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Abstract— During the last decade sampling-based path 

planning algorithms have been implemented in many practical 

robotics tasks. However, little improvements have been dedicated 

to the returned solution (from the point of view quality) and 

sampling process. The aim of this paper is to introduce a new 

technique that enhances the classical RRT algorithm. First, the 

sampling step is modified in order to increase the number of the 

possible solutions in the free space. Second, within possible 

solutions we apply an optimization scheme that gives the best 

solution in term of safety and shortness. The proposed solution, 

namely, the Rapidly exploring Random SNAKE (RRS) is a 

combination of Potential Fields (PF) and the RRT. The RRS 

takes the advantage of both RRT and PF in respectively: rapidly 

searching new candidate nodes in the free space and the to 

circumnavigating obstacles by calculating a safe sub-path in the 

free space towards the new node created by the RRT. In 

comparison to the classical RRT, the proposed algorithm 

increases the probability of completeness, accelerates the 

convergence and generates a much safer and shorter open-loop 

solution. 

Index Terms—Motion planning, sampling-based algorithms, 

optimal path planning, potential field 

I. INTRODUCTION 

Robotic path planning problem has received a considerable 

amount of attention over the last years, where applications 

implementing real robots increase dramatically [1], [2]. The 

main issue that path planning solves is the possibility of 

driving robots from Initial to Final locations without colliding 

with any obstacle (safety condition of the path) in a minimum 

time. Such algorithms are judged efficient if they find a 

solution even in complex and cluttered environments. 

Moreover, the computational effort in this finding should be 

bounded, e.g., the algorithm provides at least one solution 

(completeness) if it exists in a finite amount of time. Cell 

decomposition [3] and visibility roadmaps [1] are known to 

guaranty the completeness. However, in practice the later 

algorithms are computationally expensive and hard to 

implement. 

More recently, a new approach based on Sampling process 

of C-space has been introduced [1] and became very popular. 

The main advantage of this algorithm is to rely on random 

exploration to avoid visiting the whole working environment 

in order to derive an acceptable solution. Sampling Motion 

Planning (SMP) algorithms probe the C-space following an 

incremental sampling scheme and use a collision detector to 

find feasible paths [1]. The samples not verifying the 

collision-free conditions are not considered and the sampling 

process continue till the solution is found. One of SMP based 

algorithms is the Rapidly exploration Random Tree (RRT) [1] 

which generates random samples called Nodes and build a 

Tree from the Start to the Goal locations. RRT has almost two 

main conditions of collision free, one is the Node itself and the 

second is the Edge linking the current node and the candidate 

one. An improvement of the algorithm (OBRRT) was 

proposed in [4]. Unfortunately, these algorithms can only 

guarantee asymptotic completeness and no time-to-solution 

upper bound can be known a priori. On the other hand, the 

generated path is not optimal in length neither in smoothness.   

In this paper we propose a new algorithm named "Rapidly 

exploration Random SNAKE (RRS)" based on the 

combination of SMP with Potential Field in 2D environment. 

The idea behind is to increase the number of accepted samples 

in 
freeE by circumnavigating locally obstacles by applying a 

local deformation to the colliding edges, thanks to the 

adaptation of the Active Contour Model (known also as 

"SNAKE" [5]). This combination leads to near-optimal paths 

in terms of number of probes, in length and in safety. Indeed, 

the number of feasible paths is increased for the same 

computational effort allowing additional operations that 

improves the safety and reduces the distance traveled by 

robots. 

This paper is organized as follow; we first give related 

works to path planning approaches. We give after, the 

algorithm we proposed and its performances compared to the 

RRT algorithm. We finish by conclusion and future works. 

II. RELATED WORKS 

The fundamental issue in mobile robot path planning is to 

drive the system, robustly, from a known initial state initS  to 

the final state goalS  through a feasible trajectory, which links 



both states [2]. By considering the prior knowledge of the 

environment 
o b sfree EEE  , which contains free space Efree 

and obstacles Eobs. Generating a solution must fulfill three 

main conditions: 1) a feasible path initS
 goalS , a safe path 

that minimizes the risk of colliding with obstacles, 3) a short 

path minimizing the traveled distance. For cluttered and 

complex environments, the problem is known to be hard and 

subject to deadlock situations.  

