
RRS: Rapidly exploration Random SNAKE a New

Method for Mobile Robot Path Planning

Khelifa Baizid

Determent of Computer Graphics and Multimedia

Brno University of Technology (BUT), Brno, Czech Rep.

baizid.khelifa@gmail.com

Ryad Chellali
PAVIS Lab

Italian Institute of technology (IIT), Genova, Italy

ryad.chellali@iit.it

Radim Luza
Determent of Intelligent System

Brno University of Technology (BUT) Brno, Czech Rep.

iluza@fit.vutbr.cz

Beran Vitezslav
Determent of Computer Graphics and Multimedia

Brno University of Technology (BUT) Brno, Czech Rep.

beranv@fit.vutbr.cz

Abstract— During the last decade sampling-based path

planning algorithms have been implemented in many practical

robotics tasks. However, little improvements have been dedicated

to the returned solution (from the point of view quality) and

sampling process. The aim of this paper is to introduce a new

technique that enhances the classical RRT algorithm. First, the

sampling step is modified in order to increase the number of the

possible solutions in the free space. Second, within possible

solutions we apply an optimization scheme that gives the best

solution in term of safety and shortness. The proposed solution,

namely, the Rapidly exploring Random SNAKE (RRS) is a

combination of Potential Fields (PF) and the RRT. The RRS

takes the advantage of both RRT and PF in respectively: rapidly

searching new candidate nodes in the free space and the to

circumnavigating obstacles by calculating a safe sub-path in the

free space towards the new node created by the RRT. In

comparison to the classical RRT, the proposed algorithm

increases the probability of completeness, accelerates the

convergence and generates a much safer and shorter open-loop

solution.

Index Terms—Motion planning, sampling-based algorithms,

optimal path planning, potential field

I. INTRODUCTION

Robotic path planning problem has received a considerable

amount of attention over the last years, where applications

implementing real robots increase dramatically [1], [2]. The

main issue that path planning solves is the possibility of

driving robots from Initial to Final locations without colliding

with any obstacle (safety condition of the path) in a minimum

time. Such algorithms are judged efficient if they find a

solution even in complex and cluttered environments.

Moreover, the computational effort in this finding should be

bounded, e.g., the algorithm provides at least one solution

(completeness) if it exists in a finite amount of time. Cell

decomposition [3] and visibility roadmaps [1] are known to

guaranty the completeness. However, in practice the later

algorithms are computationally expensive and hard to

implement.

More recently, a new approach based on Sampling process

of C-space has been introduced [1] and became very popular.

The main advantage of this algorithm is to rely on random

exploration to avoid visiting the whole working environment

in order to derive an acceptable solution. Sampling Motion

Planning (SMP) algorithms probe the C-space following an

incremental sampling scheme and use a collision detector to

find feasible paths [1]. The samples not verifying the

collision-free conditions are not considered and the sampling

process continue till the solution is found. One of SMP based

algorithms is the Rapidly exploration Random Tree (RRT) [1]

which generates random samples called Nodes and build a

Tree from the Start to the Goal locations. RRT has almost two

main conditions of collision free, one is the Node itself and the

second is the Edge linking the current node and the candidate

one. An improvement of the algorithm (OBRRT) was

proposed in [4]. Unfortunately, these algorithms can only

guarantee asymptotic completeness and no time-to-solution

upper bound can be known a priori. On the other hand, the

generated path is not optimal in length neither in smoothness.

In this paper we propose a new algorithm named "Rapidly

exploration Random SNAKE (RRS)" based on the

combination of SMP with Potential Field in 2D environment.

The idea behind is to increase the number of accepted samples

in
freeE by circumnavigating locally obstacles by applying a

local deformation to the colliding edges, thanks to the

adaptation of the Active Contour Model (known also as

"SNAKE" [5]). This combination leads to near-optimal paths

in terms of number of probes, in length and in safety. Indeed,

the number of feasible paths is increased for the same

computational effort allowing additional operations that

improves the safety and reduces the distance traveled by

robots.

This paper is organized as follow; we first give related

works to path planning approaches. We give after, the

algorithm we proposed and its performances compared to the

RRT algorithm. We finish by conclusion and future works.

