could be visualized and distinguished [7] Thus, using hyper graph, we can
clearly display multi-attribute associations and the specific attack event information. In
our scheme, we also include an interaction module for the forensics analyst to manual
analyze the visualized event and obtain the original information of these events.

Our scheme is designed to handle both network flow data and security logs, and
therefore, a forensic analyst can easily understand the behavior of hosts or users from
the visualization graph when an attack occurs. Specifically, our scheme allows the
forensic analyst to identify new anomaly and attack patterns using the graph visual-
ization and the interaction module. The scheme can deal with big dataset using attribute
oriented induction based frequent item mining, where multi-attribute relationship of
parameters such as source IP, destination IP address, port number, and time, can be
explored to provide in-depth information about malicious cyber incidents or events.

The remaining of this paper is structured as follows. In the next section, we review
related literature. In Sects. 3 and 4, we describe our visualization scheme and
demonstrate the utility of our scheme using real-world dataset, respectively. Finally, we
conclude our paper in Sect. 5.

2 Related Work

Many approaches designed to handle and display complex data in networks have been
proposed in the literature. Such approaches facilitate humans in recognizing abnormal
events in the network [4–7]. Parallel coordinate, a commonly used visualization
method proposed by Inselberg [8], displays multi-dimensional data. Specifically, in a
parallel coordinate, each vertical axis represents a different attribute and the lines
display the associations between two coordinates. There are a number of published
parallel coordinate based visualization schemes and tools, such as NFSight [9],
VisFlowConnect [10], and PCAV [11].

There are several other visualization tools, such as Nfsen [12], FlowScan [13],
FloVis [14], NFlowVis [15] and Fluxoscope [16], which use a range of visualization
methods (e.g. histograms, pie charts, scatterplots, heavy hitter lists, and tree maps).
A key limitation in parallel coordinate based approaches and several other visualization
approaches is that the lines they use in the graph can only indicate associations between
two linked parameters. However, these approaches cannot visualize multi-attribute
associations. In addition, the parallel coordinate approach cannot display the quanti-
tative characteristics.

Krasser and Conti [17] used parallel coordinate for real time and forensic data
analysis. Their approach displays both malicious and non-malicious network activities,
but the approach does not scale well to deal with big dataset. The plane coordinate
diagram, another popular approach used in the literature, can only represent the
association between two attributes.

A Visualization Scheme for Network Forensics Based on AOI-FIM and Hyper Graph 131



The hyper graph approach, however, can effectively display the association
between the multi-attributes and facilitate a forensic analyst to reconstruct the event
[18]. For example, Glatz et al. [19] proposed a hyper graph based approach to display
traffic flow data. While the proposed approach in [19] visualizes dominant patterns of
network traffic, the authors did not explain how their approach can be used to distin-
guish attacks features (i.e. a visualizing approach, rather than a visualizing analysis
method). Unlike existing approaches, in this paper, we first analyze the “one-to-many
relationship” in popular attack patterns that allows us to distinguish between the
attacks. We then add an interaction module in our visualization scheme so that a
forensics analyst can easily interact with the database and the hyper graph to discover
unknown attack patterns.

There have also been efforts to using signature based methods, such as hash
function, to handle the traffic flow data and mining interesting patterns [20]. However,
these methods need to know the characteristics in advance and these methods’ effi-
ciency is limited when dealing with big dataset. Therefore, in our research, we use
attribute oriented induction based frequent item mining algorithm to extract attack
patterns hidden in the data. Frequent item mining algorithm is widely used in the field
of data mining, but to the best our knowledge, our work is the first to leverage both
hyper graph and frequent item mining to network forensic visualization.

3 Proposed Network Forensic Visualization Scheme

The complex and noisy network traffic and security logs can be simplified using
visualization techniques or tools, which allows network forensic analysts to have an
in-depth insight into the network and the activities (e.g. attack event information). For
example, using visualization, we can deduce some new or unknown attacks in the
network; thus, enabling unknown attack(s) to be detected. Key challenges in security
visualization include data volume and the correlating methods. In order to mitigate
existing limitations, we propose a data extraction method based on a frequent item
mining algorithm to reduce the volume of the noisy data set. Specifically, we propose a
hypergraph based method that allows the correlation of several parameters such as
source address, destination address, source port, destination port, packet length and
time.

3.1 Attack Features

There is no one size fits all visualization method, but we can design the graph on a
case-by-case basis to fulfill specific needs. There are mainly four attack types, namely:
scan attacks, denial of service attacks, worm attacks and other attacks (e.g. botnet
facilitated attacks). In order to design an effective visual method for most popular
attacks, their features must be considered. For example, these popular attacks have one
common characteristics, which is “one–to-many relationship” between network
attacker and victim/victim machine(s) [7]. The characteristics can inform the design of
detection algorithm for maximal accuracy.

132 J. Jiang et al.



Network scanning attack is generally (one of) the first step(s) in an attack, such as a
host or port scan to probe and identify vulnerable host(s) in the network and available
service(s) of the target(s) host for exploitation. In both scanning processes, there is a
“one to many relationship”, in the sense of one attack host with one or many victim
hosts and many ports.

Denial of service (DoS) and distributed denial of service (DDoS) attacks are
another popular type of attack, seeking to exhaust and overwhelm the target network’s
bandwidth and computational resources. Similarly, such attackers have a “one-to-many
relationship”.

Worm is a self-propagating code whose propagation process is similar to botnet
attack. After detecting the vulnerable machines in the network, an infected host may
propagate the worm code to one or more target hosts. Therefore, we have a “one-to-
many relationship” between the source infected host and the target hosts. Similar
relationship is in botnet attacks, where the attacker propagates the malicious code to an
infected host, and builds a relationship between controller and infected client hosts.

Attackers may also change or hide the parameters and find new vulnerability(ies) to
increase the possibility of success and reduce the probability of detection. Such efforts
will compound the challenges in detection. Thus, we need to identify avenues that can
be used to effectively mitigate such efforts. One such avenue is in their (common)
characteristics, as discussed above.

In this remaining section, we will show how to extract and display the character-
istic, and when combined with the use of AOI-FIM algorithm and hyper graph,
facilitates forensics analysis.

3.2 Attack Parameters

When an attack occurs, there are many logs (e.g. security device logs, system logs, web
server application logs and network logs) containing information related to the event
and could be used to reconstruct the event. For example, network flow data and security
logs are two main sources in network forensics. In this paper, we use network flow data
and security logs to collect the data for the following analysis. There are many
parameters within flow data and network security logs, such as IP, port, time and alert
type. We need to choose parameters that will be helpful to visualize the “one-to-many”
relationship and distinguish the type of attacks for forensics analysis.

Firstly, the source IP address and the destination IP address are selected as
parameters, which could be used to specify the victim and attacker. Secondly, Internet
worms and botnet attacks may choose one or more ports to propagate the malicious
code. Therefore, the port number is another parameter to be considered. Thirdly,
network scanning and DDoS attacks generally make use of packets without payload or
with fixed length such as 40 or 48, but Internet worms and botnet attacks generally
have a fixed length payload of more than 48 (i.e. due to the malicious payload). Thus,
we can use the packet length parameter to distinguish between different types of
attacks. Finally, to distinguish one flow or multiple flows with the same value, we add
the time of the flow to display the quantity characteristic of the network flow.

A Visualization Scheme for Network Forensics Based on AOI-FIM and Hyper Graph 133



The following is a sample of a normalized record analyzed using the proposed
visualization scheme. The SIP represents the source IP, and DIP represents the desti-
nation IP address. The SPort and DPort represent the source and destination port
number of the flow data, respectively. The pSize represents the packet size when the
data is flow data. The alert type represents the type of alert from a security log.

{SIP: x.x.x.x, DIP: y.y.y.y, SPort: t, DPort: p, time: xx-xx-xx, pSize: m, Alert
Type: IRC}

3.3 AOI-FIM Algorithm

Analyzing network packets, logs and systems events for forensics has always been a
challenge, due to the large data volume. Thus, we apply frequent item set mining
algorithm to extract patterns hidden within the data, and visualize them using hyper
graph to show the relationship between each parameter.

Frequent item set mining algorithm, a process that extracts patterns from transac-
tions, is one of the most used methods to create association rules. Let I = {ii …, in} be a
set of parameters and the sum of parameters is n, and D = {t1… tm} be a set of
transactions, where the sum of transactions is m [21]. Each transaction ti contains the
subset of parameters in I. A frequent item set is a transaction that appears at least s
transactions in D. The parameter s determines the threshold size of frequent item sets.
The parameter k determines the minimum number of parameters in each frequent item.
In our context, we use network flow and security logs as transactions, and the
parameters consist of source IP, destination IP, etc. The frequent item sets are a set of
some traffic parameters which frequently appear in the data, such as {SrcIP = a.a.a.a,
Sport = x, DestIP = b.b.b.b, DestPort = y}. The result of the frequent item mining
process is a collection of the IP, port, and other parameters in the flow data attributes
and security logs.

For a port scan attack, the port may be various and there is a frequent pattern
between the varied port number and source IP. Using the traditional FIM algorithm, the
various port numbers may not be detected as a single port does not occur frequently. In
addition, directly using only a conventional FIM algorithm (e.g. Apriori) does not
allow us to distinguish the types of attack automatically. Although many popular
attacks meet “one-to-many” relationship, the frequent distribution of data cannot be
extracted directly by many classical frequent mining items algorithms. To merge some
records with multiple port numbers or multiple IP address into one frequent pattern, we
apply the attribute oriented induction method [22] into the frequent item mining
algorithm (AOI-FIM), which improves the detection precision.

Attribute oriented induction (AOI) algorithm is a useful method for knowledge
discovery in relational database, which uses a machine learning paradigm such as
learning-from-examples to extract generalized data from original data records [23]. The
attribute-oriented concept tree ascension for generalization is the key to the AOI
method, which can reduce the computational complexity of the database. Figure 1 is an
example application of the AOI concept tree.

In this paper, we use the AOI method to redesign the FIM algorithm so that it can
extract some specific and unknown attack patterns. Using the AOI method, the
AOI-FIM algorithm can promptly extract attack patterns from normalized records that

134 J. Jiang et al.



have a “one-to-many” relationship. For some special frequent item set that meets the
threshold requirement of frequent pattern but the value distribute of the parameters may
vary, we use ‘Vary’ to merge the items and represent the distributed frequent pattern of
the special parameter.

The attribute oriented induction based mining algorithm [24] can be used to gen-
eralize some records with a different parameter value into one frequent item set when
the generated patterns meet the frequent rule. In the next subsection, we explain how
the hypergraph theory can be used to visualize the frequent item sets for forensic
investigations.

3.4 Hyper Graph

Existing network security log visualization approaches generally use parallel coordi-
nates to represent the relationship between the network parameters. However, parallel
coordinate cannot correlate the relationship between multiple attributes, or reflect the
quantitative characteristics of various transactions. To overcome these limitations, we
use hypergraph [25] to reflect the multi-attribute associations within the frequent item
sets. Hypergraph also allows us to distinguish some specific attacks based on the
displayed characteristics.

Mathematically, a hypergraph is a generalization of a graph, where an edge can
connect any number of vertices [26]. Formally, a hypergraph H is a pair H = (X, E),
where X is a set of elements, called nodes or vertices, and E is a set of non-empty
subsets of X called hyper edges or links. In this paper, the nodes or vertices represent
the parameters consisting frequent item sets and each hyper edge represents a frequent
item set extracted from the flow data and security logs.

To display the quantitative characteristics of data, we add a circle to each hyper
edge and the circles is varied based on the size of frequent item sets. We display the
number within the circle node to represent the quantity characteristic within the fre-
quent item set. In this paper, we seek to automatically extract the one-to-many rela-
tionship and find the hyper edges that are potentially associated with an attack.

Figure 2 shows some typical hyper edges that represent some popular attacks.
Attacks that have a “one-to-many relationship” can be easily visualized and distin-
guished using hypergraph. What’s more, the combination of some different frequent

freshman Sophomore junior senior

freshman

M.A. M.S. P.h.D.

graduate

ANY

Fig. 1. A sample concept tree of AOI method

A Visualization Scheme for Network Forensics Based on AOI-FIM and Hyper Graph 135



items which meet one-to-many relationship can also infer some specific attacks such as
botnets and Trojans. To display some frequents patterns with different parameter
values, we use the attribute oriented induction based frequent item mining algorithm
(AOI-FIM) to extract the attack patterns, and “Vary” to represent the parameter whose
distribution of values is dispersed but the parameter and other frequent item sets have a
one-to-many relationship. For example, we use a port-fixed DDoS attack as an
example, and the graph shows that in this example, three distributed hosts are attacking
target hosts y1. y2. y3. y4 via n ports. We use “Vary” to represent the multiple source
hosts in the hyper graph to show the induced frequent quantitative relation.

3.5 Visualization System for Network Forensic

In order to automate the data correlation and displaying of event information for
forensic investigation, we design a system based on frequent item mining algorithm
and hyper graph. The architecture of the system is presented in Fig. 3, where the
system consists of data collection, data pre-process, frequent item set mining, attack
detection, hypergraph visualization, and manual inspection.

The system also has five main modules, namely: a collection module, analysis
module, visualizer module, data store module and forensics interaction module. The
collection module receives network traffic flow data and security logs using some

Fig. 2. Attack pattern visualized by hyper graph

136 J. Jiang et al.



sensor routes and security devices. It extracts parameters such as IP, port from the data
set. The collection module stores the raw data into database that can be used in
subsequent forensic investigation. The analyzer module uses the frequent item mining
algorithm to extract the association rules and detect attacks. The visualization module
uses hypergraph to display the frequent item set and attack information. According to
the attack information within the hypergraph, forensic investigators can use the
interaction module to manually correlate the event and extract original event infor-
mation from the database for in-depth analysis.

4 Evaluation

In this section, we extract and display the one-to-many relationship from the flow data
and security logs using two different data sets, namely: a local network traffic flow data
and the VAST 2012 [27] data set. We implement the visualization system so that it
could extract and display the characteristic automatically. We firstly collect the raw
data in CSV format, and filter out the other parameters to retain IP, Port and alert type
data. Then, we implement the AOI based FIM processing program using the Java
language, which extracts the one-to-many relationship from the data set and build the
frequent item set for the visualization. After that, we build the hypergraph for these
frequent item sets and design a specific hypergraph template for each popular attack
described in Sect. 3.4. We also assign values for these templates and display them
based on the frequent item set extracted by the preceding step. For each frequent item
set that represents the characteristic of an attack, we design a link for the raw data so
that the forensic analysts can carry out detailed inspection.

We will now describe the experiments on both data sets. Specifically, the local
network traffic flow data set consists of traffic data collected over a total of seven days

Fig. 3. Proposed visualization system architecture

A Visualization Scheme for Network Forensics Based on AOI-FIM and Hyper Graph 137



in the local network. The VAST data set is from the VAST contest, which has a variety
of visualization tasks and data source for researchers to analyze each year. In this paper,
we use the VAST 2012 data set to show the effectiveness on firewall and IDS logs. In
this particular data set, the context is a virtual international bank’s network of nearly
5,000 hosts, and the data set contains log information of IDS and firewalls in its
network over a period of time.

4.1 VAST Firewall and IDS Logs

The logs in the VAST data set are in csv format. For the pre-processing, we first
transform them into normalized format records, which consist of source IP address,
source Port number, destination IP address, destination Port number, alert type and
timestamp information. We then filter the firewall logs by manually building a white
list according to the BOM network configurations and operation policies. As IDS
already filter the logs based on suspected attacks, we label them as anomalies. There are
a total of 17,530 records after pre-processing. Then, we extract the necessary param-
eters from the records.

We extract the one-to-many relationship within the records using the attribute
oriented induction based frequent item mining algorithm. The frequent items are pre-
sented in Table 1, where each frequent item extracted from the records represent a
suspected attack that has a one-to-many relationship.

We visualize the frequent item sets using hypergraph – see Fig. 4. We compare the
frequent item with the hypergraph template and display them using a hyper edge. The
first frequent item and the second meet the Botnet template, and the third frequent item
meets the DDoS attack template. From the first and second frequent item sets, we
determine that the two main malicious attacks are Botnet behavior and some illegal
connections. We also locate a large number of IRC connections from different hosts
to IP address 10.32.5.57. These hosts include 172.23.231.69-172.23.231.80, 172.23.
127.100-172.23.127.120, which suggest that most of the hosts are infected via the IRC
traffic. The second frequent item shows that the host 10.32.5.57 replies to the infected

Table 1. Frequent item mining result for VAST data set.

Frequent item sets Frequency

SIP = Varied, DIP = 10.32.5.57,
type = IRC-Malware Infection
SIP = {172.23.231.69-80, 172.23.127.100-120}

696

SIP = 10.32.5.57, DIP = Varied, Sport = 6667, type = IRC-Authorization
DIP = {172.23.231.69-80, 172.23.127.100-120}

1464

SIP = Varied, DIP = 10.32.5.57,
type = Attempted Information
SIP = {172.23.231.69-80, 172.23.127.100-120}

687

SIP = Varied, DIP = 172.23.0.1, type = Misc-activity
SIP = {172.23.236.8, 172.23.234.58, 172.23.234.4, 172.231.69}

466

138 J. Jiang et al.



hosts with IRC authorization messages; thus, indicting a potential Botnet attack. We
also found a number of attempted information alerts between 10.32.5.57 and the
infected hosts, which suggest a need for further forensic investigation to determine
whether data has been exfiltrated.

From the last frequent item, 172.23.0.1 is determined to be the external interface at
the firewall, and there have been a number of attempted connections. This suggests the
presence of potential DDoS attack or remote services.

Forensic investigators can use the forensic interaction module to fetch and analyze
the original data for further investigation.

4.2 Local Network Traffic

In order to evaluate the performance of our visualization scheme on the traffic flow
data, we collect the flow data from an internal monitoring environment. The envi-
ronment would generate an alarm in the event of a suspected attack, as well as retaining
the flow data of the alert event. We collect 1096 alert data and fetch their flow data to
build the records. After pre-processing, the formatted log information is obtained from
the data set, which includes 1,096 records. The association rules mining algorithm is
used to process the log to extract the attack patterns hidden in the data. We choose the
support threshold to be 5%. The frequent item sets are presented in Table 2:

Fig. 4. Visualization of the frequent items using hyper graph

A Visualization Scheme for Network Forensics Based on AOI-FIM and Hyper Graph 139



We will now use hypergraph to visualize the above frequent items sets. We use
circular nodes and hyper edges with some property rectangles to represent a frequent
item with a one-to-many relationship. We identify their quantity characteristics in
circular nodes. The rectangle nodes are linked to a circular node indicating the rela-
tionship between an associated rule and its attributes. Figure 5 shows the malicious
attack patterns extracted by the scheme visualized using hyper graph.

In Fig. 5, SIP denotes the source IP address, and DIP denotes the destination IP
address. SPort denotes the source port used by the source host, and DPort denotes the
destination port. The number represents the occurrences of a frequent item with a
one-to-many relationship. The following information can be found from the visual-
ization results.

Table 2. Frequent item mining result for local network traffic

Frequent item sets Frequency

SIP = 193.169.244.73, DIP = 114.255.165.142,
Sport = Varied
Sport = {80, 443, 5430}

226

SIP = 114.255.165.142, DIP = 193.169.244.73 107
SIP = 221.130.179.36, DIP = 202.106.90.2,
SPort = 8888

54

Fig. 5. Visualization of frequent items using hyper graph

140 J. Jiang et al.



(1) Host with IP address 114.255.165.142 connects to host with IP address
193.169.244.73 several times, and the former is an internal host and the latter is an
external host.

(2) The external host with IP address 193.169.244.73 mainly connects through ports
80,443 and 5430 with the internal target host 114.255.165.242.

(3) There are a large number of connections between IP addresses 221.130.179.36
and IP 202.106.90.2 via port 8888. Both the source host and destination host are
determined to be internal hosts. A large number of connections without a corre-
sponding large data transportation may indicate a specific business need of the
network.

From the above findings (1) and (2), forensic investigators can easily determine the
malicious connections between internal host 114.255.165.142 and external host
193.169.244.73 and that this is most probably a Trojan attack. The external host
continually sends information to the internal infected host via ports 80, 443 and 5430.
Both port numbers 80 and 443 are often used for HTTP and HTTPS communication,
which could indicate that the controller host sent some commands or some application
data to the target host. The event can then be reconstructed based on the attack pattern
and original traffic data using the forensic interaction module.

5 Conclusion and Future Work

Network forensics and forensic visualization will be increasingly important in our
networked society. Extracting and analyzing anomaly and damage from large scale
network data remains a key challenge in network forensics. In order to extract attack
patterns hidden in large volume traffic data and security logs and visualize the
multi-attribute associations within the attack events, we designed a visualization
scheme based on AOI-FIM and hyper graph. Using two real-world data sets, we
demonstrated the effectiveness of our proposed scheme in distinguishing attacks and
obtaining event-relevant information.

Although frequent item mining based algorithms can be used on big dataset, the
processing speed will be affected by significant increases in the data volume. Therefore,
future research includes extending our proposed approach to improve the processing
speed, and consequently improve the efficiency of network forensics. In addition,
research on automated classification and distinguishing methods to extract unknown
attacks such as 0-day attacks will be on the agenda.

Acknowledgment. This work is supported by National Natural Science Foundation of China
(No. 91646120, 61402124, 61572469, 61402022) and Key Lab of Information Network Secu-
rity, Ministry of Public Security (No. C17614).

A Visualization Scheme for Network Forensics Based on AOI-FIM and Hyper Graph 141



References

1. Zuech, R., Khoshgoftaar, T.M., Wald, R.: Intrusion detection and big heterogeneous data: a
survey. J. Big Data 2(1), 3 (2015)

2. Bhatt, S., Manadhata, P.K., Zomlot, L.: The operational role of security information and
event management systems. IEEE Secur. Priv. 12(5), 35–41 (2014)

3. Cardenas, A.A., Manadhata, P.K., Rajan, S.P.: Big data analytics for security. Secur. Priv.
IEEE 11(6), 74–76 (2013)

4. Tassone, C., Martini, B., Choo, K.K.R.: Forensic visualization: survey and future research
directions. In: Contemporary Digital Forensic Investigations of Cloud & Mobile Applica-
tions, pp. 163–184 (2017)

5. Tassone, C.F., Martini, B., Choo, K.R.: Visualizing digital forensic datasets: a proof of
concept. J. Forensic Sci. (2017)

6. Quick, D., Choo, K.K.R.: Big forensic data management in heterogeneous distributed
systems: quick analysis of multimedia forensic data. Softw. Pract. Exp. 47(8), 1095–1109
(2016)

7. Choi, H., Lee, H., Kim, H.: Fast detection and visualization of network attacks on parallel
coordinates. Comput. Secur. 28(5), 276–288 (2009)

8. Inselberg, A.: Multidimensional detective. In: IEEE Symposium on IEEE Information
Visualization, Proceedings, pp. 100–107 (1997)

9. Berthier, R., et al.: Nfsight: NetFlow-based network awareness tool. In: International
Conference on Large Installation System Administration USENIX Association, pp. 1–8
(2010)

10. Yin, X., et al.: VisFlowConnect: NetFlow visualizations of link relationships for security
situational awareness. ACM Workshop on Visualization and Data Mining for Computer
Security, pp. 26–34. ACM (2004)

11. Choi, H., Lee, H.: PCAV: internet attack visualization on parallel coordinates. In: Qing, S.,
Mao, W., López, J., Wang, G. (eds.) ICICS 2005. LNCS, vol. 3783, pp. 454–466. Springer,
Heidelberg (2005). https://doi.org/10.1007/11602897_38

12. Krmíček, V., Čeleda, P., Novotný, J.: NfSen plugin supporting the virtual network
monitoring. Virtual networks; monitoring; NetFlow, NfSen (2010)

13. Plonka, D.: FlowScan: a network traffic flow reporting and visualization tool. In: Usenix
Conference on System Administration USENIX Association, pp. 305–318 (2000)

14. Taylor, T., et al.: FloVis: flow visualization system. In: Cybersecurity Applications &
Technology IEEE Conference for Homeland Security, CATCH 2009, pp. 186–198 (2009)

15. Fischer, F., Mansmann, F., Keim, D.A., Pietzko, S., Waldvogel, M.: Large-scale network
monitoring for visual analysis of attacks. In: Goodall, J.R., Conti, G., Ma, K.-L. (eds.)
VizSec 2008. LNCS, vol. 5210, pp. 111–118. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-85933-8_11

16. Leinen, S.: Fluxoscope a system for flow-based accounting (2000)
17. Promrit, N., Mingkhwan, A.: Traffic flow classification and visualization for network

forensic analysis. In: IEEE International Confrence on Advanced Information Networking
and Applications. IEEE, pp. 358–364 (2015)

18. Yang, W., Wang, G., Bhuiyan, M.Z.A., Choo, K.-K.R.: Hypergraph partitioning for social
networks based on information entropy modularity. J. Netw. Comput. Appl. 86, 59–71
(2017)

19. Glatz, E., et al.: Visualizing big network traffic data using frequent pattern mining and
hypergraphs. Computing 96(1), 27–38 (2014)

20. Hirsch, C., et al.: Traffic flow densities in large transport networks (2016)

142 J. Jiang et al.

http://dx.doi.org/10.1007/11602897_38
http://dx.doi.org/10.1007/978-3-540-85933-8_11
http://dx.doi.org/10.1007/978-3-540-85933-8_11


21. Borgelt, C.: Frequent item set mining. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 2(6),
437–456 (2012)

22. Cai, Y., Cercone, N., Han, J.: Attribute-oriented induction in relational databases. Knowl.
Discovery Databases 15(7), 1328–1337 (1989)

23. Han, J., Cai, Y., Cercone, N.: Knowledge discovery in databases: an attribute-oriented
approach. In: International Conference on Very Large Data Bases. Morgan Kaufmann
Publishers Inc. 547–559 (1992)

24. Warnars, S.: Mining frequent pattern with attribute oriented induction high level emerging
pattern (AOI-HEP). In: International Conference on Information and Communication
Technology IEEE, pp. 149–154 (2014)

25. Guzzo, A., Pugliese, A., Rullo, A., Saccà, D.: Intrusion detection with hypergraph-based
attack models. In: Croitoru, M., Rudolph, S., Woltran, S., Gonzales, C. (eds.) GKR 2013.
LNCS (LNAI), vol. 8323, pp. 58–73. Springer, Cham (2014). https://doi.org/10.1007/978-3-
319-04534-4_5

26. Zhou, D., Huang, J.: Learning with hypergraphs: clustering, classification, and embedding.
In: International Conference on Neural Information Processing Systems. MIT Press,
pp. 1601–1608 (2006)

27. Cook, K., et al.: VAST challenge 2012: visual analytics for big data. In: 2012 IEEE
Conference on Visual Analytics Science and Technology (VAST), 251–255. IEEE (2012)

A Visualization Scheme for Network Forensics Based on AOI-FIM and Hyper Graph 143

http://dx.doi.org/10.1007/978-3-319-04534-4_5
http://dx.doi.org/10.1007/978-3-319-04534-4_5


Expediting MRSH-v2 Approximate Matching
with Hierarchical Bloom Filter Trees

David Lillis1(B), Frank Breitinger2, and Mark Scanlon1

1 Forensics and Security Research Group, School of Computer Science,
University College Dublin, Dublin, Ireland
{david.lillis,mark.scanlon}@ucd.ie

2 Cyber Forensics Research and Education Group,
Tagliatela College of Engineering, ECECS,

University of New Haven, West Haven, CT, USA
fbreitinger@newhaven.edu

Abstract. Perhaps the most common task encountered by digital foren-
sic investigators consists of searching through a seized device for perti-
nent data. Frequently, an investigator will be in possession of a collection
of “known-illegal” files (e.g. a collection of child pornographic images)
and will seek to find whether copies of these are stored on the seized drive.
Traditional hash matching techniques can efficiently find files that pre-
cisely match. However, these will fail in the case of merged files, embed-
ded files, partial files, or if a file has been changed in any way.

