
Monitoring-Driven HW/SW Interrupt Overload
Prevention for Embedded Real-Time Systems

Josef Strnadel
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence

Brno, Czech Republic
strnadel@fit.vutbr.cz

Abstract—In the paper, a concept and an early analysis
of an embedded hardware/software architecture designed to
prevent the software from both timing disturbances and interrupt
overloads is outlined. The architecture is composed of an FPGA
(MCU) used to run the hardware (software) part of an embedded
application. Comparing to previous approaches, novelty of the
architecture can be seen in the fact it is able to adapt interrupt
service rates to the actual software load being monitored with
no intrusion to the software. According to the actual software
load it is able to buffer all interrupts and related data while the
software is highly loaded and redirect the interrupts to the MCU
as soon as the software becomes underloaded.

Keywords—embedded, limiter, interrupt, overload, monitoring,
prevention, real-time.

I. INTRODUCTION

Many factors must be considered during the development of
embedded systems (ESes). A typical ES is I/O intensive and re-
active, so it must be able to respond on-time to external events
stimulating the system at various rates (for the illustration, see
Table I). An occurrence of the events is usually signalized by
interrupts (INTs) being serviced by interrupt service routines
(ISRs) at the hardware (HW) level, which are typically given
a higher priority than the software (SW) instruction flow [11].

A. Interrupt Overload Problem

If the INT subsystem is not utilized properly, the ES may
violate its timing constraints or may become overloaded due
to an excessive rate of INTs (fint) – this is typically denoted
as the interrupt overload (IOV) problem. As an unexpected
consequence, a SW part of the ES may starve, stop working
correctly or collapse suddenly. To avoid this, the ES must be
designed e.g. to limit or tolerate the high rate in order not to
continue executing part of its workload. In other words, the
ES must be designed to degrade gracefully rather than collapse
suddenly. For safety/time-critical systems, the requirement is
yet more strict – the never give up strategy must be applied,
i.e., the ES may never give up to recover even if the load
hypothesis used to define the peak load (e.g., given by the
maximum fint expected for each INT source) is violated [6].

B. Real-Time Systems

Many systems exist, which need to satisfy stringent con-
straints being derived from (sub)systems they control. The
paper is related to systems, perfection of which is based on

both the correctness and the timeliness of the outputs [2], [3],
[7]. Such a system – i.e., that is able to produce the right
response to given stimuli on time – is called a real-time (RT)
system. An RT system is typically composed of the following
components:
• an event detection part used to detect input stimuli in

order to measure certain physical quantities (gas con-
centration, humidity, temperature, pressure, voltage etc.)
in RT system’s environment. Various event types can
be distinguished – external, internal, (a)synchronnous,
(a)periodic etc. Typically, each an event is associated with
a computational unit called a task, which is responsible
to response correctly to the event,

• a decision making part used to service the events by
organizing (scheduling) the executions of corresponding
tasks in such a way responses to the events are produced
on-time, i.e., timing constraints of the tasks are met.
The desisions are made by a scheduler – typically, it is
both preemptive and priority based, which implies the
decisions strongly depend on a technique used to assign
priorities to tasks (so-called priority assignment scheme),

• an actuator part composed of valves, motors etc. able to
realize the decisions.

The following basic types of RT tasks are distinguished:
hard and soft. For hard tasks it holds their timing constraints
must be strictly met; violating any of the constraints will lead
to failure of the system as a whole. On contrary, constraints
of the soft tasks are not required to be strictly met; their
violation typically leads to temporary degradation of some
services offered by the system, but not to failure of the system
as a whole. While hard tasks are are typically running at high
priority levels, soft tasks are running at lower priorities because
they are of lower time criticality than the hard tasks.

High complexity of many RT applications has made the
adoption of RT operating systems (RTOSes) used to simplify
the design of the applications [2], [3]. An RTOS can be
seen as an abstraction layer between an application SW and
an embedded platform HW, so the decision part can be

TABLE I
AN ILLUSTRATION TO VARIOUS INTERRUPT SOURCE RATES [10]

Interrupt loose switch CAN I2C USB 100 Mbps
source wire bounce bus bus bus Ethernet

fint [kHz] 0.5 1 15 50 90 195

modeled, analyzed and implemented with minimal bindings
to the target. Moreover, RT applications driven by an RTOS
exploit some important facilities associated to native RTOS-
intrinsic mechanisms to manage crucial resources such as time,
memory, tasks etc.

