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Abstract−−−−Application-specific or embedded systems with 
less than 16 processing cores are too small to use some 
kind of network on chip (NoC) for interconnection. On 
the other hand, a crossbar and related circuitry (arbiters, 
memory elements) are too expensive in terms of chip area. 
As only few pair-wise and collective communication 
patterns are mostly used in specific applications, we 
explore an interconnection network that can support only 
selected communication patterns and no others. The main 
contribution of the paper is designing of such networks 
without routers or arbiters, in a form of programmable 
combinational logic, with limited crossbar functionality. 
The interconnection network can be implemented by 
multiplexers or block RAMs on the FPGA chip at a very 
low cost. A functional decomposition of the related 
multiple-output Boolean function into a cascade of block 
RAM devices is aided by multi-terminal binary decision 
diagrams and is illustrated on examples.       

   
Keywords−−−− multiprocessor SoCs; programmable 
interconnection; on-chip interconnects; crossbar 
switch; logic decomposition; multi-terminal BDDs  
 

I. INTRODUCTION 

Multiprocesor systems-on-chip (MPSoC) consist of 
multiple, usually heterogenous, processing elements 
(PEs) with local memory, and I/O components. They 
are usually targeted for embedded applications such as 
multimedia, telecommunication architecture, network 
security, and the like. In the implementation of 
MPSoC, an on-chip network comes to the forefront 
because of its impact on the performance of the system. 
Design of MPSoC relies at present mostly on point-to-
point connections rather than on shared buses. Buses 
are not scalable beyond some limit and may not 
provide required performance because the available 
communication bandwidth is shared among all the units 
connected to the bus. Scalability and reusability were 
two features that led to the network on chip (NoC) 
paradigm for on-chip communication [1].   

The topologies of choice for NoCs have been ring, 
mesh, fat tree, crossbar and spidergon [2]. Performance 

of these networks in pair-wise as well as in collective 
communications is well understood. The lower bounds 
for time complexity of collective communications are 
known and can be reached in some cases by optimum 
scheduling of communications [3]. 

Communication operations can be either point-to-
point, with one source and one destination, or 
collective, with more than two participating processes. 
Collective communications (CCs) are invoked by 
nodes to distribute, gather, and exchange data. Some 
embedded parallel applications, like network or media 
processors, are characterized by independent data 
streams or by a small amount of inter-process 
communications [1]. However, many special-purpose 
parallel applications display a bulk synchronous 
processing (BSP) behavior: the processing nodes 
access the network according to a global, structured 
communication pattern.  

A collective operation is usually defined in terms of 
a group of processes. The operation is executed when 
all processes in the group call the communication 
routine with matching parameters. We classify 
collective operations into three types according to their 
purpose: CCs (One-to-All, OA, All-to-One, AO, All-to-
All, AA), global computation (reduction AOR or AAR 
and scan) and synchronization (barrier). The CCs are 
most important, as other collective operations are 
closely related to them. In a broadcast (OAB), one 
process sends the same message to every group 
member, whereas in a scatter (OAS), one process sends 
a different message to each member. Gather (AOG) is 
the dual operation of scatter, in that one process 
receives a message from each group member. These 
basic operations can be combined to form more 
complex operations. In all-to-all broadcast (AAB), 
every process sends a message to every other group 
member. In complete exchange, also referred to as all-
to-all scatter-gather (AAS), every group member sends 
a different message to every other group member. 
Permutations, and partial permutations (i.e., 
permutations in which some source to destination pairs 



are missing) are important CCs that can be used as 
building blocks to create   more complex all-to-all CCs.  
Since complexities of some communications are similar 
(AOG ~ OAS, AOR ~ OAB, AAR ~ AAB), we will 
focus only on 4 basic types (OAB, OAS, AAB, AAS).  
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Figure 1. BSP algorithm with five supersteps executed on five 

processors. 
 

The distributed-memory BSP model proposed by 
Valiant is essential to our discussion. It comprises 
computer architecture, a class of algorithms, and a 
function for charging costs to algorithms [6]. A BSP 
computer consists of a collection of processors, each 
with private memory, and a communication network 
that allows processors to access memories of other 
processors. A BSP algorithm consists of a sequence of 
super-steps, which contain a number of either 
computation steps or communication steps, followed by 
the global barrier synchronization. In a computation 
super-step, each processor performs a sequence of 
operations on local data. In a communication super-
step, each processor sends and receives a number of 
messages (Figure1).  

The time, or cost, of a communication super-step is  

      Tcomm = hg + l,                                 (1) 

where each processor sends/receives to/from other 
processors  h or less data words, g is the time needed to 
transfer one data word under the continuous message 
traffic, and l is a fixed overhead (latency) of 
communication and of global synchronization.  