II. RELATED WORKS

The fundamental issue in mobile robot path planning is to

drive the system, robustly, from a known initial state initS to

the final state goalS through a feasible trajectory, which links

both states [2]. By considering the prior knowledge of the

environment
o b sfree EEE , which contains free space Efree

and obstacles Eobs. Generating a solution must fulfill three

main conditions: 1) a feasible path initS
 goalS , a safe path

that minimizes the risk of colliding with obstacles, 3) a short

path minimizing the traveled distance. For cluttered and

complex environments, the problem is known to be hard and

subject to deadlock situations.

 To address this problem, basically, four different classes

path-planning techniques are used: Cell decomposition,

Potential field, Probabilistic algorithms and Sampling methods

[1], [2].

A. Cell decomposition or Grid-based algorithms

The configuration space is decompressed into squares

forming a grid (or cell) [1] [6] in which every configuration

corresponds to a certain grid. The robot moves from a point to

an adjacent point, as long as that grid is in the free space
freeE

using a search algorithm such as A* [7] to find a path to get

from start to the goal. These techniques handle complex

problems in high dimensional spaces but usually operating in

binary representation of the search space made up of free

regions constrained by obstacles. Due to their nature solution

paths, generally, have low quality and a post processing phase

could be needed to improve specific criteria, like: the length or

the distance to the obstacles. Regarding those inconvenient,

some approaches which deal with these issues have been

proposed in [8]. In addition, free space grid regions can be

merged into hierarchical tree structure. This technique has

been successfully implemented, but leads to more burdens in

term of development cost and computation time [9]. An

example falling in this category is the Bio-inspired algorithm.

It relies on genetic algorithm as presented in [10] or Particle

Swarm Optimization [11].

B. Potential fields algorithms

Potential fields-based algorithms built functions that

present a global minimum, which attracts agents to the goalS

where
obsE generates repulsive forces. Originally, this

approach has been proposed by Khatib in [12]. The robot is

considered as a point robot in the configuration space under

the influence of an artificial potential field depending on the

distance from the target (goalS) and the obstacles. Then, the

robot moves only through the lowest adjacent potential value,

which guides it toward goalS . A global path planning

approach was proposed by Charles [13], which is less

sensitive to local minima. However, these methods need much

more computation time, and the risk of getting trapped in local

minima is very high.

C. Combinatorial algorithms

 These algorithms construct structures within

o b sfree EEE to get necessary information needed for

planning [1]. This information is obtained after trapezoidal or

triangular decomposition or Voronoi tessilation [14]. The

output of the applied processes is a visibility graph (VG), a

generalized Voronoi graph (GVG) or Roadmaps [14], which

are curves in
freeE . Another important query step (e.g. using

Dijkstra’s algorithm to find connectivity schema which links

the initial and the final states) is necessary. Usually, these

methods are used off-line to prepare possible routes and paths

that are checked during the searching phase. These methods

deal better with completeness so that the existence of a

solution is guarantied. However, having great number of edge

and/or obstacles (
obsE) make the running time much higher.

Preprocessing algorithm, namely the plane sweep principle

[15] can reduce the query time dramatically.

D. Sampling-based algorithms

These algorithms avoid the explicit characterization of

obsE and
freeE spaces by probing the environment E with a

sampling schema, followed by a collision detection phase [1].

Clearly, the whole map is not visited and only randomly

generated steps within
freeE are considered. Probabilistic

RoadMaps (PRM) [16] and Rapidly exploring Random Tree

[17] which was introduced in 2001 are the most popular

sampling based algorithms. Basically, a point in the space E

is randomly chosen and free-collision test is performed. For

positive answers, the nearest point in the tree is connected to

this candidate. In addition to the advantages cited earlier, the

RRT algorithm performs simultaneously the classical

preprocessing and searching steps, which make it well adapted

for real-time executions to handling uncertainties and sensory

uncertainties. The Box-RRT was proposed by Pepy et al in

[18] to deal with such uncertainties.

In general, RRT-like based algorithms are only

implemented to find a possible path efficiently without

considering the inherent costs. Recently, a new improvement

of sampling methods mainly a guided utility function which

guides the expansion algorithm towards regions having higher

utility based on information of the state space [19]. Another

method called RRT* to improve the returned solution and the

internal process like increasing the number of samples and

reducing the cost of the solution [20]. Regarding to limitations

of RRT* in high dimensional space a heuristics method was

proposed in [21] to improve the initial path and decrease

iteratively the computational efforts.