In recent years, approximate matching algorithms have shown signifi-
cant promise in the detection of files that have a high bytewise similarity.
This paper focuses on MRSH-v2. A number of experiments were conducted
using Hierarchical Bloom Filter Trees to dramatically reduce the quantity
of pairwise comparisons that must be made between known-illegal files
and files on the seized disk. The experiments demonstrate substantial
speed gains over the original MRSH-v2, while maintaining effectiveness.

Keywords: Approximate matching · Hierarchical bloom filter trees ·
MRSH-v2

1 Introduction

Current digital forensic process models are surprisingly arduous, inefficient, and
expensive. Coupled with the sheer volume of digital forensic investigations facing
law enforcement agencies worldwide, this has resulted in significant evidence
backlogs becoming commonplace [22], frequently reaching 18–24 months [9] and
exceeding 4 years in extreme cases [14]. The backlogs have grown due to a number
of factors including the volume of cases requiring analysis, the number of devices
per case, the volume of data on each device, and the limited availability of
skilled experts [16]. Automated techniques are in continuous development to aid
investigators, but due to the sensitive nature of this work, the ultimate inferences
and decisions will always be made by skilled human experts [12].
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

P. Matoušek and M. Schmiedecker (Eds.): ICDF2C 2017, LNICST 216, pp. 144–157, 2018.

https://doi.org/10.1007/978-3-319-73697-6_11



Expediting MRSH-v2 Approximate Matching 145

Perhaps the most common (and most time-consuming) task facing digital
investigators involves examination of seized suspect devices to determine if per-
tinent evidence is contained therein. Often, this examination requires significant
manual, expert data processing and analysis during the acquisition and analysis
phases of an investigation. A number of techniques have been created or are
in development to expedite/automate parts of the typical digital forensic pro-
cess. These include triage [17], distributed processing [20], Digital Forensics as a
Service (DFaaS) [1], workflow management and automation [3,10]. While these
techniques can help to alleviate the backlog, the premise behind many of them
involves evidence discovery based on exact matching of hash values (e.g., MD5,
SHA1). Typically, this requires a set of hashes of known incriminating/pertinent
content. The hash of each artefact from a suspect device is then compared against
this set. This approach falls short against basic counter-forensic techniques (e.g.,
content editing, content embedding, data transformation).

Approximate matching (often referred to as “fuzzy hashing”) is one technique
used to aid in the discovery of these obfuscated files [6]. A number of approximate
matching algorithms have been developed including ssdeep [13], sdhash [18],
and MRSH-v2 [4]. This paper focuses specifically on MRSH-v2. This algorithm
operates by generating a “similarity digest” for each file, represented as Bloom
filters [2]. An all-against-all pairwise comparison is then required to determine
if files from a set of desired content is present in a corpus of unanalysed content.
Thus, MRSH-v2 does not exhibit strong scalability for use with larger datasets.

This paper presents an improvement in the runtime efficiency of approxi-
mate matching techniques, primarily through the implementation of a Hierar-
chical Bloom Filter Tree (HBFT). Additionally, it examines some of the tunable
parameters of the algorithm to gauge their effect on the required running time.
A number of experiments were conducted, which indicated a substantial reduc-
tion in the running time, in addition to which the final experiment achieved a
100% recall rate for identical files and also for files that have a MRSH-v2 similarity
above a reasonable threshold of 40%.

Section 2 outlines the prior work that has been conducted in the area of
approximate matching. The operation of MRSH-v2 is discussed in Sect. 3. HBFTs
are introduced in Sect. 4. Section 5 presents the series of experiments designed to
evaluate the effectiveness of the HBFT approach, and finally Sect. 6 concludes
the paper and outlines directions for further work.

2 Background: Approximate Matching

Bytewise approximate matching for digital forensics gained popularity in 2006
when [13] presented context-triggered piecewise hashing (CTPH) including an
implementation called ssdeep. It was at that time referred to as “fuzzy hashing”.
Later, this term converted to “similarity hashing” (most likely due to sdhash
which stands for “similarity digest hash” [18]). In 2014, the National Institute of
Standards and Technology (NIST) developed Special Publication 800-168, which
outlines the definition and technology for these kinds of algorithms [6].



146 D. Lillis et al.

In addition to the prominent aforementioned implementations, there are sev-
eral others. MinHash [8] and SimHash [21] are ideas on how to detect/identify
small changes (up to several bytes), but were not designed to compare hard disk
images with each other. In 2014, Oliver presented an algorithm named TLSH,
which is premised on locality sensitivity hashing (LSH) [15]. There are signifi-
cantly more algorithms, but to explain all of them would be beyond the scope
of this paper; a good summary is provided by Harichandran et al. [11].

While these algorithms have great capabilities, they suffer one significant
drawback, which we call the “database lookup problem”. In comparison to tra-
ditional hash values which can be sorted and have a lookup complexity of O(1)
(hashmap) or O(log(n)) (binary tree; where n is the number of entries in the
database), looking up a similarity digest usually requires an all-against-all com-
parison (O(n2)) to identify all matches. To overcome this drawback, Breitinger
et al. [5] presented a new idea that overcomes the lookup complexity (it is approx-
imately O(1)) but at the cost of inaccuracy. More specifically, the method allows
item vs. set queries, resulting in the answer either being “yes, the queried item
is in the set” or “no, it is not”; one cannot say against which item it matches.

As a means of addressing these drawbacks, Breitinger et al. [7] presented a
further article where they offered a theoretical solution to the lookup problem,
based on a tree of Bloom filters. However, an implementation (and thus a valida-
tion) has not been conducted to date. We refer to this as a Hierarchical Bloom
Filter Tree (HBFT). The focus of the present work is the empirical evaluation
of this approach, so as to demonstrate its effectiveness and to investigate some
practical factors that affect its performance.

3 The MRSH-v2 Algorithm

The work in this paper is intended to improve upon the performance of the
MRSH-v2 algorithm. Therefore, it is important to firstly outline its operation
in informal terms, which will aid the discussion later. A more detailed, formal
description of the algorithm can be found in [4]. The primary goal of MRSH-v2 is
to compress any byte sequence and output a similarity digest. Similarity digests
are created in a way that they can be compared with each other, which will result
in a similarity score. Each similarity digest is a collection of Bloom filters [2].

To create the similarity digest, MRSH-v2 splits an input into chunks (also
known as “subhashes”) of approximately 160 bytes. These chunks are hashed
using FNV (a fast non-cryptographic hash function), which is used to set 5 bits
of the Bloom filter. To divide the input into chunks, it uses a window of 7 bytes,
which slides through the input byte-by-byte. The content of the window is pro-
cessed and whenever it hits a certain value (based on a modulus operation),
the end of a chunk is identified. Thus, the actual size of each chunk varies.
Each Bloom filter has a specific capacity. Once this has been reached, any
further chunks are inserted into a new Bloom filter that is appended to the
digest. Approximate matching occurs by comparing similarity digests against
one another. To compare two file sets, an all-against-all pairwise comparison is
required.



Expediting MRSH-v2 Approximate Matching 147

Extending the file-against-set comparison outlined in [5], an alternative
strategy to combat this is to use a hierarchical Bloom filter tree (HBFT) [7].
It is intended to achieve speed benefits over a pairwise comparison while sup-
porting the identification of specific matching files. The primary contribution of
this paper is to investigate the factors that affect the runtime performance of
this approach, compared to the classic pairwise approach.

4 Hierarchical Bloom Filter Trees (HBFT)

In a Hierarchical Bloom Filter Tree (HBFT), the root node of the tree is a Bloom
filter that represents the entire collection. When searching for a file, if a match
is found at the root of the tree, its child nodes can then be searched. Although
this structure is inspired by a classic binary search tree, a match at a particular
node in a HBFT does not indicate whether the search should continue in the left
or right subtree. Instead, both child nodes need to be searched, with the search
path ending when a leaf node is reached or a node does not match.

Fig. 1. Hierarchical Bloom Filter Tree (HBFT) structure.

The tree layout is shown in Fig. 1. Each level in the tree is allocated an
equal amount of memory. Thus each Bloom filter occupies half the memory of
its parent, and also represents a file set that is half the size of its parent. The
expected false positive rates will be approximately equal at all levels in the tree.

When a collection is being modelled as a HBFT, each file is inserted into the
Bloom filter at some leaf node in the tree, and also into its ancestor nodes. The
mechanism of inserting a file into a Bloom filter is the same as for the single
Bloom filter approach from [5], which is also very similar to the approach taken
by the classic MRSH-v2 algorithm outlined in Sect. 3. The key difference is that
instead of creating a similarity digest of potentially multiple small Bloom filters
for an individual file, each subhash is used to set 5 bits of the larger Bloom filter
within a tree node that usually relates to multiple files.

Depending on the design of the tree, a leaf node may represent multiple files.
Thus a search that reaches a leaf node will still require a pairwise comparison
with each file in this subset, using MRSH-v2. However, given that most searches



148 D. Lillis et al.

will reach only a subset of the root nodes, the number of pairwise comparisons
required for each file is greatly reduced.

The process to check if a file matches a Bloom filter node is similar to the
process of inserting a file into the tree. However, instead of inserting each hash
into the node, its subhashes are instead checked against the Bloom filter to see if
they are contained in it. If a specific number of consecutive hashes are contained
in the node, this is considered to be a match. The number of consecutive hashes
is configurable as a parameter named min run. The first experiment in this paper
(discussed in Sect. 5.2) explores the effects of altering this value.

In the construction of a HBFT, memory constraints will have a strong influ-
ence on the design of the tree. In practical situations, a typical workstation is
unlikely (at present) to have access to over 16 GiB of main memory. Thus trade-
offs in the design of the tree are likely. Larger Bloom filters have lower false
positive rates (assuming the quantity of data is constant), but lead to shallower
trees (thus potentially increasing the number of pairwise comparisons required).

5 Experiments

As part of this work, a number of experiments were conducted to examine the
factors that affect the performance of the HBFT structure. In each case, a HBFT
was used to model the contents of a dataset. Files from another dataset were then
searched for in the tree, and the results reported. Because the speed of execution
is of paramount importance, and because the original MRSH-v2 implementation
was written in C, the HBFT implementation used for these experiments was also
written in that language. The source code has been made available (at http://
github.com/ishnid/mrsh-hbft) under the Apache 2.0 licence.

The workstation used for the experiments contains a quad-core Intel Core
i7 2.67 GHz processor, 12 GiB of RAM and uses a solid state drive for storage.
The operating system is Ubuntu Linux 16.04 LTS. The primary constraint this
system imposes on the design of experiments is that of the memory that is
available for storing the HBFTs. For all experiments, the maximum amount of
memory made available for the HBFT was 10 GiB. The size of the individual
Bloom filters within the trees then depended on the number of nodes in the tree
(which in turn depends on the number of leaf nodes).

For each experiment, the number of leaf nodes (n) is specified in advance,
from which the total number of nodes can be computed (since this is a binary
tree). Given the upper total memory limit (u, in bytes), and that the size of
each Bloom filter should be a power of two (per [5]), it is possible to calculate
the maximum possible size of each Bloom filter. Because all levels in the tree are
allocated the same amount of memory, the size of the root Bloom filter in bytes
(r) is given by:

r = 2�log2(u/(log2(n)+1))� (1)

The size of the other nodes in bytes is then r
2d

where d is the depth of the
node in the tree (i.e. the size of a Bloom filter is half the size of its parent).

http://github.com/ishnid/mrsh-hbft
http://github.com/ishnid/mrsh-hbft


Expediting MRSH-v2 Approximate Matching 149

The ultimate goal of the experiments is to demonstrate that the HBFT app-
roach can improve the running time of an investigation over the all-against-all
comparison approach of MRSH-v2 without suffering a degradation in effective-
ness. It achieves this by narrowing the search space so that each file that is
searched for need only be compared against a subset of the dataset.

Using a HBFT, the final outcome will be a set of similarity scores. This score
is calculated by using MRSH-v2 to compare the search file with all files contained
in any leaves that are reached during the search. Therefore, the HBFT approach
will not identify a file as being similar if MRSH-v2 does not also do so.

In these experiments, the similarity scores generated by MRSH-v2 are consid-
ered to be ground truth. Evaluating the degree to which this agrees with the
opinion of a human judge, or how it compares with other algorithms, is outside
the scope of this paper. The primary difference between the outputs is that the
HBFT may fail to identify files that MRSH-v2 considers to be similar (i.e. false
negatives) due to an appropriate leaf node not being reached.

Therefore the primary metric used, aside from running time, is recall: the
proportion of known-similar (or known-identical) files for which the HBFT search
reaches the appropriate leaf node.

5.1 Datasets

Two datasets were used as the basis for the experiments conducted in this paper:

– The t5 dataset [19] is frequently used for approximate matching experimen-
tation. It consists of 4,457 files (approximately 1.8 GiB) taken from US gov-
ernment websites. It includes plain text files, HTML pages, PDFs, Microsoft
Office documents and image files.

– The win7 dataset is a fresh installation of a Windows 7 operating system,
with default options selected during installation. It consists of 48,384 files
(excluding symbolic links and zero-byte files) and occupies approximately
10 GiB.

The first two experiments use one or both of these datasets directly. The final
experiment includes some modifications, as outlined in Sect. 5.2.

5.2 Experiment Overview

The following sections present three experiments that were conducted to evaluate
the HBFT approach. Section 5.2 compares the t5 dataset with itself. This is
intended to find whether the HBFT approach is effective in finding identical files,
and to investigate the effect of varying certain parameters when designing and
searching a HBFT. It also aims to demonstrate the extent to which the number
of pairwise comparisons required can be reduced by using this technique.

Section 5.2 uses disjoint corpora of different sizes (t5 and win7). In a typical
investigation, there may be a large difference between the size of the collection of
search files and a seized hard disk. This experiment aims to investigate whether
it is preferable to use the tree to model the smaller or the larger corpus.



150 D. Lillis et al.

Finally, Sect. 5.2 uses overlapping corpora where a number of files have been
planted on the disk image. These files are identical to, or similar to, files in the
search corpus. This experiment demonstrates that using a HBFT is substantially
faster than the pairwise approach.

Experiment 1: t5 vs. t5. For the initial experiment, the HBFT was con-
structed to represent the t5 corpus. All files from t5 were also used for searching.
Thus every file searched for is also located in the tree and should be found. Con-
ducting an all-against-all pairwise comparison using MRSH-v2 required a total of
19,864,849 comparisons, which took 319 s.

To construct the tree, the smallest number of leaf nodes was 32. Following
this, the number of leaf nodes was doubled each time (maintaining a balanced
tree). The exception was that 4,457 leaf nodes were used for the final run, thereby
representing a single file from the corpus in each leaf.

The aims of this experiment were:

1. Evaluate the effectiveness of the HBFT approach for exact matching (i.e.
finding identical files) using recall.

2. Identify an appropriate value for MRSH-v2’s min run parameter.
3. Investigate the relationship between the size of the tree and the time taken

to build and search the tree.
4. Investigate the relationship between the size of the tree and the number of

pairwise comparisons that are required to calculate a similarity score.

Table 1. Effect of min run on recall: identical files.

min run Recall

4 100%

6 99.96%

8 99.93%

When running the experiment, it became apparent that the first two aims
are linked. Table 1 shows the recall associated with three values of min run: 4,
6 and 8. Using a min run value of 4 resulted in full recall. However, increasing
min run to 6 or 8 resulted in a small number of files being omitted. When
min run is set to 8, three files are not found in the tree. This indicates the
dangers inherent in requiring longer matching runs. The files in question are
000462.text, 001774.html, 003225.html. These files are 6.5 KiB, 6.6 KiB and
4.5 KiB in size respectively. Although each chunk is approximately 160 bytes,
this changes depending on the file content. While these are relatively small files,
they are not the smallest in the corpus. This shows that even when the file is
large enough to contain 8 chunks of the average size, a min run requirement of



Expediting MRSH-v2 Approximate Matching 151

8 successive matches may still not be possible. Similarly, using 6 as the min run
value results in two files being missed.

It should be acknowledged that if the aim is solely to identify identical files,
then existing hash-based techniques will take less time and yield more reliable
results. Intuitively, however, a system that is intended to find similar files should
also find identical files. While the chunk size of 160 bytes will always fail to match
very small files, it is desirable to find matches when file sizes are larger.

Fig. 2. Effect of varying number of leaf nodes on time taken: t5 vs. t5

Figure 2 shows the time taken to build the tree and search for all files. As the
number of leaf nodes in the tree increases, so too does the time taken to search
the tree. Higher values of min run use slightly less time, due to the fact that it
is more difficult for a search to descend to a lower level when more matches are
required to do so. However, as the recall for these higher values is lower, 4 was
used as the min run value for further experiments.

The times shown here relate only to building the tree and searching for
files within it, and does not include the time for the pairwise comparisons at the
leaves. Therefore, although using 32 leaf nodes results in the shortest search time
(due to the shallower tree), it would require a most comparisons, as each leaf
node represents 1

32 of the entire corpus. As an illustration, using a tree with 32
leaf nodes and min run value of 4 requires 8,538,193 pairwise comparisons after
searching the tree. A similar tree with 4,457 leaves requires 617,860 comparisons.

One issue that is important to note is that the time required to perform a full
pairwise comparison is 319 s. However, for the largest trees, 274 s were required
to build and search the tree, before any comparisons were conducted. Thus, for
a relatively small collection such as this, the use of the tree is unlikely to provide
benefits in terms of time.

Figure 3 plots the number of leaf nodes against the total number of compar-
isons required to complete the investigation. As the size of corpora increases, so
does the number of pairwise comparisons required by MRSH-v2. Thus reducing



152 D. Lillis et al.

Fig. 3. Effect of varying number of leaf nodes on number of comparisons: t5 vs. t5

this search space is the primary function of the tree. Larger trees tend to result
in a smaller number of comparisons. For the largest tree (with 4,457 leaves), the
min run value does not have a material effect on the number of comparisons
required. This implies that although searches tend to reach deeper into the tree
(hence the longer running time), they do not reach substantially more leaves.

From this experiment, it can be concluded that using a min run value of 4
is desirable in order to find exact matches. This causes the time taken to search
to be slightly longer, while having a negligible impact on the number of pairwise
comparisons required afterwards.

Experiment 2: t5 vs. win7 and win7 vs. t5. The second experiment was
designed to operate with larger dataset sizes. t5 was used as a proxy for a set
of known-illegal files, and win7 was used to represent a seized disk.

The aims of this experiment were:

1. Investigate whether the HBFT should represent the smaller or larger corpus.
2. Measure the effect on overall running time of using a HBFT.

The experiment was first run by building a tree to represent t5 and then
searching for the files contained in win7. The number of leaf nodes in this tree
was varied in the same way as in Experiment 1. Then this was repeated by
inserting win7 into a tree and searching for the files from t5. Again the number
of leaf nodes was doubled every time, with the exception that the largest tree
contained one leaf node for every file in the collection (i.e. 48,384 leaves).

The time taken to build and search the trees are shown in Figs. 4 and 5.
Figure 4 shows the results when the tree represents t5, with the time subdivided
into the time spent building the tree and the time spent searching for all the
files from win7. The total time is relatively consistent for this type of tree. This
is unsurprising in the context of disjoint corpora. Most files will not match, so
many searches will end at the root node, or at an otherwise shallow depth.

Figure 5 shows results when the tree models win7. With only 32 leaf nodes,
both experimental runs take approximately the same total time. Due to its size,



Expediting MRSH-v2 Approximate Matching 153

Fig. 4. Time to search for win7 in a t5 tree.

Fig. 5. Time to search for t5 in a win7 tree.

the build time for the win7 tree is substantially longer than for t5. The search
time exhibits a generally upward trend as the number of leaf nodes increases.
This is because of the hardware constraints associated with the realistic setup.
Because memory footprint is constrained, a tree with 48,384 leaf nodes will
contain Bloom filters that are much smaller than for trees with fewer nodes. In
this experiment, leaves are 8 KiB in size, with a root node of 512 MiB.

Overall, the total time taken is less when the tree represents the smaller
dataset. Again, the total number of pairwise comparisons decreases as the num-
ber of leaves increases. Both approaches yield a similar quantity of necessary
comparisons for their largest tree (i.e. with the most leaf nodes). The tree mod-
elling t5 requires 98,260 comparisons whereas the one modelling win7 requires
101,386. This, combined with the lower build and search time suggests that
the preferred approach should be to use the smaller corpus to construct the



154 D. Lillis et al.

HBFT. Memory is an additional consideration. Using a HBFT to model the
larger dataset requires the similarity hashes of all its files to be cached at the
leaves. This requires a greater memory footprint than for the smaller collection,
thus reducing the amount of memory available to store the HBFT itself.

Following these observations, the experiment was repeated once more. The
tree modelled t5 with 4,457 leaves and win7 was searched for. The total running
time, including pairwise comparisons, was 1,094 s. In comparison, the time taken
to perform a full pairwise comparison using MRSH-v2 is 2,858 s.

Experiment 3: Planted Evidence. The final experiment involved overlapping
datasets, constructed as follows:

– A set of simulated “known-illegal” files: 4,000 files from t5.
– A simulated seized hard disk: the win7 image, plus 140 files from t5, as

follows:
– 100 files that are contained within the 4,000 “illegal” files.
– 40 files that themselves are not contained within the “illegal” files, but

that have a high similarity with files in the corpus, according to MRSH-v2.
10 of these files have a similarity of 80% or higher, 10 have a similarity
between 60% and 79% (inclusive), 10 have a similarity between 40% and
59% (inclusive) and 10 have a similarity between 20% and 39% (inclusive).

The aims of this third experiment were:

1. Evaluate the time taken to perform a full search, compared with MRSH-v2.
2. Evaluate the success of the approach in finding the 100 “illegal” files that are

included verbatim in the hard disk image, and the 40 files from the image
that are similar to “illegal” files, according to MRSH-v2.

For the first aim, the primary metric is the time taken for the entire process
to run, comprising the time to build the tree, the time to search the tree and the
time required to conduct the pairwise comparisons at the leaves. In evaluating
the latter aim, recall is used. Here, “recall” refers to the percentage of the 100
identical files that are successfully identified, and “similar recall” refers to the
percentage of the 40 similar files that are successfully found. A file is considered
to have been found if the search for the file it is similar or identical to reaches
the leaf node that contains it, yielding a pairwise comparison.

The total running time for MRSH-v2 was 2,592 s. The running times of the
HBFT approach are shown in Fig. 6. The smaller collection of 4,000 “illegal” files
was used to construct the tree and then searches were conducted for all of the
files in the larger corpus. The “Search Time” includes the time spent searching
the tree and the time to perform the comparisons at the leaves.

As expected, the maximum number of leaf nodes resulted in the fastest run
time. This configuration also yielded the maximum reduction in the number of
pairwise comparisons required, without substantially adding to the time required
to build and search the tree. The remainder of this analysis focuses on this
scenario, where the tree has 4,000 leaf nodes.



Expediting MRSH-v2 Approximate Matching 155

Fig. 6. Time to search for planted evidence (including pairwise comparisons).

The total time was 1,182 s (a 54% reduction in the time required for an all-
against-all pairwise comparison). Due to the lack of scalability of the pairwise
approach, this difference is likely to be even more pronounced for larger datasets.

Table 2. Similar recall for planted evidence experiment.

MRSH-v2 similarity Files planted Files found Similar recall

80%–100% 10 10 100%

60%–79% 10 10 100%

40%–59% 10 10 100%

20%–39% 10 8 80%

Overall 40 38 95%

In terms of effectiveness, all 100 files that were common to the two corpora
were successfully found. The similar recall is shown in Table 2. All files with a
MRSH-v2 similarity of 40% or greater with a file in the “illegal” set were success-
fully identified. Two files with a lower similarity (25% and 26%) were not found.
This yields an overall similar recall score of 95% for all 40 files.

This is an encouraging result, indicating that the HBFT approach is
extremely effective at finding files that are similar above a reasonable threshold
of 40% and exhibits full recall for identical files. Thus it can be concluded that
the HBFT data structure is a viable alternative to all-against-all comparisons in
terms of effectiveness, while achieving substantial speed gains.

6 Conclusions and Future Work

This paper aimed to investigate the effectiveness of using a Hierarchical Bloom
Filter Tree (HBFT) data structure to improve upon the all-against-all pairwise



156 D. Lillis et al.

comparison approach used by MRSH-v2. A number of experiments were con-
ducted with the aim of improving the speed of the process. Additionally, it was
important that files that should be found were not omitted.

The first experiment found that while HBFTs with more leaf nodes take
longer to build and search, they reduce the number of pairwise comparisons
required by the greatest degree. It also suggested the use of a min run value of
4, as higher values resulted in imperfect recall for identical files.

The results of the second experiment indicated that when using corpora of
different sizes, it is preferable to build the tree to model the smaller collection
and then search for the files that are contained the larger corpus.

For the final experiment, a Windows 7 image was augmented by the addition
of a number of files that were identical to those being searched for, and a further
group that were similar. The HBFT approach yielded a recall level of 100% for
the identical files and of 95% for the similar files, when using mrsh-v2 as ground
truth. On examining the two files that were not found, it was noted that these
had a relatively low similarity to the search files (25% and 26% respectively),
with all files with a higher similarity score being identified successfully. The run
time for this experiment was 54% of the time required for a pairwise comparison.

These experiments lead to the conclusion that the HBFT approach is a highly
promising technique. Due the poor scalability of the traditional all-against-all
approach, it can be inferred that this performance improvement will be even
more pronounced as datasets become larger.

Given the promising results of the experiments presented in this paper, fur-
ther work is planned. Currently, when building the tree, files are allocated to
leaf nodes in a round-robin fashion. For trees with multiple files represented at
each leaf, it may be possible that a more optimised allocation mechanism could
be used for this (e.g. to allocate similar files to the same leaf node). Addition-
ally, the current model also uses balanced trees, with the result that all successful
searches reach the same depth in the tree. In some circumstances, an unbalanced
tree may be preferable so as to shorten some more common searches.