 Further on we will assume that application-specific 
systems of interest in this paper are compatible with the 

BSP model described above. In the following Section 
II, we map the state of the art in application-specific 
interconnects and formulate the problem to be dealt 
with. The main results are in Sections III. We first 
consider complexity of different implementations of a 
crossbar network and arrive at its low-cost, application-
specific version in Section IIIA, and then present logic 
design of a programmable interconnect on a small 
example in Section IIIB. Synthesis of the application-
specific NoC for multiple communication patterns is 
done on a small set of patterns in Section IV. The 
presented technique is assessed in Conclusions. 

 II.  STATE OF THE ART AND THE PROBLEM 

STATEMENT    

In the context of application-specific MPSoCs, 
communication architecture, more often than not does 
not have to support all pair-wise communications and 
efficient implementation of all collective communi-
cations such as broadcast, multicast, gather, scatter, and 
others. Quite a few applications running on MPSoCs 
use only a limited set of deterministic communication 
patterns and a general NoC infrastructure suitable for 
general-purpose computing is not needed. By taking 
advantage of the known application communication 
behavior, special-purpose networks may be designed 
for well-behaved communication requirements, 
resulting in networks that are more resource/ 
performance effective. We will therefore try to simplify 
the interconnection network by providing a support just 
for the required communication patterns.  

The application-specific optimization of intercon-
nection network with respect to performance and power 
consumption can be obtained by removal of some links. 
For example, the spidergon topology is opened for such 
optimization [4]. A design methodology using a 
recursive bisection technique for generating optimum 
topology for applications with well-behaved 
communication patterns has been introduced in [5]. In 
contrast, our approach treats the interconnection as 
combinational logic and thus covers not only the single 
instance of a problem, but a wide class of applications 
with limited number of CPU cores and with limited 
communication needs. The starting point is a non-
blocking crossbar, which is the ideal on-chip 
interconnect, but it is prohibitively expensive for larger 
MPSoCs.    

Beside static networks, it may also be of interest to 
allow the network to be reconfigurable, at run-time.   
For example, reconfigurable computing paradigms 
(e.g., FPGAs) have increasingly become more practical 
alternatives recently. Field-programmable interconnect 
devices (FPIDs), acting as SRAM-based switching 



matrices, can be reconfigured dynamically, in the same 
way as standard SRAM-based FPGAs – by means of 
SRAM cells controlling switching elements (pass 
transistors or transmission gates). Reconfiguration 
times are therefore much too long and prevent dynamic 
reconfiguration before each communication pattern.  

The problem to be addressed in this paper is to find 
as simple message-passing communication structure as 
possible for MPSoC with a small number (≤ 16) of PEs 
and with a set of deterministic communication patterns 
customized for a specific application. Unidirectional, 
one bit wide links will be assumed.  

III . MAIN RESULTS 

We will focus on   interconnect programmable in 
run-time, with performance comparable to a crossbar. 
For the fastest operation, the control of a 
programmable intercon-nection network must come 
from inside the chip, e.g. from the master PE. Such in-
system reconfiguration can achieve some of the 
flexibility of software with the performance of 
dedicated hardware. This idea is elaborated further on 
in two following sub-sections.  

A. Crossbar Implementation    

For multiprocessor SoCs of smaller size, a crossbar 
(Xbar) switch is utilized for an efficient on-chip 
network solution, Figure 2. Arbiters provided for each 
X-bar output select one request from all coming in and 
set the switch to the appropriate position. There is a 
CAD tool for generation of round-robin arbitration and 
N×M X-bar switch logic for MPSoCs [7] based on user 
specifications. To evaluate the hardware complexity, 
two possible implementations have to be considered. 

A crosspoint-based implementation of a square N×N 
crossbar makes use of N columns of N crosspoints 
realized by transmission gates, pass transistors or tri-
state inverters. A crosspoint-based crossbar implies a 
memory element per crosspoint (N2 elements 
altogether) that lets a row signal be propagated or not 
to some column. Contents of memory elements are 
determined by (round-robin) arbiters, one per column.  

A second approach to implement the crossbars is to 
use logic multiplexers. A full N×N crossbar requires N 
N-input multiplexers and N arbiters (one per each 
multiplexer). As log2N memory elements are required 
for each column multiplexer, a total of Nlog2N 
configuration memory elements are needed. This 
approach thus leads to a significant reduction in the 
number of memory elements.  

As regards a support for pair-wise and collective 
communication, the X-bar in Figure 2 is able to 
implement any permutation of inputs or its subset, 

broadcast from any node, multicast, and also several 
non-conflicting parallel multicasts. Whereas a source 
PE can send up messages to all piers in parallel, the 
target can receive only a single message. Multiple 
messages targeted for a single PE are filtered out by 
arbiters. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The example of 4×4 X-bar with four processors 

The above limitation determines the number of 
communication steps needed for typical collective 
communications. Broadcast and multicasts need only a 
single step, gather (and reduction operations) require 
log2 N communication steps.  All-to-all communica-
tions such as broadcast or scatter are implemented as  
a sequence of N-1 permutations.   

