
A Programmable Interconnection Network for Multiple Communication
Patterns

Václav Dvořák, Jiří Jaroš

Dept.of Computer Systems
Faculty of Information Technology BUT,

Brno, Czech Republic
 dvorak, jarosjir@fit.vutbr.cz

Abstract−−−−Application-specific or embedded systems with
less than 16 processing cores are too small to use some
kind of network on chip (NoC) for interconnection. On
the other hand, a crossbar and related circuitry (arbiters,
memory elements) are too expensive in terms of chip area.
As only few pair-wise and collective communication
patterns are mostly used in specific applications, we
explore an interconnection network that can support only
selected communication patterns and no others. The main
contribution of the paper is designing of such networks
without routers or arbiters, in a form of programmable
combinational logic, with limited crossbar functionality.
The interconnection network can be implemented by
multiplexers or block RAMs on the FPGA chip at a very
low cost. A functional decomposition of the related
multiple-output Boolean function into a cascade of block
RAM devices is aided by multi-terminal binary decision
diagrams and is illustrated on examples.

Keywords−−−− multiprocessor SoCs; programmable
interconnection; on-chip interconnects; crossbar
switch; logic decomposition; multi-terminal BDDs

I. INTRODUCTION

Multiprocesor systems-on-chip (MPSoC) consist of
multiple, usually heterogenous, processing elements
(PEs) with local memory, and I/O components. They
are usually targeted for embedded applications such as
multimedia, telecommunication architecture, network
security, and the like. In the implementation of
MPSoC, an on-chip network comes to the forefront
because of its impact on the performance of the system.
Design of MPSoC relies at present mostly on point-to-
point connections rather than on shared buses. Buses
are not scalable beyond some limit and may not
provide required performance because the available
communication bandwidth is shared among all the units
connected to the bus. Scalability and reusability were
two features that led to the network on chip (NoC)
paradigm for on-chip communication [1].

The topologies of choice for NoCs have been ring,
mesh, fat tree, crossbar and spidergon [2]. Performance

of these networks in pair-wise as well as in collective
communications is well understood. The lower bounds
for time complexity of collective communications are
known and can be reached in some cases by optimum
scheduling of communications [3].

Communication operations can be either point-to-
point, with one source and one destination, or
collective, with more than two participating processes.
Collective communications (CCs) are invoked by
nodes to distribute, gather, and exchange data. Some
embedded parallel applications, like network or media
processors, are characterized by independent data
streams or by a small amount of inter-process
communications [1]. However, many special-purpose
parallel applications display a bulk synchronous
processing (BSP) behavior: the processing nodes
access the network according to a global, structured
communication pattern.

A collective operation is usually defined in terms of
a group of processes. The operation is executed when
all processes in the group call the communication
routine with matching parameters. We classify
collective operations into three types according to their
purpose: CCs (One-to-All, OA, All-to-One, AO, All-to-
All, AA), global computation (reduction AOR or AAR
and scan) and synchronization (barrier). The CCs are
most important, as other collective operations are
closely related to them. In a broadcast (OAB), one
process sends the same message to every group
member, whereas in a scatter (OAS), one process sends
a different message to each member. Gather (AOG) is
the dual operation of scatter, in that one process
receives a message from each group member. These
basic operations can be combined to form more
complex operations. In all-to-all broadcast (AAB),
every process sends a message to every other group
member. In complete exchange, also referred to as all-
to-all scatter-gather (AAS), every group member sends
a different message to every other group member.
Permutations, and partial permutations (i.e.,
permutations in which some source to destination pairs

are missing) are important CCs that can be used as
building blocks to create more complex all-to-all CCs.
Since complexities of some communications are similar
(AOG ~ OAS, AOR ~ OAB, AAR ~ AAB), we will
focus only on 4 basic types (OAB, OAS, AAB, AAS).

 P0 P1 P2 P3 P4

 Sync

 Sync

 Sync

 Sync

 Sync

Comp.

Comm.

Comm.

Comp.

Comm.

Figure 1. BSP algorithm with five supersteps executed on five

processors.

The distributed-memory BSP model proposed by
Valiant is essential to our discussion. It comprises
computer architecture, a class of algorithms, and a
function for charging costs to algorithms [6]. A BSP
computer consists of a collection of processors, each
with private memory, and a communication network
that allows processors to access memories of other
processors. A BSP algorithm consists of a sequence of
super-steps, which contain a number of either
computation steps or communication steps, followed by
the global barrier synchronization. In a computation
super-step, each processor performs a sequence of
operations on local data. In a communication super-
step, each processor sends and receives a number of
messages (Figure1).