References

1. van Baar, R., van Beek, H., van Eijk, E.: Digital forensics as a service: a game
changer. Digit. Invest. 11(Supplement 1), S54–S62 (2014). https://doi.org/10.
1016/j.diin.2014.03.007

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

3. de Braekt, R.I., Le-Khac, N.A., Farina, J., Scanlon, M., Kechadi, T.: Increas-
ing digital investigator availability through efficient workflow management and
automation. In: 2016 4th International Symposium on Digital Forensic and Secu-
rity (ISDFS), pp. 68–73 (2016). https://doi.org/10.1109/ISDFS.2016.7473520

4. Breitinger, F., Baier, H.: Similarity preserving hashing: eligible properties and a
new algorithm MRSH-v2. In: Rogers, M., Seigfried-Spellar, K.C. (eds.) ICDF2C
2012. LNICST, vol. 114, pp. 167–182. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-39891-9 11

https://doi.org/10.1016/j.diin.2014.03.007
https://doi.org/10.1016/j.diin.2014.03.007
https://doi.org/10.1109/ISDFS.2016.7473520
https://doi.org/10.1007/978-3-642-39891-9_11
https://doi.org/10.1007/978-3-642-39891-9_11


Expediting MRSH-v2 Approximate Matching 157

5. Breitinger, F., Baier, H., White, D.: On the database lookup problem of approx-
imate matching. Digit. Invest. 11, S1–S9 (2014). https://doi.org/10.1016/j.diin.
2014.03.001

6. Breitinger, F., Guttman, B., McCarrin, M., Roussev, V., White, D.: Approximate
matching: definition and terminology. NIST Spec. Publ. 800, 168 (2014)

7. Breitinger, F., Rathgeb, C., Baier, H.: An efficient similarity digests database
lookup - a logarithmic divide & conquer approach. J. Digit. Forensics Secur. Law
9(2), 155–166 (2014)

8. Broder, A.Z.: On the resemblance and containment of documents. In: Compression
and Complexity of Sequences 1997, Proceedings, pp. 21–29. IEEE (1997). https://
doi.org/10.1109/SEQUEN.1997.666900

9. Casey, E., Ferraro, M., Nguyen, L.: Investigation delayed is justice denied: propos-
als for expediting forensic examinations of digital evidence. J. Forensic Sci. 54(6),
1353–1364 (2009)

10. Gupta, J.N., Kalaimannan, E., Yoo, S.M.: A heuristic for maximizing investiga-
tion effectiveness of digital forensic cases involving multiple investigators. Comput.
Oper. Res. 69, 1–9 (2016). https://doi.org/10.1016/j.cor.2015.11.003

11. Harichandran, V.S., Breitinger, F., Baggili, I.: Bytewise approximate matching: the
good, the bad, and the unknown. J. Digit. Forensics Secur. Law: JDFSL 11(2), 59
(2016)

12. James, J.I., Gladyshev, P.: Automated inference of past action instances in digital
investigations. Int. J. Inf. Secur. 14(3), 249–261 (2015). https://doi.org/10.1007/
s10207-014-0249-6

13. Kornblum, J.: Identifying identical files using context triggered piecewise hashing.
Digit. Invest. 3, 91–97 (2006). https://doi.org/10.1016/j.diin.2006.06.015

14. Lillis, D., Becker, B., O’Sullivan, T., Scanlon, M.: Current challenges and future
research areas for digital forensic investigation. In: 11th ADFSL Conference on
Digital Forensics, Security and Law (CDFSL 2016), ADFSL, Daytona Beach, FL,
USA (2016). https://doi.org/10.13140/RG.2.2.34898.76489

15. Oliver, J., Cheng, C., Chen, Y.: TLSH-a locality sensitive hash. In: Cybercrime and
Trustworthy Computing Workshop (CTC), 2013 Fourth, pp. 7–13. IEEE (2013).
https://doi.org/10.1109/CTC.2013.9

16. Quick, D., Choo, K.K.R.: Impacts of increasing volume of digital forensic data: a
survey and future research challenges. Digit. Invest. 11(4), 273–294 (2014). https://
doi.org/10.1016/j.diin.2014.09.002

17. Rogers, M.K., Goldman, J., Mislan, R., Wedge, T., Debrota, S.: Computer forensics
field triage process model. J. Digit. Forensics Secur. Law 1(2), 19–38 (2006)

18. Roussev, V.: Data fingerprinting with similarity digests. In: Chow, K.P., Shenoi, S.
(eds.) IFIP International Conference on Digital Forensics. IFIP AICT, vol. 337, pp.
207–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15506-
2 15

19. Roussev, V.: An evaluation of forensic similarity hashes. Digit. Invest. 8, S34–S41
(2011)

20. Roussev, V., Richard III, G.G.: Breaking the performance wall: the case for dis-
tributed digital forensics. In: Proceedings of the 2004 Digital Forensics Research
Workshop, vol. 94 (2004)

21. Sadowski, C., Levin, G.: Simhash: hash-based similarity detection. Technical
report, Google (2007)

22. Scanlon, M.: Battling the digital forensic backlog through data deduplication. In:
Proceedings of the 6th IEEE International Conference on Innovative Computing
Technologies (INTECH 2016). IEEE, Dublin (2016)

https://doi.org/10.1016/j.diin.2014.03.001
https://doi.org/10.1016/j.diin.2014.03.001
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1016/j.cor.2015.11.003
https://doi.org/10.1007/s10207-014-0249-6
https://doi.org/10.1007/s10207-014-0249-6
https://doi.org/10.1016/j.diin.2006.06.015
https://doi.org/10.13140/RG.2.2.34898.76489
https://doi.org/10.1109/CTC.2013.9
https://doi.org/10.1016/j.diin.2014.09.002
https://doi.org/10.1016/j.diin.2014.09.002
https://doi.org/10.1007/978-3-642-15506-2_15
https://doi.org/10.1007/978-3-642-15506-2_15


Approxis: A Fast, Robust, Lightweight
and Approximate Disassembler Considered

in the Field of Memory Forensics

Lorenz Liebler(B) and Harald Baier

da/sec - Biometrics and Internet Security Research Group,
University of Applied Sciences, Darmstadt, Germany

{lorenz.liebler,harald.baier}@h-da.de

Abstract. The discipline of detecting known and unknown code struc-
tures in large sets of data is a challenging task. An example could be the
examination of memory dumps of an infected system. Memory forensic
frameworks rely on system relevant information and the examination of
structures which are located within a dump itself. With the constant
increasing size of used memory, the creation of additional methods of
data reduction (similar to those in disk forensics) are eligible. In the
field of disk forensics, approximate matching algorithms are well known.
However, in the field of memory forensics, the application of those algo-
rithms is impractical. In this paper we introduce approxis: an approxi-
mate disassembler. In contrary to other disassemblers our approach does
not rely on an internal disassembler engine, as the system is based on
a compressed set of ground truth x86 and x86-64 assemblies. Our first
prototype shows a good computational performance and is able to detect
code in large sets of raw data. Additionally, our current implementation
is able to differentiate between architectures while disassembling. Sum-
marized, approxis is the first attempt to interface approximate matching
with the field of memory forensics.

Keywords: Approximate disassembly · Approximate matching
Disassembly · Binary analysis · Memory forensics

1 Introduction

Detecting known malicious code in memory is a challenging task. This is mainly
due to two reasons: first, malware authors tend to obfuscate their code by tam-
pering it for each instance. Second, code in memory differs from persistent code
because of changes performed by the memory loader (e.g., the security feature
Address Space Layout Randomization (ASLR) makes it impossible to predict the
final state of an executable right before run time). Hence an approach to iden-
tify malicious code within a memory forensics investigation by comparing code
fragments in its untampered shape (e.g., as an image on disk) to its memory
loaded representation (e.g., a module with variable code) is a non-trivial task.
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

P. Matoušek and M. Schmiedecker (Eds.): ICDF2C 2017, LNICST 216, pp. 158–172, 2018.

https://doi.org/10.1007/978-3-319-73697-6_12



Approxis: Approximate Disassembly 159

Memory forensic tools like volatility use system related structures to extract
loaded executables and to list executed processes on a system. The classical
approach to identify loaded malware is performed with the help of signatures,
static byte sequences or by the examination of access protections. White et al.
[10] formulate requirements of investigating a memory image and postulate that
methods of data reduction (similar to those in disk forensics) are eligible. In
the field of disk forensics approximate matching algorithms (a.k.a. similarity
hashing or fuzzy hashing) represent a robust and fast instrument to differentiate
between known and unknown data fragments [3,6]. However, White et al. [10]
claim that approximate matching algorithms are not suitable in the course of
memory forensics, as code in memory always differs to on disk.

In this paper we argue that the concept of approximate matching may be
transferred from post-mortem or network forensics to the field of memory foren-
sics. We differentiate between two stages of research to succeed. First, a technical
component is needed, which acquires portions of code in different domains and
extracts these fragments out of vast amounts of unknown data. Second, the
acquired code fragments must be comparable. As the existing approaches in the
field of memory forensics try to solve both issues at once by creating a stack
of dependencies and accepting limitations of applicability [8,10], our approach
focuses on the technical component first and introduces an interface to transfer
the overall problem of code detection into the domain of approximate matching.

Our main contribution of this paper is the technical acquisition component
approxis: a lightweight, robust, fast and approximate disassembler as a prereq-
uisite for memory-based approximate matching. The goal of approxis is to build
a technical component for the usage in digital forensics, however, approxis may
be used in different fields like real-time systems, too. Its functionality is compa-
rable to a basic length-disassembler approach with additional features.

Our approach is unaware of the full instruction encoding scheme of x86 or
x86-64 platforms: by the usage of 4.2 GiB precompiled ELF (Executable and
Linking Format) files and its corresponding ground truth assembly structure
obtained by [1], we build up a decision tree of byte instructions. Each path of
the tree represents the decoding process of a byte sequence to its correspond-
ing instruction length. We use the opcode and mnemonic frequencies to assist
the disassembling process and to differentiate between code and non-code byte
sequences. The overall goal of approxis is not to reach the accuracy of profes-
sional disassemblers, but to outreach the capabilities of a simple length disas-
sembler.

We evaluate our approach in different fields of application. First, we show the
promising disassembling accuracy of approxis compared to objdump, a widely
distributed and often used linear disassembler. Second, our approach is able to
distinguish between code and data. Third, we demonstrate the capabilities to
identify interleaved segments of code within large sets of raw binary data. Our
current implementation introduces the possibility to determine the architecture
of code during the process of disassembling. Finally, we demonstrate the compu-
tational performance of approxis by the application on a raw memory image.



160 L. Liebler and H. Baier

It is important to outline the conditions and the operational field of
approxis, as our approach should not be considered in the well known domains
of binary analysis. Thus, even if the final evaluation of approxis could seem to
be incomplete to the reader, we argue that the extensive introduction of our app-
roach in the field of memory forensics is important to understand the following
design decisions. Additionally, it is somewhat negligible and deceptive to com-
pare our approach to other disassemblers. However, our current implementation
of approxis is designed for processing large portions of raw memory dumps, so
a straight comparison with other disassemblers is not always valid.

The remainder of this paper is organized as follows: In Sect. 2 we give an
overview of related work. We introduce key features of existing research and
describe instances of different disassemblers. In Sect. 3 we define central require-
ments which should be fulfilled by approxis. In Sect. 4 we briefly introduce the
x86 decoding scheme and the challenges of disassembling. We also introduce the
results of analyzing our ground truth assemblies obtained by [1], which build
the foundation for our code detection and approximate disassembling approach.
In Sect. 5 we introduce approxis and its functionality. In Sect. 6 we present our
assessment and experimental results. Finally, Sect. 7 concludes this paper.

2 Related Work

Researches discussed different approaches for the application of cryptographic
hash functions on memory fragments. Existing work addresses the problem of
identifying known code by hashing normalized portions of code in memory.
A short survey of existing approaches was given by [10]. In [8] offsets of vari-
able code fragments were used to normalize and hash executables on a page
level. A database of hash templates was created which consists of hash values
and its corresponding offsets. These hash templates are applied on the physical
address space. The comparison between each template and each page lead to
a complexity of O(n ∗ m) for a comparison of n templates against m memory
pages.

The authors of [10] extended the approach and tried to improve the naive
all-against-all comparison introduced by [8]. Therefore, they applied the hashes
on virtual memory pages and used structures in memory to identify a process.
By identifying a process, the lookup of a corresponding hash template could be
performed efficiently. Before creating the hash values, the introduced approaches
convert a present executable from disk to its state in memory and normalize it.
The conversion of disk stored image files to a virtual loaded module was accom-
plished with the help of a virtual Windows PE Loader [10]. The identification
of variable offsets by imitating the loading process of an executable seems legit.
A normalization based on previously disassembling a present sequence of bytes
in memory was not mentioned by the authors.

Recent research of linear disassemblers has shown the significant underes-
timation of linear disassembly and the dualism in the stance on disassembly
in literature [1]. A more exotic form are the so called length-disassemblers,



Approxis: Approximate Disassembly 161

which could be understood as a limited subset of linear disassemblers. A length-
disassembler only extracts the lengths of an instruction. Beside the classical
linear and recursive disassemblers, the authors of [7] introduced an experimen-
tal approach of fast and approximate disassembly. The approach is based on
the statistically examination of the most frequent occurred mnemonics. A set
of extracted sequences of mnemonics have been used to create a lookup table
of predominant bigrams. With the help of this table, a fuzzy 32 bit decoding
scheme was proposed, which showed decent results.

As already introduced, approximate matching algorithms can be used to
detect similarities among objects, but also to detect embedded objects or frag-
ment of objects [3,6]. Investigators can use it to differ between non-relevant and
relevant fragments in large sets of suspicious data. In the course of memory foren-
sics this approach would obviously struggle with volatile instruction operands
and updated byte-sequences. Current approximate matching techniques con-
stantly evolve, e.g. by the integration of better lookup strategies like Cuckoo
Filters [5].

The problem of identifying code structures in large sets of binary data could
be misleadingly compared with the problem of identifying interleaved data within
code sections of a single executable [9]. The major goals of our approach are the
fast identification and the approximate disassembly of code fragments.

3 Requirements of Approximate Disassembling

In this section we introduce and explain four essential requirements for our
research: lightweight, robustness, speed and versatility. These requirements should
be understood as superior and long term goals in the context of applying approx-
imate matching to the field of memory forensics. They have to be respected in
this research and beyond this work. To be able to better describe the fundamen-
tal requirements, we first introduce the central goals of this publication. As the
application of approximate matching algorithms to portions of memory seems
unfeasible due to a unpredictable representation of code in memory, we suggest
a process of normalization after approximate disassembling portions of code in
large sets of raw and mixed data. As this work addresses the step of identifying
and disassembling code in data, we define four major goals:

1. Detect sequences of code in a vast amount of different shaped raw data.
2. Extract sequences of instruction-related bytes with little overhead.
3. Make a statement about the confidence of the code detection process.
4. Determine additional information, like the architecture of the code.

These practical goals describe the motivation of this work, where the follow-
ing requirements describe the bounding conditions to achieve those goals. The
defined requirements are discussed by recalling some central properties of the
introduced competing approaches and by considering the mentioned goals.

The first requirement lightweight aims to reduce the stack of dependencies of
the target system with a focus on the instruction set and the loader traces. In



162 L. Liebler and H. Baier

contrast to existing approaches, we propose a normalization based on previously
disassembling code in different states of an executable. We consider this approach
significant more lightweight than imitating loader traces with the help of a self-
constructed virtual loader. A disassembler is therefore less interleaved to record
the changes of a memory loader to an image file.

Previous work to detect known fragments of code (e.g., the approach intro-
duced by [10]) relies on the correct identification of a running process. This
offers new degrees of bypassing and obfuscation to the malware author, e.g., by
unlinking Virtual Address Descriptor (VAD) nodes using Direct Kernel Object
Manipulation [4]. Our second requirement robustness means to identify a code
fragment without process structures and being thus more robust against obfus-
cation compared to competing approaches.

Our third requirement is speed, which is a central requirement adopted from
the field of approximate matching. In our current stage of research the detection
and extraction of code from a vast amount of data has to be done with good
computational performance. As we are interested in an approximate disassem-
bler, we trade computational performance more important than accuracy of the
disassembled code. However, the degree of disassembling should enable further
normalization or the reduction of code representation.

Most of the introduced systems in Sect. 2 are limited to x86 systems. A more
versatile approach is desirable, which is not dependent on an a-priori knowledge
of the architecture of the target system. The requirement versatility means that
the disassembler works reliably for different target architectures.

4 Background and Fundamentals

In this section we introduce the basic fundamentals of our approach for the intro-
duction of approxis. We briefly introduce the target x86 system. Afterwards,
we introduce the set of ground truth assembly files in a detailed way.

4.1 Disassembling

We first give a short introduction to the x86 encoding scheme and the fundamen-
tals of disassembling. Disassemblers are used to transform machine code into a
human readable representation. In the field of binary analysis and reverse engi-
neering the demands and requirements of a disassembler engine are clearly iden-
tified. With the x86 instruction set these tools have to deal with variable-length
and unaligned instruction encodings. Additional, executables sections could be
interleaved by code and data sequences. As the authors of [9] already described,
this system design trades simplicity for brevity and speed. Summarized, the
process of disassembly in general is undecidable [1,9]. As could be seen in Fig. 1
the x86 instructions are defined by sequences of mandatory and non-mandatory
bytes. The Reg field of the ModR/M byte is sometimes used as an additional opcode
extension field. Prefix bytes could additionally change the overall instruction
length. For further details we refer to the Intel Instruction manual1.
1 https://software.intel.com/en-us/articles/intel-sdm.

https://software.intel.com/en-us/articles/intel-sdm


Approxis: Approximate Disassembly 163

Mod Reg R/M Scale Index Base
Bits: 76 543 210 76 543 210

Prefix Opcode ModR/M SIB Displacement Immediate

Bytes: 0-4 1-3 0-1 0-1 0,1,2,4,8 0,1,2,4,8

Fig. 1. x86 machine instruction format

The core of this research is to approximate disassemble a vast amount of
unknown data. This desire clearly stays in conflict with the goal of classical dis-
assembler engines, where computational performance is often understood as a
secondary goal. We ignore recursive traversal, as this would implicate an imprac-
tical layer of computational overhead. The development and the maintenance
process of disassemblers is somewhat cumbersome and tedious. Even the lookup
tables of a simple length-disassembler have to be maintained.

4.2 Mnemonic Frequency Analysis

We analyzed the opcode and mnemonic distribution of a set of ELF binaries,
namely a dataset containing 521 different binaries obtained by [1]. As we focus
on the acquisition of byte sequences which rely to code only, we extracted the
.text section of each binary file. It should be mentioned that the following dis-
tribution analysis is nothing new [2,7]. However, existing distribution analysis of
mnemonics often rely on malware, which could be biased. We used the ground
truth of assemblies to determine the distribution of mnemonics and extracted
the bigrams of mnemonics (see Table 1). We splitted the set of assemblies by its
architecture and determined the total amount of unigrams and bigrams. The col-
umn of distinct values describes the set of all occurring mnemonics. The columns
max, mean and min describe the assignment of the total amount of instructions
to each distinct unigram or bigram. For example, the most frequently occurred
mnemonic in the case of 32 bit binaries represents 33.25% of all instructions.

Table 1. Overview of unigram and bigram mnemonic counts.

32 bit (200 files) 64 bit (321 files)
Total Distinct Max Mean Total Distinct Max Mean

Unigrams 35.232k 322 11.714k 1531 61.441k 436 21.627k 1859
Bigrams 35.232k 11632 5.889k 17 61.441k 16059 10.360k 28

The frequency of occurrence of all bigrams are extracted, the probability p of
each bigram is saved as logarithmic odds (logit). We further denote the absolute
values of logits as λ (see Eq. 1). Similar to [7] we want to avoid computational
underflow by multiplication of probabilities.

λ =
∣
∣
∣
∣
ln

p

1 − p

∣
∣
∣
∣

(1)



164 L. Liebler and H. Baier

4.3 Byte Tree Analysis

The former subsection revisits the frequencies of most frequently occurred
mnemonics. In a next step we analyze the byte frequencies on a instruction
base. We have to deal with a vast amount of overlapping byte sequences and
non-relevant operand information. To refine our demands, the overall goal of
approxis is not do establish a high-accuracy disassembler, but to identify
instruction offsets and a predominant mnemonic. We extract all bytes of an
instruction and insert them in a database structured as tree. Each node of the
tree represents a byte and stores a reference to all its corresponding children,
the subsequent instruction bytes (see Fig. 2).

Input instructions:

push 41 55
push 41 55
mov 48 89 f3
sub 48 81 ec
l e a 48 8d
mov 64 48 8b

root

64
mov

48
mov

8b
mov

48
lea sub
mov

89
mov

f3
mov

81
sub

ec
sub

8d
lea

41
push

55
push

Fig. 2. Oversimplified bytetree example after inserting several instructions.

As an example we inspect the byte sequence 488d and its subsequent bytes
after inserting our ground truth into the tree. In listing 1 we can see the com-
plete output of a single node. We should mention that the amount of the child
nodes was shortened for a better representation . We also save auxiliary infor-
mation like the amount of counted bytes for a current node , the counts of all
corresponding mnemonics and the counts of different occurring instruction
lengths . Each node maintains different formats and could possibly lead to
redundant information. This structure represents an intermediate state needed
for the following steps of data analysis, post processing and tree reduction.

After inserting the whole ground truth into the tree we perform an additional
step of reduction. Every node which represents a single length and a single
mnemonic was transformed to a leaf node. So we cropped all subsequent child
nodes of the current node, which doesn’t affect the instruction mnemonic. The
reduced shape of the tree is highlighted black in Fig. 2. The impact of reduction
could be seen in Table 2.



Approxis: Approximate Disassembly 165

Table 2. Comparison of original and reduced bytetree.

Platform Input bytes Original tree Reduced tree
Nodes Height Size Nodes Height Size

64 bit 253.535.572 12.773.078 15 445M 87.224 10 7.5M
32 bit 123.221.439 5.871.232 15 206M 35.211 9 3.0M

5 Approach

The observation of the preceding section lead the deduction of our approach,
which is based on the introduced bytetree and mnemonic frequency analysis.

5.1 Disassembling

We argue that length-disassemblers could be assumed to be very fast and
lightweight. Though, even a simple length-disassembler needs to respect a lot
of basic operations and needs to be maintained for different target architectures.
The disassembler library distorm2 is based on a trie structure and conceptional
similar to our approach. It outperforms other disassemblers with its instruction
lookup complexity of O(1). However, the engine still respects instruction sets on
a bit granularity and performs a detailed decoding. As we trade computational
speed more important than accuracy, approxis will stay on a byte granular-
ity level. We consult the previously gained learnings of the mnemonic analysis
to improve our process of length disassembling. It should be clear and fair to
mention that existing disassemblers aren’t designed for our field of application.
Processing a large amount of raw data is out of the scope of classical disas-
semblers. As existing length-disassembler engines reduce the amount of needed
decoding mechanisms to a minimum, we introduce an approach to resolve a
corresponding mnemonic without respecting any provided opcode maps. Hence,
comparing the computational speed of approxis with other disassemblers seems
less meaningful.

Bytetree Disassembling. To address the introduced requirement lightweight
(see Sect. 3), approxis does not depend on the integration of a specific disas-
sembler engine. The process of disassembling is mainly realized with the already
introduced bytetree. We implemented our first prototype of approxis in the
language C and used a reduced bytetree to generate cascades of switch state-
ments. These statements are used to sequentially process the input instructions
and to perform the translation into a corresponding length and mnemonic. The
information of the bytetree nodes have been reduced to a minimum core. We
only store the amount of counted visited bytes per node and the lengths. Nodes
with more than one mnemonic are reduced to a single representative, which is
the predominant and most counted mnemonic of the specific node.
2 https://github.com/gdabah/distorm.

https://github.com/gdabah/distorm


166 L. Liebler and H. Baier

The performance of the bytetree was evaluated by a set of 1318 64 bit bina-
ries. The disassemblies obtained by the bytetree have been compared to the
disassemblies obtained by objdump. Determining the correct offsets is impor-
tant to build a solid foundation for further normalization. Thus, it is important
to measure the amount of correctly disassembled instruction offsets compared
to the set of true instruction offsets. We disassembled all binaries of an Ubuntu
LTS 16.04 x86 64 and extracted the .text sections. The determined instruction
offsets by objdump build our ground truth of relevant offsets θrl. We measured
the performance of our bytetree disassembler by verifying all retrieved offsets
θrt against our set of relevant offsets. An overview of fairly good performance is
shown in Table 3 (row bt-dis). We denote the performance in values of precision
and recall, where

precision =
|{θrl} ∩ {θrt}|

|{θrt}|
and recall =

|{θrl} ∩ {θrt}|
|{θrl}| .

Table 3. Precision and recall of approxis.

Approach Precision Recall
Max Min Mean (geo./ari.) Max Min Mean (geo./ari.)

bt-dis 100% 84.40% 99.50% 99.51% 100% 92.40% 99.80% 99.80%
bta-dis 100% 91.49% 99.76% 99.76% 100% 93.62% 99.84% 99.84%

We examined the binary with the lowest precision (i.e., 84.40%), namely
xvminitoppm, which converts a XV thumbnail picture to PPM. Extracting a bunch
of false positives underlines our assumption: even with a reliable vast amount
of ground truth files, the integration of all instructions is impossible. In case of
xvminitoppm a lot of overlong Multi Media Extension (MMX) instructions are
implemented, which are not present in the bytetree.

Assisted Length Disassembling. Disassembling a unknown binary, with
unknown instruction bytes could lead to ambiguous decision paths within the
bytetree. Namely, an unknown sequence of input bytes would lead to an exit
of the tree structure at a non-leaf node, with multiple remaining lengths and
mnemonics. An example in Fig. 3 could not be clearly disassembled with the
tree from Fig. 2. To detect those outliers and to extend approxis with other
features, we integrate our results from Sect. 4. In detail, we use the logarithmic
odds of mnemonic bigrams to assist the process of disassembling and to identify
reasonable instruction lengths, which could not be resolved by the bytetree itself.
As the authors of [7] proposed a disassembler based on a set of logarithmic odds
only, we argue that the descent performance of this approach is not sufficient.

As the process of bytetree based disassembling is straightforward, the inte-
gration of the absolute logit value λ has not yet been described. We consider



Approxis: Approximate Disassembly 167

λ as a value of confidence if two disassembled and subsequent instructions are
plausible or not. So it is more likely that a sequence of instructions is in fact
meaningful as long as λ remains small. In contrast, a high value of λ illustrates
two subsequent instructions, which are not common at all. We limit the range of
the absolute logit λ, where 0 ≤ λ ≤ 100. This value of confidence could be used
differently to cope with the goals and requirements in Sect. 3. We first focus on
assisting our process of disassembling by resolving plausible instruction lengths.
Summarized, we use λ to determine the most plausible offset of a byte sequence,
which is not known by our bytetree. The following steps describe the process of
assisted disassembling in detail:

1. We use a table of confidence values λi to evaluate the transition between
two instruction sequences denoted by its mnemonic. If a lookup of a subse-
quent mnemonic pair fails, the action gets penalized with an exorbitant high
value. Every retrieved λi has to be under a selected threshold τ . We repeat
the disassembling with all stored length values of a current node until an
offset fulfills the threshold. If none of the length values returns a λi under the
threshold τ , we select the most common length of the current node.

2. All byte sequences with an unknown byte at offset zero, i.e. a byte which is
not present in the first level of the bytetree, are penalized by the system. As
bytes, which are not present on the first level of the bytetree after processing
a fairly large amount of ground truth files, are expected to be not common.

3. A simple running length counter keeps track of subsequently repeating
confidence values, as these indicate a significant lack of variance, often occur-
ring in large fragments of zero byte sequences or random padding sequences.
These non-relevant byte sequences are additionally penalized.

Figure 3 illustrates the process of offset determination. We repeated the pro-
cess of disassembling the set of 1318 64 bit ELF binaries with assisted length-
disassembling. The obtained results in Table 3 (row bta-dis) show a significant
improvement in the case of precision.

41 55 64 e0 ff 48 89 e0 48 ff e0 cc

λi = 7 λi+1 = 3 λi+2 = 5

λi+3 = 17

λi+3 = 4

Fig. 3. Selecting certain offsets with a predefined threshold τ = 16.

5.2 Code and Architecture Detection

Beside supporting the process of determining unknown instruction offsets during
disassembling, we use the value of confidence to realize two goals: detect code
sequences in data and discriminate the architecture of code.



168 L. Liebler and H. Baier

Code Detection. The current implementation of approxis could differ
between code and non-code fragments in unknown sequences of bytes. As shown
in the previous subsection, the value of confidence λi is determined for two
subsequent instructions to enhance the disassembling process. We use a sliding
window approach to consider those values over sequences of subsequent instruc-
tions. More formally, we define a windowed confidence value ωx in Eq. 2 as the
average of all λi within a sliding window, with a predefined size n at offset x.
Penalized values overwrite a local value λi and thus influence ωx. The value of ω
should be interpreted as a value of confidence over time. A rising value ω under-
lines the presence of large data fragments. A short rising peak of λ indicates the
presence of short and interleaved data. A mid-ranged value of ω indicates the
loose presence of instructions or the presence of non-common instructions.

ωx =
∑n+x

i=x λi

n
(2)

Architecture Detection. We created a bytetree and a lookup table of λi for
each architecture of our ground truth. Thus, switching the mode of operation
could be realized by simply changing the references of the used bytetree and
lookup-table. Mid-ranged values of ω could indicate uncommon sequences of
instructions, which we will show later. Large sections of mid-range ω values could
also indicate the presence of alternative architectures. We will demonstrate that
these variances are significant for different architectures. Sections of code are
normally within a range from 1 (high confidence) to 17 (low confidence).

6 Assessment and Experimental Results

In this section we evaluate approxis in different fields of application. These
assessments focus on the detection of code in different areas of application.

Code Detection: The following evaluation addresses our defined requirement
of robustness (see Sect. 3). To evaluate the code detection performance in the
field of binary analysis, we first examined a randomly selected ELF binary. The
result in Fig. 4 illustrates the capabilities of approxis to differentiate code from
data. Figure 4a shows the initial reduction of confidence by the header. Figure 4b
shows that the .text section is clearly distinguishable and introduced by the
.plt section, which is not filled with common sequences of instructions.