 To address this problem, basically, four different classes 

path-planning techniques are used: Cell decomposition, 

Potential field, Probabilistic algorithms and Sampling methods 

[1], [2]. 

A. Cell decomposition or Grid-based algorithms  

The configuration space is decompressed into squares 

forming a grid (or cell) [1] [6] in which every configuration 

corresponds to a certain grid. The robot moves from a point to 

an adjacent point, as long as that grid is in the free space 
freeE

using a search algorithm such as A* [7] to find a path to get 

from start to the goal. These techniques handle complex 

problems in high dimensional spaces but usually operating in 

binary representation of the search space made up of free 

regions constrained by obstacles. Due to their nature solution 

paths, generally, have low quality and a post processing phase 

could be needed to improve specific criteria, like: the length or 

the distance to the obstacles. Regarding those inconvenient, 

some approaches which deal with these issues have been 

proposed in [8]. In addition, free space grid regions can be 

merged into hierarchical tree structure. This technique has 

been successfully implemented, but leads to more burdens in 

term of development cost and computation time [9]. An 

example falling in this category is the Bio-inspired algorithm. 

It relies on genetic algorithm as presented in [10] or Particle 

Swarm Optimization [11]. 

B. Potential fields algorithms 

Potential fields-based algorithms built functions that 

present a global minimum, which attracts agents to the goalS

where 
obsE generates repulsive forces. Originally, this 

approach has been proposed by Khatib in [12]. The robot is 

considered as a point robot in the configuration space under 

the influence of an artificial potential field depending on the 

distance from the target ( goalS ) and the obstacles. Then, the 

robot moves only through the lowest adjacent potential value, 

which guides it toward goalS . A global path planning 

approach was proposed by Charles [13], which is less 

sensitive to local minima. However, these methods need much 

more computation time, and the risk of getting trapped in local 

minima is very high.  

C. Combinatorial algorithms  

   These algorithms construct structures within 

o b sfree EEE  to get necessary information needed for 

planning [1]. This information is obtained after trapezoidal or 

triangular decomposition or Voronoi tessilation [14]. The 

output of the applied processes is a visibility graph (VG), a 

generalized Voronoi graph (GVG) or Roadmaps [14], which 

are curves in 
freeE . Another important query step (e.g. using 

Dijkstra’s algorithm to find connectivity schema which links 

the initial and the final states) is necessary. Usually, these 

methods are used off-line to prepare possible routes and paths 

that are checked during the searching phase. These methods 

deal better with completeness so that the existence of a 

solution is guarantied. However, having great number of edge 

and/or obstacles (
obsE ) make the running time much higher. 

Preprocessing algorithm, namely the plane sweep principle 

[15] can reduce the query time dramatically.  

D. Sampling-based algorithms 

These algorithms avoid the explicit characterization of 

obsE  and 
freeE spaces by probing the environment E  with a 

sampling schema, followed by a collision detection phase [1]. 

Clearly, the whole map is not visited and only randomly 

generated steps within 
freeE  are considered. Probabilistic 

RoadMaps (PRM) [16] and Rapidly exploring Random Tree 

[17] which was introduced in 2001 are the most popular 

sampling based algorithms. Basically, a point in the space E  

is randomly chosen and free-collision test is performed. For 

positive answers, the nearest point in the tree is connected to 

this candidate. In addition to the advantages cited earlier, the 

RRT algorithm performs simultaneously the classical 

preprocessing and searching steps, which make it well adapted 

for real-time executions to handling uncertainties and sensory 

uncertainties. The Box-RRT was proposed by Pepy et al in 

[18] to deal with such uncertainties.  

In general, RRT-like based algorithms are only 

implemented to find a possible path efficiently without 

considering the inherent costs. Recently, a new improvement 

of sampling methods mainly a guided utility function which 

guides the expansion algorithm towards regions having higher 

utility based on information of the state space [19]. Another 

method called RRT* to improve the returned solution and the 

internal process like increasing the number of samples and 

reducing the cost of the solution [20]. Regarding to limitations 

of RRT* in high dimensional space a heuristics method was 

proposed in [21] to improve the initial path and decrease 

iteratively the computational efforts.  

