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Abstract—Understanding the structure and function of DNA
sequences represents an important area of research in modern bi-
ology. Unfortunately, analysis of such data is often complicated by
the presence of mutations introduced by evolutionary processes.
At the lowest scale, these usually occur in biological sequences
as character substitutions, insertions or deletions (indel). They
increase the time-complexity of algorithms for sequence analysis
by introducing an element of uncertainty, complicating their
practical usage. One class of such algorithms has been designed
to search for tandem repeats with possible errors—approximate
tandem repeats. This paper investigates the possibilities for hard-
ware acceleration of approximate tandem repeat searching and
describes a parametrized architecture suitable for chips with
FPGA technology. The proposed architecture is able to detect
tandems with both types of errors (mismatches and indels) and
does not limit the length of detected tandem. A prototype of
the circuit was implemented in VHDL language and synthesized
for Virtex5 technology. Application on test sequences shows that
the circuit is able to speed up tandem searching in orders of
thousands in comparison with the best-known software method
relying on suffix arrays.

Index Terms—Approximate tandem repeat; dynamic program-
ming; systolic array; FPGA; DNA;

I. INTRODUCTION

A perfect tandem repeat is defined as a string with two iden-
tical substrings following each other, e.g. abcdabcd. Approxi-
mate tandem repeats are allowed to contain a limited number
of differences between individual substrings, e.g. abcdabbd.
The biological and practical aspects of both types of tandem
repeats in genomic DNA of numerous organisms have been the
object of scientific studies for some time now. For example,
the human genome consists of two sets of chromosomes, each
set containing about 3 billion nucleotide basepairs that can be
represented by a linear sequence of 4 symbols (A,C,G and T).
About 3 percent of the nucleotide sequence is made of protein-
coding sequences and associated regulatory elements (genes).
The rest used to be called junk DNA until research has shown
numerous biological functions residing in these areas of the
sequence, which is more appropriately referred to as intergenic
DNA. Much of the intergenic regions are made of repetitive
sequences. These can be dispersed repeats, where the same se-
quence appears at seemingly random locations of the genome,
or tandem repeats, where a particular sequence is repeated in
tandem, a copy follows a previous copy immediately.

Tandem repeats in human and other genomes have been
classified into classes based on the average size of the repeated
unit as microsatellites and minisatellites, now usually referred
to as Short Tandem Repeats (STR, up to a dozen basepairs)
and Variable-Number Tandem Repeats (VNTR, hundreds and
thousands of basepairs) [1]. Because these repeats undergo
mutations more often than protein-coding genes, and because
they often differ in the number of repeats between individuals,
they became a tool for typing genomes, using a number
of experimental techniques to detect their periodicity, length
or simply the presence of a particular repeated sequence.
Tandem repeats often have specific biological functions, such
as involvement in gene evolution, or creating special structures
in DNA and proteins. Although difficult to sequence, many
tandem repeats are known today, either as isolated sequences
or as subsequences of available genomes.

We have used a database of tandem repeats associated with
the UCSC Human Genome Browser [2] as well as real and
artificial DNA sequences in this study to provide a spectrum of
repeat-containing sequences (from real repeat-rich sequences
to random sequences with very few tandem repeats).

Searching for perfect tandems is a well-studied problem.
The best algorithm in this area [3] achieves linear time
complexity O(n), where n is the length of the input string.
However, biological sequences often contain imperfect tandem
repeats derived from perfect repeats by mutations. These
mutations typically come as nucleotide (symbol) changes
(mismatches), deletions or insertions (indels). Algorithms for
tandem repeat searches in biological sequences are therefore
modified to identify approximate tandem repeats. The metric
used to evaluate similarities between substrings of tandem
repeats is commonly some kind of edit distance. The simplest
approaches use Hamming distance (only mismatches are con-
sidered). Levenshtein [4] distance is a much better metric for
this purpose. It is defined as the minimal number of insertions,
deletions and character changes needed to convert one string
into another.

Because of the need to account for mismatches and in-
dels, algorithms for approximate tandem repeat searches have
higher complexity than their perfect repeat counterparts. The
best direct algorithms in this area require n.k.log(k).log(n/k)
steps to find tandem repeats with at most k errors, or as much



as n2.log(n) steps to identify approximate tandem repeats
without limits to the number of errors. This level of time
complexity can become prohibitive with large datasets or in
interactive searches often used by biologists when exploring
genomic DNA sequences. The goal of this work is to study
the details of available methods for tandem repeat detection
and the possibility of their hardware acceleration.