The paper is organized as follows. In the section II, common
interrupt management problems are discussed together with
their typical solutions (focused to timing disturbance and
predictability problems in II-A and II-B). In the section III,
principles w.r.t. the proposed solution are presented including
the proposed architecture overview (III-A), overload mon-
itoring and interrupt overload prevention principles (III-B
and III-C) and discussion of the crucial properties w.r.t. the
architecture (III-D, III-E). In the section IV, results achieved
by the proposed architecture are summarized and compared to
results achieved by other existing approaches. The section V
concludes the paper.

II. INTERRUPT MANAGEMENT SOLUTIONS

In existing works, the following problems are typically
solved w.r.t. INT management: i) the timing disturbance
problem composed mainly of a disturbance due to soft real-
time (RT) tasks and priority inversion sub-problems [4], [5],
[12] and ii) the predictability problem originating from the ES
inability to predict arrival times and the rate of INTs induced
by external events [9], [10].

A. Timing Disturbance Problem Solutions

The timing disturbance problem can be efficiently solved at
the kernel level – e.g., Leyva-del-Foyo et al. showed in [4], [5]
that ESes can suffer significantly from a disjoint priority space
where ISRs are serviced by the HW prior to tasks managed by
the SW; as the solution, they suggested to implement a joint
priority space – an ISR-level priority space is mapped to a
task-level priority space, so the ISR and task priorities can be
mutually compared to detect the highest-priority ISR/task in
the joint set.

They supposed an INT is not serviced immediately in its
ISR but later by an associated (deferred) task – called an
interrupt service task, IST – running at a predefined task-
level priority. At the ISR level, it is supposed only necessary
actions are performed such as INT acknowledge or signaling
the corresponding IST. It was shown the concept minimizes
disturbance effects induced by interrupting high-level tasks by
ISRs serviced by low-level ISTs. Scheler et al. [12] enhanced
the concept to the dual-CPU architecture in which the ISTs
can be pre-executed (on the secondary CPU) before they are
directed to the (primary) CPU the main part of the ES runs
on. In [15], it is supposed an ISR is split into the ”top” and
”bottom” halves. The top half executes at an interrupt-level
priority and must be short enough to complete all necessary
actions at the level. The bottom half can be deferred to a
”more suitable time” in order to complete dispensable actions
of the ISR. It is shown that a better approach would be
to schedule bottom halves in accordance with the priorities
of processes that are affected by their execution. Likewise,

bottom half processing should be charged to the CPU-time
usage of the affected task(s), where possible, to ensure fairer
and more predictable resource management. In [14], the effect
of I/O interrupts to RT task scheduling is analyzed and three
prediction schemes based on leveraging the history data to
identify the urgency and importance of executing a deferrable
interrupt handler are presented.

However, although the above-mentioned solutions minimize
the disturbances produced by ISRs, they do not solve the
predictability problem – they are still susceptible to INT-
overload scenarios because a high-priority INT generated at
a high rate could overload the CPU.

B. Predictability Problem Solutions

The predictability problem solutions – presented e.g. in
[9], [10] – are typically based on bounding the minimum
interarrival time between INTs, tarrival (or, maximum fint).
Regehr and Duongsaa classified [10] these INT overload
prevention solutions – called interrupt limiters (ILs) – to SW
ILs (SILs) and HW ILs, (HILs). The SILs can be classified to
the following sub-types:

1) Polling SIL, designed to check periodically (with period
tarrival) if any event flag is set or not. If it is then an
IST corresponding to the event is started.

2) Strict SIL, working as follows: an ISR prologue is
modified to disable INTs and configure a one-shot timer
to expire after tarrival units. After it expires, INTs are
re-enabled.

3) Bursty SIL, designed to reduce the double-INT over-
head w.r.t. strict SIL. Comparing to the strict SIL, the
bursty SIL is driven by the two parameters: maximum
arrival rate (tarrival) and maximum burst size (N).
The reduction is based on the following idea: INTs
are disabled after a burst of N≥2 requests rather than
disabled after each INT request. An ISR prologue is
modified to increment the counter; INTs are disabled as
soon as the counter reaches N . INTs are re-enabled and
the counter is reset after a timer overflows (its expiration
value is adjusted to tarrival).