To handle such issues, we investigated a new formulation 

of the basic RRT. Like in the classical RRT algorithm, first we 

generate a random sample ( randq ). In addition to this step, 

considering the local effects of obstacles allows creating a 

local potential field. The later is used to deform (using the 

adapted SNAKE) the original straight path to circumnavigate 

dynamically the closer obstacles. This deformation can handle 

as well safety considerations by adding a supplementary 

constraint that allows minimizing the length of the obtained 

sub-segment. We intend to extend the sampling searching 

strategy by giving the possibility of accepting samples 



considered unreachable by the basic RRT. This increases the 

change to find optimal solutions in less iterations.   

III. RAPIDLY EXPLORATION RANDOM SNAKE (RRS) 

The basic idea behind our RRS is to combine the classical 

RRT together with SNAKE, an active contour model used 

previously in computer vision for image segmentation.  

A. Active Contour Model for Path Planning 

SNAKE was proposed initially for Image Segmentation in 

Computer Vision [5]. SNAKE deforms a line under the effects 

of forces derived from image grey levels or colors. These 

forces (or equivalently the potential field) push the line 

towards the equipotential curves, which actually the contour 

between two adjacent regions. This approach is adapted here 

to cope with the path generation and obstacle avoidance: it 

pushes the line far enough from the present object and finds a 

safe path in case of cluttered environment.  

We build the energy of the SNAKE model based on the 

obstacles and the robot path. Based on the energy 

minimization, our SNAKE line is subject to the influence of 

the environment and the internal trajectory forces. The 

external forces (Obstacles) push the contour (path) far from 

zones of high potential field (higher collision risk probability). 

The internal force maximizes the smoothness of the contour. 

Assuming that the trajectory parameters are given by:

))(),(()( sysxsv  . The SNAKE model is defined as follow: 
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Where,
IntFrcE represents the internal energy of the contour 

(path), 
ExtFrcE represents the external energy of the contour 

(obstacles), 
ConE represents the external force constraints 

(which is not considered in this case) and 
OpFrcE represents the 

energy to optimize the line (stretching the path). 

The internal energy is defined as follow:   

         2
22

svssvsEIntFrc                 (2)    

 Where the first part (function of ) is a membrane force of 

the contour, and the second part (function of ) is a force 

acting to counter to be thin. 

For the external energy we are using the term of “
ExtFrcE1 ”  

 defined in [5]. Where  22* IGEExtFrc  
. 

Where I represents the data information containing the 

obstacles primitives. 

The Optimization energy 
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defined by: 
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Where  sn


 represents the normal unitary vector to the 

curve at point  sv and N  is the weight, for a large value of 

N the curve converges to straight line very quickly. The 

normal of each point is strongly related to all other points’ 

position in the path. 

To make the path safer, we introduce a gaussian 

distribution representing robot’s movements ( m ) and 

sensors uncertainties ( o ) (Fig. 1). It forces the second term 

of the Eq. 1 to consider these uncertainties by deforming the 

original path.  

 
Figure 2 shows an example of path deformation by the 

SNAKE algorithm. The blue color zone in Fig.2(a) is the force 

field exerted by obstacles. The found path after deformation is 

represented in Fig.2 (b) by green color. 

 

B. Sampling Active Contour Model: the RRS-Core 

RRS builds a random tree similar to RRT algorithm. 

However, instead of taking the decision about invalid Nodes 

(accept or reject) the algorithm creates a local potential field 

based on the adapted SNAKE model to deform the curve 

which links the corresponding node with the mother tree. The 

RRS core algorithm is shown below: 

  Input: Initial and final configurations
initq and 

finq , 

maximum number of vertices K, incremental distance q . 