This paper is organized as follows: Section II describes
state-of-the-art software methods for approximate tandem re-
peat searching. Related work in this area is summarized
in section III. Section IV contains detailed description of
our hardware architecture for acceleration of approximate
tandem repeat searching. Evaluation of proposed architecture
and its comparison with software implementation is given in
section V. Conclusions are summarized in section VI.

II. ALGORITHMS FOR APPROXIMATE TANDEM DETECTION

Algorithms for approximate tandem repeat detection can be
divided into distinct categories. In the first category, we place
algorithms that do not limit the search to a certain number or to
a certain proportion of errors in the input string [5], [6], [7]. As
a rule, these algorithms use a dynamic programming matrix
to achieve their goal. The best algorithm in this group [7]
has time complexity of n2.log(n) for sequences of length
n. It is practical for sequences of up to several thousand
bases. The second group of algorithms represents a variation
on the theme to search for tandem repeats with no more
than k errors [8], [9]. The most influential work in this
area [8] can find all applicable approximate tandem repeats in
time n.k.log(k).log(n/k), making it applicable to very long
sequences. Still, when applied to entire genomes on a single
processor machine, computation can take weeks or months,
depending on the value of k and the length of the analyzed
sequence.

The last group comprises algorithms using heuristics to sim-
plify searches in large databases of biological sequences [10],
[11], [12], [13], [14], [15]. Typical examples are: Repeat
Masker, Tandem Repeat Finder [10] and mreps [11]. These
approaches are typically associated with lower sensitivity or
selectivity, they limit searches to sequences of certain lengths
or find only tandems with specific types of errors (mismatches
or indels) [13] or specific motifs [12].

In this work we concentrate on acceleration of the best
direct technique for detection of approximate tandems with
k-errors [8]. It can be used alone or in combination with
appropriate heuristic methods. Details of the cited approach
follow.

A. Tandem detection with k-errors

The basic principle is based on the algorithm [16] for
detection of perfect tandem repeats. The input string S is seen
as a concatenation of two substrings u and v, where S = uv,
u = s1 . . . sn/2, v = sn/2+1 . . . sn (for the sake of simplicity
let us consider strings with lengths equal to powers of 2).
The method is designed to identify all tandem repeats that
span both substrings u and v (in other words they contain the

middle of S). The same calculations are applied recursively
to substrings S1 = s1 . . . sn/2 a S2 = sn/2+1 . . . sn. The
recursion stops when the input string is of length 1.

Depending on whether the center of the tandem repeat
lies within u or v, the tandem repeats are left or right. The
procedure to find all right tandem repeats works as follows:

For all possible periods p = 1 to n/2 do:
1) j = n/2 + p.
2) Forward Direction: Find the longest prefix of sj . . . sn,

that matches a prefix of sn/2 . . . sn. Let the length of
the prefix be l1 (see figure 1).

3) Reverse Direction: Find the longest suffix of
sn/2 . . . sj−1, that matches a suffix of s1 . . . sn/2−1.
Let the length of the suffix. be l2.

4) If l1 + l2 ≥ p then there is at least one tandem repeat
of length 2p.

Time complexity of this basic algorithm is derived as
follows: Using a suffix tree or suffix array [17], the calculation
of prefix l1 and suffix l2 can be carried out in constant
time O(1). Within one iteration n/2 positions have to be
traversed. The calculation is carried out for both left and right
tandem repeats recursively in log(n) steps. The overall time
complexity is therefore n.log(n).

Fig. 1. Tandem repeat detection using longest common prefix l1 and longest
common suffix l2

Landau et al. [8] elegantly extended the algorithm men-
tioned above to searching for tandem repeats with k mis-
matches. Let us assume that prefixes l1 and suffixes l2 contain
up to k errors. Upon obtaining the prefix l1, we find the longest
common prefix k times, always from the end of the previous
prefix incremented by one (see figure 2). The situation is
similar for the suffix l2. The positions of individual errors are
stored in an auxiliary array. In the last step the set of positions
is scanned for a subset that fulfills the conditions for a tandem
repeat l1[h] + l2[h′] ≥ p and h + h′ ≤ k. Time complexity
becomes nk.log(n/k).

Fig. 2. Longest common prefix l1 composed of k mismatches

Upon expanding the algorithm to indels it becomes neces-
sary to calculate the longest common prefixes l1 and suffixes
l2 by means of dynamic programming [18]. At each position
of the tandem repeat global alignment has to be calculated in



direct and reverse sense (see figure 3). However, since we only
need alignments with no more than k errors, the matrix only
needs to be calculated/filled up to 2k + 1 diagonals.