In the latter (HIL) approach [4], INT requests are processed
before they are directed to the device the ES runs on – a
HIL guarantees that at most one INT is directed to the device
within a time interval long tarrival units (i.e., the HIL is
designed to limit fint to a predefined, fixed maximum rate).
Further solution to the HIL – based on the Real-Time Bridge
(RTB) concept – was presented by Pellizzoni [9]: Each I/O
interface is serviced by a separate RTB able to buffer all
incoming/outgoing traffic to/from peripherals, and deliver it
predictably according to the actual scheduling policy; the
prediction is based on monitoring the run-time communication
over the PCI(e) bus utilized to interconnect the HIL and the
control parts of the ES based on a high-performance 1Ghz
Intel Q6700 quad-CPU platform.

III. OUR APPROACH

During our research, we plan to design an embedded
architecture able to solve the INT-management problem by
means of instruments accessible at the market, i.e., using
common commercial off-the-shelf (COTS) components such
as MCUs/FPGAs and operating systems (OSes). The archi-
tecture must be general enough to abstract from products of
particular producers and must reduce a need to modify existing
components and OS-kernels to a minimum. At present, no
similar solution exists – actual solutions are either limited
to solving one of the timing disturbance or predictability
problems, or they are too complex for (limited) embedded
realizations, require a customized HW or SW etc. Moreover,
the architecture must be able to adapt the INT service rate
to the actual load of the MCU’s CPU and reflect timing
constraints posed on the system behavior.

A. Proposed Architecture

In our approach, it is supposed an ES is composed of an
FPGA (Xilinx Spartan-6 utilized to realize a HIL function) and
of an MCU (ARM Cortex-A9 utilized to execute a ”useful”,
i.e. OS-driven control, part of the ES) – see Fig. 1. None
of the SIL solutions is involved in the architecture because
they increase the CPU utilization factor (U) and thus worsen
the schedulability of RT task sets. Details related to the
architecture – outlined at [13] – are summarized in the next.

An embedded RTOS is supposed to guarantee the timeliness
of all reactions (responses). The CPU may not overload to
guarantee the schedulability of a given task set by the means
of a given scheduling policy. To prevent the IOV, the CPU
load is analyzed by an external device (an FPGA) designed to
monitor MON_INT to MON_SLACK signals (Fig. 1) generated by
the MCU running an RTOS. Details to the signal generation
follow.

B. Monitoring Signals Generated by MCU

The signal generation begins just after the free-running
system timer (SYSTIM) is started to overflow with the period

FPGA MCU
COM_USART

COM_ETH

Bridge

Scheduler

INT_REQ

INT_ACK

IFC_1

IFC_2

IFC_N

RTB

REQ/ACK

RT Task

Scheduler

RTOS

I/O
RTB

RTB

MON_TICK

USART

ETHERNET

CAN

MON_CTX

MON_PRI

MON_SLACK

MON_INT

Fig. 1. Camea AX32 platform combining the existing RTB concept [9] with
the joint task/IST scheduling [4], [5], [12] and the proposed non-intrusive
monitoring of the CPU load with the goal to adapt an INT management
mechanism to the actual CPU load. The FPGA is designed to pre-process all
INTs before they are directed to the MCU; each an interface (IFC_i) able
to generate an INT request is processed by a separate RTB responsible for
processing stimuli related to the INT – during the high CPU load any INT
is buffered by the FPGA until the CPU is underloaded or the INT priority
is higher than the priority of the task running in the RTOS; then the INT is
directed to the MCU. Buffers w.r.t. the RTBs must be of a ”sufficiently large”
capacity to store stalled communication related to delayed INTs.

t
MON_TICK

MON_CTX

MON_PRI

MON_SLACK

X

A B

PRI_L

OSTick

PRI_IDLEPRI_H

C E

t

t

t

PRI_L

D

t
MON_INT H L

T

Fig. 2. An illustration to the monitoring signals

set to TOSTick. The start is signalled by producing a short
pulse at the MON_INT to MON_SLACK lines (Fig. 2, A).

Each INT prologue (epilogue) is modified to set the
MON_INT signal to HIGH (LOW) just at the beginning (end) of
an ISR body to ease the monitoring of ISR execution times.
This extends the ISR execution a bit, but in a deterministic
and the same way across all ISRs. Moreover, execution of the
SYSTIM’s ISR is signalled by generating a short pulse at the
MON_TICK line. ISR nesting is disallowed.