100 101 102 103 104 105

101

102

.text .dataoffset (bytes)

a)

0.4 0.6 0.8 1 1.2
·104.plt .text

b) ωi

Fig. 4. approxis applied on zip (64 bit); value of ωi with cutoff set to 100;



Approxis: Approximate Disassembly 169

We extracted from a set of 792 ELF binaries the file offsets of different sections
with the help of objdump. The offsets θ of the sections .plt, .text and .data
define points of transition between code and data in each file. To evaluate the
code detection performance we inspected the average local value of confidence
λi for κ preceding and κ subsequent instructions at an offset θ. A transition τd

from code to data or τc from data to code at offset θ is recognized by approxis,
if the average local confidence differs by a threshold δ (see formula 3). In the case
of transitions between .plt and .text we lowered the threshold from δ = 30 to
δ = 5. The ratio of all correctly registered transitions is shown in Table 4.

τc = τd =

⎧

⎪⎨

⎪⎩

1, if

∣
∣
∣
∣
∣

∑θ
i=θ−κ λi

n −
∑θ+κ

i=θ λi
n

∣
∣
∣
∣
∣
> δ

0, otherwise

(3)

Table 4. Ratio of correctly detected transitions.

Arch # files # transition Detected

x86-64 400 1200 99 %
x86 392 1176 92 %

Architecture Detection. The following evaluation addresses our defined
requirement of versatility (see Sect. 3). To illustrate the detection process of
approxis for code fragments of different types, an image with random bytes
was generated. Within the random byte sequences we inserted several non-
overlapping binaries at predefined offsets. In detail, we inserted a 32 bit (i.e., ELF
64-bit LSB, dynam. linked, stripped) and a 64 bit (i.e., ELF 32-bit LSB, dynam.
linked, stripped) version of four different binaries: wget, curl, info and cut. As
introduced in Sect. 5, approxis currently relies on two different bytetrees and
mnemonic lookup-tables. By applying both versions on our pathological image,
we visualize the changing values of confidence (see Fig. 5a, b).

Similar to the analysis of data and code transitions, we examined the archi-
tecture discrimination with the help of 400 randomly selected ELF binaries for
each architecture. We extracted the .text section of each binary and disassem-
bled them with approxis in 64 bit and 32 bit mode. We determined the average
of all ωx for the whole .text section of each binary, denoted as ω̄. The distribu-
tion of ω̄ for each binary is illustrated in Fig. 6 and outlines the capabilities of
approxis to discriminate a present architecture.

Computational Performance. The following evaluation addresses our defined
requirement of speed (see Sect. 3). The execution time of approxis was tested
on a machine with an Intel(R) Core(TM) i5-3570K CPU @ 3.40 GHz with 16
GiB DDR3 RAM (1333 MHz) and 6 MiB L3 cache. The implementation was done
in C and compiled with optimization set to -O3. As we focus on a possible



170 L. Liebler and H. Baier

approxis-32

ωx
approxis-64

Fig. 5. Comparison of code detection for x86 and x86-64 binaries.

0 20 40 60 80
0

100

200

300

ω̄ of approxis-32

# 32bit binaries
# 64bit binaries

0 10 20 30
ω̄ of approxis-64

# 64bit binaries
# 32bit binaries

Fig. 6. Architecture detection of approxis with a selected bin size of one.

integration in existing approximate matching techniques, we only measured the
computation time of the disassembling process and ignored the loading process
to memory. It should be mentioned that the current prototype doesn’t focus on
performance optimization or parallelization. We created three images with a size
of 2 GiB each to evaluate the runtime performance. As we already mentioned
in Sect. 5.1, the comparison of approxis with other disassemblers is somewhat
misleading. As approxis outreaches the capabilities of length-disassemblers, but
is not able to completely decode x86 instructions, the comparison of those disas-
semblers should not be understood as a comparison of competing approaches. We
applied each disassembler in different modes and optimized our implementation
of the distorm engine by removing unnecessary printouts and buffers. Table 5
outlines that the execution time of approxis relies on the processed input.

Table 5. Execution time of approxis and distorm with different input data.

Execution time Description

Approxis Distorm Disassembler

32 64 32 64 Mode

29.084 s 21.936 s 1m 20.770 s 1m 7.772 s Concatenated set of 64 bit binaries from /usr/bin

27.859 s 31.918 s 1m 43.999 s 1m 43.046 s Raw memory dump acquired with LiMEa

1m 15.521 s 1m 44.990 s 1m 58.278 s 1m 56.192 s Random sequences of bytes generated with /dev/urandom
ahttps://github.com/504ensicslabs/lime

https://github.com/504ensicslabs/lime


Approxis: Approximate Disassembly 171

7 Conclusion

In this paper, we demonstrated a first approach to detect, discriminate and
approximate disassemble code fragments within vast amount of data. In contrast
to previous work, approxis revisits the analysis of raw memory with less pre-
requisites and dependencies. Our approach is a first step to fill the gap between
state of the art high level memory examination (e.g., by the usage of volatility)
and methods of data reduction similar to those in disk forensics. Our results
show the capabilities of approxis to differentiate between code and data during
the process of disassembling. By maintaining a value of confidence throughout
the process of disassembling, we can reliably distinguish between different archi-
tectures and switch the used bytetree to obtain a better degree of accuracy. The
current implementation shows also a good computational speed.

A next step should be the extraction of features, which are used in a context of
approximate matching. Possible methods of subversion (e.g. anti-disassembling)
should be considered. A process of exact and inexact matching of code is eligible
to consider metamorphic structures and to damp variances in detected code.
The approach could be transferred to other domains (e.g. embedded systems).

Acknowledgement. This work was supported by the German Federal Ministry of
Education and Research (BMBF) as well as by the Hessen State Ministry for Higher
Education, Research and the Arts (HMWK) within CRISP (crisp-da.de).

References

1. Andriesse, D., Chen, X., van der Veen, V., Slowinska, A., Bos, H.: An in-depth
analysis of disassembly on full-scale x86/x64 binaries. In: USENIX Security Sym-
posium (2016)

2. Bilar, D.: Statistical structures: fingerprinting malware for classification and anal-
ysis. In: Proceedings of Black Hat Federal 2006 (2006)

3. Breitinger, F., Baier, H.: Similarity preserving hashing: eligible properties and a
new algorithm MRSH-v2. In: Rogers, M., Seigfried-Spellar, K.C. (eds.) ICDF2C
2012. LNICST, vol. 114, pp. 167–182. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-39891-9 11

4. Dolan-Gavitt, B.: The VAD tree: a process-eye view of physical memory. Digit.
Invest. 4, 62–64 (2007)

5. Gupta, V., Breitinger, F.: How cuckoo filter can improve existing approximate
matching techniques. In: James, J.I., Breitinger, F. (eds.) ICDF2C 2015. LNICST,
vol. 157, pp. 39–52. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
25512-5 4

6. Roussev, V., Richard, G.G., Marziale, L.: Multi-resolution similarity hashing.
Digit. Invest. 4, 105–113 (2007)

7. Radhakrishnan, D.: Approximate disassembly. Master’s Projects. 155 (2010).
http://scholarworks.sjsu.edu/etd projects/155/

8. Walters, A., Matheny, B., White, D.: Using hashing to improve volatile memory
forensic analysis. In: American Acadaemy of Forensic Sciences Annual Meeting
(2008)

https://doi.org/10.1007/978-3-642-39891-9_11
https://doi.org/10.1007/978-3-642-39891-9_11
https://doi.org/10.1007/978-3-319-25512-5_4
https://doi.org/10.1007/978-3-319-25512-5_4
http://scholarworks.sjsu.edu/etd_projects/155/


172 L. Liebler and H. Baier

9. Wartell, R., Zhou, Y., Hamlen, K.W., Kantarcioglu, M., Thuraisingham, B.: Differ-
entiating code from data in x86 binaries. In: Gunopulos, D., Hofmann, T., Malerba,
D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6913, pp. 522–
536. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23808-6 34

10. White, A., Schatz, B., Foo, E.: Integrity verification of user space code. Digit.
Invest. 10, S59–S68 (2013)

https://doi.org/10.1007/978-3-642-23808-6_34


Digital Forensics Tools Testing
and Validation



Memory Forensics and the Macintosh OS X
Operating System

Charles B. Leopard(&), Neil C. Rowe, and Michael R. McCarrin

U.S. Naval Postgraduate School, Monterey, CA 93940, USA
cbleopard@gmail.com, {ncrowe,mrmccarr}@nps.edu

Abstract. Memory acquisition is essential to defeat anti-forensic operating
system features and investigate clever cyberattacks that leave little or no evi-
dence on physical storage media. The forensic community has developed tools
to acquire physical memory from Apple’s Macintosh computers, but they have
not much been tested. This work in progress tested three major OS X
memory-acquisition tools. Although all tools tested could capture system
memory in most cases, the open-source tool OSXPmem bettered its proprietary
counterparts in reliability and support for memory configurations and versions
of the OS X operating system.

Keywords: Digital forensics � Acquisition �Main memory � Apple �Macintosh
OSX � Testing � MacQuisition � OSXPMem � RECON � Reserved area

1 Introduction

Recent Macintosh OS X operating systems incorporate many recent anti-forensic
features, most notably cloud storage and encryption. Users can fully encrypt many
things including whole operating system volumes, making it impossible to recover
forensic evidence in a reasonable time frame without passwords. Because of this,
forensics on the main memory of such systems is increasingly valuable. Memory
forensics can recover encryption keys, network packets, injected code, hidden pro-
cesses and communications from volatile memory.

While there are many memory-acquisition tools and analysis programs for Win-
dows operating systems, there are only a few for Macintosh systems. Ligh et al. (2014)
provides a survey of information pertaining to Macintosh OS X memory forensics.
A resource is the Rekall Memory Forensic Framework which began as a branch within
the Volatility Project (Volatility, 2015) and became a stand-alone project in December
2013 (Rekall, 2015). Since main-memory capture is challenging, it is helpful to
compare these tools to see what differences they have.

2 Methodology

This work tested three tools: BlackBag Technologies MacQuisition, Version 2014R1;
OSXPMem, Version RC3; and Sumuri Forensics RECON, Version 1.0.11 (Leopard,
2015). The systems were first tested with OS X Mavericks (10.9.5), and then after

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
P. Matoušek and M. Schmiedecker (Eds.): ICDF2C 2017, LNICST 216, pp. 175–180, 2018.
https://doi.org/10.1007/978-3-319-73697-6_13



upgrading to Yosemite 10.10.1 and 10.10.2. Each tool was directed to write a memory
capture to an external USB 3 hard drive (7200RPM). In total 450 captures were
performed (50 machines, 3 operating systems, and 3 forensic tools).

We evaluated the success rate with respect to (1) the ability of the tools to write a
physical-memory capture without crashing the computer system; (2) how obtrusive the
tool was (what its memory footprint was and how long it took to run); and (3) its
ability to produce a capture from which standard forensic artifacts could be recovered
using two memory-analysis tools, the Volatility Framework and the Rekall Memory
Forensic Framework. The Rekall plugins used were arp, ifconfig, lsof, mount, net-
stat, psaux, and route, and the Volatility plugins used were mac_arp, mac_bash,
mac-ifconfig, mac_lsof, mac-mount, mac_netstat, mac_psaux, and mac_route. We were
particularly interested in differences between the memory snapshots obtained since they
could indicate functional differences or coverage gaps of the tools.

The Passware Password Recovery Kit Forensic Version 13.1 was used to the
confirm that encryption keys for FileVault2 were located within the OS X memory
captures and could be used to decrypt the volume. To do this, FileVault2 was enabled
on a MacBook Pro and a Mac Pro computer running Mavericks as well as on a
MacBook Pro and a Mac Pro computer running Yosemite. Memory captures were done
with MacQuisition, OSXPMem, and RECON on both the MacBook Pro and Mac Pro
computers running Mavericks. RECON failed to capture physical memory from the
Mac Pro computers. OSXPMem was used to capture memory from the Mac Pro and
MacBook Pro running Yosemite. MacQuisition does not support Yosemite.

The rate at which memory changes affects the memory dumps acquired by tools. To
analyze this we created a virtual machine using VMware Fusion Professional version
7.1.1, and used VMware to take a series of snapshots. The virtual machine ran Mav-
ericks and was configured to use two processor cores and 8 GiB of memory. The host
machine was a MacBook Pro (Retina, 15-inch, Mid 2014) with a 2.8 GHz Intel i7
processor and 16 GiB of 1600 MHz DDR3 memory. Our procedure was: (1) log into
the VM and take a snapshot every fifteen minutes; (2) use the Volatility plugin to
decompress the snapshots; (3) create MD5 hashes for every 4 KiB block using
MD5Deep; (4) compare the MD5 hashes with the original hashes and note differences;
(5) and repeat three times. We compared memory captured by each of our tools against
the VM Snapshot that completed at a time closest to when each capture completed. We
then compared the memory captures taken with the tools. To control for potential
variations due to VMware’s environment, we tested the tools on a physical Mac Mini
(late 2014) with a 2.6 GHz Intel i7 processor, and 8 GiB of 1600 MHz DDR3 memory,
running Mavericks. The memory captures were taken over a period of 30 min.

3 Results

Memory-acquisition speeds were within 7% for the three tools. Physical memory sizes
were 67.45 MiB for MacQuisition, 0.944 MiB for OSXPmem, and 206.7 MiB for
RECON, and shared memory and private memory sizes were proportional. OSXPmem
had the advantage that it is a command-line tool without a graphical user interface.

176 C. B. Leopard et al.



We observed several crashes caused by tools. The machines that crashed were not
the same nor did any one machine crash more than once. After a crash, a second
acquisition attempt was often successful after the machines restarted. The exception
was when RECON was used to acquire memory from the Mac Pros with 64 GiB of
RAM; all the machines crashed and additional attempts also failed. Valuable forensic
data is often permanently lost in a crash, so crash danger is important. Nonetheless, our
experiments confirmed that if a memory capture was completed without a crash, then
the capture contained every forensic artifact found by the other tools on any run.

The Passware Password Recovery Kit located the encryption keys in all of the
memory captures and successfully decrypted the FileVault2 volumes. The OS X user’s
login password was located within all the memory captures using the hex editor iBored
by searching for the term “longname” which we found frequently near a user’s pass-
word. The password remained in the same block of memory during the thirty-minute
period on all captures.

In another experiment, VM snapshots were taken over a period on a VM with
Mac OS version Mavericks installed. A Python script counted the 4 KiB blocks whose
hash values changed from the original snapshot. Results showed that on average only
5.33% of the blocks had changed after 30 min when running default processes.

Memory captures were considerably larger than the allocated physical memory due
to the presence of reserved areas. The datasheet for 4th Generation Intel Core Processor
Address Map describes reserved areas below 4 GiB that do not belong to the DRAM.
A similar structure was observed in the virtual machines. The vmem files containing
the memory in the VM snapshots were converted to raw images. Each vmem file as
well as each tool memory capture was 9 GiB in size, though the VM configuration
allocated 8 GiB to physical memory. (Stuttgen and Cohen, 2015) discuss how physical
memory addresses are used for communication with devices (video cards, PCI cards,
and flash memory) on the motherboard with memory-mapped I/O. The 1 GiB block
ranges observed between 3 GiB and 4 GiB appear to be reserved for this. The chipset
routes memory access around these reserved regions so that all RAM is used. This
increases the size of memory captures.

All three tools captured the same range of null values observed in the first half of
the memory graphs. The MacQuisition device log reported “bad addresses” were
padded with zeroes beginning at block 786432 and ending at block 1048575. Each
block contained 4096 bytes resulting in approximately 1 GiB of null characters. We
inspected the block range in all three tool memory captures with a hex editor and
confirmed that all the tools padded the same block range with zeroes.

Comparisons were done of the tool memory captures and the VM memory snap-
shots taken at 1 min after logging in to system, as well as the results of each tool
memory capture compared to each other. Overall, we saw similar regions of non-null
matches in all comparisons. However, the tool memory captures showed that most of
the null characters observed in the VM snapshots were overwritten with data when the
acquisition tools themselves acquired the memory. This would suggest as the
memory-capture tools run, blocks of memory containing null characters get changed
while other blocks remain mostly unchanged. Since these regions are large and outside
the memory space used by the tools, it is unlikely that the tools themselves are

Memory Forensics and the Macintosh OS X Operating System 177



changing the data directly. Rather, we conclude that some other mechanism of the
operating system is writing to unused space in memory during the acquisition process.

Figure 1 shows example 4 KiB block matches between the tool-acquired memory
captures and the VM snapshot SV1 (initiated at time = 1 min). The three plots show
MacQuisition, OSXPmem, and RECON. Red blocks represent matches to the initial
memory state which do not contain null (zero) characters; grey blocks represent blocks
that match but contain null characters; and the white blocks represent blocks that have
changed and do not match. The top of the diagram represents the beginning of memory,
and each row represents 1024 blocks from left to right in 4 KiB block increments, so
each horizontal slice represents 4 MiB of memory.

The OSXPmem data shows a reserved area that appears to agree with the output of
the MacQuisition captures, again beginning at approximately the 2 GiB and continuing
to 4 GiB. A range of blocks located just before the 6 GiB mark changed between
OM2.5 and OM30. The edge of the red area in the figure on the right has shifted and
the region of matching blocks is less. The RECON data agree with other tools about the

Fig. 1. Comparison of MacQuisition, OSXPmem, and RECON (left to right) on an analogous
memory state. (Color figure online)

178 C. B. Leopard et al.



location of reserved regions. The graphs also showed that a range of blocks, located
just before the 6 GiB mark, changed between the memory capture at T2.5 and the
capture at T30. The edge of the red areas between the figures was similar to before.

Data showed that the matching blocks without null characters (red) change over
time by a relatively small percentage. These results were supported by the VM snap-
shots. It is clear that certain regions of memory are consistently captured while other
regions are always in flux. Tests showed that slightly more than the first GiB of the
memory capture always matches the VM snapshot. Many null values occur between the
third and fourth GiB of memory which appears to be a reserved area. Two more
significant blocks of null characters follow while the remaining memory appears to
have changed during the acquisition.

Our tests showed that the tools represented the non-match regions (white areas)
differently. This suggests not only that the tools are introducing considerable change to
the memory space during the acquisition process, but also that each is changing the
space in a unique way, so the changes from different tools do not match each other.

The memory-acquisition tools were also tested in non-virtual environment. The
Mac Mini was configured with 8 GiB of physical memory, and each tool acquired a
9.74 GiB raw file. All three tools captured the same range of null values in the first half
of the capture. This reserved area appears to be larger than in the VM memory images.
Analysis with a hex editor determined that the reserved region began at 2.17 GiB and
continued until 4 GiB. Data also showed that the block matches that contain non-null
characters begin at approximately 30% of the total captured material, but remain rel-
atively stable, declining by less than 10% over a 30 min period (Fig. 2). The match
percent was less than what observed in the virtual environment.

4 Conclusions

MacQuisition, RECON, and OSXPmem were all successful in capturing memory from
OS X Mavericks on Macintosh computers. They captured valuable artifacts such as
FileVault2 encryption keys and volatile system data. Nonetheless, (Ligh et al., 2015)

Fig. 2. Match Percentage Comparison over Time (“Column 1” = RECON).

Memory Forensics and the Macintosh OS X Operating System 179



acknowledges the risk of memory-acquisition tools causing system crashes as we
observed since these can be sensitive to the OS X version or the installed hardware on the
system. The tool may access a reserved region or interfere with a system-critical function.

Our results showed that size of the memory capture was constant over the tools.
Memory dumps were larger than the amount of physical memory (17.99 GiB versus 16
GiB for MacBook Pro was typical) due to regions reserved for firmware, ROM, and
other PCI resources.

Comparison of the VM snapshots taken over thirty minutes showed that with only
the default processes, memory changed only slightly. Volatility and Rekall revealed
many valuable forensic artifacts remaining such as encryption keys and volatile system
data. Our evidence further suggested that the tools are acquiring the blocks of memory
that are not changing between captures. Though there were significant regions of
memory that did not match between the tool-acquired dumps and the VM snapshots,
these regions corresponded with memory blocks that contained nulls in the baseline.
Our analysis of forensic artifacts using the Volatility and Rekall frameworks failed to
detect any situations in which the non-matching regions corresponded to a loss of
forensic evidence, since the regions or memory appear to have contained nulls before
the memory acquisition.

The experiments with a non-virtual environment showed the tools successfully
captured memory from a Mac Mini running Mavericks. We observed the memory
captures from all three of the tools appeared similar as far as the blocks that matched
and did not match as well for the blocks containing null characters. The results also
agree with the results of our tests in the virtual environment in that the regions of
memory that match between comparisons did not change much over time.

Future work will examine in more detail the exact changes in files over time and the
discrepancies between different tools. Discrepancies suggest, without having to analyze
the operating system, where volatile memory stores key operating-system parameters
and links. Future work will also investigate the effects of simultaneously running
various kinds of software on the operating-system memory images.

Acknowledgements. The views expressed are those of the authors and do not represent the U.S.
Government.

References

Intel Corporation: Desktop 4th Generation Intel Core Processor Family, Desktop Intel Pentium
Processor Family, and Desktop Intel Celeron Processor Family (2012). www.intel.com/content/
dam/www/public/us/en/documents/datasheets/4th-gen-core-family-desktop-vol-2-datasheet.pdf.
Accessed 25 May 2015

Leopard, C.: Memory forensics and the Macintosh OS X operating system. M.S. thesis, U.S.
Naval Postgraduate School, June 2015

Ligh, M., Case, A., Levy, J., Walters, A.: Art of Memory Forensics. Wiley, Indianapolis (2014)
Rekall Team: Rekall Memory Forensic Framework: About the Rekall Memory Forensic

Framework (2015). www.rekall-forensic.com/about.html. Accessed 13 March 2015
Stuttgen, J., Cohen, M.: Anti-forensic resilient memory acquisition. Digital Invest. 10, S105–

S115 (2013)
Volatility foundation: the volatility foundation – open source memory forensics (2015). www.

volatilityfoundation.org/#!about/cmf3. Accessed 13 March 2015

180 C. B. Leopard et al.

http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/4th-gen-core-family-desktop-vol-2-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/4th-gen-core-family-desktop-vol-2-datasheet.pdf
http://www.rekall-forensic.com/about.html
http://www.volatilityfoundation.org/#!about/cmf3
http://www.volatilityfoundation.org/#!about/cmf3


Sketch-Based Modeling and Immersive Display
Techniques for Indoor Crime Scene

Presentation

Pu Ren1,2, Mingquan Zhou1,2, Jin Liu3, Yachun Fan1,2,
Wenshuo Zhao4, and Wuyang Shui1,2(&)

1 College of Information Science and Technology,
Beijing Normal University, Beijing, China

sissun@126.com
2 Engineering Research Center for Virtual Reality Applications,

MOE, Beijing, China
3 Institute of Forensic Science, Ministry of Public Security, Beijing, China

4 General Office, Ministry of Public Security, Beijing, China

Abstract. The reconstruction of crime scene plays an important role in digital
forensic application. Although the 3D scanning technique is popular in general
scene reconstruction, it has great limitation in the practice use of crime scene
presentation. This article integrates computer graphics, sketch-based modeling
and virtual reality (VR) techniques to develop a low-cost and rapid 3D crime
scene presentation approach, which can be used by investigators to analyze and
simulate the criminal process. First, we constructed a collection of 3D models for
indoor crime scenes using various popular techniques, including laser scanning,
image-based modeling and software-modeling. Second, to quickly obtain an
object of interest from the 3D model database that is consistent with the geo-
metric structure of the real object, a sketch-based retrieval method was proposed.
Finally, a rapid modeling system that integrates our database and retrieval
algorithm was developed to quickly build a digital crime scene. For practical use,
an interactive real-time virtual roaming application was developed in Unity 3D
and a low-cost VR head-mounted display (HMD). Practical cases have been
implemented to demonstrate the feasibility and availability of our method.

Keywords: Forensic science � Indoor crime scene presentation
3D model database � Sketch-based retrieval � Rapid modeling
Immersive display

1 Introduction

In case of criminal incidents, the first phase of inspection and investigation is to rapidly
record a complete, objective crime scene representation without erroneous information
[1]. In comparison to traditional methods, i.e., verbal descriptions, hand-drawn sketches,
photos, videos, etc., the use of 3D crime scene presentation is more intuitive and effective
[2, 3]. Although 2D photos, videos and spherical photographs have been used in the
courtroom, there are challenges in using these resources to describe and present the crime

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
P. Matoušek and M. Schmiedecker (Eds.): ICDF2C 2017, LNICST 216, pp. 181–194, 2018.
https://doi.org/10.1007/978-3-319-73697-6_14



scene because these resources only provide information from a given view [4, 5]. 3D
presentation enables investigators to virtually experience the crime scene, measure the
distances between different objects and simulate the criminal activity. A powerful and
effective way of presenting a 3D crime scene was proposed in this context.

In recent studies of forensic investigation, the use of a terrestrial laser scanner
(TLS) or RGB-D camera has become a popular technique for the acquisition of 3D
models of indoor crime scenes and evidence. The time-of-flight laser scanner,
structure-light scanner and triangulation-based scanner have been used to acquire both
the large-scale geometric information of crime scenes and the small-scale geometric
information of evidence and victims [1, 3, 4, 6, 7]. These noninvasive scanners can be
used to accurately generate a digital model after registration of range images and mesh
processing. However, these devices are always expensive and the generation of digital
models from unorganized point clouds is always based on manual and expert proce-
dures. It is difficult to widely promote the application of this technique in local police
stations. To address this problem, another type of modeling method is to produce a
realistic 3D digital model from a series of images, the procedures for which comprise
camera calibration, dense point-cloud computation, surface reconstruction and
post-processing [8–11]. The quality of a reconstructed model depends largely upon the
algorithm used to calculate feature correspondence and camera calibration. Further-
more, it is time consuming and expensive to use these optical device based methods.

Considering investigators would like to quickly represent the spatial information of
crime scenes, the use of professional software, for example AutoCAD, 3Ds Max,
SketchUp, etc., is the most common, intensive and powerful technique for 3D crime
scene representation [12–15]. However, one potential problem of this technique is that
investigators have no professional training or experience in producing 3D models using
software. In addition, this work is tedious and time consuming, because hundreds of 3D
models should be generated for a crime scene.

We have observed that in traditional practical crime investigations, policemen are
often tasked with recording the indoor layout in hand-drawn sketches. Inspired by this
observation and existing literature, this article presents an effective way to build a
digital indoor crime scene to record the spatial relationships of objects for crime
analysis and presentation. Additionally, rather than relying on sketches of the layout
and objects, investigators can directly obtain a 3D scene using our system and explore
this virtual scene anywhere and at any time.

2 Materials and Methods

2.1 A Specialized 3D Model Collection

The high quality and large number of 3D models in the collection improved the pre-
sentation of the 3D crime scene. By collecting more categories and a larger number of
models in each category, one can retrieve a larger number of appropriate objects. In this
study, we used existing laser-scanning, image-based modeling and software-modeling
techniques to generate 3D models. We have constructed a 3D model database including
crime-related models and common models in indoor scenes.

182 P. Ren et al.



Some objects that appear in a crime scene are unique and cannot be replaced by the
existing models in the database. Thus, we used laser-scanning and image-based
modeling techniques to capture real data of critical evidence. We used a high-precision
hand-held laser scanner HandySCAN 700 (Creaform Company, Canada) to reconstruct
3D models of objects. The benefit of this laser scanner is that it automatically produces
complete single mesh models, without the procedure of manual range-image regis-
tration in other scanners (e.g., Vivid 910 laser scanner). Figure 1 shows some examples
of 3D models captured by laser scanner. In addition to some crime tools there are two
shoes and soles (usually very important evidence) in this figure. The main benefit of
this technique is that it acquires high-quality 3D models with more details. However,
the high cost of the device prohibits its widespread use.