To handle such issues, we investigated a new formulation

of the basic RRT. Like in the classical RRT algorithm, first we

generate a random sample (randq). In addition to this step,

considering the local effects of obstacles allows creating a

local potential field. The later is used to deform (using the

adapted SNAKE) the original straight path to circumnavigate

dynamically the closer obstacles. This deformation can handle

as well safety considerations by adding a supplementary

constraint that allows minimizing the length of the obtained

sub-segment. We intend to extend the sampling searching

strategy by giving the possibility of accepting samples

considered unreachable by the basic RRT. This increases the

change to find optimal solutions in less iterations.

III. RAPIDLY EXPLORATION RANDOM SNAKE (RRS)

The basic idea behind our RRS is to combine the classical

RRT together with SNAKE, an active contour model used

previously in computer vision for image segmentation.

A. Active Contour Model for Path Planning

SNAKE was proposed initially for Image Segmentation in

Computer Vision [5]. SNAKE deforms a line under the effects

of forces derived from image grey levels or colors. These

forces (or equivalently the potential field) push the line

towards the equipotential curves, which actually the contour

between two adjacent regions. This approach is adapted here

to cope with the path generation and obstacle avoidance: it

pushes the line far enough from the present object and finds a

safe path in case of cluttered environment.

We build the energy of the SNAKE model based on the

obstacles and the robot path. Based on the energy

minimization, our SNAKE line is subject to the influence of

the environment and the internal trajectory forces. The

external forces (Obstacles) push the contour (path) far from

zones of high potential field (higher collision risk probability).

The internal force maximizes the smoothness of the contour.

Assuming that the trajectory parameters are given by:

))(),(()(sysxsv . The SNAKE model is defined as follow:

 svEsvEsvEsvEE OpFrcConExt FrcInt FrcSnake

1

0

1

0

1

0

1

0

 (1)

Where,
IntFrcE represents the internal energy of the contour

(path),
ExtFrcE represents the external energy of the contour

(obstacles),
ConE represents the external force constraints

(which is not considered in this case) and
OpFrcE represents the

energy to optimize the line (stretching the path).

The internal energy is defined as follow:

 2
22

svssvsEIntFrc (2)

 Where the first part (function of) is a membrane force of

the contour, and the second part (function of) is a force

acting to counter to be thin.

For the external energy we are using the term of “
ExtFrcE1 ”

 defined in [5]. Where 22* IGEExtFrc
.

Where I represents the data information containing the

obstacles primitives.

The Optimization energy

1

0

, dtyxfEOpFrc

 is

defined by:

 snNF

* (3)

Where sn

 represents the normal unitary vector to the

curve at point sv and N is the weight, for a large value of

N the curve converges to straight line very quickly. The

normal of each point is strongly related to all other points’

position in the path.

To make the path safer, we introduce a gaussian

distribution representing robot’s movements (m) and

sensors uncertainties (o) (Fig. 1). It forces the second term

of the Eq. 1 to consider these uncertainties by deforming the

original path.

Figure 2 shows an example of path deformation by the

SNAKE algorithm. The blue color zone in Fig.2(a) is the force

field exerted by obstacles. The found path after deformation is

represented in Fig.2 (b) by green color.

B. Sampling Active Contour Model: the RRS-Core

RRS builds a random tree similar to RRT algorithm.

However, instead of taking the decision about invalid Nodes

(accept or reject) the algorithm creates a local potential field

based on the adapted SNAKE model to deform the curve

which links the corresponding node with the mother tree. The

RRS core algorithm is shown below:

 Input: Initial and final configurations
initq and

finq ,

maximum number of vertices K, incremental distance q .

 Output: RRS graph G

1.
initG (

initq)

2. for k = 1 to K

3.
randq ← RAND_CONF()

4.
nearq ← NEAREST_VERTEX(

randq , G)

5.
newq ← NEW_CONF(

nearq , q)

 if
newq lies in

freeE

 * SNAKE curve deformation

6. *)(_. newqvertexaddG

7. *),(_. newnear qqcurveaddG

8. end if

9. return G

Fig. 2. Adopted SNAKE algorithm, (a) Deformation process, (b) Path

before and after deformation

Fig. 1. Probabilistic model of the robot motion and obstacles modeling

After initialization, the algorithm starts the main loop. In

the loop it generates a random node qrand in a configuration

space E during Step 3. The conventional RRT checks if the

random configuration qrand in E belongs to
freeE (by using

a collision detection algorithm to reject samples in obsE). If

node does not belong to
freeE , it is rejected. Only accepted

nodes which satisfy the collision free condition are processed

in Step 5. If node does not satisfy the condition of collision free

the current iteration is canceled and algorithm continues with

next iteration.