The MON_CTX signal is set to HIGH each time the task-level
context switch (CTXSW) is being (re)stored; otherwise, it is set
to LOW. Pulse between A, B parts in Fig. 2 represent a (half)
CTXSW to the very first task to run while pulses between B,
C (C, D and D, E) represent (full) CTXSWs between the tasks
– i.e., the CTXSWs formed of context store (the light filled
area) and context restore (the dark filled area) parts. In Fig. 2,
it is supposed the full CTXSW is performed in the ISR body
of a special (Exception/Trap/Software Interrupt) instruction,
so MON_INT is HIGH too. Each CTXSW is processed in the
critical section (INT disable) mode, so an extra response delay
is added to INTs arisen during a CTXSW execution.

The MON_PRI signal is utilized to monitor the running task
priority. The signal is set in the context restore phase of the
CTXSW (as soon as the priority is known). In Fig. 2, it
is illustrated how the value of MON_PRI changes if a lower
priority task (PRI L priority, part B) is preempted by a higher
priority task (PRI H priority, part C) and then back to PRI L
(part D) after the higher priority task becomes unready. If there
is no ready task in the system (part E) then the idle task is
started (i.e., MON_PRI is set to PRI IDLE).

The MON_SLACK signal is utilized to detect slack time in the
schedule. It is set if MON_PRI = PRI IDLE or the MON_PRI

value is below the hard-priority level.

C. Principle of HIL Operation

In this section, principle of the proposed FPGA-based
HIL is outlined with a special emphasis on the method of
processing the monitoring signals (produced by the MCU) at
the FPGA part of the proposed architecture.

For the further description, let the PRI : SINT ∪ Sτ → N
be a function assigning a joint-priority value to an INT
(INTi ∈ SINT where SINT is the set of all INT sources)
or a task (τi ∈ Sτ where Sτ is the set of all non-IST
tasks). Let A be a preemptive, fixed-priority assignment policy,
let Sτ = {τ1, . . . , τm, τm+1, . . . , τn} be the set of all tasks
to be scheduled by A and let the following subsets be
distinguished in the Sτ set: the set (SτH = {τ1, . . . , τm})

of hard tasks, the set (SτS = {τm+1, . . . , τn}) of soft tasks,
the set (SτP) of periodic tasks forming a repetitive part
of the ES behavior and the set (SτA) of aperiodic event-
driven tasks being released/executed once iff an event (INT)
occurs. It is supposed the following parameters are known
for each τi ∈ Sτ : ri (release time), Ci (worst-case execution
time), Di (relative deadline), Ti (period; for an aperiodic
task it is set to Di or – if it is known – to the minimum
interarrival time of a corresponding INT). Alike, it is supposed
the following parameters are known for each INTi ∈ SINT :
CINTi

(worst-case INTi service time), WINTi
(is the worst-

case data bandwidth w.r.t. INTi).
The proposed architecture was designed to meet the follow-

ing requirements:
1) the CPU will not get overloaded by an excessive stream

of INTs,
2) timing constraints of hard tasks will be always met,
3) soft tasks will be executed if a slack time is detected on

the MON_SLACK line or if the CPU is not fully loaded
by the hard tasks,

4) the worst-case INT blocking time boundary is known.
The requirements can be met if a new INT (INTi) is signaled

to the CPU after one of the following conditions (all evaluated
by the FPGA) is satisfied along with MON_INT = LOW :
• (Priority Condition):

PRI(INTi) > MON_PRI. (1)

INT nesting is not allowed, so a new highest-priority INT
is i) blocked at most by one (recently executed) lower-
priority ISR and ii) directed to the CPU just after the
actual ISR ends.

• (Underload Condition): the total CPU load (ρ) at hard-
priority levels plus the load induced by CINTi is smaller
than 100% where ρ = maxi=1,...,m(ρi(t)) and

ρi(t) =

∑
dk≤di

remk(t)

(di − t)
× 100 (2)

is the CPU load of a hard-task τi ∈ SτH in the < t, di >
interval, t is actual time, di = ri +Di (dk = rk +Dk)
is the absolute deadline of a task τi (τk) and remk(t) =
Ck − runk(t) is the remaining execution time of a hard-
task τk ∈ SτH in time t where runk(t) is the consumed
execution time of the task τk in time t measured on a
basis of monitoring the MON_PRI=PRI(τk) width.