The structure-from-motion (SFM) technique is used as a substitute in cases in which
the laser scanner cannot be used. Inputting a set of photos of the object, a powerful and
free tool called VisualSFM [16, 17] was used to generate a dense 3D point cloud with
color. Figure 2 shows some examples of 3D models acquired by the SFM technique.

To construct a mesh model from point clouds, the open-source software Meshlab
was used to realize surface reconstruction and post-processing [18]. In Meshlab, the
normal vector at every point was estimated and the Poisson surface reconstruction

Fig. 1. 3D models capture by laser scanner. (Crime-fighting tools and shoe soles.)

Fig. 2. 3D models reconstructed by SFM technique. Left: a chair with clothes on it. Middle: a
mass of clothes. Right: a plush toy. (Color figure online)

Sketch-Based Modeling and Immersive Display Techniques 183



algorithm was used to generate a mesh model. This technique is easier to use than 3D
scanning since it is convenient to acquire multiple photos for evidence.

To extend the number and categories of 3D models, we collected 3D models from
online public-domain galleries, such as the Google 3D Warehouse, which offers thou-
sands of models online [12], and the public database from literature [19]. As a sup-
plement, some models were created by professional designers using geometric modeling
software. Figure 3 shows some examples of 3D models created using commercial
software (SketchUp, 3Ds Max). Figure 3(a) shows 3D models of furniture. Moreover,
the victim’s posture plays a significant role in crime investigation. Thus, multiple types
of human models with various postures are available in our database to ensure that the
most similar one to the real situation would be found (Fig. 3(b)). In summary, we offered
a total of 2,564 models and 18 categories in our collection, including windows, doors,
home appliances, furniture, human bodies, and criminal tools. Table 1 lists the main
types of models from different sources in our database. The decisive evidence refers to
some material evidence which play a decisive role in the real investigation.

Fig. 3. A collection of 3D models in the crime scene. (a) Furniture models with various shapes.
(b) Human models with various postures.

184 P. Ren et al.



2.2 Method

I. Sketch-based indoor scene modeling
It is a challenge to rapidly obtain the appropriate model from large collections of 3D
models since public collections are often insufficiently annotated [20]. To address this
problem, the content-based retrieval technique is a powerful and effective tool. The
general idea of the sketch-based method is that the user retrieves the desired model
through the input of a hand drawing. In this study, our sketch-based retrieval was
divided into two stages: offline index and online query. To save time in a real-time
query, we perform the computation offline as much as possible. Figure 4 shows the
framework of our algorithm and Fig. 5 shows one of the retrieval results. The input
sketch is shown on the upper left, and the first couch model is the most similar model in
the database. The key steps of our algorithm are described below.

Step 1: Line-drawing calculation. The essence of 3D model retrieval is to evaluate the
similarity between hand-drawn sketches and models. Towards this end, 3D information
should be first projected into 2D images. 2D line drawings are extracted from 102

Table 1. 3D model database.

Source Online
libraries

Open
literature

Software
modeling

Laser
scanning

Image-based
modeling

Total

Indoor models 1,123 659 361 0 18 2,161
Murder related 240 0 135 12 6 393
Decisive evidence 0 0 2 3 5 10
Total 2,564

Fig. 4. The framework of our sketch-based retrieval algorithm.

Fig. 5. Retrieval results using sketch-based technique. The left figure shows an input of hand
drawing by user. Right figure shows the first nine most similar models.

Sketch-Based Modeling and Immersive Display Techniques 185



viewpoints of geodesic geometry for each model in the database, reflecting the visual
information as much as possible. Different from most of the previous line-drawing
extraction algorithms, which were only available for homogeneously distributed dense
meshes, we proposed a depth map-based difference-of-Gaussian (DoG) method to
extract lines, including the boundaries and creases formed by differences in depth. The
information in the depth buffer is used to generate depth images with different Gaussian
parameters, called D1 and D2, and the line drawing is generated by calculating the
inverse of binary image, i.e., the Gaussian difference of D1 and D2. To overcome the
saw tooth noise problem, the Bezier curve approximation is used to perform the line
stylization and obtain a smooth contour line [22].

Step 2: Feature extraction. We used a spatial, high-dimensional local feature-
description algorithm to extract features. As a type of short-time Fourier transform,
Gabor transform is sensitive to the edges of an image. It can provide good selection for
frequency and orientation. In addition, the Gabor filter is similar to the mammalian
visual system in the expression of frequency and orientation. It is suitable for sketch
retrieval requests. Thus, we use an algorithm called the Space Pyramid of Gabor Local
Feature Extraction and obtain better results [20]. Next, we define a set of Gabor filters
giði ¼ 1; 2; . . .; kÞ to calculate the basic transform of the feature region, and the
information on the spatial distribution is obtained in the space pyramid of the image.
For each gi and image I, a convolution computation is employed to obtain a response
image Ri:

Ri ¼ idft gi � dftðIÞð Þk k ð1Þ

where * denotes point-wise multiplication, and the function dft() and idft() respectively
denote the discrete Fourier transform and the inverse discrete Fourier transform.
A grid-sampling method is used for feature-point sampling. For a local shape feature,
we divide the region into n� n cells Crc, in which r and c respectively denote the row
and column coordinates. The descriptor in the i direction is a feature vector of size
n� n.

F r; c; ið Þ ¼ 1
N

X

x;yð Þ2Crc

Ri x; yð Þ ð2Þ

where N denotes the sample number for which Ri x; yð Þ 6¼ 0 in the i direction. The local
feature is a k � n� n dimensional vector.

Step 3: Sorting by similarity. We employed TF-IDF [21] to calculate the similarities of
feature vectors among various models. In an ideal situation, the first-place model is the
desired model, and then we import it into the crime scene. As the retrieval algorithm is
not the focus of this work, readers can find more complete algorithm details in our other
work [22].

186 P. Ren et al.



II. System interface
Our system was developed on the basis of open-source software SweetHome3D
licensed under the GNU General Public License [23]. We developed the sketch-based
algorithm in Microsoft Visual Studio in C++ and exported to a Dynamic-link library
(dll) file. This dll file was imported as a plugin on a new user interface implementing
sketch-based function. Our proposed 3D crime scene representation system contains
five modules (see Fig. 6): (a) the user draw a sketch of the desired from any viewpoint
at the left-top area, and the retrieval results are displayed on the bottom, sorted
according to similarity; (b) a 2D plan view that referring to the ichnography, can be
loaded into this module as a base map where the layout of the indoor scene and the
selected model can be transformed to the designated location (translation, rotation and
scale); (c) a 3D display view where the 3D model scene corresponding to the 2D plan
view is displayed and the user can observe the scene from any view and roam the scene
as a virtual character; (d) a model classification and viewing tree in which a collection
of 3D models is classified according to the given classification scheme and every model
can be selected and viewed; and (e) a scene management interface where the param-
eters and statues of every model can be edited.

The major advantage of our system is that simple 2D sketches can be rapidly
transformed into a complex 3D crime scene. In the first stage, users need to draw a
sketch on the sketch-retrieval interface to obtain the desired objects from the database
directly. Second, the retrieved models are placed on the 2D plane view and the cor-
responding 3D scene is simultaneously rendered on the 3D display view. The user can
either view the 3D scene from any directions or roam in it anywhere and at any time. In
the scene-management module, users can adjust the parameters and status of the chosen

Fig. 6. Interface of our system. (a) Sketch retrieval interface. (b) 2D plan view. (c) 3D display
view. (d) Model classification and viewing tree. (e) Scene management interface.

Sketch-Based Modeling and Immersive Display Techniques 187



model, including visibility, texture, object position and size. Another notable feature of
our system is that it is easy to measure the distance between two objects (Fig. 7). In the
3D scene shown in (a), the distance between the body and the murder weapon can be
easily measured by connecting them with a line as shown in (b). Finally, the 3D
crime-scene representation can be exported as a standard .obj files.

III. Immersive display
As a supplement to the virtual roaming function provided by our system, a
helmet-mounted display (HMD) device, such as HTC Vive, can be used to increase the
immersive VR effect. This device has a high resolution of pixels, resulting in a reso-
lution of pixels for each eye. HTC Vive provides a pair of handheld controllers and
positioning-system tracking display, which allow the user to move within a certain
scope and interact with the virtual scene using the handle [4]. These advantages are
very suitable for the virtual representation of crime scenes.

Utilizing the encapsulated SDK in the cross-platform game engine Unity3D (Unity
Technologies, San Francisco, USA), we developed a VR roaming system for crime
scenes. The 3D model scene built with our proposed sketch-based indoor-scene system
can be imported into Unity3D and real-time interactive virtual-experience systems are
developed using Microsoft Visual Studio C#. In comparison to the traditional PC
screen, the immersive display offers a larger viewing volume and more realistic
experience. With the headset and handle, the investigator can enter the crime scene in
digital space, observe 3D models of physical evidence, and analyze the case from a
more intuitive angle.

3 Illustrative Example

To demonstrate the availability and effectiveness of our system, we quickly present an
example of how to create an acceptable 3D crime scene for presentation from series of
2D sketches. We took a criminal case happened fifteen years ago as an example;

Fig. 7. The distance measuring function of the system.

188 P. Ren et al.



specifically, three adults and one child were killed in an apartment (Fig. 8). The only
remaining visual documents for this case are several low-resolution photos and a
hand-drawn floor plan of the crime scene. Using our system, we can rapidly reconstruct
this indoor scene and develop a roaming system in VR space.

Although very few visual records of this case are available, the floor plan is a
crucial piece of physical evidence for crime-scene reconstruction. By importing the
hand-drawn floor plan into our system as a base map, we obtained the measurements
and layout information of 3D models (Fig. 9a). Then, the user dragged the mouse to
draw 2D shapes of walls on the 2D plan view according to the tracing lines of the
imported base map, and the 3D scene was rendered in the 3D display view in real time
(Fig. 9b). To enable the accurate representation of the 3D crime scene, the user scaled
each shape according to the real measurement values, i.e., user defined the length,
height and width of the indoor scene. The main contribution of our approach is the
sketch retrieval function in this system. Figure 9c shows an example of retrieving the
sofa. The retrieved model was imported into the 2D plan view and placed at the
designated location, according to the base map. All the textures of imported models can
be exchanged according to the real scenario (Fig. 9d). These steps were repeated until
all objects were imported and transformed to the correct locations.

Figure 10 shows the 3D scene of this crime that was constructed using our system,
which consisted of a total of 58 digital models and was rebuilt in a total of 13 min. The
top two screenshots are bird’s eye view and the bottom two are roaming perspective.

Fig. 8. The floor plan of the crime scene in our example.

Sketch-Based Modeling and Immersive Display Techniques 189



Fig. 9. Sketch-based modeling for the indoor crime scene. (a) Importing the hand-drawn floor
plan as a base map. (b) Reconstruct the walls. (c) Retrieving 3D models by sketches.
(d) Changing the textures.

Fig. 10. The creation of 3D indoor crime scene using our system.

190 P. Ren et al.



To virtually experience this crime scene in an immersive display, the created crime
scene can be exported as a standard .obj file, and an interactive virtual roaming system
was developed in Unity3D, enabling investigators to experience the crime scene from a
fixed viewpoint or different views to examine more details of the evidence of interest.
Figure 11 shows the immersive roaming effect using HTC Vive. In this application, the
user can intuitively simulate and analysis the shooting and walking routes of the
criminal in the virtual space.

4 Discussion

In comparison to traditional recording approaches, e.g., 2D hand-drawn sketches,
photos, videos, 3D digital scenes and animations have been used to enhance clarity and
understanding in crime-scene investigation [2, 3, 7, 12, 14]. Although the laser-
scanning technique provides life-like and accurate 3D models of crime scenes, it has
limitations for widely promotion. For one hand, the devices are expensive. For another
hand, it is still a great challenge to convert dense triangle meshes (more than hundreds
of thousands of triangle meshes) into a simplified model to meet the requirement of
real-time virtual experience. Another limitation is that many crime scenes cannot be
entered after the criminal incident. In this situation, investigators need to model the
scene manually. Clair et al. introduced the application of the easy-to-use modeling
software SketchUp (version 8) to generate 3D indoor crime-scene models [12]. It was
an extremely time-consuming process to generate every model. To solve this problem,
Howard et al. constructed a collection of 3D models and generated the non-critical
areas of digital crime scenes using the existing models [14].

One of the contributions of our work is utilizing multiple techniques to construct a
large collection of 3D models for indoor scene. The 3D models with complex structures
and more details, e.g., guns, knives, shoe soles, etc., were generated by laser-scanning
or image-based modeling techniques. To enable real-time rendering of this model in
Unity 3D, the open-source Meshlab software was used to convert this 3D model to a
simplified model and texture.

Fig. 11. Interactive crime scene experience in the immersive display using HTC Vive. Left:
photo of the experiencer. Right: real-time screenshot.

Sketch-Based Modeling and Immersive Display Techniques 191



Another contribution of our work is the sketch-based model retrieval. Because of
the large number of models in the collection, investigators have become more com-
fortable and it has become easier to generate a crime scene by our method. However, it
is also a challenge for investigator to rapidly obtain the desired model from datasets.
Compared with the traditional text-based retrieval methods, the 2D hand-drawn
sketch-based approach has much more potential in our application since few annota-
tions are available for each 3D model. In this paper, we propose a sketch-based
approach to obtain a suitable model with geometric structure similar to that of the real
object from the database. To achieve real-time retrieval, we have extracted and
archived the feature lines of every model in advance. Because of this main part of our
work, crime scenes can be rebuilt quickly using policemen’s hand-drawn sketches
rather than those of professional designers.

To better provide a crime-scene model, a multi-participant, large-screen stereo-
scopic projector system [14], an immersive display VR headset [4], and the
augmented-reality technique have been used in previous studies [24]. In our article, we
provided a general system covering the functions of rebuilding an indoor crime scene
and rendering it in 3D space. To realize immersive display, the rebuilt scene model was
imported into Unity 3D to develop a VR roaming system in HTC Vive.

There are still some limitations of our approach. We have successfully extended the
crime scene model database, but both the number of category in the database and the
number of models in each category are insufficient for crime-scene presentation. We
will continue to generate multiple kinds of models to build an extensive crime-scene
model database. A system allowing the user to retrieve multiple 3D models at the same
time is also helpful in practice.

5 Conclusion

Based on the 3D model collection, a sketch-retrieval based modeling system was
developed. Because of the TF-IDF algorithm, our method achieves high retrieval
accuracy and time efficiency. Using our approach, police investigators can rapidly
record the spatial relationships of objects while constructing a digital model of the
indoor crime scene. In comparison to laser-scanning and software-modeling tech-
niques, the main advantage of our method is that it is low cost and rapid, making it very
suitable for criminal investigation. In terms of digital forensics and educational training
applications, the immersive-display we developed has broad prospects because of the
VR interactive experience in the crime scene.

Acknowledgement. The authors would like to thank the anonymous reviewers. Special thanks
to all the members of SweetHome3D project. This work is supported by the National Natural
Science Foundation of China (No. 61402042), the open subject of the key laboratory of traces of
science and technology of Ministry of Public Security (No. 2014FMKFKT04) and the National
Key Technology Research and Development Program of China (No. 2012BAH33F04).

192 P. Ren et al.



References

1. Sansoni, G., Cattaneo, C., Trebeschi, M., Gibelli, D., Poppa, P., Porta, D., et al.:
Scene-of-crime analysis by a 3-dimensional optical digitizer: a useful perspective for
forensic science. Am. J. Forensic Med. Pathol. 32, 280–286 (2011)

2. Ma, M., Zheng, H., Lallie, H.: Virtual reality and 3D animation in forensic visualization.
J. Forensic Sci. 55, 1227–1231 (2010)

3. Hołowko, E., Januszkiewicz, K., Bolewicki, P., Sitnik, R., Michoński, J.: Application of
multi-resolution 3D techniques in crime scene documentation with bloodstain pattern
analysis. Forensic Sci. Int. 267, 218–227 (2016)

4. Ebert, L.C., Nguyen, T.T., Breitbeck, R., Braun, M., Thali, M.J., Ross, S.: The forensic
holodeck: an immersive display for forensic crime scene reconstructions. Forensic Sci. Med.
Pathol. 10, 623–626 (2014)

5. Tung, N.D., Barr, J., Sheppard, D.J., Elliot, D.A., Tottey, L.S., Walsh, K.A.: Spherical
photography and virtual tours for presenting crime scenes and forensic evidence in New
Zealand courtrooms. J. Forensic Sci. 60, 753–758 (2015)

6. González-Jorge, H., Zancajo, S., González-Aguilera, D., Arias, P.: Application of Kinect
gaming sensor in forensic science. J. Forensic Sci. 60, 206–211 (2015)

7. Buck, U., Naether, S., Räss, B., Jackowski, C., Thali, M.J.: Accident or homicide–virtual
crime scene reconstruction using 3D methods. Forensic Sci. Int. 225, 75–84 (2013)

8. Gibson, S., Howard, T.: Interactive reconstruction of virtual environments from pho-
tographs, with application to scene-of-crime analysis. In: ACM Symposium on Virtual
Reality Software and Technology, pp. 41–48 (2000)

9. Se, S., Jasiobedzki, P.: Instant scene modeler for crime scene reconstruction. In: 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition Workshops,
CVPR 2005, pp. 123–128. IEEE (2005)

10. Leipner, A., Baumeister, R., Thali, M.J., Braun, M., Dobler, E., Ebert, L.C.: Multi-camera
system for 3D forensic documentation. Forensic Sci. Int. 261, 123–128 (2016)

11. Bostanci, E.: 3D reconstruction of crime scenes and design considerations for an interactive
investigation tool. Computer Science, pp. 896–900 (2015)

12. Clair, E.S., Maloney, A., Schade, A.: An introduction to building 3D crime scene models
using SketchUp. J. Assoc. Crime Scene Reconstr. 18, 29–47 (2012)

13. Maksymowicz, K., Tunikowski, W., Kościuk, J.: Crime event 3D reconstruction based on
incomplete or fragmentary evidence material–case report. Forensic Sci. Int. 242, e6–e11
(2014)

14. Howard, T.L., Murta, A.D., Gibson, S.: Virtual environments for scene of crime
reconstruction and analysis. In: Electronic Imaging: International Society for Optics and
Photonics, pp. 41–48 (2000)

15. Bevel, T., Gardner, R.M.: Bloodstain Pattern Analysis with an Introduction to Crime Scene
Reconstruction. CRC Press, Boca Raton (2008)

16. Wu, C.: Towards linear-time incremental structure from motion. In: 2013 International
Conference on 3D Vision-3DV 2013, pp. 127–134. IEEE (2013)

17. Jancosek, M., Pajdla, T.: Multi-view reconstruction preserving weakly-supported surfaces.
In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3121–
3128. IEEE (2011)

18. Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G.:
MeshLab: an open-source mesh processing tool, pp. 129–136. Eurographics Association
(2008)

Sketch-Based Modeling and Immersive Display Techniques 193



19. Fisher, M., Ritchie, D., Savva, M., Funkhouser, T., Hanrahan, P.: Example-based synthesis
of 3D object arrangements. ACM Trans. Graph. 31, 135 (2012)

20. Eitz, M., Richter, R., Boubekeur, T., Hildebrand, K., Alexa, M.: Sketch-based shape
retrieval. ACM Trans. Graph. 31, 31:1–31:10 (2012)

21. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput. Surv. 38, 1–56
(2006). Article no. 6

22. Qian, L., Fan, Y., Zhou, M., Luan, H., Ren, P.: Manifold ranking for sketch-based 3D model
retrieval. In: Pan, Z., Cheok, A.D., Müller, W., Zhang, M. (eds.) Transactions on
Edutainment XIII. LNCS, vol. 10092, pp. 149–164. Springer, Heidelberg (2017). https://doi.
org/10.1007/978-3-662-54395-5_14

23. http://www.sweethome3d.com/
24. Gee, A.P., Escamilla-Ambrosio, P.J., Webb, M., Mayol-Cuevas, W., Calway, A.:

Augmented crime scenes: virtual annotation of physical environments for forensic
investigation. In: Proceedings of the 2nd ACM Workshop on Multimedia in Forensics,
Security and Intelligence, pp. 105–110. ACM (2010)

194 P. Ren et al.

http://dx.doi.org/10.1007/978-3-662-54395-5_14
http://dx.doi.org/10.1007/978-3-662-54395-5_14
http://www.sweethome3d.com/


An Overview of the Usage of Default Passwords

Brandon Knieriem, Xiaolu Zhang, Philip Levine, Frank Breitinger(B),
and Ibrahim Baggili

Cyber Forensics Research and Education Group (UNHcFREG),
Tagliatela College of Engineering, University of New Haven,

West Haven, CT 06516, USA
{bknie1,plevi1}@unh.newhaven.edu,

{XZhang,FBreitinger,IBaggili}@newhaven.edu

Abstract. The recent Mirai botnet attack demonstrated the danger of
using default passwords and showed it is still a major problem. In this
study we investigated several common applications and their password
policies. Specifically, we analyzed if these applications: (1) have default
passwords or (2) allow the user to set a weak password (i.e., they do not
properly enforce a password policy). Our study shows that default pass-
words are still a significant problem: 61% of applications inspected ini-
tially used a default or blank password.When changing the password, 58%
allowed a blank password, 35% allowed a weak password of 1 character.

Keywords: Default passwords · Applications · Usage · Security

1 Introduction

In October 2016, a large section of the Internet came under attack. This attack
was perpetuated by approximately 100,000 Internet of Things (IoT) appliances,
refrigerators, and microwaves which were compromised and formed the Mirai
botnet. Targets of this attack included Twitter, reddit and The New York Times
all of which shut down for hours. The Mirai botnet was created by abusing
default credentials in IoT devices [7,14]. Besides devices, there are also applica-
tions permitting users access to critical central resources such as Database Man-
agement Systems (DBMS), Web Server Applications, and Content Management
Systems (CMS). For instance, in July 2014 hackers attacked HealthCare.gov [18].
Fifteen days later HealthCare.gov released a statement that only the test servers
were hacked and no personal information was compromised. The attack occurred
because the manufacturer’s default password on the server had not been changed.
Days later, despite reporting on this vulnerability, the default password had still
not been updated [2].

These findings motivated us to perform two short surveys with the goal to
start a discussion in the field about the usage of develop passwords: The first was
to examine applications such as DBMS, Web Server Applications, and CMSs
that enable a default password during initial configuration. Results show the
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

P. Matoušek and M. Schmiedecker (Eds.): ICDF2C 2017, LNICST 216, pp. 195–203, 2018.

https://doi.org/10.1007/978-3-319-73697-6_15

http://healthcare.gov/
http://healthcare.gov/


196 B. Knieriem et al.

most applications have default credentials. The second survey was conducted
on developers to understand the use of default passwords. The results indicate
that many services are designed with default passwords to bypass authentication
to provide immediate, temporary access for quick, convenient initial set up of
infrastructure and should only be used during this installation phase.

Remark: The extended version of this article named ‘An Overview of the Usage
of Default Passwords (extended version)’ can be accessed through digital com-
mons1.

2 Literature Review

“Passwords are an ubiquitous and critical component of many security systems”
[19]. Therefore, it is important to create secure passwords that are difficult to
compromise. For instance, according to [9], a strong password policy requires a
minimum number of characters, different types of characters, and specify how
frequently users should change their passwords. More recently, National Insti-
tutes of Standards and Technology (NIST) Digital Authentication Guidelines
have suggestions for improving security and reduce common issues [6]. These
suggestions can be broken down into several main categories: hashing passwords,
increasing user friendliness, enforcing an 8-character minimum, and banning
common passwords. It suggests avoiding password rules, password hints, security
questions, and never forcing arbitrary password changes [22]. These suggestions
are a step in the right direction for new password policy, though despite being
nearly a year old, have yet to be implemented by many application developers.

2.1 Breaches Exploiting Default User Credentials

Although guidelines and warnings regarding default passwords exist, there are
still many incidents involving default credentials. According to [4], “very few
open source vendor advisories have mentioned default passwords, whereas they
appear with some regularity in closed source advisories, even in the top 10 [vul-
nerabilities] as recently as 2005”.

A newer study named the Verizon Data Breach Report examined 621 cor-
porate breaches. “The analysis found that 78% of initial intrusions into corpo-
rate networks were elementary. Many attackers use a phishing attack, convincing
employees to give up credentials, or brute force attack, taking advantage of weak
or default passwords on remote services to gain initial access to the network”
[20]. Unfortunately, the report did not mention, out of 78% how many consti-
tuted weak passwords or default passwords. Notwithstanding, some of the recent
breaches that were attributed to the misuse of default passwords. Utah Depart-
ment of Health] suffered a breach of 780 k Medicaid patient health records [12]
in addition to compromising more than 255,000 social security numbers [17].
Attackers achieved complete access to the system using a default password.

1 http://digitalcommons.newhaven.edu.

http://digitalcommons.newhaven.edu


An Overview of the Usage of Default Passwords 197

A Bank of Montreal’s ATM was hacked by two 14 year old children; they used
the machine’s default password [11]. Emergency Alert System (EAS)] equipment
used to broadcast warnings was hacked by exploiting default passwords. After
the breach, the hackers sent out an alert warning the public of a ‘zombie attack.’
[11]. Electronic Highway Billboards were attacked in June 2014. The hacker
changed the signs to display their Twitter/hacker handle for all the highway
drivers to see. This was an act of mischief reported by [8].

A recent WordPress incident demonstrated that the usage of a default user-
name can result in a tremendous security risk. In case of WordPress, the default
username is always ‘admin’. Hackers used that knowledge and used a botnet to
brute force 90,000 IP addresses hosting different software [1]. Unfortunately, the
report did not release how successful this attack was.

2.2 Taking Advantage of Default Passwords - Tools, Scripts
and Malware

Attackers, often taking an opportunistic approach, realized the potential in abus-
ing default passwords to access a system. Thus, there are several tools, scripts,
and malware that can be used for this purpose. Work [16] states “the most
common password lists found using Internet search engines were default pass-
word lists. These lists contain passwords used by hardware manufacturers as
the default security setting”. In a recent article, [3] mentioned several tools that
focus on exploiting default passwords. For instance, Cisco OCS Perl Script scans
Cisco devices on a network by inputting ‘cisco’ into the password form. Metas-
ploit includes multiple modules used for network default password scanning.

On the other hand, several worms exist that use default passwords to prop-
agate. According to [13], the ‘Voyager Alpha Force’ worm was used to demon-
strate a vulnerability on Microsoft’s SQL Server with an administrator blank
password using the default port: 1433. Similarly, MySQL required no password
at the time of installation. A worm named “MySpooler” infected 8000 hosts at
a rate of 100 hosts per hour [10]. In 2005, an anonymous developer disclosed a
proof-of-concept worm that targeted Oracle databases using default usernames
and passwords [23]. A particularly malicious worm implementation uses blend-
ing viruses; which are viruses that run a daily Internet scan for vulnerabilities.
One of the main functions of them are to find well known default passwords [5].

Work [15] triggered malnets; a combination of malware and bots initiated
malware attacks on routers. A similar experiment was also performed by [24].
Regarding wireless malware propagation: 16.7% of routers were set to be config-
ured with default settings. Only 10% of these routers used default passwords or
did not have passwords set.

3 Applications Analysis

To analyze the impact of default passwords we examined database management
systems, Web server applications, and content management systems. We decided



198 B. Knieriem et al.

to focus on web applications as they are easily accessible and cater to a broad
audience. More precisely, we investigated Relational Database Management
Systems (RDBMS), Web Server Applications (WSA), and Content Manage-
ment Systems (CMS). After locating a comprehensive list containing the major
applications in all three categories, our methodology is as (1) For each identi-
fied application, search for documentation and identify the default credentials/
settings. (2) Download and install a free or evaluation version of each application.
Prioritize installation on Windows 10 (64-bit), then Ubuntu Linux 16.04.2, and
finally Mac OS Sierra 10.12.5. Use default configurations and procedure; do not
use advanced or customized installation options. (3) If a default database is not
created during installation, create one immediately after installation. (4) Note
any prompts, or lack thereof, regarding security policy enforcement. (5) Assign
each conclusive application a password policy quality value on a scale of 0 to 4.
This was loosely based on an IBM’s classification [21].