If only a specific set of pair-wise and collective 
communications is needed in a certain BSP application, 
we can simplify the X-bar in Figure 2 a great deal. We 
can get rid of arbiters entirely and use switches of size 
P×1, where P is the number of communication patterns. 
All switches have identical control, so that the number 
of control signals is typically much lower than that in 
ordinary N×N crossbars,  

                         log2P < N log2N.                             (2) 

Multiplexers with 16 to 32 data inputs are quite 
common and the number of required communication 
patterns may nicely fit into this range.  

B. Logic Design of a Programmable Interconnect 

The programmable interconnect can be 
implemented as a network of programmable switches. 
The switch itself is a logic device that can connect 
some or all inputs, one-to-one, to some or all outputs. 
Multiplexer and crossbar switches are building blocks 
of more complex programmable interconnection 
networks. E.g., an elementary 2 × 2 crossbar is used in 
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multi-stage interconnection networks that are much 
cheaper than crossbars. 

We will illustrate logic design of programmable 
interconnect in more detail on a class of programmable 
Bit-Masking and Shifting interconnect devices with 4 
to 8 inputs (BMS4 to BMS8). These units are useful 
when implementing multi-way branching in micro-
programmed controllers; they enable efficient 
allocation of microcode memory to a cluster of multi-
way dispatch tables [8]. For example, the task of the 
16-way BMS4 is to shift 4 or less active inputs, 
selected by a 4-bit mask, to the lowest positions of the 
4-bit output vector and reset the rest of outputs. The 
output vector then serves as an offset from the base 
address of a dispatch table; this way the dispatch tables 
of various size can be stored in control memory in a 
compact form. 

Cube specification of BMS units has been generated 
automatically. For example, the BMS4 function was 
specified by 81 cubes: 

 
.i 8 
.o 4 
.ilb m0 m1 m2 m3 x0 x1 x2 x3 
.ob y0 y1 y2 y3 
.type fr 
.p 81 
0000---- 0000 
0001---0 0000 
0001---1 1000 
0010--0- 0000 
0010--1- 1000 

…  
… 

11111011 1011 
11110111 0111 
11111111 1111 
.e 
 
Synthesis of the related combinational logic for the 4-
input BMS can be done in several ways. The simplest 
solution would be a single 256 × 4-bit look-up tables 
LUTs (ROM or Block RAM). However, if only smaller 
LUTs were available, we can decompose the single 
LUT into a cascade of two or more smaller LUTs. The 
latency will increase, but with possible pipeline 
operation the throughput will remain the same. Various 
decompositions are easily found from a Multi-Terminal 
BDD (MTBDD) representing the BMS4 function. The 
optimal variable ordering of the MTBDD can be found 
e.g., by the Heuristic Iterative Decomposition Tool 
HIDET [9] and is shown in Figure 3. The suitable cut 
of the MTBDD generates a cascade of two LUTs 
(Figure 4a) with the resulting capacity in bits less than 
a half of the single LUT capacity. 
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Figure 3. MTBDD of the 4-input  BMS. 

 
The traditional design of BMS module in a form of 

multiplexer network is shown in Figure 4b. Comparing 
both designs, the LUT cascade wins in the area size 
devoted to interconnections and in flexibility to 
implement other communication patterns. As for the 
performance, delays few ns per stage have been 
demonstrated for an experimental LUT cascade [10]. 
Note that the ordering of variables found by HIDET is 
the same as the optimal ordering of traditional design 
in Figure 4b.   

Parameters of logic design obtained by Xilinx FPGA 
synthesis tool for BMSs with 4 to 8 inputs and 
parameters of MTBDDs obtained by the HIDET are 
shown in Table 1. The local LUT cascade width x 
relates logarithmically to the local values of MTBDD 
width w (x = log2 w ) between neighbor LUTs. BMS 
units could be implemented as a cascade of LUTs 
eliminating messy wiring and reducing chip area for the  
interconnect. The delay of such switch-boxes is 
adjustable by the cascade length. If we take the delay of 
FPGA’s 4-input LUTs plus wiring delay approximately 
equal to cascaded LUTs´ delay, we should use not 
more LUTs in a cascade than it is given in FPGA 
column “levels” for the same or better performance. 
Note that communication from PE’s outputs to PE’s 
inputs is now supported by regular wiring from 
addresses to data outputs of multi-bit memory modules 
and by external regular wiring among these modules. 
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Figure 4.   Implementation of the 4-input  BMS  

 a) as the 2-LUT cascade b) as a MPX network 

 
TABLE I. PARAMETERS OF FPGA AND MTBDD-BASED  

DESIGNS 

 