The collision free condition is satisfied if and only if randq

belongs to
freeE and the edge which links randq to the

previous node qnear in the TREE not crossing an existing

obstacles. By modifying locally this condition, the SNAKE

sets up the collision free condition to be satisfied by creating

a set of new nodes in
freeE circumnavigating obstacles. The

local SNAKE starts with an initial “curve” initC

corresponding to the straight tree segment. In fact, the SNAKE

gives more chance to accept nodes which do not satisfy the

collision-free condition by providing a new curve newC which

links qnear and randq . SNAKE is involved only if the

)q,edge(q n ewn ea r
has a high collision probability colP with

the surrounding obstacles and then deform it from: obsE to:

freeE . After deformation the EDGE(
newnear q,q)= initC

becomes CURVE()E,qf(q=C Extnewnear,new
). The probability

Pcol is calculated based on the force field generated by

obstacles and it is defined by the following equation:

init

n

Extcol CE=P
0

 (4)

Where n is the number of the points in C (s) .

The sub-path given by curve Cnew is accepted if it

satisfies the safety probability condition represented by Psafe

which is defined in Eq. 5.

n ew

n

Extsa fl CE=P
0

 (5)

An example of a path generated by RRS algorithm from the

a start to the goal locations is shown in the Fig. 3 by red color.

Curves with pink color are edges deformed by SNAKE to

circumnavigating obstacles (the path includes around 6 curves).

In case of conventional RRT all these edges are rejected. The

min probability of collision Pcol

, which was considered in

this example is 0.95.

IV. RESULTES AND DICSUSSION

In our experiment we evaluate RRT and RRS in three

different environments. The first environment is simple, the

second is rather complicated and the third one is a randomly

generated environment. Similar to [19] we see how the two

algorithms perform in terms of Cost (Iteration taken to find

solution), Optimality (Path shortness), Number of Samples and

Time of Convergence. Figure 5 shows those environments.

The two algorithms have the same test conditions in the

three setups: Simple (Fig. 5(a)), Complex (Fig. 5(b)) and

Random (objects are placed randomly, potentially cluttered and

with potential deadlocks) environment.

 We consider that a solution is accepted (satisfied

condition) if and only if the returned path links
initS

and
goalS without collision.

 If the condition above is not satisfied, we allow both

algorithms to reach the max iteration number by trying

to find other possibilities (creating new nodes) to reach

goalS .

 Since both algorithms are based on random generation

we pre-specified 100 random test to minimize the

effect of chance.

(a) (b)

Fig. 5. Experiment Environment, (a) Simple, (b) Complex

Fig. 4. Path Generated by RRS algorithm including all sub-paths created

by adapted SNAKE (pink color)

Fig. 3. RRS tree

Basically, the RRS has good performances regarding all

parameters cited before in comparison with RRT.

Figure 6 shows a comparison between RRT and RRS

algorithms in simple environment. In Fig.6 (a) we can see

clearly the good performances of RRS compared to RRT in

term of accepted nodes: RRS has almost 10% (over 2000

nodes) grater then RRT. However, the percentage of

convergence is the same because the environment is quite

simple and the solution is easily found. Also both algorithms

have small number of iterations: 231 (11.55%) and 149

(7.45%) for RRT and RRS respectively. The RRS needs almost

the half of iterations that RRT takes.

For the path length the RRS has better solution compared to

RRT. This is because of bends generated by RRS are lower.

For complex environment (Fig. 7) with lots of obstacles,

the task is more challenging. In this case, RRS performs better

in term of node acceptance ratio, which is bigger than 60%

while for RRT it is only about 20%. RRS in fact delays the

decision making of choosing a given path by tolerating more

possibilities to the obstacles avoidance process. Also there are

some difficulties for the RRT to converge in all tests (only 90

times from 100) while the RRS succeeded to find a solution in

all tests. In average, the maximum number of iterations taken

to find a solution for the RRS algorithm was four times smaller

than for RRT, which was 980,23. Also the paths given by RRS

in all experiments are smoother and shorter. Again, allowing

more accepted nodes, the RRS allows finding shorter paths in

many cases. We noticed that the difference is almost 2 meters.