• (Slack Condition):

MON_SLACK = HIGH. (3)

The maximum number of INTs allowed between consecu-
tive hard-level executions (an implicit update interval) is

Nmax
INT (t) = b

(100− ρ(t))× (dmax − t)
100× CINT

c (4)

where CINT = max∀i(CINTi
) is the worst-case exe-

cution overhead related to servicing an INT and dmax =
maxi=1,...,m(di). If time t′ ≤ dmax exists for which it
holds that wint(t′, t′′) – i.e. the accumulated MON_INT’HIGH

observed from the last Nmax
INT update done in t” – exceeds the

b t
′−t′′
CINT

c × CINT value then all subsequent INT stimuli are
delayed to t′ +CINT . Actually, MON_TICK and MON_CTX are
not involved in the formulas – they are utilized to measure the
actual OSTime value/jitter and gather CTXSW statistics only.

D. Impact to RT Properties

In the next, it is summarized how the ES properties are
affected by our HW/SW solution to the IOV problem. The
sum is realized as a sequence of the most crucial theorems,
each followed by its proof outline.

Theorem 1: (No interrupts are directed to the MCU while
an ISR is being executed by the CPU)

Proof: The necessary condition to direct an interrupt do
the MCU is MON_INT = LOW , which is satisfied iff no ISR
is executed by the CPU.

Theorem 2: (Disturbing tasks due to low priority interrupts
is avoided) No τi can be interrupted by INTj that occurs
during τi runtime and for which it holds PRIj ≤ PRIi.

Proof: It implies directly from (1) being checked before
any interrupt is directed to the MCU.

Theorem 3: (Delay in servicing the highest priority event
is bounded) Suppose CREC is the worst-case time to rec-
ognize an interrupt and to evaluate MON_INT = LOW and
(1), CCTX is time to perform the task-level context switch.
Then the highest priority event service starts no later than
CINT + CREC + CCTX time units after the event occured.

Proof: The highest priority request can be started just
after the interrupt w.r.t. event is recognized and (1) is satisfied
along with MON_INT = LOW ; then, a corresponding IST can
be released by the ISR (execution times of the actions are
certainly bounded).

Theorem 4: (INT blocking time boundary) Assume that for
each INTi the maximum number (Ni) of its occurence during
hard tasks’ hyperperiod – defined as an interval wide LCMHP

units of time equal to the least common multiple of periods
of the tasks from SHP

def
= {τi|τi ∈ SτH ∩ SτP } – is known.

Then, an INTi is blocked by the FPGA for no more than
BINTi

units of time before it is passed to the MCU; for the
worst-case scenario it holds

BINTi
=

∑
τj∈SHP≥i

Cj +

+

{
|SτA≥i| × CINT if |SτA≥i| < NINT

∞ otherwise
(5)

where

NINT = b
(1−

∑
SHP

Cj

Tj
)× LCMHP

CINT
c (6)

is the maximum number of INTs which can be directed to
the MCU and be serviced by the MCU with no impact to
timeliness of hard tasks during their hyperperiod (LCMHP),

SHP≥i = {τj |τj ∈ SHP ∧ PRIj ≥ PRIi} is the set of hard
periodic tasks with priority not less than PRIi and SτA≥i =
{τj |τj ∈ SτA ∧ PRIj ≥ PRIi} is the set of aperiodic tasks
with priority not less than PRIi.

Proof: It is based on application of the priority-driven
execution rules, but ommited because of the space needed.

Theorem 5: (Blocked INT buffer boundary) The size of
the buffer (memory) needed to store data of all the stalled
communication w.r.t. INTi blocked by the FPGA is

MINTi
=

{
BINTi ×WINTi if |SτA≥i| < NINT

∞ otherwise.
(7)

Proof: It is ommited because of its evidence.
For practice, an INTi with MINTi

= ∞ must be as-
signed a limited memory (e.g., of a circular buffer type)
of a M∞INTi

size to be realizable. Then, the total memory
requirements can be expressed as

∑
∀INTi:MINTi

6=∞MINTi

+
∑
∀INTi:MINTi

=∞M∞INTi
.