 

 
FPGA 

              
MTBDD 

  

 #4-LUTs levels cost width 
 BMS4 8 3 30 ≤ 4  
 BMS6 20 5 126    ≤ 6   
 BMS7 32 6 254   ≤ 7  
 BMS8 80 7 447   ≤ 8  

  
 
IV.  SYNTHESIS OF   APPLICATION-SPECIFIC 

NOCs FOR MULTIPLE COMMUNICATION 

PATTERNS 
 
The N × N multiplexer-based crossbar network 

without arbiters can also be visualized as a 
combinational logic network with N + Nlog2 N inputs 

and N outputs. E.g. for N = 8 we get 32 inputs and 8 
outputs. Out of 224 programmable configurations, only 
a negligible fraction may be utilized in a certain 
MPSoC. The multiplexer-based crossbar as an 
interconnection network is thus for many MPSoC a 
luxury.  A simpler way how to implement a low cost 
programmable unidirectional interconnect is to replace 
individual control of M crossbar multiplexers by 
identical control. Apparently, the number of 
multiplexer inputs P will now be determined by the 
number of required communication patterns. For 
example, barrel shifters can be implemented as 
crosspoint-based crossbars with common diagonal 
control [11] or as multiplexer-based crossbars with one 
multiplexer per output and a common control [12]. 

Let us design for illustration the application-specific 
NoC connecting 8 PEs (labeled 0 to 7) and supporting 
the following 7 communication patterns (encoded in 3 
configuration bits): 

 
1. Broadcast from node 0 
2. Cyclic shift from node i to node (i+1)mod 8 
3. Cyclic shift from node i to node (i+2)mod 8 
4. Skew (0↔7, 1↔6, 2↔5, 3↔4) 
5. Gather1 (7→6, 5→4, 3→ 2, 1→ 0) 
6. Gather2 (6→4, 2→ 0) 
7. Gather3 (4→ 0). 
 
A crossbar-like implementation of the above set of 

communications without arbiters would require eight 8-
input wide multiplexers and 8 arbiters. The same 
network can also be implemented as a regular ROM 
(multi-bit LUT) with 8+3 = 11 address bits and 8-bit 
wide output (single Xilinx BRAM block 2048 × 8 bit). 
The interconnection network is thus embedded in the 
regular ROM structure. If 2048 × 8 bit is too large an 
array, and a higher latency is tolerable, we can split it 
into 2 or more ROMs in a cascade by means of 
splitting the related MTBDD; one such decomposition 
is shown in Figure 5.  
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Figure 5. Implementation of the specific interconnection network 
as the cascade of two multi-bit LUTs 



Similar cascade decompositions will be handy 
especially for larger problems (for example, 16 PEs, 32 
patterns, that is 21 inputs). The communication band-
width for larger messages will not be decreased when 
we use pipelining. The size of partial LUTs and their 
interconnection are again minimized by the HIDET   
[9] as in the previous section.   

VI.  CONCLUSIONS 

Application-specific multiprocessor SoCs with a 
restricted set of deterministic communication patterns 
and not more than some 16 processing elements can 
operate with a low cost customized communication 
network synthesized as a logic subsystem. We assume 
that applications running on the system are well 
behaved (i.e., have similar communication patterns on 
every run) and data independent (i.e., have similar 
communication patterns for any data set). Contrary to a 
full crossbar network, N × 1 switches (multiplexers) 
share control inputs and are not controlled by arbiters, 
but by one selected PE, for example by the first PE 
reaching the barrier before a communication step.  
Thus the arbiters may be eliminated completely. The 
width of multiplexers is given by the number of 
communication patterns in the application: one pattern 
is assigned to one multiplexer input. Instead of 
reconfiguring topology for a certain application, the 
communication module is programmed for 
communication patterns repeatedly in the runtime. 

  Beside multiplexers, other devices can be used to 
implement the specialized interconnection network. 
BRAM devices or cascaded BRAMs are another 
option. The kind of programmable interconnect 
suggested in the paper is run-time programmable much 
faster than FPGAs or FPIDs, because programming is 
reduced to processing a single store (output) machine 
instruction to a pattern holding register. Freedom from 
contention is an additional favorable side-effect of the 
presented approach. 

Performance of the suggested communication 
module should be comparable to or better than crossbar 
performance, because of absence of arbitration logic. 
Prediction of overall overhead of a BSP algorithm is 
possible by means of (1). Other components of 
communication architecture like communication 
protocols or interface design between PEs and a 
communication module will be a subject of future 
research.  
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