The time, or cost, of a communication super-step is

 Tcomm = hg + l, (1)

where each processor sends/receives to/from other
processors h or less data words, g is the time needed to
transfer one data word under the continuous message
traffic, and l is a fixed overhead (latency) of
communication and of global synchronization.

 Further on we will assume that application-specific
systems of interest in this paper are compatible with the

BSP model described above. In the following Section
II, we map the state of the art in application-specific
interconnects and formulate the problem to be dealt
with. The main results are in Sections III. We first
consider complexity of different implementations of a
crossbar network and arrive at its low-cost, application-
specific version in Section IIIA, and then present logic
design of a programmable interconnect on a small
example in Section IIIB. Synthesis of the application-
specific NoC for multiple communication patterns is
done on a small set of patterns in Section IV. The
presented technique is assessed in Conclusions.

 II. STATE OF THE ART AND THE PROBLEM

STATEMENT

In the context of application-specific MPSoCs,
communication architecture, more often than not does
not have to support all pair-wise communications and
efficient implementation of all collective communi-
cations such as broadcast, multicast, gather, scatter, and
others. Quite a few applications running on MPSoCs
use only a limited set of deterministic communication
patterns and a general NoC infrastructure suitable for
general-purpose computing is not needed. By taking
advantage of the known application communication
behavior, special-purpose networks may be designed
for well-behaved communication requirements,
resulting in networks that are more resource/
performance effective. We will therefore try to simplify
the interconnection network by providing a support just
for the required communication patterns.

The application-specific optimization of intercon-
nection network with respect to performance and power
consumption can be obtained by removal of some links.
For example, the spidergon topology is opened for such
optimization [4]. A design methodology using a
recursive bisection technique for generating optimum
topology for applications with well-behaved
communication patterns has been introduced in [5]. In
contrast, our approach treats the interconnection as
combinational logic and thus covers not only the single
instance of a problem, but a wide class of applications
with limited number of CPU cores and with limited
communication needs. The starting point is a non-
blocking crossbar, which is the ideal on-chip
interconnect, but it is prohibitively expensive for larger
MPSoCs.

Beside static networks, it may also be of interest to
allow the network to be reconfigurable, at run-time.
For example, reconfigurable computing paradigms
(e.g., FPGAs) have increasingly become more practical
alternatives recently. Field-programmable interconnect
devices (FPIDs), acting as SRAM-based switching

matrices, can be reconfigured dynamically, in the same
way as standard SRAM-based FPGAs – by means of
SRAM cells controlling switching elements (pass
transistors or transmission gates). Reconfiguration
times are therefore much too long and prevent dynamic
reconfiguration before each communication pattern.

The problem to be addressed in this paper is to find
as simple message-passing communication structure as
possible for MPSoC with a small number (≤ 16) of PEs
and with a set of deterministic communication patterns
customized for a specific application. Unidirectional,
one bit wide links will be assumed.

III . MAIN RESULTS

We will focus on interconnect programmable in
run-time, with performance comparable to a crossbar.
For the fastest operation, the control of a
programmable intercon-nection network must come
from inside the chip, e.g. from the master PE. Such in-
system reconfiguration can achieve some of the
flexibility of software with the performance of
dedicated hardware. This idea is elaborated further on
in two following sub-sections.

A. Crossbar Implementation

For multiprocessor SoCs of smaller size, a crossbar
(Xbar) switch is utilized for an efficient on-chip
network solution, Figure 2. Arbiters provided for each
X-bar output select one request from all coming in and
set the switch to the appropriate position. There is a
CAD tool for generation of round-robin arbitration and
N×M X-bar switch logic for MPSoCs [7] based on user
specifications. To evaluate the hardware complexity,
two possible implementations have to be considered.

A crosspoint-based implementation of a square N×N
crossbar makes use of N columns of N crosspoints
realized by transmission gates, pass transistors or tri-
state inverters. A crosspoint-based crossbar implies a
memory element per crosspoint (N2 elements
altogether) that lets a row signal be propagated or not
to some column. Contents of memory elements are
determined by (round-robin) arbiters, one per column.

A second approach to implement the crossbars is to
use logic multiplexers. A full N×N crossbar requires N
N-input multiplexers and N arbiters (one per each
multiplexer). As log2N memory elements are required
for each column multiplexer, a total of Nlog2N
configuration memory elements are needed. This
approach thus leads to a significant reduction in the
number of memory elements.