Theorem 6: (The system can’t overload due to IOV)
Proof: It is based on showing that∑

t=t1,...,tm
Nmax
INT (t) ≤ NINT for any sequence of uptate

times (ti), i.e., hard-task start times. From Di ≤ Ti and (2)
it holds i) ρ(t) ≤

∑
τHP

Cj

Tj
and ii) (dmax − t) ≤ LCMHP

for any t, dmax, each of them not greater than LCMHP and
dmax ≥ t. This implies the numerator of (4) is not greater
than the numerator of (6).

Theorem 7: (Timing constraints of hard tasks are met)
Proof: It is based on showing that i) for any time t it holds

that no more than Nmax
INT (t) interrupts are serviced between

consecutive hard task executions, ii) the sum of the interrupts
serviced during LCMHP do not exceed the NINT value –
see the Proof outline related to Theorem 6 – and iii) the sum
of interrupt service execution times do not exceed the slack
time available during LCMHP .

E. Realization Overhead

The 32-bit realization of the above-presented architecture
is based on the following components: MCU, FPGA and an
external memory such as DDR3 800 Mbps (needed if FPGA
resources not suffice to implement the required memory; the
overall memory implemented in a Spartan-6 device can be
about 4.7 Mb large). While the realization overhead is minimal
for the MCU side (i.e., monitoring signals are generated
at minimal code/data extensions based on adding units of
instructions), the overheads w.r.t. FPGA logic and memory are
not negligible. The FPGA overhead can be seen as a function
of RTB implementation requirements (depends on the number
and types of interrupt sources) and overheads needed to imple-
ment the HIL as described in III-C. Specifically, the overheads
w.r.t. (1) – (4) starts at 4610 slices. The memory requirements
imply from (5) and its consequences; basically, they depend
on parameters of the interrupt sources and RT tasks. It can be
concluded that a XC6SLX45(T) to XC6SLX150(T) Spartan-
6 device must be included in the architecture – during our

0

50

100

150

200

250

300

(fo
r fa

rriv
a
l =

4
k
H

z
)

fin
t =

0
.1

k
H

z
fin

t =
2

.5
k
H

z
, p

o
llin

g
 S

IL
fin

t =
1

0
k
H

z

(fo
r fa

rriv
a
l =

4
k
H

z
)

fin
t =

0
.1

k
H

z
fin

t =
2

.5
k
H

z
, s

tric
t S

IL
fin

t =
1

0
k
H

z

(fo
r fa

rriv
a
l =

4
k
H

z
, b

.s
iz

e
=

1
6
)

fin
t =

0
.1

k
H

z
fin

t =
2

.5
k
H

z
, b

u
rs

ty
 S

IL
fin

t =
1

0
k
H

z

(fo
r fa

rriv
a
l =

1
0

k
H

z
)

fin
t =

0
.1

k
H

z
fin

t =
2

.5
k
H

z
, s

ta
tic

 H
IL

fin
t =

1
0
k
H

z

(fa
rriv

a
l is

 a
d
a

p
tiv

e
)

fin
t =

0
.1

k
H

z
fin

t =
2

.5
k
H

z
, d

y
n

a
m

ic
 H

IL
fin

t =
1

0
k
H

z

to
ta

l
C

P
U

 l
o
a
d
 [
%

]

INT limit technique

hard-task set CPU utilization [%]
10 50 75

Fig. 3. Comparing CPU loads achieved by the proposed solution (the
rightmost 3 columns denoted as dynamic HIL) and by common SIL (polling,
strict, bursty) and static HIL approaches.

experiments, XC6SLX75T was utilized with total overhead of
7758 slices and no external memory needed.

IV. EXPERIMENTAL RESULTS

The architecture proposed in the paper and presented in
the section III was implemented and compared (for the same
platform, task sets, priority assignment policy and INT stimuli)
to the approaches presented in the section II. During our
experiment, we have stimulated the system by INTs generated
by a single 100 Mbit Ethernet interface. The setup was selected
because the following reasons: i) the interface can produce a
high IOV and ii) more interfaces could hide crutial differences