  Output: RRS graph G 

1. 
initG  (

initq ) 

2. for k = 1 to K 

3.     
randq ← RAND_CONF() 

4.     
nearq ← NEAREST_VERTEX(

randq , G) 

5.     
newq ← NEW_CONF(

nearq , q ) 

 if 
newq lies in 

freeE  

            * SNAKE curve deformation 

6.         * )(_. newqvertexaddG  

7.             * ),(_. newnear qqcurveaddG  

8.  end if 

9. return G 

 
 

Fig. 2. Adopted SNAKE algorithm, (a) Deformation process, (b) Path 

before and after deformation  

 
 

 
 

 

 
Fig. 1. Probabilistic model of the robot motion and obstacles modeling 

 

 
 

 



 

 
After initialization, the algorithm starts the main loop. In 

the loop it generates a random node qrand  in a configuration 

space E  during Step 3. The conventional RRT checks if the 

random configuration qrand  in E  belongs to 
freeE (by using 

a collision detection algorithm to reject samples in obsE ). If 

node does not belong to  
freeE , it is rejected. Only accepted 

nodes which satisfy the collision free  condition are processed 

in Step 5. If node does not satisfy the condition of collision free 

the current iteration is canceled and algorithm continues with 

next iteration.  

The collision free condition is satisfied if and only if randq

belongs to 
freeE and the edge which links randq to the 

previous node qnear in the TREE not crossing an existing 

obstacles. By modifying locally this condition, the SNAKE 

sets up the collision free condition to be satisfied by creating 

a set of new nodes in
freeE circumnavigating obstacles. The 

local SNAKE starts with an initial “curve” initC  

corresponding to the straight tree segment. In fact, the SNAKE 

gives more chance to accept nodes which do not satisfy the 

collision-free condition by providing a new curve newC which 

links qnear and randq . SNAKE is involved only if the

)q,edge(q n ewn ea r
has a high collision probability colP with 

the surrounding obstacles and then deform it from: obsE to:

freeE . After deformation the EDGE(
newnear q,q )= initC  

becomes CURVE( )E,qf(q=C Extnewnear,new
). The probability

Pcol is calculated based on the force field generated by 

obstacles and it is defined by the following equation: 

init

n

Extcol CE=P 
0

                                                     (4) 

Where n is the number of the points in C (s) .  

The sub-path given by curve Cnew is accepted if it 

satisfies the safety probability condition represented by Psafe 

which is defined in Eq. 5. 

n ew

n

Extsa fl CE=P 
0

                                              (5) 

An example of a path generated by RRS algorithm from the 

a start to the goal locations is shown in the Fig. 3 by red color. 

Curves with pink color are edges deformed by SNAKE to 

circumnavigating obstacles (the path includes around 6 curves). 

In case of conventional RRT all these edges are rejected. The 

min probability of collision Pcol

 

, which was considered in 

this example is 0.95. 

 

IV. RESULTES AND DICSUSSION 

In our experiment we evaluate RRT and RRS in three 

different environments. The first environment is simple, the 

second is rather complicated and the third one is a randomly 

generated environment. Similar to [19] we see how the two 

algorithms perform in terms of Cost (Iteration taken to find 

solution), Optimality (Path shortness), Number of Samples and 

Time of Convergence. Figure 5 shows those environments. 

 
The two algorithms have the same test conditions in the 

three setups: Simple (Fig. 5(a)), Complex (Fig. 5(b)) and 

Random (objects are placed randomly, potentially cluttered and 

with potential deadlocks) environment. 

 We consider that a solution is accepted (satisfied 

condition) if and only if the returned path links  
initS

and 
goalS  without collision.   

 If the condition above is not satisfied, we allow both 

algorithms to reach the max iteration number by trying 

to find other possibilities (creating new nodes) to reach 

goalS . 

 Since both algorithms are based on random generation 

we pre-specified 100 random test to minimize the 

effect of chance. 

 

 
(a)                                               (b) 

Fig. 5. Experiment Environment, (a) Simple, (b) Complex 
 

 

 

 
Fig. 4. Path Generated by RRS algorithm including all sub-paths created 

by adapted SNAKE (pink color) 

 
 

 
 

 

 
Fig. 3. RRS tree 

 

 
 

 



Basically, the RRS has good performances regarding all 

parameters cited before in comparison with RRT. 

Figure 6 shows a comparison between RRT and RRS 

algorithms in simple environment. In Fig.6 (a) we can see 

clearly the good performances of RRS compared to RRT in 

term of accepted nodes: RRS has almost 10% (over 2000 

nodes) grater then RRT. However, the percentage of 

convergence is the same because the environment is quite 

simple and the solution is easily found. Also both algorithms 

have small number of iterations: 231 (11.55%) and 149 

(7.45%) for RRT and RRS respectively. The RRS needs almost 

the half of iterations that RRT takes. 