As regards a support for pair-wise and collective
communication, the X-bar in Figure 2 is able to
implement any permutation of inputs or its subset,

broadcast from any node, multicast, and also several
non-conflicting parallel multicasts. Whereas a source
PE can send up messages to all piers in parallel, the
target can receive only a single message. Multiple
messages targeted for a single PE are filtered out by
arbiters.

Figure 2. The example of 4×4 X-bar with four processors

The above limitation determines the number of
communication steps needed for typical collective
communications. Broadcast and multicasts need only a
single step, gather (and reduction operations) require
log2 N communication steps. All-to-all communica-
tions such as broadcast or scatter are implemented as
a sequence of N-1 permutations.

If only a specific set of pair-wise and collective
communications is needed in a certain BSP application,
we can simplify the X-bar in Figure 2 a great deal. We
can get rid of arbiters entirely and use switches of size
P×1, where P is the number of communication patterns.
All switches have identical control, so that the number
of control signals is typically much lower than that in
ordinary N×N crossbars,

 log2P < N log2N. (2)

Multiplexers with 16 to 32 data inputs are quite
common and the number of required communication
patterns may nicely fit into this range.

B. Logic Design of a Programmable Interconnect

The programmable interconnect can be
implemented as a network of programmable switches.
The switch itself is a logic device that can connect
some or all inputs, one-to-one, to some or all outputs.
Multiplexer and crossbar switches are building blocks
of more complex programmable interconnection
networks. E.g., an elementary 2 × 2 crossbar is used in

4x1
 sw

itch
&

 arbite
r 2

4
x1 sw

itch
&

 a
rbite

r 3

PE0 PE1 PE3 PE2

4x1
 sw

itch
&

 arbite
r 0

4
x1 sw

itch
&

 a
rbite

r 1

multi-stage interconnection networks that are much
cheaper than crossbars.

We will illustrate logic design of programmable
interconnect in more detail on a class of programmable
Bit-Masking and Shifting interconnect devices with 4
to 8 inputs (BMS4 to BMS8). These units are useful
when implementing multi-way branching in micro-
programmed controllers; they enable efficient
allocation of microcode memory to a cluster of multi-
way dispatch tables [8]. For example, the task of the
16-way BMS4 is to shift 4 or less active inputs,
selected by a 4-bit mask, to the lowest positions of the
4-bit output vector and reset the rest of outputs. The
output vector then serves as an offset from the base
address of a dispatch table; this way the dispatch tables
of various size can be stored in control memory in a
compact form.

Cube specification of BMS units has been generated
automatically. For example, the BMS4 function was
specified by 81 cubes:

.i 8
.o 4
.ilb m0 m1 m2 m3 x0 x1 x2 x3
.ob y0 y1 y2 y3
.type fr
.p 81
0000---- 0000
0001---0 0000
0001---1 1000
0010--0- 0000
0010--1- 1000

…
…

11111011 1011
11110111 0111
11111111 1111
.e

Synthesis of the related combinational logic for the 4-
input BMS can be done in several ways. The simplest
solution would be a single 256 × 4-bit look-up tables
LUTs (ROM or Block RAM). However, if only smaller
LUTs were available, we can decompose the single
LUT into a cascade of two or more smaller LUTs. The
latency will increase, but with possible pipeline
operation the throughput will remain the same. Various
decompositions are easily found from a Multi-Terminal
BDD (MTBDD) representing the BMS4 function. The
optimal variable ordering of the MTBDD can be found
e.g., by the Heuristic Iterative Decomposition Tool
HIDET [9] and is shown in Figure 3. The suitable cut
of the MTBDD generates a cascade of two LUTs
(Figure 4a) with the resulting capacity in bits less than
a half of the single LUT capacity.

 m3
m3

x3

m2

x2

m1

x1

m0

x0

0

1 0

1

2 0

1 0

6 2

2

5 1

0

1

3

3

7 3 4 0

3 2 4 6 7 5 1 0

A
A

4 8 2 B 5 7 1

E

7 F

6 C 4 A 2 8 0

3 B 6 E 2 A 5 D 1 9 4 C 0 8

Figure 3. MTBDD of the 4-input BMS.

The traditional design of BMS module in a form of

multiplexer network is shown in Figure 4b. Comparing
both designs, the LUT cascade wins in the area size
devoted to interconnections and in flexibility to
implement other communication patterns. As for the
performance, delays few ns per stage have been
demonstrated for an experimental LUT cascade [10].
Note that the ordering of variables found by HIDET is
the same as the optimal ordering of traditional design
in Figure 4b.