0x10
0

1x10
3

2x10
3

3x10
3

4x10
3

5x10
3

6x10
3

7x10
3

8x10
3

9x10
3

(fo
r fa

rriv
a
l =

4
k
H

z
)

fin
t =

0
.1

k
H

z
fin

t =
2
.5

k
H

z
, p

o
llin

g
 S

IL
fin

t =
1
0

k
H

z

(fo
r fa

rriv
a
l =

4
k
H

z
)

fin
t =

0
.1

k
H

z
fin

t =
2
.5

k
H

z
, s

tric
t S

IL
fin

t =
1
0

k
H

z

(fo
r fa

rriv
a
l =

4
k
H

z
, b

.s
iz

e
=

1
6
)

fin
t =

0
.1

k
H

z
fin

t =
2
.5

k
H

z
, b

u
rs

ty
 S

IL
fin

t =
1
0

k
H

z

(fo
r fa

rriv
a
l =

1
0
k
H

z
)

fin
t =

0
.1

k
H

z
fin

t =
2
.5

k
H

z
, s

ta
tic

 H
IL

fin
t =

1
0

k
H

z

(fa
rriv

a
l is

 a
d
a

p
tiv

e
)

fin
t =

0
.1

k
H

z
fin

t =
2
.5

k
H

z
, d

y
n
a

m
ic

 H
IL

fin
t =

1
0

k
H

z

#
 o

f
IN

T
s
 s

e
rv

ic
e
d
 d

u
ri
n
g
 C

P
U

 u
n
d
e
rl
o
a
d

INT limit technique

hard-task set CPU utilization [%]
10 50 75

Fig. 4. Comparing INT throughputs achieved by the proposed solution (the
rightmost 3 columns denoted as dynamic HIL) and by common SIL (polling,
strict, bursty) and static HIL approaches.

50

75

100

10
2

10
3

10
4

10
5

to
ta

l
C

P
U

 l
o

a
d

 [
%

]
d

u
ri
n

g
 t

h
e

 h
a

rd
-t

a
s
k
 s

e
t

h
y
p

e
rp

e
ri
o

d

fint [Hz]

results for the 50% CPU utilization
of the hard-task set

no interrupt limiter
polling SIL (polling rate = 4kHz)

strict SIL (int. arrival rate = 4kHz)
bursty SIL (int. arr. rate = 4kHz, burst size = 2)

(burst size = 4)
(burst size = 16)

static HIL (int. arrival rate = 4kHz)
dynamic HIL

Fig. 5. Impact of fint on the total CPU load (ρ) during LCMHP . It can
be seen that (up to about fint = 4kHz) it is able to achieve smaller ρ than
the other techniques and that ρ < 100% even for fint ≥ 25kHz.

among the approaches. The results are summarized in Fig. 3
to Fig. 6. In the figures, it can be seen that for high fint
values our approach (denoted as dynamic HIL) is able to
prevent the ES from INT overload and to service higher
number of INTs during CPU underload than other approaches
at comparable CPU load values. Fig. 3 (Fig. 4) compares
CPU loads (INT throughputs) achieved by the proposed so-
lution (the rightmost 3 columns denoted as ”dynamic HIL”)
and common SIL (polling, strict, bursty) and HIL (static)
approaches. The horizontal axis of Fig. 3 (Fig. 4) represent
the total CPU load in % (# of max. interrupts serviced by the
CPU during CPU underload within LCMHP) – the plotted
data represent the sum of values achieved for the following
CPU utilizations of a hard-task set (SτH): 10 %, 50 %
and 75 %. The vertical axis represent variants of INT limit
techniques, each of which determined by farrival and by burst
size values (where applicable). For each of the techniques,
data are plotted for 3 various fint values: 0.1kHz, 2.5kHz
and 10kHz. The last 3 columns on the right hand side
(labeled ”dynamic HIL”) represents results achieved by the
concept presented in the paper. Details w.r.t. Fig. 5, 6 are
presented below the figures because of space reasons (results
in Fig. 5, 6 are presented for the 50% CPU utilization of
SτH and compared to common interrupt overload prevention
techniques; the technique presented in the paper is denoted as
”dynamic HIL” in the figures).

V. CONCLUSION

Our future research activities are going to be focused
on a detail discussion of implementation alternatives, mul-
tiple interrupt stimulation experiments, on real-world sys-
tem applications of the architecture and real-traffic mea-
surements/comparisons. This work has been partially sup-
ported by the RECOMP MSMT project (National Support
for Project Reduced Certification Costs Using Trusted Multi-
core Platforms), the Research Plan No. MSM 0021630528
(Security-Oriented Research in Information Technology), the
BUT FIT-S-11-1 and the IT4Innovations Centre of Excellence
CZ.1.05/1.1.00/02.0070.