3.1 Results

In total, n = 90 applications were analyzed where 62 applications yielded con-
clusive results and 282 had inconclusive results due to licensing restrictions.
An overview of the results is given in Table 1. Of the 62 conclusive applica-
tions, 41 applications had commercial licenses and 21 were open source. To ana-
lyze the applications, 51 applications were installed on Windows 10 (64-bit),
8 were installed on Linux-x86, four were web services, and one was installed on
Mac OS. Note, two applications were a pre-release version (0.1–0.9/Alpha/Beta),
the remaining 60 applications were a release version (1.0+) (97%).

In total, 30 applications featured a default user name, the most frequent were
“Admin” or “root”. 6 (10%) applications featured a default password. 32 (52%)
applications featured a default blank password for the default user account. All
applications featuring a default password also featured a default user name.

Lastly, we analyzed the quality of the passwords according the IBM classi-
fication [21]. Overall, 36 (58%) applications were categorized as having a level
0 policy, 22 (35%) applications were categorized as having a level 1 policy. Two
applications were categorized as having a level 2 policy. One application was
categorized as having a level 3 policy. Finally, only one application that met
the requirements for a level 4 policy, which is interesting as this is what most
modern online portals require.

4 Qualitative Survey of Default Credential Use

This section tries to understand why default user credentials/passwords are still
so widely used. Therefore, we created a question for software developers, com-
puter engineers, and security experts: why many applications still come with a
2
Actian Ingres, Actian Vector, CA Datacom, CA IDMS, Clarion, Clustrix, Empress Embedded
Database, EXASolution, eXtremeDB, GroveSite, IBM PureSystems, Infobright, Linter, Microsoft
Visual FoxPro, NexusDB V4 Windows, NonStop SQL, Openbase, Postgres Plus Advanced Server,
R:Base, SAP ADS, SAP Anywhere, SAP HANA, SAP Sybase ASE, SAP Sybase IQ, SQL Azure,
SQream DB, UniData, Vertica.



An Overview of the Usage of Default Passwords 199

default user name password and do not require the user to set new credentials
according to a reliable password policy? The question was distributed online in 20
software developer forums, advertised to 30 groups on Quora, and other forums.

Table 1. Surveyed applications

Name Version/

release

Platform Commercial/

open-source

License Default

username

Default

password

Password

policy

quality

4th Dimension 16.1 Windows Commercial 30-Day

evaluation

“Administrator” None 0

Adabas 2016 April Windows Commercial Community

edition

Inherits user

account

Inherits

user

password

0

Alpha five V12 Windows Commercial 30-Day

evaluation

“Admin” None 0

Altibase 6.5 Linux-

x86

Commercial Community

edition

None None 0

Amazon

aurora

N/A Web-

service

Commercial N/A None None 2

Apache derby 10.13.1.1 Windows Open-source N/A None None 0

Apache

OpenOf-

fice.org

base

4.1.3 Windows Open-source N/A N/A N/A 0

Apache

trafodion

2.1.0 Windows Open-source N/A None None 1b

Base X 8.6 Windows Open-source Free version “admin” “admin” 0

ClickHouse 1.1.54189 Linux-

x86

Open-source N/A None None 0

CSQL 3.3 Linux-

x86

Open-source N/A None None 0

CUBRID 10.0.0.1376 Windows Open-source N/A “admin” “admin” 2c

Database

management

library (C++)

1.0 Windows Open-source N/A None None 0

DataEase 6.5 Demo Windows Commercial N/A “labadmin” None 0

Dataphor 3.1.6143 Windows Open-source N/A “admin” None 0

dBase PLUS 11.2 Windows Commercial 30-Day

evaluation

None None 0

Drupal 8.3.2 Windows Commercial Free version None None 1

EnterpriseDB 9.6 Windows Commercial Standard

version

“postgresql” None 1

FileMaker pro 15 Windows Commercial Trial version “Admin” None 0

Firebird 3.0.2 Windows Open-source N/A N/A N/A 1

FrontBase 8.28 Windows Commercial Free version None None 0

Google fusion

tables

N/A Web

service

Commercial Free version Google account Google

account

3d

Greenplum 5.0.0-

alpha.3

Linux-

x86

Open-source N/A None None 0

H2 1.4.195 Windows Open-source N/A “sa” None 0

Helix 7.0.2 Mac OS Commercial Demo

version

None None 0

HSQL 2.4.0 Windows Open-source N/A “SA” None 0

IBM DB2 11.1 Windows Commercial Trial version “db2admin” None 1

(continued)



200 B. Knieriem et al.

Table 1. (continued)

Name Version/

release

Platform Commercial/

open-source

License Default

username

Default

password

Password

policy

quality

IBM DB2

Express-C

11.1 Windows Commercial Trial version “db2admin” None 1

Informix

enterprise

12.10 Windows Commercial Time-

limited

“informix”,

“ifxjson”

None 0

InterBase 2017 Windows Commercial Trial version “SYSDBA” N/A 1

InterSystems

CachÃ c©
2017.1 Windows Commercial Evaluation

Version

“ SYSTEM”,

“Admin”,

“SuperUser”,

“forensics”,

“CSPSystem”

N/A 1b

JBoss Web

Console

6 Windows Commercial Free version “Admin” “Admin” 0

Joomla 3.7 Windows Commercial Free version “admin” None 1

LibreOffice

base

5.3.3 Windows Open-source N/A None None 0

MariaDB 10.3 Windows Open-source Free version “root” N/A 1

Microsoft

access

16.0 Windows Commercial Office 2016 None None 0

Microsoft SQL

server

2016 SP1 Windows Commercial Express

edition

“sa” None 0

Mimer SQL 10.1 Windows Commercial Trial version “SYSADM” N/A 1

MonetDB 11.25.21 Windows Open-source Free version None None 0

mSQL Linux-x86 Commercial Free version “root” None 0

MySQL 5.7.18.1 Windows Commercial Community

edition

“root” None 0

neo4j 3.2 Windows Commercial Evaluation “neo4j” None 1a

NexusDB V4 Windows Commercial Server trial

version

N/A N/A 1

NuoDB

database

2.6.1 Windows Commercial Community

edition

“dba” “goalie” 1a

NuoDB

Domain

Web

service

Commercial Community

edition

None None 1

OpenLink

virtuoso

6.0 Windows Commerical Trial version N/A N/A 1

Oracle

RDBMS

7.3 Windows Commerical Free version N/A N/A 0

Oracle

TimesTen

Windows Commercial Free version N/A N/A 1b

Orange HRM 3.3.1 Windows Open-source N/A None None 1b

Polyhedra 8.6.1 Windows Commercial Lite version None None 0

PostgreSQL 9.6 Windows Open-source N/A “postgres” None 0

RDM Server 8.4 Windows Commercial Trial version N/A N/A 1b

SAND

CDBMS

8.1 Windows Commercial Free version “DBA” None 0

SAP MaxDB 7.8.02.39 Windows Commercial Free “DBADMIN” N/A 1

ScimoreDB 4.0 Windows Commercial Freeware None None 0

SQLBase 12.0 Windows Commercial Trial version “SERVER1” “SECRET” 0

SQLite 3.18 Windows Open-source N/A None None 0

Tableau

(local)

10.2.2

64-bit

Windows Commercial 14-Day

evaluation

N/A N/A 0

Tableau

(online)

10.2.2

64-bit

Windows Commercial 14-Day

evaluation

N/A N/A 4

(continued)



An Overview of the Usage of Default Passwords 201

Table 1. (continued)

Name Version/

release

Platform Commercial/

open-source

License Default

username

Default

password

Password

policy

quality

Tibero 6.0 Windows Commercial 30-Day

evaluation

“root”, “sys”,

“syscat”,

“sysgis”,

“outln”,

“tibero”,

“tibero1”

“tibero”,

“tibero”,

“syscat”,

“sysgis”,

“outln”,

“tmax”,

“tmax”

1

txtSQL 3.0.0b Windows Open-source N/A “root” None 0

Wordpress 4.7.4 Web

service

Open-source N/A None None 1

0: No password policy.

1: Password policy only requires a single character.

2: Requires a minimum number of characters but can be compromised without a computer.

3: Requires a minimum number of characters but can still likely be compromised with a computer.

4: Requires a minimum number of characters, numbers, and special characters, and would be difficult to

compromise.
a: Fully custom credentials required.
b: Forces custom credentials following login with defaults.
c: Two-factor authentication required.

The question was also sent directly to 35 users on Quora who are known devel-
opers and 10 professors from the University of New Haven and the University of
Bridgeport (IRB approval was obtained prior to the start). The question received
high exposure; in one instance over 2,800 individuals accessed or viewed the ques-
tion on Quora. However, the response rate was low. In total, we only received
20 responses. 6 users blamed the developers for writing a sloppy code. A Web
Development project manager on Quora described a situation: “I ran across a
custom WordPress/Yii app that used the same password by default. As the dev
manager, I pointed out that this was a major flaw. Got told that it was but
wasn’t urgent. Until a hack happened...” The CEO of mid-size online company
on LinkedIn explained a situation where a default password is used: “I need to
install my Lazarus application on 20 clients. Can you imaging running through
the setup process with password policies right from the start? Do you see how
much more time you’ll need to spend? ... I imagine you know the hassle of dealing
with OS permissions, DB permissions (different user), application permissions,
and then user roles. Yes, it is possible to have a security policy in place from the
start, but do you see how much more difficult it gets?”

5 Discussion and Conclusion

Applications are designed to provide the best user experience to their customers
and reduce setup time. Especially when the administrator needs to install the
application on multiple devices in succession. The default passwords in this study
demonstrate this by being easy to remember and utilize for multiple devices.
For instance, most of applications used ‘password’, ‘admin’, ‘dba’ etc. as default
passwords.



202 B. Knieriem et al.

Many of these applications accepted a single character as a valid user name
or password. A user may choose a more complex password, but because there
is often no requirement for special characters or total character count, the user
may choose the easiest, most convenient credential solution.

In summary, this article surveyed a well-known default password issue on 21
open-sourced applications and 41 commercial applications. Out of the 62 applica-
tions, we found that 32 applications featured a default user name, 6 applications
featured a default password and 32 applications accepted empty passwords. In
total, 38 applications surveyed can lead an administrator using default user cre-
dentials. Meanwhile, in order to evaluate the password policy we also scored the
applications with IBM password quality scale. 36 of applications scored with ‘0’,
having no password policy. 22 of applications scored a ‘1’, meaning that a single
character password is acceptable, the weakest possible password policy. Only 4
applications had an acceptable password policy. To explain why practitioners
may keep default user credentials of the DBMS on their own database system,
we distributed a survey on Quora and responded by variety roles such as web
developer, system manager, CEO etc. (Sect. 4).

Acknowledgements. Special thanks go to Mohammed Nasir who initially started
this research project and Matthew Vastarelli for supporting us.

References

1. Booker, L.: Brute force attack targets WordPress sites with default admin username
(2013)

2. Carroll, R.: Breached healthcare.gov server still had default password (2014)
3. Casey, B.: Network security risks: the trouble with default passwords (2014)
4. Christey, S., Martin, R.A.: Vulnerability type distributions in cve. Mitre report,

May 2007
5. Gordineer, J.: Blended threats: a new era in anti-virus protection. Inf. Syst. Secur.

12(3), 45–47 (2003)
6. Grassi, G.: Digital identity guidelines. National Institute of Standards and Tech-

nology (2016)
7. Hypponen, M., Nyman, L.: The internet of (vulnerable) things: on hypponen’s law,

security engineering, and IoT legislation. Technol. Innov. Manag. Rev. 7(4), 5–11
(2017)

8. http://KrebsonSecurity.com. They hack because they can (2014)
9. Martins, F.: Creating strong password policy best practices (2014)

10. Northcutt, S.: The risk of default passwords (2007)
11. Pham, T.: Default passwords: breaching ATMs, highway signs and POS devices

(2014)
12. Duo Security: Utah department of health (UDOH) breach (2012)
13. Microsoft Customer Support: An unsecured SQL server server that has a blank

(NULL) system administrator password allows vulnerability to a worm (2005)
14. Symantec Security Response. Mirai: what you need to know about the botnet

behind recent major DDoS attacks, Oct 2016

http://KrebsonSecurity.com


An Overview of the Usage of Default Passwords 203

15. Traynor, P., Butler, K., Enck, W., McDaniel, P., Borders, K.: Malnets: large-scale
malicious networks via compromised wireless access points. Secur. Commun. Netw.
3(2–3), 102–113 (2010)

16. Van Heerden, R.P., Vorster, J.S.: Statistical analysis of large passwords lists, used
to optimize brute force attacks (2009)

17. Vijayan, J.: Weak passwords still the downfall of enterprise security (2012)
18. Vinton, K.: Data breach bulletin: home depot, healthcare.gov, JP morgan (2014)
19. Vu, K.P.L., Proctor, R.W., Bhargav-Spantzel, A., Tai, B.L.B., Cook, J., Schultz,

E.E.: Improving password security and memorability to protect personal and orga-
nizational information. Int. J. Hum. Comput. Stud. 65(8), 744–757 (2007)

20. Westervelt, R.: Verizon data breach report finds employees at core of most attacks
(2013)

21. Williams, C., Spanbauer, K.: Understanding password quality (2001)
22. Wisniewski: Naked security (2016)
23. Wright, J.: Oracle worm proof-of-concept (2005)
24. Zanero, S.: Wireless malware propagation: a reality check. IEEE Secur. Priv. 7(5),

70–74 (2009)



Hacking



Automation of MitM Attack on Wi-Fi Networks

Martin Vondráček(B), Jan Pluskal, and Ondřej Ryšavý

Brno University of Technology, Božetěchova 2, Brno, Czech Republic
xvondr20@stud.fit.vutbr.cz, {ipluskal,rysavy}@fit.vutbr.cz

http://www.fit.vutbr.cz/

https://mvondracek.github.io/wifimitm/

Abstract. Security mechanisms of wireless technologies often suffer
weaknesses that can be exploited to perform Man-in-the-Middle attacks,
allowing to eavesdrop or to spoof network communication. This paper
focuses on possibilities of automation of these types of attacks using
already available tools for specific tasks. Outputs of this research are
the wifimitm Python package and the wifimitmcli CLI tool, both imple-
mented in Python. The package provides functionality for automation of
MitM attacks and can be used by other software. The wifimitmcli tool
is an example of such software that can automatically perform multiple
MitM attack scenarios without any intervention from an investigator.

The results of this research are intended to be used for automated pen-
etration testing and to help with forensic investigation. Finally, a pop-
ularization of the fact that such severe attacks can be easily automated
can be used to raise public awareness about information security.

Keywords: Man-in-the-Middle attack
Accessing secured wireless networks · Password cracking
Dictionary personalization · Tampering network topology
Impersonation · Phishing

1 Introduction

The main focus of this paper is security of wireless networks. It provides
a study of widely used network technologies and mechanisms of wireless secu-
rity. Analyzed technologies and security algorithms suffer weaknesses that can be
exploited to perform Man-in-the-Middle attacks. A successful realization of this
kind of attack allows not only to eavesdrop on all the victim’s network traffic
but also to spoof his communication [1], [16, pp. 101–120].

In an example scenario, the victim is a suspect conducting illegal activity
on a target network. The attacker is a law-enforcement agency investigator with
appropriate legal authorization to intercept the suspect’s communication and to
perform a direct attack on the network. In some cases, the suspect may be aware
that his communication can be intercepted by the ISP1 and harden his network.

1 Internet Service Provider

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

P. Matoušek and M. Schmiedecker (Eds.): ICDF2C 2017, LNICST 216, pp. 207–220, 2018.

https://doi.org/10.1007/978-3-319-73697-6_16



208 M. Vondráček et al.

For example, he could use an overlay network technology, e.g., VPN (imple-
mented by L2TP, IPsec [9, pp. 09–10], PPTP) or anonymization networks (Tor,
I2P, etc.) to create an encrypted tunnel configured on his gateway, for all his
external communication. This concept is easy to implement and does not require
any additional configuration on endpoint devices. Generally, this would not be
considered a properly secured network [5, pp. 425–431], but this scheme, or simi-
lar, is often used by large vendors like Cisco [2] or Microsoft [19] for branch office
deployment and can also be seen in home routers2. In such cases, intercepting
traffic on the ISP level would not yield meaningful results, because all the com-
munication is encrypted by the hardening. On the other hand, direct attack on
the suspect’s LAN will intercept plain communication. But, even when an inves-
tigator is legally permitted to carry out such an attack to acquire evidence, it is
scarcely used, because it requires expert domain knowledge. Thus, this process
of evidence collection is very expensive and human resource demanding.

The aim of this research is to design, implement and test a tool able to auto-
mate the process of accessing a secured WLAN and to perform data interception.
Furthermore, this tool should be able to tamper with the network to collect
more evidence by redirecting traffic to place itself in the middle of the com-
munication and tamper with it, to access otherwise encrypted data in plain
form. Using the automated tool should not require any expert knowledge from
the investigator.

We designed a generic framework, see Fig. 1, capable of accessing and acquir-
ing evidence from a wireless network regardless of used security mechanisms. This
framework can be split into several steps. First, it is necessary for an investiga-
tor to obtain access to the WLAN used by the suspect. Therefore, this research
focuses on exploitable weaknesses of particular security mechanisms. Upon suc-
cessful connection to the network, the investigator needs to tamper with the net-
work topology. For this purpose, weaknesses of several network technologies can
be exploited. From this point on, the investigator can start to capture and break
the encryption on the suspect’s communication.

Specialized tools focused on exploiting individual weaknesses in security
mechanisms currently used by WLAN s are already available. There are also
specialized tools focused on individual steps of MitM attacks. Tools that were
analyzed and used in implementation of the wifimitm package are outlined
in Sect. 2.

Based on the acquired knowledge, referenced studies and practical experience
from manual experiments, authors were able to create an attack strategy which
is composed of a suitable set of available tools. The strategy is then able to
select and manage individual steps for a successful MitM attack tailored to
a specific WLAN. This strategy also includes options for impersonation and
phishing for situations, when the network is properly secured, and the weakest
part of the overall security is the suspect.

The created software can perform a fully automated attack and requires zero
knowledge. We tested the final implementation on carefully devised experiments,

2 Asus RT-AC5300 – Merlin WRT has an option to tunnel all traffic thought Tor.



Automation of MitM Attack on Wi-Fi Networks 209

Accessing wireless network

Man-in-the-Middle attack

Scan Crack

Connect

Tampering network topology
stop

Capturing network traffic
stop

Impersonate

(phishing)

Fig. 1. During the first phase – Accessing wireless network, the tool is capable of
an attack on WEP OSA, WEP SKA, WPA PSK and WPA2 PSK secured WLAN s.
In a case of the dictionary attack on the device deployed by the UPC company, used
dictionaries are personalized by the implicit passwords. In the case of properly secured
WLAN, impersonation (phishing) can be employed. Using this method, an investigator
impersonates the legitimate network to obtain the WLAN credentials from the user.
During the second phase – Tampering network topology, the tool needs to continuously
work on keeping the network stations (STAs) persuaded that the spoofed topology is
the correct one. An investigator is now able to capture or modify the traffic. The suc-
cessful MitM attack is established.

with available equipment. The tool is open source and can be easily incorporated
into other software. The main use cases of this tool are found in automated
penetration testing, forensic investigation, and education.

2 Security Weaknesses in WLAN Technologies

Following network technologies (Sects. 2.1 and 2.2), which find a significant uti-
lization, unfortunately, suffer from security weaknesses in their protocols. These
flaws can be used in the process of the MitM attack.

2.1 Wireless Security

Wired Equivalent Privacy (WEP) is a security algorithm introduced as a part of
the IEEE 802.11 standard [6, p. 665], [8, pp. 1167–1169]. At this point, WEP is



210 M. Vondráček et al.

deprecated and superseded by subsequent algorithms, but is still sometimes used,
as can be seen from Table 1 available from Wifileaks.cz 3. WEP suffers from weak-
nesses and, therefore, it has been broken [4]. There are already implemented tools
to provide access to wireless networks secured by WEP available [18]. Regarding
WEP secured WLAN s, authentication can be either Open System Authentica-
tion (OSA) or Shared Key Authentication (SKA) [8, pp. 1170–1174]. In the case
of WEP OSA, any station (STA) can successfully authenticate to the Access
Point (AP) [17, pp. 4–10]. WEP SKA provides authentication and security of
transferred communication using a shared key. Confidentiality of transferred
data is ensured by encryption using the RC4 stream cipher. Methods used for
cracking access to WEP secured networks are based on analysis of transferred
data with corresponding Initialization Vectors (IV s).

Table 1. Following table summarizes WLAN statistics provided by Wifileaks.cz. Users
of this service voluntarily scan and publish details about WLAN s in the Czech Repub-
lic. Information in the table show that a significant number of WLAN s still use dep-
recated security algorithms. The statistics consisting of 97 192 922 measurements of
2 548 054 WLAN s were published on May 26, 2017.

Security Count Ratio

WPA2 1 429 518 56%

WEP 393 579 15%

WPA 375 984 15%

open 67 388 3%

other 281 585 11%

Wi-Fi Protected Access R© (WPA) was developed by the Wi-Fi Alliance R© as
a reaction to increasing number of security flaws in WEP. The main flaw of WPA
security algorithm can be identified at the beginning of client device’s commu-
nication, where an unsecured exchange of confidential information is performed
during the four-way handshake. An investigator can obtain this unsecured com-
munication and use it for consecutive cracking of the Pre-Shared Key (PSK ).

Wi-Fi Protected Access R© 2 (WPA2TM) is a successor of WPA, but secu-
rity flaws of the WPA PSK algorithm remain significant also for the WPA2
PSK. Information exposed during the handshake can be used for the dictionary
attack, which can be further improved by precomputing the Pairwise Master
Keys (PMKs) [12, pp. 37–38], [13, p. 3]. Precomputed lookup tables are already
available online4.

A critical security flaw in wireless networks secured by WPA or WPA2 is
the functionality called Wi-Fi Protected SetupTM (WPS ). This technology was
introduced with an aim to provide a comfortable and secure way of connecting

3 http://www.wifileaks.cz/statistika/
4 https://www.renderlab.net/projects/WPA-tables/

http://www.wifileaks.cz/statistika/
https://www.renderlab.net/projects/WPA-tables/


Automation of MitM Attack on Wi-Fi Networks 211

to the network. For a connection to the WLAN with WPS enabled, it is possi-
ble to use an individual PIN. However, the process of connecting to the prop-
erly secured network by providing PIN is very prone to brute-force attacks [7].
Because WPS is a usual feature in today’s access points and that WPS is usually
turned on by default, WPS can be a very common security flaw even in networks
secured by WPA2 with a strong password. Currently, there are already available
automated tools for exploiting WPS weaknesses, e.g., Reaver Open Source5.

Newly purchased access points usually use WPA2 security by default. Cur-
rently, many access points can be found using default passwords not only for
wireless network access, but even for AP ’s web administration. In a case of pos-
sible access to the AP ’s administration, the investigator could focus on chang-
ing the network topology by tampering the network configuration. Access to
the network management further allows the investigator to lower security levels,
disable attack detections, reconfigure DHCP together with DNS and also clear
AP ’s logs. There are already implemented tools, which exploit relations between
SSIDs and default network passwords, e.g., upc keys6 by Peter Geissler.7 These
tools could be used in an attack on the network with default SSID to improve
dictionary attack using possible passwords. High severity of these security flaws
is also proven by the fact that a significant amount of WLAN s was found using
unchanged passwords, as it is shown in Table 2.

Table 2. Results of wardriving in Bratislava and Brno focused on UPC vulnerabilities
concerning default WPA2 PSK passwords [11]. Detailed article about these security
flaws is available online [10].

Bratislava (capital of Slovakia) 2016-10-01 Count Ratio

Total networks 22 172

UPC networks 3 092 13.95%

UPC networks, vulnerable 1 327 42.92% UPC

Brno (city in the Czech Republic) 2016-02-10 Count Ratio

Total networks 17 516

UPC networks 2 868 16.37%

UPC networks, vulnerable 1 835 63.98% UPC

2.2 Network Technologies Used in WLANs

In the context of a MitM attack on a WLAN, we are targeting some common
network protocols:

– DHCP automates network device configuration without a user’s interven-
tion [3].

5 https://code.google.com/archive/p/reaver-wps/
6 https://haxx.in/upc-wifi/
7 UPC company is a major ISP in the Czech Republic, URL: https://www.upc.cz

https://code.google.com/archive/p/reaver-wps/
https://haxx.in/upc-wifi/
https://www.upc.cz


212 M. Vondráček et al.

– ARP translates an IPv4 address to a destination MAC address of the next-
hop device in the local area network [14].

– IPv6 networks utilize ICMPv6 Neighbor Discovery functionality to achieve
similar functionality to ARP in IPv4 networks.

These network protocols are vulnerable and a MitM attack is a coordinated
attack on each of these protocols, effectively changing the network topology.

– DHCP Spoofing generates fake DHCP communication. This attack can also
be referred to as Rogue DHCP. An investigator can perform this kind of
attack to provide devices in the network with malicious configuration, most
often a fake default gateway address or DNS address

– ARP Spoofing provides the network devices with fake ARP messages. This
persuades the suspect’s device to believe that the attacking device’s MAC
address is the default gateway’s MAC address.

– IPv6 Neighbor Spoofing is a similar concept to ARP Spoofing.

ARP Spoofing technique was selected from the researched methods. This method
proved itself with reasonable performance during experiments. Possible counter-
measures to these attacks are further described in the thesis [20].

2.3 Available Tools for Specific Phases of the MitM Attack
on Wireless Networks

From perspective of the intended functionality of the implemented tool,
the whole process of MitM attack on wireless networks can be divided into
three main phases: Accessing wireless network, Tampering network topology and
Capturing network traffic, as explained in Fig. 1.

To access secured wireless networks, Aircrack-ng suite8 is considered a reli-
able software solution. Considering the phase Accessing wireless network (Fig. 1),
following tools were utilized. Airmon-ng can manage modes of a wireless inter-
face. Airodump-ng can be used to scan and detect attacked AP. Aircrack-ng
together with aireplay-ng, airodump-ng and upc keys can be utilized for crack-
ing WEP OSA, WEP SKA, WPA PSK and WPA2 PSK. The tool wifiphisher9

can be used to perform impersonation and phishing. Connection to the wireless
network can be established by netctl10. MITMf 11 with its Spoof plugin can be
used during the Tampering network topology phase. Capturing traffic can be done
by the tool dumpcap12, which is part of the Wireshark13 distribution. Behaviour,
usage and success rate of individual tools, as well as possibilities of controlling
them by the implemented tool, were analyzed. The software selected for individ-
ual tasks of the automated MitM attack were chosen from the researched variety
8 http://www.aircrack-ng.org/
9 https://github.com/sophron/wifiphisher

10 https://www.archlinux.org/packages/core/any/netctl/
11 https://github.com/byt3bl33d3r/MITMf
12 https://www.wireshark.org/docs/man-pages/dumpcap.html
13 https://www.wireshark.org/

http://www.aircrack-ng.org/
https://github.com/sophron/wifiphisher
https://www.archlinux.org/packages/core/any/netctl/
https://github.com/byt3bl33d3r/MITMf
https://www.wireshark.org/docs/man-pages/dumpcap.html
https://www.wireshark.org/


Automation of MitM Attack on Wi-Fi Networks 213

of available tools based on performed manual experiments, further described in
the thesis [20].

3 Attack Automation Using Developed wifimitm Package
and wifimitmcli Tool

The implemented tool is currently intended to run on Arch Linux 14, but it could
be used on other platforms which would satisfy specified dependencies. This
distribution was selected because it is very flexible and lightweight. Python 3.5
was selected as a primary implementation language for the automated tool and
Bash was chosen for supporting tasks, e.g., installation of dependencies on Arch
Linux and software wrappers.

The functionality implemented in the wifimitm package could be directly
incorporated into other software products based on Python language. This way
the package would work as a software library. Schema of the wifimitm package
is in Fig. 2.