Parameters of logic design obtained by Xilinx FPGA
synthesis tool for BMSs with 4 to 8 inputs and
parameters of MTBDDs obtained by the HIDET are
shown in Table 1. The local LUT cascade width x
relates logarithmically to the local values of MTBDD
width w (x = log2 w) between neighbor LUTs. BMS
units could be implemented as a cascade of LUTs
eliminating messy wiring and reducing chip area for the
interconnect. The delay of such switch-boxes is
adjustable by the cascade length. If we take the delay of
FPGA’s 4-input LUTs plus wiring delay approximately
equal to cascaded LUTs´ delay, we should use not
more LUTs in a cascade than it is given in FPGA
column “levels” for the same or better performance.
Note that communication from PE’s outputs to PE’s
inputs is now supported by regular wiring from
addresses to data outputs of multi-bit memory modules
and by external regular wiring among these modules.

 x2 m1 x1 m0 x0

m3
x3
m2

y3
y2
y1
y0

a)

 x3 x2 x1 x0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

m3 m2 m1 m0

 0

 0

 0
 y3

 y2

 y1

 y0

b)

Figure 4. Implementation of the 4-input BMS

 a) as the 2-LUT cascade b) as a MPX network

TABLE I. PARAMETERS OF FPGA AND MTBDD-BASED

DESIGNS

FPGA

MTBDD

 #4-LUTs levels cost width
 BMS4 8 3 30 ≤ 4
 BMS6 20 5 126 ≤ 6
 BMS7 32 6 254 ≤ 7
 BMS8 80 7 447 ≤ 8

IV. SYNTHESIS OF APPLICATION-SPECIFIC

NOCs FOR MULTIPLE COMMUNICATION

PATTERNS

The N × N multiplexer-based crossbar network

without arbiters can also be visualized as a
combinational logic network with N + Nlog2 N inputs

and N outputs. E.g. for N = 8 we get 32 inputs and 8
outputs. Out of 224 programmable configurations, only
a negligible fraction may be utilized in a certain
MPSoC. The multiplexer-based crossbar as an
interconnection network is thus for many MPSoC a
luxury. A simpler way how to implement a low cost
programmable unidirectional interconnect is to replace
individual control of M crossbar multiplexers by
identical control. Apparently, the number of
multiplexer inputs P will now be determined by the
number of required communication patterns. For
example, barrel shifters can be implemented as
crosspoint-based crossbars with common diagonal
control [11] or as multiplexer-based crossbars with one
multiplexer per output and a common control [12].

Let us design for illustration the application-specific
NoC connecting 8 PEs (labeled 0 to 7) and supporting
the following 7 communication patterns (encoded in 3
configuration bits):

1. Broadcast from node 0
2. Cyclic shift from node i to node (i+1)mod 8
3. Cyclic shift from node i to node (i+2)mod 8
4. Skew (0↔7, 1↔6, 2↔5, 3↔4)
5. Gather1 (7→6, 5→4, 3→ 2, 1→ 0)
6. Gather2 (6→4, 2→ 0)
7. Gather3 (4→ 0).

A crossbar-like implementation of the above set of

communications without arbiters would require eight 8-
input wide multiplexers and 8 arbiters. The same
network can also be implemented as a regular ROM
(multi-bit LUT) with 8+3 = 11 address bits and 8-bit
wide output (single Xilinx BRAM block 2048 × 8 bit).
The interconnection network is thus embedded in the
regular ROM structure. If 2048 × 8 bit is too large an
array, and a higher latency is tolerable, we can split it
into 2 or more ROMs in a cascade by means of
splitting the related MTBDD; one such decomposition
is shown in Figure 5.

 Config.
bits

 8

 2

 8

 6

 3

0,6,2,5,4,3
PE outputs

 1,7

PE inputs

Figure 5. Implementation of the specific interconnection network
as the cascade of two multi-bit LUTs

Similar cascade decompositions will be handy
especially for larger problems (for example, 16 PEs, 32
patterns, that is 21 inputs). The communication band-
width for larger messages will not be decreased when
we use pipelining. The size of partial LUTs and their
interconnection are again minimized by the HIDET
[9] as in the previous section.