Figure 8 shows two solution - one found by the RRT (blue

color) and one found by the RRS (red color). We can see that

the RRS found a smoother and shorter path.

 The second part of the experiment is designed to evaluate

the efficiency of the proposed algorithm in any environment by

generating randomly a set of obstacles and their relative

location in the scene. The min and max number of obstacles

are 5 and 20 respectively. Regarding to time of finding

solutions, differences are very small. However, RRT performs

better then RRS in complex and simple environment (Table 1).

It is probably caused by narrow and long obstacles appearing in

both environments, which take lots of time for SNAKE to

deform around them. However RRS is better in random

environment. Time in Table 1 is calculated only for successful

test. The percentage of convergence in random environment

was a bit lower than the others, is around 89% for RRS and

Fig. 8. Two examples of paths, RRT (blue color) and RRS (read color) in

term of pat shortness.

(a)

(b)

Fig. 7. Comparison between RRT and RRS in complex environment, (a)
Percentage of Accepted Nodes, Percentage of Convergences and

Percentage of max iterations taken to find solution, (b) Length of the

path.

(a)

(b)

Fig. 6. Comparison between RRT and RRS in simple environment, (a)
Percentage of Accepted Nodes, Percentage of Convergences and

Percentage of max iterations taken to find solution, (b) Length of the path.

88% for the RRT. This is caused by blocked situations where

obstacles close the way to the goal.

Also we can notice the participation ration of adapted

SNAKE in Node acceptance is higher in complex environment

(51%) because is much encumbered.

TABLE I. EVALUATION RESULT ACCORDING TO TIME OF CONVERGENCE

TAKEN BY EACH ALGORITHM IN ALL ENVIRONMENTS

Environment Type Mean Number

of accepted

Nodes [Integer]

Percentage of

involved SNAKE in

node acceptance [%]

Mean
Time

Simple RRT 99,19 --- 0.082

RRS 78,90 30,74 0.091

Complex RRT 188,65 --- 0.087

RRS 125,88 51,07 0.110

Random RRT 280,51 --- 0.141

RRS 297,75 29,04 0.123

V. CONCLUSION

In this paper we proposed a new path planning method

based on probabilistic sampling and potential fields techniques.

Mainly, it combines the Rapidly exploration Random Tree

(RRT) and the Active contour Model (SNAKE). The RRT

probes the environment in a relaxed way, while the SNAKE

adjusts the candidate paths following three goals: guarantying

safety, smoothing the path and shortening it. Our Method

performs well in simple and complex environments in

comparison to the classical RRT algorithm. Indeed, we

demonstrated how the local deformations generated by the

SNAKE enhance the capabilities of the original sampling

algorithm and converge in almost all cases and with less

iterations. Moreover, the retuned solution is optimized in terms

of traveled distance regarding the RRT solutions.

Our future works are focusing on kinematic issues. Indeed,

we are integrating non-holonomic constraints and more DoF’s

to allow handling more robots, including mobile manipulators

for real time and real life scenarios with unknown and

challenging environments.

ACKNOWLEDGMENT

The research leading to these results has received fund-

grant 247772 - SRS, Artemis JU grant 100233 - R3-COP, and

the IT4Innovations Center of Excellence, grant n.

CZ.1.05/1.1.00/02.0070, supported by Operational Program

"Research and Development for Innovations" funded by

Structural Funds of the European Union and the state budget of

the Czech Republic.

REFERENCES

[1] LaValle, S. M. (2006). Planning Algorithms. Cambridge

University Press, Cambridge, U.K. Available at

http://planning.cs.uiuc.edu/

[2] J.C. Latombe, “Robot Motion Planning”, Vol. SECS 0124,

Kluwer, Dordrecht, The Netherlands, 1991

[3] B. Chazelle. Approximation and decomposition of shapes. In J.