Entry points

wifimitmcli

wifimitm

Attack data Capture

Fig. 2. This figure shows the basic structure of the developed application. The tool
wifimitmcli uses a functionality offered by the package wifimitm. The package is also
able to manipulate attack data useful for repeated attacks and capture files with inter-
cepted traffic. Detailed structure of the package is described in Sect. 3.

The wifimitm package consists of following modules. The access module
offers an automated process of cracking selected WLAN. It uses modules wep

14 https://www.archlinux.org/

https://www.archlinux.org/


214 M. Vondráček et al.

and wpa2, which implement attacks and cracking based on the used security
algorithm. The wep module is capable of fake authentication with the AP, ARP
replay attack (to speed up gathering of IV s) and cracking the key based on IV s.
In the case of WPA2 secured network, the wpa2 module can perform a dictionary
attack, personalize used dictionary and verify a password obtained by phishing.
Verification of the password and dictionary attacks are done with a previously
captured handshake. The common module contains functionality which could be
used in various parts of the process for scanning and capturing wireless communi-
cation in monitor mode. The common module also offers a way to deauthenticate
STAs from selected AP.

If a dictionary attack against a correctly secured network fails, a phishing
attack can be managed by the impersonation15 module. The topology module
can be used to change network topology. It provides functionality for ARP Spoof-
ing. The capture module focuses on capturing network traffic. It is intended to
be used after the tool is successfully connected to the attacked network and net-
work topology was successfully changed into the one suitable for MitM attack.

3.1 Attack Data

Various attacks executed against the selected AP require some information to
be captured first. ARP request replay attack on WEP secured networks requires
an ARP request to be obtained in order to start an attacking procedure. Fake
authentication in WEP SKA secured network needs PRGA XOR16 obtained
from a detected authentication. Dictionary attack against WPA PSK and WPA2
PSK secured networks requires a captured handshake. Finally, for the successful
connection to a network, a correct key is required. When the required information
is obtained, it can be saved for a later usage to speed up following or repetitive
attacks. Data from successful attacks could be even shared between users of
the implemented tool.

3.2 Dictionary Personalization

Weaknesses in default network passwords could be exploited to improve dictio-
nary attacks against WPA PSK and WPA2 PSK security algorithms. The imple-
mented tool incorporates upc keys for generation of possible default passwords
if the selected network matches the criteria. The upc keys tool generates pass-
words, which are transferred to the cracking tool using pipes. With this app-
roach, the implemented tool could be further improved for example to support
localized dictionaries.

15 For details concerning individual phishing scenarios, please see wifiphisher ’s website.
https://github.com/sophron/wifiphisher

16 Stream of Pseudo Random Generation Algorithm generated bits.

https://github.com/sophron/wifiphisher


Automation of MitM Attack on Wi-Fi Networks 215

3.3 Requirements

The implemented automated tool depends on several other tools, which are
being controlled. The Python package can be automatically installed by its setup
including Python dependencies. Non-Python dependencies can be satisfied by
installation scripts and wrappers, which are currently developed for Arch Linux.

MITMf has a number of dependencies. Therefore, the installation script also
creates a virtual environment dedicated to MITMf. After installation, MITMf
can be easily run encapsulated in its environment. Wifiphisher is also installed
in a virtualized environment and run using a wrapper. Tool upc keys is compiled
during installation. Some changes in wifiphisher ’s source code were implemented,
the installation script therefore applies a software patch. Other software depen-
dencies are installed using a package manager.

Due to the nature of concrete steps of the attack, a special hardware equip-
ment is required. During the scanning and capturing of network traffic without
being connected to the network, an attacking device needs a wireless network
interface in monitor mode. For sending forged packets, the wireless network inter-
face also needs to be capable of packet injection. To be able to perform a phishing
attack, a second wireless interface capable of master (AP) mode has to be avail-
able. The user can check whether his hardware is capable of packet injection

Internet

STA 1 wifimitm

AP

R1

Fig. 3. This figure shows the network
topology used for the first performance
testing (Sect. 4) and success rate mea-
surements (Sect. 5). Results of this per-
formance testing are in Fig. 5.

STA 1

Internet

R1

STA 2

STA 3

STA 4

STA 5

STA 6

STA 7

STA 8

AP

wifimitm

Fig. 4. This figure shows the network
topology consisting of 8 STAs and 1 AP
which was used for the second perfor-
mance testing (Sect. 4). Results of this
performance testing are in Fig. 6.



216 M. Vondráček et al.

using the aireplay-ng tool. Managing monitor mode of interface is possible with
the airmon-ng tool.

4 Attack’s Performance Impact

A scheme of the networks used for the experiments is shown in Figs. 3 and 4.
The STAs were correctly connected to the AP and they were successfully
communicating with the Internet. The implemented wifimitmcli tool was then
started and automatically attacked the network.

1 ms

10 ms

100 ms

1000 ms

10000 ms

0 200 400

RTT STA1 – R1

usual communication MitM

Fig. 5. The first WLAN for performance
testing was the same as for the success rate
measurements described in Sect. 5. Figure
shows comparison of the measured RTT
between STA1 and R1 during usual com-
munication and during successful MitM
attack. The results show the performance
impact is not critical. Discussion with
the users of the attacked network proved
this attack unrecognizable.

1 ms

10 ms

100 ms

1000 ms

10000 ms

0 200 400

RTT STA1 – R1

usual communication MitM

Fig. 6. The second performance test-
ing consisted of 8 STAs and 1 AP
connected to the Internet – stream-
ing videos, downloading large files, etc.
The figure compares the RTT between
STA1 and R1 similarly. The perfor-
mance impact is more severe than in
Fig. 5. Despite the performance impact,
the users had no suspicion that they
were under MitM attack. Instead, they
blamed the amount of devices for net-
work congestion.



Automation of MitM Attack on Wi-Fi Networks 217

The performance impact of the wifimitm was compared using setups based on
SOHO17 environment. Both experiments were also evaluated based on the fact,
whether the attack being performed was revealed or whether the users had any
suspicion about the malicious transformation of their WLAN. Results of the test-
ing are presented in Figs. 5 and 6.

Table 3. This table presents results of the success rate measurements. A successful
attack is marked using a checkmark symbol (�) and unsuccessful attack is marked
using a times symbol (×). In the case when the attack was not fully successful, the
question mark (?) is used. Such partially successful test (? symbol) can for example
happen in situation where the suspect is sending only a portion of his traffic through
the investigator. Some of the used STAs lack WEP SKA settings (� symbol). Testing
WPA PSK and WPA2 PSK networks were configured with password “12345678” and
WEP secured networks used password “A b#1”.

Lenovo

G580,

Windows

10

Lenovo

G505s,

Windows

8.1

Dell

Latitude E6500,

Ubuntu

17.04

HTC

Desire 500,

Android

4.1.2

Apple

iPhone 4,

iOS

7.1.2

Linksys

WRT610N

open � � � � �
WEP OSA � � � � �
WEP SKA � � � � �
WPA PSK � � � � �
WPA2 PSK � � � � �

Linksys

WRT54G

open � � � � �
WEP OSA � � � � �
WEP SKA � � � � �
WPA PSK � � � � �
WPA2 PSK � � � � �

Linksys

WRP400

open � � � � �
WEP OSA � � � � �
WEP SKA � � � � �
WPA PSK � � � � �
WPA2 PSK � � � � �

TP-LINK

TL-WR841N

open ? × � � �
WEP OSA ? × � � ×
WEP SKA � � � � ×
WPA PSK ? × � � ×
WPA2 PSK ? × � � ×

D-Link

DVA-G3671B

open � � � � �
WEP OSA � � � � �
WEP SKA � � � � �
WPA PSK � � � � �
WPA2 PSK � � � � �

17 Small office/home office.



218 M. Vondráček et al.

5 Experiments Concerning Various Network
Configurations and Devices

The test was considered successful if the wifimitmcli was able to capture net-
work traffic according to the concept of MitM. For the test to be correct, no
intervention (help) from the investigator was allowed during the attack per-
formed by wifimitmcli. Results of the success rate measurements are shown
in Tables 3 and 4.

Table 4. The following table shows the results of public experiments. Visitors
of the Brno University of Technology, Faculty of Information Technology were invited
to let their devices be attacked. Testing network utilized Linksys WRP400 device
as an AP. A successful attack is marked using a checkmark symbol (�).

Model OS Attack

HTC Desire 500 Android 4.1.2 �
HTC Desire 820 Android 6.0.1 �
Apple iPhone 6 iOS 10.3.1 �
Apple iPhone 5s iOS 10.2.1 �
Apple iPhone 5 iOS 10.3.1 �
Apple iPhone 5c iOS 9.2.1 �
Apple iPhone 4 iOS 7.1.2 �

Results of experiments (Tables 3 and 4 and the thesis [20, pp. 42–43]) show,
that open networks can be very easily attacked. WEP OSA and WEP SKA
secured networks can be successfully attacked even if they use a random pass-
word. WPA PSK and WPA2 PSK secured networks suffer from weak passwords
(dictionary attack), default passwords and mistakes of users (impersonation and
phishing). As Figs. 5, 6 and Tables 3, 4 show, MitM attack using the wifimitm
is successfully feasible in the target environments.

6 Conclusions

The goal of this research was to implement a tool that would be able to auto-
mate all the necessary steps to perform MitM attacks on WLAN s. The authors
searched for and analyzed a range of software and methods focused on pen-
etration testing, communication sniffing and spoofing, password cracking and
hacking in general. To be able to design, implement and test the tool capable of
such attacks, knowledge of different widespread security approaches was essen-
tial. The authors further focused on possibilities of MitM attacks even in cases
where the target WLAN is secured correctly. Therefore, methods and tools for
impersonation and phishing were also analyzed.



Automation of MitM Attack on Wi-Fi Networks 219

The authors’ work and research resulted in creation of the wifimitm Python
package. This package serves as a library which provides functionality for
automation of MitM attacks on target WLAN s. The developed package can
also be easily incorporated into other tools. Another product of this research is
the wifimitmcli tool which incorporates the functionality of the wifimitm pack-
age. This tool automates the individual steps of a MitM attack and can be used
from a CLI. The implemented software comes with a range of additions for con-
venient usage, e.g., a script that checks and installs dependencies on Arch Linux,
a Python setuptools setup script and of course a manual page.

The wifimitmcli tool, and therefore wifimitm as well, was tested during exper-
iments with an available set of equipment. As the results show, the imple-
mented software product is able to perform an automated MitM attack on
WLAN s successfully.

Upon successful deployment and execution of the implemented tool, an inves-
tigator can eavesdrop or spoof the passing communication. The goal of the tool
was to automate MitM attacks on WLANs. It does not focus on dissecting fur-
ther traffic protections. This means that it does not interfere with SSL/TLS,
VPN, or other encapsulations. Thanks to the tool’s design, it can be easily
used together with other software specialized on interception of encapsulated
traffic. Traffic encapsulation is a sufficient protection against this tool. From
the WLAN administrators point of view, available defense mechanisms are out-
lined in Sect. 2.2.

As explained earlier, all the suspect’s network traffic is passing through
the attacking device during a successful MitM attack. Unfortunately, there could
be users on the network other than the ones that are subject to a court order.
Making sure that only appropriate traffic is being captured may be important
depending on the nature of the court order or the legislation. This challenge may
be solved by setting corresponding filter rules for traffic capture software.

This research and its products can be utilized in combination with other
security research carried out at the Brno University of Technology, Faculty
of Information Technology. It can serve in investigations done by forensic
researchers [15]. It can also be used in automated penetration testing of WLANs.

In the future iterations of the development, the product could focus on
exploiting the weaknesses of the widely used WPS technology. Concerning
the current state of the product, it does not focus on enterprise WLAN s, which
also suffer from their own weaknesses.

The authors disclaim any use of this research for any unlawful activities.

References

1. Callegati, F., Cerroni, W., Ramilli, M.: Man-in-the-middle attack to the HTTPS
protocol. IEEE Security Privacy 7, 78–81 (2009)

2. Deal, R., Cisco Systems Inc.: The Complete Cisco VPN Configuration Guide. Cisco
Press Networking Technology Series. Cisco Press, Indianapolis (2006)

3. Droms, R.: Dynamic host configuration protocol. RFC 2131, IETF, March 1997



220 M. Vondráček et al.

4. Fluhrer, S., Mantin, I., Shamir, A.: Weaknesses in the key scheduling algorithm of
RC4. In: Vaudenay, S., Youssef, A. (eds.) Selected Areas in Cryptography. LNCS,
pp. 1–24. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45537-X 1

5. Godber, A., Dasgupta, P.: Countering rogues in wireless networks, vol. 2003-
January, pp. 425–431. Institute of Electrical and Electronics Engineers Inc. (2003)

6. Halsall, F.: Computer Networking and the Internet. Addison-Wesley, Boston (2005)
7. Heffner, C.: Cracking WPA in 10 hours or less –/dev/ttys0 (2011). http://www.

devttys0.com/2011/12/cracking-wpa-in-10-hours-or-less/
8. IEEE-SA. IEEE standard for information technology-telecommunications and

information exchange between systems local and metropolitan area networks-
specific requirements part 11: Wireless LAN medium access control (MAC) and
physical layer (PHY) specifications. IEEE Std 802.11-2012 (Revision of IEEE Std
802.11-2007), pp. 1–2793, March 2012

9. Kent, S., Seo, K.: Security Architecture for the Internet Protocol. RFC 4301, IETF,
December 2005

10. Klinec, D., Sv́ıtok, M.: UPC UBEE EVW3226 WPA2 password reverse engi-
neering, rev 3. https://deadcode.me/blog/2016/07/01/UPC-UBEE-EVW3226-
WPA2-Reversing.html. Accessed 5 Nov 2016

11. Klinec, D., Sv́ıtok, M.: Wardriving Bratislava 10/2016, 5 November 2016. https://
deadcode.me/blog/2016/11/05/Wardriving-Bratislava-10-2016.html

12. Kumkar, V., Tiwari, A., Tiwari, P., Gupta, A., Shrawne, S.: Vulnerabilities of
wireless security protocols (WEP and WPA2). Int. J. Adv. Res. Comput. Eng.
Technol. (IJARCET) 1(2), 34–38 (2012)

13. Liu, Y., Jin, Z., Wang, Y.: Survey on security scheme and attacking methods of
WPA/WPA2. In: 2010 6th International Conference on Wireless Communications
Networking and Mobile Computing (WiCOM), pp. 1–4, September 2010

14. Plummer, D.: Ethernet address resolution protocol: or converting network protocol
addresses to 48.bit ethernet address for transmission on ethernet hardware. RFC
826, IETF, November 1982

15. Pluskal, J., Matoušek, P., Ryšavý, O., Kmet́, M., Veselý, V., Karṕı̌sek, F., Vymlátil,
M.: Netfox detective: a tool for advanced network forensics analysis. In: Proceedings
of Security and Protection of Information (SPI) 2015, pp. 147–163. Brno University
of Defence (2015)

16. Prowell, S., Kraus, R., Borkin, M.: Man-in-the-middle. In: Prowell, S., Kraus, R.,
Borkin, M. (eds.) Seven Deadliest Network Attacks, pp. 101–120. Syngress, Boston
(2010)

17. Robyns, P.: Wireless network privacy. Master’s thesis. Hasselt University, Hasselt
(2014)

18. Tews, E., Weinmann, R.-P., Pyshkin, A.: Breaking 104 bit WEP in less than 60
seconds. In: Kim, S., Yung, M., Lee, H.-W. (eds.) Information Security Applica-
tions. LNCS, pp. 188–202. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-77535-5 14

19. Thomas, O.: Windows Server 2016 Inside Out. Inside Out. Pearson Education,
London (2017)

20. Vondráček, M.: Automation of MitM attack on WiFi networks. Bachelor’s thesis.
Brno University of Technology, Faculty of Information Technology (2016)

https://doi.org/10.1007/3-540-45537-X_1
http://www.devttys0.com/2011/12/cracking-wpa-in-10-hours-or-less/
http://www.devttys0.com/2011/12/cracking-wpa-in-10-hours-or-less/
https://deadcode.me/blog/2016/07/01/UPC-UBEE-EVW3226-WPA2-Reversing.html
https://deadcode.me/blog/2016/07/01/UPC-UBEE-EVW3226-WPA2-Reversing.html
https://deadcode.me/blog/2016/11/05/Wardriving-Bratislava-10-2016.html
https://deadcode.me/blog/2016/11/05/Wardriving-Bratislava-10-2016.html
https://doi.org/10.1007/978-3-540-77535-5_14
https://doi.org/10.1007/978-3-540-77535-5_14


SeEagle: Semantic-Enhanced Anomaly
Detection for Securing Eagle

Wu Xin1,3, Qingni Shen2,3, Yahui Yang2,3, and Zhonghai Wu2,3(&)

1 School of Electronics and Computer Engineering,
Peking University, Shenzhen, China

xinwu@pku.edu.cn
2 School of Software and Microelectronics, Peking University, Beijing, China

{qingnishen,yhyang,wuzh}@ss.pku.edu.cn
3 Lab for Big Data Technology, Peking University, Beijing, China

Abstract. In order to ensure data security and monitor data behavior, eBay has
developed Eagle, which can detect anomalous user behavior based on user
profiles and can intelligently protect data security of Hadoop ecosystem in
real-time. By analyzing the kernel density estimation (KDE) algorithm and
source code implemented in Eagle, we recognize that there are two security
risks: One is that user profiles are models of operations, but the objects of
operations are not analyzed; The other is that the owner of HDFS audit log files
is not authenticated. Consequently, the attacker can bypass Eagle and form
attack of APT combined with default permissions of Hadoop. In this paper, we
analyze the two risks of Eagle, propose two kinds of attack methods that can
bypass anomaly detection of Eagle: co-frequency operation attack and log
injection attack, and establish threat model of which feasibility is verified
experimentally. Finally, we present SeEagle, a semantic-enhanced anomaly
detection for securing Eagle, including user authentication and file tagging
modules. Our preliminary experimental evaluation shows that SeEagle works
well and extra overhead is acceptable.

Keywords: Semantic-enhanced � User authentication � Tagging � APT
User profile � Eagle � Anomaly detection � User activity monitoring
Machine learning

1 Introduction

In recent years, Hadoop [1] has become the most popular distributed system in both
industry and academia. For data security, HDFS provides access control to prevent
unauthorized access to file data. But in the era of big data, the access control is facing
significant challenges [2]: To partition roles for users and to define permissions for
roles is difficult.

In response to the challenges of data access control in the era of big data, Molloy
et al. [3] proposed to extract roles from the access logs, based on machine-learning
algorithms. Zeng et al. [4] proposed an access control model based on the content.
Their methods are mostly verified by experimental prototypes, but they are not being in
practice. Gupta et al. [5] designed Eagle [6], which can further ensure the security of

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
P. Matoušek and M. Schmiedecker (Eds.): ICDF2C 2017, LNICST 216, pp. 221–227, 2018.
https://doi.org/10.1007/978-3-319-73697-6_17



HDFS data through user profile-based anomaly detection. Eagle, which has aroused
widespread concern in both industry and academia, has been announced to be a Top
Level Project (TLP) of Apache Software Foundation (ASF) [7].

The idea of Eagle is extracting audit logs from applications running on Hadoop
systems, such as HDFS which is concerned in this paper, and using machine-learning
algorithms to generate user profiles depending on the users’ history logs. Based on user
profiles, Eagle can detect malicious activities when a user action does not match with
the user profile.

Several approaches dealing with anomaly detection for operating system, networks,
Web applications and database have been developed, but the behaviors deemed
malicious for HDFS are not necessarily malicious for them.

In the database domain, Karma et al. [8] and Spalka and Lehnhardt [9] proposed the
method of detecting anomalies respectively. Their work is complementary. [8] focuses
on the syntactic aspects by detecting anomalous access patterns in a DBMS, while [9]
focuses on the semantic aspects of the SQL queries. So a mature anomaly detection
system that designed to better monitor user behaviors should focus on both syntactic
and semantic aspects.

However, we notices that the approach in Eagle is closer to that of [8], which both
use machine-learning algorithms and focus on syntactic aspects, but there is the lacks
of sematic analysis and the authentication of log files owner. If the risks cannot be
effectively resolved, they may form the data security issues and attack of APT.
Therefore, we propose SeEagle, a semantic-enhanced anomaly detection for securing
Eagle, to deal with the risks.

The contribution of this paper can be summarized as follows:

• By analyzing the machine-learning algorithms, we realize that user profiles are
models of user operations for operated files, and the KDE algorithm, which only
statistically analyzes user operations and does not analyze the objects of operations,
focuses on the syntactic analysis.

• Through the analysis of source code, tracking the processes of reading and pro-
cessing HDFS audit log data in Eagle, we observe that the owner of log files is not
authenticated during the process of HDFS log data flow into.

• Based on the two security risks and combined with the default permissions of
Hadoop, co-frequency operation attack and log injection attack (see Sect. 2.2)
which can bypass the anomaly detection of Eagle are proposed. And the threat
model is established to verify their feasibility.

• In order to deal with the two kinds of attack methods, SeEagle,a semantic-enhanced
anomaly detection for securing Eagle, is proposed. Based on the general policy
framework of Eagle, the user authentication module is added to the entrance of log
data flow, and the file tagging module, which based on semantic analysis, is added
to the offline training that generate user profiles. Finally, SeEagle which is evaluated
experimentally can effectively defend against the attacks and the extra overhead is
acceptable.

222 W. Xin et al.



The paper is organized as follows. Next section analyzes the security risks of Eagle
and describes two kinds of attack methods. Section 3 describes SeEagle and shows the
results of the experimental evaluation. Finally, we conclude the paper by discussing
future work.

2 Challenges of Eagle

2.1 Security Risks

A. The lack of semantic analysis
Through the analysis of machine-learning algorithms in Eagle, we realize that there is a
security risk in the offline training of KDE algorithm which lacks semantic analysis.
The idea of KDE algorithm is to calculate the probability density of sample data points
to evaluate each user by the Gaussian distribution function [10].

By analyzing the KDE algorithm, it is understood that only user operations are
analyzed statistically while the objects of operations are not.

For a HDFS user, the HDFS files can be categorized into authorized files and
unauthorized ones. Authorized files can be divided into operated files and non-operated
files. Figure 1 shows the categorization of HDFS files.

Through the analysis of the machine-learning algorithms in Eagle, it is learned that
user profiles are models of operations for operated files. User profiles can effectively
detect anomaly for operated files, but they may not defend against the internal threats
for non-operated files because the operations for the former may be abnormal for the
latter, especially for the sensitive data.

B. The lack of log files owner authentication
By analyzing the source code, there is also a security risk in the process of reading and
analyzing HDFS audit logs: the owner of HDFS log files is not authenticated. We
illustrate the process of reading HDFS logs as follows:

Configure the path for training dataset of user profiles in the conf/sandbox-user-
profile-scheduler.conf in the Eagle home directory. From the 34th line in Fig. 2(a), we
can know that the training dataset of user profiles is all local HDFS log files whose
names start with hdfs-audit.log in /var/log/hadoop/hdfs/directory.

Fig. 1. The categorization of HDFS files

SeEagle: Semantic-Enhanced Anomaly Detection for Securing Eagle 223



User profiles are generated through reading and analyzing the HDFS logs in
AuditLogTrainingSparkJob.scala. From the 55th and 65th lines in Fig. 2(b), we can
learn that Eagle only judges whether the path is empty, and then reads and analyzes the
HDFS logs. However, the owner of HDFS audit log files is not authenticated.

2.2 Attack Methods

We propose two kinds of attack methods based on the above two security risks:

• Co-frequency operation attack: Due to the lack of semantic analysis in Eagle, the
malicious behavior that the objects of operation are different can be performed
based on the same frequency of operation when an attacker obtains the authority of
a legitimate user.

• Log injection attack: As Eagle lacks log owner authentication, the attacker can forge
the HDFS audit logs according to the operational requirements of getting the HDFS
data, and inject them into the Eagle. Once the mendacious user profile is generated,
it will cause failure of anomaly detection.

• The relationship between co-frequency operation attack & log injection attack: The
former is invalid when the conventional operations in the user profile cannot meet
the needs of the attacker. The latter is needed to generate mendacious user profile to
meet the operational requirements of the former.

3 SeEagle

3.1 Overview

According to the security risks in Eagle and the two kinds of attacks proposed in this
paper, SeEagle, a semantic-enhanced anomaly detection for securing Eagle, has been
designed as shown in Fig. 3, including the user authentication and file tagging
modules.

a. sandbox-userprofile-scheduler.conf                b. AuditLogTrainingSparkJob.scala

Fig. 2. The source code of Eagle

224 W. Xin et al.



The user authentication module is used to defend the log injection attack. We
exploit the HDFS audit logs can only be generated by hdfs that is the super user of
HDFS. Therefore, we increase the user authentication module to authenticate the owner
of the HDFS log files whether hdfs, which can effectively defend against the log
injection attack.

The file tagging module, which is based on the semantic analysis, is used to protect
co-frequency operation attack. In the process of offline training, not only the user
operations are statistically analyzed, but also the operated files of the user are tagged
with the user name. Then a default policy that an alert is triggered when a user accesses
any file without tag of the user name is created for each user through the general policy
management framework of Eagle.

The file tagging can effectively protect from the co-frequency operation attacks to
access the non-operated files. However, it still cannot avoid the co-frequency operation
attack to access the operated files.

In order to protect the operated files from co-frequency operation attack, the default
permissions of HDFS log directory and files should be changed and the log files should
be defined more granular ACL to prevent the attacker from acquiring the HDFS logs.

3.2 Experimental Evaluation

We mainly from three aspects to test the Eagle and SeEagle overhead: the number of
HDFS log files, the number of HDFS users and the number of HDFS logs in Hadoop
system. From a large number of experimental data, we draw the following three charts
in Fig. 4 to illustrate.

Through the analysis above, we observe that the extra overhead of SeEagle mainly
in the generation of file tags and tag-based policies. By combining source code and log
output analysis, it is realized that the main overhead is I/O. Considering that on the
basis of Eagle, SeEagle has improved its security and has no effect on the performance
of online detection anomalies, and the extra overhead is mainly in off-line training. So
the extra overhead of SeEagle is acceptable.

HDFS
Audit
Logs

HDFS
Archive

Data

K
af

ka
 M

es
sa

ge
 B

us

HDFS
Operations

User
activities

Offline Training

User Profile 
Generation

User
Profiles

Real-time Stream

Policy Manager

Rule-based
Monitoring

User 
Profile-
based

Anomaly
Detection

User
activities

Actionable
Alerts

Actionable
Alerts

File Tag 
Generation

Tag-based
Monitoring

User
Authentication

System 
Dashboard

Remediation 
Engine

Fig. 3. SeEagle architecture

SeEagle: Semantic-Enhanced Anomaly Detection for Securing Eagle 225



4 Conclusions and Future Work

In this paper, we aware the security risks by analyzing the machine-learning algorithms
and the source code in Eagle and propose co-frequency operation attack and log
injection attack that can bypass anomaly detection of Eagle and form the attack of APT
combined with the default permissions of the Hadoop. Finally, we present SeEagle, a
semantic-enhanced anomaly detection for securing Eagle, including the user authen-
tication and the file tagging modules. The SeEagle cannot only effectively defend
against the above two kinds of attacks, but also the extra overhead is acceptable.

In the future, we plan to further research the response of Eagle when an anomaly is
detected. At present, Eagle just generates an alert and informs the related person by
e-mail after detecting an abnormal user behavior. It just makes a response after the
occurrence of abnormal events rather than making judgment in advance. In addition,
during the offline training, the logs of abnormal behavior are regarded as the regular
HDFS logs to generate user profiles and Eagle cannot remove them from the HDFS
logs. Therefore, we intend to add the appropriate function so that Eagle can generate
more accurate user profiles.

Acknowledgements. This work is supported by the National High Technology Research and
Development Program (“863” Program) of China under Grant No. 2015AA016009 and the
National Natural Science Foundation of China under Grant No. 61232005. The authors would
like to acknowledge Xiaoyi Chen, Bin Yang, Dong Huo and Xuxin Fan for their support for our
preliminary experiments. We are also grateful to Fenmei Li for her valuable suggestions and
thorough proofread for this paper.