VI. CONCLUSIONS

Application-specific multiprocessor SoCs with a
restricted set of deterministic communication patterns
and not more than some 16 processing elements can
operate with a low cost customized communication
network synthesized as a logic subsystem. We assume
that applications running on the system are well
behaved (i.e., have similar communication patterns on
every run) and data independent (i.e., have similar
communication patterns for any data set). Contrary to a
full crossbar network, N × 1 switches (multiplexers)
share control inputs and are not controlled by arbiters,
but by one selected PE, for example by the first PE
reaching the barrier before a communication step.
Thus the arbiters may be eliminated completely. The
width of multiplexers is given by the number of
communication patterns in the application: one pattern
is assigned to one multiplexer input. Instead of
reconfiguring topology for a certain application, the
communication module is programmed for
communication patterns repeatedly in the runtime.

 Beside multiplexers, other devices can be used to
implement the specialized interconnection network.
BRAM devices or cascaded BRAMs are another
option. The kind of programmable interconnect
suggested in the paper is run-time programmable much
faster than FPGAs or FPIDs, because programming is
reduced to processing a single store (output) machine
instruction to a pattern holding register. Freedom from
contention is an additional favorable side-effect of the
presented approach.

Performance of the suggested communication
module should be comparable to or better than crossbar
performance, because of absence of arbitration logic.
Prediction of overall overhead of a BSP algorithm is
possible by means of (1). Other components of
communication architecture like communication
protocols or interface design between PEs and a
communication module will be a subject of future
research.

ACKNOWLEDGMENT

This research has been carried out under the financial
support of the research grants GP103/10/1517 “Natural
Computing on Unconventional Platforms”, GA

102/09/H042 "Mathematical and Engineering
Approaches to Developing Reliable and Secure
Concurrent and Distributed Computer Systems",
GA102/08/1429 “Safety and security of networked
embedded system applications”, MSM 0021630528
“Security-Oriented Research in Information Techno-
logy”, and FIT-S-10-1 "Secured, reliable and adaptive
computer systems", Brno University of Technology.

REFERENCES

[1] Jantsch, A. and Tenhunen, H. Networks on Chip, Kluwer
Academic Publ., Boston, 2003.

[2] Karim, F. and Nguyen, A.: An Interconnect Architecture for
Networking Systems on Chips. IEEE Micro, 2002, pp.36-45.

[3] Jaroš J. and Dvořák V.: Evolutionary-Based Conflict-Free
Scheduling of Collective Communications on Spidergon NoCs,
In: Proceedings of 2010 Genetic and Evolutionary
Computation Conference, GECCO 2010, New York, US,
ACM, 2010, pp. 1171-1178.

[4] Palermo, G. et al.: Application-Specific Topology Design
Customization for STNoC. Proc. of the 10th Euromicro
Conference on Digital System Design Architectures, Methods
and Tools, DSD 2007, pp.547-550.

[5] Ho, W.H. and Pinkston, T.M.: A Methodology for Designing
Efficient On-Chip Interconnects on Well-Behaved
Communication Patterns. Proc. Of the 9th Int. Symposium on
High Performance Computer Architecture, Anaheim, 2003, pp.
377-388.

[6] Bisseling, R.H.: Parallel Scientific Computation. Oxford Univ.
Press, New York, 2004.

[7] Shin, E.S.: Automated generation of round robin arbitration and
crossbar switch logic. Ph.D. thesis, School of Electrical and
Computer Engineering, Georgia Institute of Technology,
November 2003.

[8] Dvořák, V.: LUT Cascade-Based Architectures for High
Productivity Embedded Systems, In: International Review on
Computers and Software, Vol. 2, No 4, Naples, Italy, pp. 357-
365, 2007.

[9] Mikušek P. and Dvořák V.: On Lookup Table Cascade-Based
Realizations of Arbiters, In: 11th EUROMICRO Conference
on Digital System Design DSD 2008, Parma, IT, IEEE CS,
2008, pp. 795-802.

[10] K. Nakamura, T. Sasao, M. Matsuura, K. Tanaka, K.
Yoshizumi, H. Qin, and Y. Iguchi, "Programmable logic
device with an 8-stage cascade of 64K-bit asynchronous
SRAMs," Cool Chips VIII, IEEE Symposium on Low-Power
and High-Speed Chips, April 20-22, 2005, Yokohama, Japan.

[11] Asano, D. K.: Computer Architecture, Shift Circuits. 2001.
http://www-comm.cs.shinshu-
u.ac.jp/public/comparch/node45.html

[12] Gigliotti, P.: Implementing Barrel Shifters Using Multipliers.
Xilinx Application note, XAPP195 (v1.1), 2004.