For the path length the RRS has better solution compared to 

RRT. This is because of bends generated by RRS are lower. 

 
For complex environment (Fig. 7) with lots of obstacles, 

the task is more challenging. In this case, RRS performs better 

in term of node acceptance ratio, which is bigger than 60% 

while for RRT it is only about 20%. RRS in fact delays the 

decision making of choosing a given path by tolerating more 

possibilities to the obstacles avoidance process. Also there are 

some difficulties for the RRT to converge in all tests (only 90 

times from 100) while the RRS succeeded to find a solution in 

all tests. In average, the maximum number of iterations taken 

to find a solution for the RRS algorithm was four times smaller 

than for RRT, which was 980,23. Also the paths given by RRS 

in all experiments are smoother and shorter. Again, allowing 

more accepted nodes, the RRS allows finding shorter paths in 

many cases. We noticed that the difference is almost 2 meters. 

 
Figure 8 shows two solution - one found by the RRT (blue 

color) and one found by the RRS (red color). We can see that 

the RRS found a smoother and shorter path. 

 
 The second part of the experiment is designed to evaluate 

the efficiency of the proposed algorithm in any environment by 

generating randomly a set of obstacles and their relative 

location in the scene. The min and max number of obstacles 

are 5 and 20 respectively. Regarding to time of finding 

solutions, differences are very small. However, RRT performs 

better then RRS in complex and simple environment (Table 1). 

It is probably caused by narrow and long obstacles appearing in 

both environments, which take lots of time for SNAKE to 

deform around them. However RRS is better in random 

environment. Time in Table 1 is calculated only for successful 

test. The percentage of convergence in random environment 

was a bit lower than the others, is around 89% for RRS and 

 
Fig. 8. Two examples of paths, RRT (blue color) and RRS (read color) in 

term of pat shortness.  

 
(a)                                                          

 
(b)                                                          

Fig. 7. Comparison between RRT and RRS in complex environment, (a) 
Percentage of Accepted Nodes, Percentage of Convergences and 

Percentage of max iterations taken to find solution, (b) Length of the 

path. 

 
(a)                                                        

 
(b)                                                          

Fig. 6. Comparison between RRT and RRS in simple environment, (a) 
Percentage of Accepted Nodes, Percentage of Convergences and  

Percentage of max iterations taken to find solution, (b) Length of the path. 
 

 

 



88% for the RRT. This is caused by blocked situations where 

obstacles close the way to the goal. 

Also we can notice the participation ration of adapted 

SNAKE in Node acceptance is higher in complex environment 

(51%) because is much encumbered.  

TABLE I.  EVALUATION RESULT ACCORDING TO TIME OF CONVERGENCE 

TAKEN BY EACH ALGORITHM IN ALL ENVIRONMENTS 

Environment Type Mean Number 

of accepted 

Nodes  [Integer] 

Percentage of 

involved SNAKE in 

node acceptance [%] 

 

Mean 
Time 

Simple  RRT 99,19 --- 0.082 

RRS 78,90 30,74 0.091 

Complex  RRT 188,65 --- 0.087 

RRS 125,88 51,07 0.110 

Random  RRT 280,51 --- 0.141 

RRS 297,75 29,04 0.123 

V. CONCLUSION 

In this paper we proposed a new path planning method 

based on probabilistic sampling and potential fields techniques. 

Mainly, it combines the Rapidly exploration Random Tree 

(RRT) and the Active contour Model (SNAKE). The RRT 

probes the environment in a relaxed way, while the SNAKE 

adjusts the candidate paths following three goals: guarantying 

safety, smoothing the path and shortening it. Our Method 

performs well in simple and complex environments in 

comparison to the classical RRT algorithm. Indeed, we 

demonstrated how the local deformations generated by the 

SNAKE enhance the capabilities of the original sampling 

algorithm and converge in almost all cases and with less 

iterations. Moreover, the retuned solution is optimized in terms 

of traveled distance regarding the RRT solutions. 

Our future works are focusing on kinematic issues. Indeed, 

we are integrating non-holonomic constraints and more DoF’s 

to allow handling more robots, including mobile manipulators 

for real time and real life scenarios with unknown and 

challenging environments.  
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