References

1. Hadoop. https://hadoop.apache.org/
2. Feng, D.G., Zhang, M., Li, H.: Big data security and privacy protection. Chin. J. Comput. 37

(1), 246–258 (2014)

a. The number of log files b. The number of users       c. The number of logs

Fig. 4. The overhead: SeEagle vs Eagle

226 W. Xin et al.

https://hadoop.apache.org/


3. Molloy, I., Park, Y., Chari, S.: Generative models for access control policies: applications to
role mining over logs with attribution. In: ACM Symposium on Access Control Models and
Technologies, pp. 45–56 (2012)

4. Zeng, W., Yang, Y., Luo, B.: Access control for big data using data content. In: IEEE
International Conference on Big Data, pp. 45–47 (2013)

5. Gupta, C., Sinha, R., Zhang, Y.: Eagle: user profile-based anomaly detection for securing
Hadoop clusters. In: IEEE International Conference on Big Data, pp. 1336–1343 (2015)

6. Eagle. http://eagle.apache.org/
7. Apache Software Foundation (ASF). http://www.apache.org/
8. Kamra, A., Terzi, E., Bertino, E.: Detecting anomalous access patterns in relational

databases. VLDB J. 17(5), 1063–1077 (2008)
9. Spalka, A., Lehnhardt, J.: A comprehensive approach to anomaly detection in relational

databases. In: Jajodia, S., Wijesekera, D. (eds.) DBSec 2005. LNCS, vol. 3654, pp. 207–221.
Springer, Heidelberg (2005). https://doi.org/10.1007/11535706_16

10. Gaussian Distribution. https://en.wikipedia.org/wiki/Gaussian_function

SeEagle: Semantic-Enhanced Anomaly Detection for Securing Eagle 227

http://eagle.apache.org/
http://www.apache.org/
http://dx.doi.org/10.1007/11535706_16
https://en.wikipedia.org/wiki/Gaussian_function


Coriander: A Toolset for Generating Realistic
Android Digital Evidence Datasets

Irvin Homem(&)

Department of Computer and Systems Sciences,
Stockholm University, Postbox 7003, Kista, Sweden

irvin@dsv.su.se

Abstract. Triage has been suggested as a means to prioritize and identify
sources and artifacts of evidence that might be of most interest when faced with
large amounts of digital evidence. Memory Forensics has long relied on simple
string matching to triage evidence sources. In this paper, we describe the early
developments into our study on Machine Learning-based triage for Memory
Forensics. To start off, there are no large datasets of memory captures available.
We thus, develop a toolset to enable the automated creation of realistic Android
process memory dumps. Using our toolset we generate a dataset of 2375 process
memory string dumps from both malicious and benign Android applications,
classified by VirusTotal, and sourced from the AndroZoo project. Our dataset
and toolset are made available online to help promote research in this field and
related areas.

Keywords: Android forensics � Digital forensics � Mobile forensics
Memory forensics � Digital evidence � Datasets � Metadata � Machine learning
Triage

1 Introduction

Digital Investigations struggle with large amounts of potential evidentiary data. Triage
[1] has been proposed as a means to help speed up the identification of high priority
digital evidence data sources for acquisition, or sections of digital evidence that should
be prioritized for analysis [2]. Triaging disk-based evidence to identify files or sections
of a disk to be either ignored, or prioritized has been studied widely [3–5]. Triaging of
network traffic captures has been less studied, however there are some studies such as
[6, 7]. There has been a call for mobile device triage [8] however, to the best of our
knowledge little has been done. We thus delve into addressing this knowledge gap,
directing our efforts into the triaging of mobile device memory in an automated
manner, with a focus on identifying processes in memory that may require further
investigation. We propose the use of machine learning techniques as previously used
with disk-based [5] and network traffic evidence [7], to aid in identification and pri-
oritization of processes of interest within mobile memory dumps, as part of a triage
procedure.

More concretely, in the early stages of this research, we aim to create a significantly
large dataset of Android process memory dumps. From these memory dumps, process

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
P. Matoušek and M. Schmiedecker (Eds.): ICDF2C 2017, LNICST 216, pp. 228–233, 2018.
https://doi.org/10.1007/978-3-319-73697-6_18



related features (metadata) are to be extracted and used to develop machine learning
predictive models to help identify particular processes in memory that warrant further
investigation into their activities and interactions with the file system or network.

To aid in achieving our goals, we have developed a toolset (Coriander) in Python to
automate the creation of our dataset of Android process memory dumps. Using this
toolset we generated a dataset of 2375 Android process memory string dumps using a
subset of APK files from the AndroZoo Project [9]. The Coriander toolset and the
resulting process memory dataset are the main subject described in this early progress
report on our research.

2 Background and Related Work

Some of the methods for triaging digital evidence include removal of known benign
artifacts from within the digital evidence dataset. This has been done on disk data [2]
using: (i) Focused extraction of well known artifacts (E.g. the Windows Registry, File
Metadata); (ii) Using string-matching techniques [10]; (iii) Matching files with hash
lists of known files or parts of known files [3]; (iv) Using fuzzy hashing to identify
closely similar files [4]; and (v) recently also using machine-learning techniques [5].
With regard to triaging network traffic evidence, fuzzy hashing has been used to detect
files [6] and machine learning methods have been used to identify network protocols
within DNS tunneling network traffic [7].

Recently network-scanning tools such as Yara have been deployed to scan memory
images as a triage method [11]. This used string-matching techniques, with additional
capability of conditional matching of sets of strings through Yara. Visualization
techniques have also been developed to help identify areas of priority in the triage
process of Windows memory [12].

The triage of mobile devices is largely unexplored and so far only one study [8] has
attempted to address this knowledge gap, focusing on the different forms of evidence
artifacts available and indicating that there is a lack of tools and techniques for triaging
mobile devices, short of “thumbing through” a live device. We thus aim to address this
shortcoming by providing a technique for triaging mobile devices with a focus on the
processes running in memory.

In the forensic analysis of live memory, an important artifact of interest is the
running processes, their interaction with other resources, such as other processes, data
in memory, the filesystem, network adapters, the kernel and other peripheral devices
drivers. The activities carried out by a process may be malicious or normal benign
activity. Within the context of an investigation of live memory, it would be helpful to
provide a forensic analyst with a quick method of identifying and differentiating
potentially interesting malicious processes from other benign normal process activities.
Thus, in this paper, we begin our study towards achieving this triage process on
Android mobile device memory.

The identification of malicious Android applications has been studied as malware
detection prior to the app running (Static Analysis) with static APK files [13]; while it
is running (Dynamic Analysis) [14], or a combination of both (Hybrid Analysis) [15].
These methods are not perfect, and there are ways to beat them [16]. Essentially mobile

Coriander: A Toolset for Generating Realistic Android 229



malware variants can beat detection mechanisms and continue to run undetected.
Memory forensics tools such as Volatility and Rekall provide in depth structured
analysis, however identification of miscreant processes is left to the discretion of the
analyst. With potentially numerous processes in memory it may be a difficult task to
identify which processes require further analysis. Whitelisting certain processes based
on their name might be one way, however even well known processes may be hijacked
to perform malicious tasks. This gives rise to a need for providing more robust,
automated techniques for identifying malicious processes on memory images after an
incident. To the best of our knowledge the automated identification of malicious
processes on memory dumps has not been performed. Thus, we aim to use machine
learning techniques to characterize the memory footprint of malicious and benign
applications, so as to automate distinguishing between the two classes, and hence
provide an automated classifier for triaging malicious processes within memory dumps.

3 The Coriander Toolset

To develop our technique for classifying Android process memory instances we needed
a dataset of process memory dumps to identify relevant features. As there is no such
dataset available, we set out to generate one. We developed the Coriander Toolset to
automate this generation of realistic Android process memory dumps from real world
APK files. The Coriander Toolset is composed of two major components: The
Coriander application1 and the AndroMemDump application2. The Coriander appli-
cation coordinates the running of APK files within an Android Emulator and initiates
the memory dumping procedure. The AndroMemDump application enables the actual
dumping of a given running process’ memory space. The functionality of these two
applications is described in the following subsections:

3.1 Coriander

The Coriander Python application is made up of 3 main components: SDK Tools, APK
Tools and the Cookbook.

1. The SDK Tools package consists of wrappers for the Android Debug Bridge
(ADB), the Android Emulator and a class for managing SDK location configura-
tions. It provides a logical abstraction of components of the Android SDK that
allow for running, querying and controlling various parameters of an Android
device or emulator.

2. The APK Tools package is comprised of two main abstractions: The APK Store and
the APK File. The APK Store serves to maintain the location configurations and
metadata extracted from a repository of APK files. The location can be a remote
network path, or a local directory on the device running Coriander. The specific
parameters are stored in a JSON file within the ‘config’ directory. The APK File

1 Source code available at: https://github.com/irvinhomem/Coriander.
2 Source code available at: https://github.com/irvinhomem/AndroMemDumpBeta.

230 I. Homem

https://github.com/irvinhomem/Coriander
https://github.com/irvinhomem/AndroMemDumpBeta


class holds the metadata of a specific APK file, as well as functions for extracting
specific metadata out of an APK file. The metadata stored include the package
name, the activities and permissions. Other metadata could be captured, but these
few are the important ones required to get an Android application to run.

3. The Cookbook package has a single class (Recipe) containing the instructions that
the Coriander Toolset should run in a given session. There are 2 categories of
instructions: Emulator instructions, and ADB/APK instructions. The emulator
instructions revolve around the lifecycle of an emulator, that is, setting up an
emulator instance, running the instance, resetting the instance, and killing the
emulator instance. The ADB/APK instructions involve downloading APK files
from an APK Store, installing apps, running app activities, initiating memory
dumps, closing apps and uninstalling apps. To achieve these functionalities, the
Cookbook calls methods from all other packages (SDK Tools, APK Tools) and the
AndroMemdump application.

3.2 AndroMemDump

AndroMemDump is an Android application whose main function is to capture the
process memory of a given process. The application is written in Java (using the
Android API) and Native C code. The Native C code provides low-level access to the
ptrace system call, which is used to capture process memory on Linux based systems
[17]. When cross-compiled using the Android NDK, we get several flavours of our
executable (memdump) for multiple process architectures i.e. x86, x64, armeabi and
mips.

The Java based part harnesses the Android API to provide a simple, portable means
of carrying, installing and calling native C executables within an Android ecosystem.
The memdump binary is carried as an ‘asset’ within an APK, and is placed in the ‘files’
directory of the AndroMemDump app on first-run, after which ‘execute’ permissions
are applied on the binary. Using our memdump executable AndroMemDump, we can
capture process memory and save it onto the device internal memory, the SD Card, or
transfer it over the network to a remote location. In conjunction with Coriander,
process memory dumps can also be stored on the device hosting the emulator. Overall,
this enables automating the capture of process memory from numerous APKs allowing
us to create a large dataset within a reasonable amount of time.

4 Experiment Results and Discussion

Using the Coriander Toolset, we set out to generate a dataset of process memory
dumps. This further required customizing an Android OS image to contain the
AndroMemDump app and to avail root permissions. This involved modifying the ‘/
system’ partition of a stock Android ROM image to install our app as well as the ‘su’
binary and the “Superuser” app by Chainfire (Jorrit Jongma). This was done such that
after each run of our customized Android ROM on the emulator, we could wipe the
user partition, to ensure APKs were completely gone, to avoid different malicious
APK’s interacting. The assumption made here was that malicious applications would

Coriander: A Toolset for Generating Realistic Android 231



not bypass the Superuser app authorization to gain root privileges to modify the /system
partition. This decision was made as a tradeoff to having to install AndroMemDump
and the ‘su’ binary on every round, which would slow the process down. Having these
in the system partition and protected by the Superuser app was a good enough tradeoff.

Having all these in place we used the AndroZoo APK repository as our APK Store,
extracting only a subset out of the over 5 million APKs available. The reason for using
only a subset was due to time limitations and the size of each process memory
dump. Each process memory dump took about 3–5 min to capture and store. The first
few app dumps ranged between 0.8–1.5 GB in size each, thus we decided to capture
only strings from each process memory dump as an initial feature set to reduce the size.
The AndroZoo project classified many APKs as malicious or benign using VirusTotal,
however not all were classified. Our aim was to achieve around 1000 malicious and
1000 benign process memory dumps. We ran our toolset sequentially through the
repository and eventually attained 1187 benign samples and 1188 malicious samples3.
Numerous apps had problems preventing them from executing, and were this skipped
automatically by Coriander. The problems included corrupt manifest files, bugs within
the code preventing installation, API level incompatibility and specially compiled native
libraries that would not run on our customized ROM. We did not have the time to debug
other app developer’s code, nor to develop multiple ROMs to cater for the wide vari-
ation of compatibility issues in the Android ecosystem. Thus, it took 2321 and 7479
sampling rounds, respectively for benign and malicious classes, in order to achieve the
1187 and 1188 respective samples of process memory dumps from working APKs.

We discovered that process memory dumps in Android devices can be significantly
large, thus we resorted to extracting only strings. This is acceptable since analyzing
strings is one of the initial methods of performing memory forensics. We also saw the
large amount of incompatibility issues that plague android apps between different
versions of the Android API hindered our dataset collection efforts. Our Android ROM
was customized from a stock Android 5.1 (API 22) which was the version commanding
about 24% of the market share of Android devices - the 2nd highest at the time. We see
the need for our toolset to have other ROMs available to allow for different flavours of
the Android OS and thus increase compatibility; however, this comes at a cost of time
and effort to maintain the different flavours.

5 Conclusions and Future Work

In this study, we delved into the first stage of our project to perform Machine Learning
based triage on Android Memory Dumps. The first stage required a large dataset of
realistic Android process memory dumps upon which we could extract features to
develop machine learning models. We thus set out to create this dataset in this study. We
developed the Coriander Toolset in order to help automate the creation of our dataset.
From this toolset, we were able to create dataset of 2375 realistic Android process
memory dumps, to further our own research and contribute to the larger research area.

3 The dataset is available online at: https://doi.org/10.17045/sthlmuni.4989773.

232 I. Homem

http://dx.doi.org/10.17045/sthlmuni.4989773


This study only provides the initial progress into this work and has some limita-
tions. Firstly, more customized ROMs need to be realized to get a better variety of
process memory dumps and reduce the APKs skipped. Only strings of process memory
dumps were captured; other memory metadata can be captured in future by extending
the Coriander Toolset. This will also aid in the eventual feature selection process for the
Machine Learning-based Triage goals that we intend to achieve in the future. Algo-
rithms such as k-NN, decision trees, SVM’s, neural networks, association rule mining,
time series analysis and graph mining techniques are candidates for the classification
task for our future work.

References

1. Rogers, M.K., Goldman, J., Mislan, R., Wedge, T., Debrota, S.: Computer forensics field
triage process model. J. Digital Forensics, Secur. Law 1, 19–38 (2006)

2. Roussev, V., Quates, C., Martell, R.: Real-time digital forensics and triage. Digital Invest.
10, 158–167 (2013)

3. Mead, S.: Unique file identification in the national software reference library. Digital Invest.
3, 138–150 (2006)

4. Kornblum, J.: Identifying almost identical files using context triggered piecewise hashing.
Digital Invest. 3, 91–97 (2006)

5. Marturana, F., Tacconi, S.: A machine learning-based triage methodology for automated
categorization of digital media. Digital Invest. 10, 193–204 (2013)

6. Breitinger, F., Baggili, I.: File detection in network traffic using approximate matching.
J. Digital Forensics, Secur. Law 9, 23–36 (2014)

7. Homem, I., Papapetrou, P.: Harnessing predictive models for assisting network forensic
investigations of DNS tunnels. In: ADFSL Conference on Digital Forensics, Security and
Law, Daytona Beach (2017)

8. Mislan, R.P., Casey, E., Kessler, G.C.: The growing need for on-scene triage of mobile
devices. Digital Invest. 6, 112–124 (2010)

9. Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y.: AndroZoo: collecting millions of android
apps for the research community. In: 13th International Workshop on Mining Software
Repositories - MSR 2016, Austin, TX, pp. 468–471 (2016)

10. Koopmans, M.B., James, J.I.: Automated network triage. Digital Invest. 10, 129–137 (2013)
11. Cohen, M.: Scanning memory with Yara. Digital Invest. 20, 34–43 (2017)
12. Lapso, J.A., Peterson, G.L., Okolica, J.S.: Whitelisting system state in windows forensic

memory visualizations. Digital Invest. 20, 2–15 (2016)
13. Karbab, E.B., Debbabi, M., Mouheb, D.: Fingerprinting android packaging: generating

DNAs for malware detection. Digital Invest. 18, 33–45 (2016)
14. Tam, K., Khan, S.J., Fattori, A., Cavallaro, L.: CopperDroid: automatic reconstruction of

android malware behaviors. In: NDSS, pp. 8–11 (2015)
15. Lindorfer, M., Neugschwandtner, M., Weichselbaum, L., Fratantonio, Y., Van Der Veen, V.,

Platzer, C.: ANDRUBIS-1,000,000 apps later: a view on current android malware behaviors.
In: 3rd International Workshop on Building Analysis Datasets and Gathering Experience
Returns for Security, pp. 3–17 (2014)

16. Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis, M., Ioannidis, S.: Rage against
the virtual machine: hindering dynamic analysis of android malware. In: 7th European
Workshop on System Security, pp. 5:1–5:6 (2014)

17. Thing, V.L.L., Ng, K.Y., Chang, E.C.: Live memory forensics of mobile phones. Digital
Invest. 7, S74–S82 (2010)

Coriander: A Toolset for Generating Realistic Android 233



Author Index

Alobaidli, Hanan 117
Azhar, M. A. Hannan Bin 83

Baggili, Ibrahim 195
Baier, Harald 158
Barmpatsalou, Konstantia 106
Barton, Thomas Edward Allen 83
Breitinger, Frank 144, 195

Chen, Jiuming 130
Choo, Kim-Kwang Raymond 130
Cruz, Tiago 106

Ekstedt, Mathias 117
Ernsberger, Dominik 64

Fan, Yachun 181
Franqueira, Virginia N. L. 33

Ge, Haidong 97

Homem, Irvin 228
Huang, Qingjia 3

Ikuesan, R. Adeyemi 64
Iqbal, Asif 117

Jia, Xiaoqi 3
Jiang, Jianguo 130

Kieseberg, Peter 18
Knieriem, Brandon 195

Leopard, Charles B. 175
Levine, Philip 195
Liebler, Lorenz 158
Lillis, David 144
Liu, Chao 130
Liu, Jin 181
Liu, Kunying 130

MacRae, John 33
McCarrin, Michael R. 175
Monteiro, Edmundo 106

Neuner, Sebastian 18

Pluskal, Jan 207

Qiao, Tong 97

Ren, Pu 181
Rowe, Neil C. 49, 175
Ryšavý, Ondřej 207

Scanlon, Mark 144
Schmiedecker, Martin 18
Schrittwieser, Sebastian 18
Shen, Qingni 221
Shi, Kai 97
Shui, Wuyang 181
Simoes, Paulo 106
Sun, Jinkai 97

Tian, Donghai 3

Venter, S. Hein 64
Vondráček, Martin 207

Weippl, Edgar 18
Wu, Yiming 97
Wu, Zhonghai 221

Xin, Wu 221
Xu, Ming 97

Yang, Tao 97
Yang, Yahui 221
Yu, Min 130

Zhang, Weijuan 3
Zhang, Xiaolu 195
Zhao, Wenshuo 181
Zheng, Ning 97
Zhou, Guangzhe 3
Zhou, Mingquan 181
Zugenmaier, Alf 64


	Preface
	Organization
	Contents
	Malware and Botnet
	FindEvasion: An Effective Environment-Sensitive Malware Detection System for the Cloud
	1 Introduction
	2 System Architecture
	3 Implementation
	3.1 Transparent Extraction
	3.2 Behavioral Profile
	3.3 Behavior Normalization
	3.4 Behavior Comparison

	4 Evaluation
	4.1 Optimal Parameter  Selection
	4.2 Algorithm Evaluation
	4.3 The Effectiveness of Eliminating Interference Behaviors
	4.4 Large Scale Test

	5 Limitations
	6 Related Work
	6.1 Dynamic Analysis
	6.2 Transparent Monitoring
	6.3 Evasion Detection

	7 Conclusions and Future Work
	References

	Real-Time Forensics Through Endpoint Visibility
	1 Introduction
	2 Background and Related Work
	3 Real-Time Forensic Tools
	3.1 osquery
	3.2 GRR
	3.3 MIG
	3.4 Commercial Solutions

	4 Methodology
	4.1 Lab Setup
	4.2 Malware Sample Selection
	4.3 Evaluation

	5 Results
	5.1 osquery
	5.2 GRR
	5.3 MIG

	6 Limitations and Future Work
	7 Conclusions
	References

	On Locky Ransomware, Al Capone and Brexit
	Abstract
	1 Introduction
	2 How Locky Works
	3 Mechanics of the Locky Malware
	4 Impact of Locky is Substantial
	5 Ransomware and Cryptocurrency Have Become Either Side of the Same (Bit)Coin
	6 Review of Tools for Bitcoin and Blockchain Deanonymisation
	7 Legal Instruments Facilitating Ransomware Digital Forensics
	8 Conclusions
	References

	Deanonymization
	Finding and Rating Personal Names on Drives for Forensic Needs
	Abstract
	1 Introduction
	2 Previous Work
	3 Test Setup
	4 Analysis of Personal-Name Candidates
	4.1 Splitting Strings to Find Names
	4.2 Combining Adjacent Personal Names
	4.3 Rating Personal-Name Candidates
	4.4 Experimental Results with a Bayesian Model
	4.5 Results with Alternative Conceptual Models

	5 Cross-Modal Clues
	5.1 Rating Phone Numbers
	5.2 Combining Cross-Modal Clues

	6 Identifying the Principals Associated with a Drive
	7 Conclusions
	Acknowledgements
	References

	A Web-Based Mouse Dynamics Visualization Tool for User Attribution in Digital Forensic Readiness
	Abstract
	1 Introduction
	2 Related Work
	2.1 Purpose and Contribution of this Study

	3 Research Methodology
	3.1 Mouse Navigation Tracking Process
	3.2 Data Pre-processing and Feature Extraction
	3.2.1 Speed
	3.2.2 Distance or Path Length
	3.2.3 Time Delay/Silent Time/Click Delay
	3.2.4 Angle of Inclination
	3.2.5 Direction and Weight
	3.2.6 Skewness and Kurtosis

	3.3 Visualization
	3.4 Experimental Set-up

	4 Results and Analysis
	5 Discussion
	5.1 Limitation and Future Works

	6 Conclusion
	References

	Digital Forensics Tools I
	Open Source Forensics for a Multi-platform Drone System
	Abstract
	1 Introduction
	2 Literature Review
	3 Methodology
	3.1 Mobile Forensics
	3.2 UAV

	4 Results
	4.1 SD Card
	4.2 Internal Storage
	4.3 DJI GO Application

	5 Conclusion
	References

	A Novel File Carving Algorithm for EVTX Logs
	1 Introduction
	2 Related Work
	3 Description of EVTX Logs
	3.1 File Header
	3.2 Chunk Header
	3.3 Record

	4 The Proposed Approach
	4.1 Data Pre-processing
	4.2 Fragmentation Reassembly
	4.3 Corrupted Records Extracting

	5 Experiment and Evaluation
	6 Summary
	References

	Fuzzy System-Based Suspicious Pattern Detection in Mobile Forensic Evidence
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Use Case Scenario
	3.2 Expert Knowledge
	3.3 Rule Inference
	3.4 Datasets and Ground Truth Generation
	3.5 Fuzzy System Configuration

	4 Evaluation
	5 Conclusions
	A  SMS Datasets Evaluation Metrics
	References

	Cyber Crime Investigation and Digital Forensics Triage
	Digital Forensic Readiness in Critical Infrastructures: A Case of Substation Automation in the Power Sector
	Abstract
	1 Introduction
	2 SCADA System Architecture
	3 Related Work
	3.1 Challenges to SCADA Forensics
	3.2 SCADA Forensics Research

	4 Discussion of the Related Work
	5 Case Studies
	5.1 Example 1: Digital Forensic Investigation of an IED Device
	5.2 Example 2: Digital Forensic Investigation of a Phasor Measurement Unit (PMU) Device
	5.2.1 Introduction to PMU Device
	5.2.2 Synchrophasor Network
	5.2.3 Vulnerability of a PMU Device to Spoofing/Jamming Attacks
	5.2.4 Digital Investigation of SEL-421 PMU


	6 Conclusions and Future Work
	Acknowledgment
	References

	A Visualization Scheme for Network Forensics Based on Attribute Oriented Induction Based Frequent Item Mining and Hyper Graph
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Network Forensic Visualization Scheme
	3.1 Attack Features
	3.2 Attack Parameters
	3.3 AOI-FIM Algorithm
	3.4 Hyper Graph
	3.5 Visualization System for Network Forensic

	4 Evaluation
	4.1 VAST Firewall and IDS Logs
	4.2 Local Network Traffic

	5 Conclusion and Future Work
	Acknowledgment
	References

	Expediting MRSH-v2 Approximate Matching with Hierarchical Bloom Filter Trees
	1 Introduction
	2 Background: Approximate Matching
	3 The MRSH-v2 Algorithm
	4 Hierarchical Bloom Filter Trees (HBFT)
	5 Experiments
	5.1 Datasets
	5.2 Experiment Overview

	6 Conclusions and Future Work
	References

	Approxis: A Fast, Robust, Lightweight and Approximate Disassembler Considered in the Field of Memory Forensics
	1 Introduction
	2 Related Work
	3 Requirements of Approximate Disassembling
	4 Background and Fundamentals
	4.1 Disassembling
	4.2 Mnemonic Frequency Analysis
	4.3 Byte Tree Analysis

	5 Approach
	5.1 Disassembling
	5.2 Code and Architecture Detection

	6 Assessment and Experimental Results
	7 Conclusion
	References

	Digital Forensics Tools Testing and Validation
	Memory Forensics and the Macintosh OS X Operating System
	Abstract
	1 Introduction
	2 Methodology
	3 Results
	4 Conclusions
	Acknowledgements
	References

	Sketch-Based Modeling and Immersive Display Techniques for Indoor Crime Scene Presentation
	Abstract
	1 Introduction
	2 Materials and Methods
	2.1 A Specialized 3D Model Collection
	2.2 Method

	3 Illustrative Example
	4 Discussion
	5 Conclusion
	Acknowledgement
	References

	An Overview of the Usage of Default Passwords
	1 Introduction
	2 Literature Review
	2.1 Breaches Exploiting Default User Credentials
	2.2 Taking Advantage of Default Passwords - Tools, Scripts and Malware

	3 Applications Analysis
	3.1 Results

	4 Qualitative Survey of Default Credential Use
	5 Discussion and Conclusion
	References

	Hacking
	Automation of MitM Attack on Wi-Fi Networks
	1 Introduction
	2 Security Weaknesses in WLAN Technologies
	2.1 Wireless Security
	2.2 Network Technologies Used in WLANs
	2.3 Available Tools for Specific Phases of the MitM Attack on Wireless Networks

	3 Attack Automation Using Developed wifimitm Package and wifimitmcli Tool
	3.1 Attack Data
	3.2 Dictionary Personalization
	3.3 Requirements

	4 Attack's Performance Impact
	5 Experiments Concerning Various Network Configurations and Devices
	6 Conclusions
	References

	SeEagle: Semantic-Enhanced Anomaly Detection for Securing Eagle
	Abstract
	1 Introduction
	2 Challenges of Eagle
	2.1 Security Risks
	2.2 Attack Methods

	3 SeEagle
	3.1 Overview
	3.2 Experimental Evaluation

	4 Conclusions and Future Work
	Acknowledgements
	References

	Coriander: A Toolset for Generating Realistic Android Digital Evidence Datasets
	Abstract
	1 Introduction
	2 Background and Related Work
	3 The Coriander Toolset
	3.1 Coriander
	3.2 AndroMemDump

	4 Experiment Results and Discussion
	5 Conclusions and Future Work
	References

	Author Index