T. Schwartz and C. K. Yap, editors, Algorithmic and Geometric

Aspects of Robotics, pages 145-185. Lawrence Erlbaum

Associates, Hillsdale, NJ, 1987.Samuel Rodriguez, Xinyu Tang,

Jyh-Ming Lien, Nancy M. Amato, "An Obstacle-Based Rapidly-

Exploring Random Tree" , IEEE Int. Conference on Robotics

and Automation. (ICRA), pp. 895-900, Orlando, FL, May 2006.

[4] Michael. Kass, A. Witkin and D, Terzopoulos: "SNAKEs Active

contour models", Journal of Computer Vision, pp.321-331, 1987.

[5] Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Burgard,

W., Kavraki, L. E., and Thrun, S. (2005). Principles of Robot

Motion: Theory, Algorithms, and Implementations (Intelligent

Robotics and Autonomous Agents). The MIT Press.

[6] Hart, P.E.; Nilsson, N.J.; Raphael, B.; , "A Formal Basis for the

Heuristic Determination of Minimum Cost Paths," IEEE

Transactions on Systems Science and Cybernetics, vol.4, no.2,

pp.100-107, July 1968.

[7] Han-dong Zhang; Bao-hua Dong; Yu-wan Cen; Rui Zheng;

Hashimoto, S.; Saegusa, R.; , "Path Planning Algorithm for

Mobile Robot Based on Path Grids Encoding Novel

Mechanism," Third International Conference on Natural

Computation, 2007, vol.4, no., pp.351-356, Aug. 2007

[8] Ferguson, D. and Stentz, A., Multi-resolution field D*," in

Proceedings of the International Conference on Intelligent

Autonomous Systems (IAS), March 2006.

[9] Yanrong Hu; Yang, S.X.; , "A knowledge based genetic

algorithm for path planning of a mobile robot," 2004 IEEE

International Conference on Robotics and Automation, vol.5,

no., pp. 4350- 4355, May 2004.

[10] Wu Xianxiang; Ming Yan; Wang Juan; , "An improved path

planning approach based on Particle Swarm Optimization,"

2011 11th International Conference on Hybrid Intelligent

Systems (HIS), vol., no., pp.157-161, 5-8 Dec. 2011

[11] Khatib, O.; , "Real-time obstacle avoidance for manipulators

and mobile robots," 1985 IEEE International Conference on

Robotics and Automation. Proceedings. , vol.2, no., pp. 500-

505, Mar 1985.

[12] Warren, C.W.; , "Global path planning using artificial potential

fields," Proceedings of 1989 IEEE International Conference on

Robotics and Automation, vol.1, pp.316-321, 14-19 May 1989.

[13] Bhattacharya, P.; Gavrilova, M.L.; , "Roadmap-Based Path

Planning - Using the Voronoi Diagram for a Clearance-Based

Shortest Path," IEEE Robotics & Automation Magazine,, vol.15,

no.2, pp.58-66, June 2008.

[14] M. de Berg, M. van Kreveld, M. Overmars, and O.

Schwarzkopf. Computational Geometry: Algorithms and

Applications, 2nd Ed. Springer-Verlag, Berlin, 2000.

[15] Kavraki, L., Svestka, P., Latombe, J.-C., and Overmars, M.

(1996). Probabilistic roadmaps for path planning in high-

dimensional configuration spaces. IEEE Transactions on

Robotics and Automation, vol.12, (4):pp.566-580.

[16] S. M. Lavalle and J. J. Kuffer, "Rapidly-exploring random trees:

Progress and prospects", Workshop on the Algorithmic

Foundations of Robotics, 2000.

[17] R. Pepy and M. Kieffer and E. Walter, “Reliably Safe Path

Planning Using Interval Analysis”, Laboratoire des Signaux et

Syst_emes CNRS - SUPELEC - Univ Paris-Sud

[18] B. Burns and O. Brock. "Single-query motion planning with

utility guided random trees". IEEE International Conference on

Robotics and Automation, Rome, Italy, 2007.

[19] Sertac Karaman, "Sampling-based algorithms for optimal

motion planning", International Journal of Robotics. 2011.

[20] Baris Akgun and Mike Stilman, "Sampling Heuristics for

Optimal Motion Planning in High Dimensions", IEEE/RSJ

International Conference on Intelligent Robots and Systems

(IROS), 2011.

http://ijr.sagepub.com/search?author1=Sertac+Karaman&sortspec=date&submit=Submit