0

500

1000

1500

2000

2500

3000

10
2

10
3

10
4

10
5

#
 o

f
in

te
rr

u
p

ts
 s

e
rv

ic
e

d

 d
u

ri
n

g
 t

h
e

 h
a

rd
-t

a
s
k
 h

y
p

e
rp

e
ri
o

d

fint [Hz]

results for the 50 % CPU utilization
of the hard-task set

no interrupt limiter
polling SIL (polling rate = 4kHz)

strict SIL (int. arrival rate = 4kHz)
bursty SIL (int. arr. rate = 4kHz, burst size = 2)

(burst size = 4)
(burst size = 16)

static HIL (int. arrival rate = 4kHz)
dynamic HIL

Fig. 6. Impact of fint on the number of interrupts (N) serviced during
LCMHP . It can be seen that for fint ≥ 25kHz it is able to increase N up
to 2500 comparing to N < 1250 achieved by the other techniques.

REFERENCES

[1] CAMEA, spol. s r.o.: AX32 platform. Accessible from
http://www.camea.cz/en.

[2] A. M. K. Cheng, Real-Time Systems, Scheduling, Analysis, and Verifica-
tion. John Wiley & Sons, 2002, 552 p.

[3] F. Cottet and J. Delacroix, C. Kaiser, Z. Mammeri, Scheduling in Real-
Time Systems. John Wiley & Sons, 2002, 282 p.

[4] L. E. Leyva-del-Foyo and P. Mejia-Alvarez: Custom Interrupt Manage-
ment for Real-time and Embedded System Kernels, In: Embedded Real-
Time Systems Implem. Workshop, 2004, 8 p.

[5] L. E. Leyva-del-Foyo, P. Mejia-Alvarez, D. Niz: Predictable Interrupt
Management for Real Time Kernels over conventional PC Hardware,
In: Proceedings of the IEEE Real-Time and Embedded Technology and
Applications Symposium, 2006, pp. 14 – 23.

[6] H. Kopetz: On the Fault Hypothesis for a Safety-Critical Real-Time
System. Automotive Software Connected Services in Mobile Networks,
Lecture Notes in Computer Science, Vol. 4147/2006, Springer Berlin,
2006, pp. 31 – 42.

[7] P. A. Laplante, Real-Time Systems Design and Analysis. John Wiley &
Sons, 2004, 528 p.

[8] M. Lee, J. Lee, A. Shyshkalov, J. Seo, I. Hong and I. Shin, On
Interrupt Scheduling based on Process Priority for Predictable Real-Time
Behavior. Work-In-Progress Proceedings of IEEE Real-Time Systems
Symposium, 2009, pp. 81 – 84.

[9] R. Pellizzoni: Predictable And Monitored Execution For Cots-Based Real-
Time Embedded Systems. Ph.D. Thesis, University of Illinois at Urbana-
Champaign, 2010, p. 154.

[10] J. Regehr and U. Duongsaa: Preventing interrupt overload. In: Proceed-
ings of the ACM SIGPLAN/SIGBED Conf. On Lang., Comp. and Tools
for Embedded Systems. ACM, 2005, pp. 50 – 58.

[11] K. Salah, K. El-Badawi and F. Haidari: Performance analysis and
comparison of interrupt-handling schemes in gigabit networks, Newton,
2007, pp. 3425 – 3441.

[12] F. Scheler, W Hofer, B. Oechslein, R. Pfister, W. Schröder-Preikschat
and D. Lohmann: Parallel, Hardware-Supported Interrupt Handling in
an Event-Trigered Real-Time Operating System. In: Proceedings of the
International Conference on Computers, Archrchitectures and Synthesis
of Embedded Systems (CASES), 2009, ACM, pp. 168 – 174.

[13] J. Strnadel: Concept of Adaptive Embedded HW/SW Architecture for
Dynamic Prevention from Interrupt Overloads. In: Proceedings of the
Work in Progress Session held in connection with the 37th EUROMICRO
Conference on SEAA and the 14th EUROMICRO DSD Conference,
2011, JKUL, pp. 21 – 22.

[14] Y. Zhang: Prediction-Based Interrupt Scheduling. Work-In-Progress
Proceedings of IEEE Real-Time Systems Symposium, 2009, pp. 81 –
84.

[15] Y. Zhang and R. West: Process-Aware Interrupt Scheduling and Ac-
counting. Proceedings of the IEEE International Real-Time Systems
Symposium, 2006, pp. 191 – 201.