Similar to the previous algorithm, we need to identify the
positions l1[h] a l2[h′] of common prefixes and suffixes with
up to k errors in the global alignment matrix. Each diagonal of
the matrix defines a different position, which together form a
wave. The desired position can be calculated as the maximum
of this wave. In the last step, we examine the array of identified
positions and select a subset of positions that fulfill the tandem
requirements l1[h] + l2[h′] ≥ p and h+ h′ ≤ k.

The algorithm can be considerably improved by using the
principle of calculating global alignment published in [19].
This approach uses only k2 steps and its overall complexity
is nk2.log(n/k).

0 1 2 3 4

1

2

3

4

A C T A

4

4

4

4

4

4

4

4

C C G G

C

G

C

A

T

A

A

G

1

1

1

1

2

2

2

22

2

2

3 3

3

2

3

33

33

3

3 3 3

4

4

4

4

4

5

5

5

4 4

4 4

4

5

Wave for 2 errors

Wave for 3 errors

Wave for 1 error

Fig. 3. Forward direction: An example of global aligment of two strings
with at most 3 erros. Wawes for 1,2 and 3 errors are shown using dirrerent
shade.

Landau et al. [8] improved the algorithm further. They
found a procedure that uses neighboring global alignments
to calculate a given tandem repeat global alignment - a so
called incremental calculation [20]. To obtain a new global
alignment, they need only k steps instead of k2 steps. The
maximum of the wave can be obtained in log(k) steps, leading
to an overall time complexity of nk.log(k).log(n/k). This
relatively complex approach has not been applied in practice
so far and as such has more of a theoretical value.

Please note, that the proposed algorithm detects all tandem
repeats in the input sequence. However, some occurrences can
be interpreted in several ways, e.g. substring abcabcabcabc
represents two repeats of length 6 as well as four repeats of
length 3. Detailed analysis of such cases is usually performed
separately, outside the main algorithm.

III. RELATED WORKS

One of the most important works in the area of hardware
acceleration of approximate tandem repeat searching is [21].
The authors proposed a circuit architecture for detection of
tandems with k-mismatches with an extension to detect one
indel. The basic schema of the circuit (see figure 4b) is
made of an array of comparator units. Each comparator unit
(see figure 4a) in turn contains a pair of registers, a pair of
comparators and a counter of detected errors. The input string

is shifted into the array from left to right and then back again.
The upper set of registers contains a substring of the input
string named α1 and the lower set of registers contains the
substring α2. The pair of comparators compares the input and
output characters in α1 and α2. Depending on the state of
the comparators, the unit adjusts the counter of mismatches
as appropriate. Each comparator unit evaluates one tandem
repeat length. Please, note that the length of the array limits
the possible length of detected tandems.

Fig. 4. Architecture of circuit for tandem repeat detection with k mismatches:
a) comparison unit b) array of comparison units applied to each tandem length

The procedure to detect tandems with one indel and k
mismatches is quite complicated. The comparator structure is
replicated for every prefix and every length. The amount of
resources used by the circuit grows rapidly, also because of
the need to include the circuitry for evaluating the output of all
the comparator units. For example, by extension of the circuit
to 1 indel, the length of the array placed in single FPGA chip
decreased from 1024 to 60. The authors themselves admit that
this architecture is not ideal for detection of tandem repeats
with indels.

In the presented work we focus on the creation of an
architecture capable of detecting tandem repeats with k errors
of any type (mismatch or indel). Furthermore, our architecture
can detect tandem repeats of arbitrary length regardless of the
number of available comparator units.

IV. HARDWARE ARCHITECTURE

The proposed architecture of the circuit for tandem repeat
detection is shown in figure 5. The circuit has three main
parts responsible for the three phases of computation [8] as
described in Chapter II:

1) Global score calculation in a systolic array of processing
elements

2) Computation of wave maximum and assembling arrays
l1[h] and l2[h′]

3) Detection of the best tandem repeat

Parts 1) and 2) occur twice in the circuit - once for the
forward direction (calculation of the common prefix l1) and
once for the reverse direction (calculation of the common
suffix l2). Please note that this is only the architecture of
the computation core. This architecture needs to be applied
in each iteration for every position of the interval n/2 . . . n.
Connecting several cores to increase the parallelism of the
design is left for the designer who will integrate the circuit
into a specific target platform.
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A. Global alignment calculation

The way calculations are carried out in hardware is sim-
ilar to previously reported architectures for sequence align-
ment [22]. In each cycle of the clock the PE element calculates
the score of one cell of the DP matrix, using the previously
calculated score of three neighboring cells and two input
characters (see figure 6a). Each processing element calculates
the score in one column of the DP matrix and sends the
intermediate results to the neighboring PE on the right. The
most important difference from commonly used approaches is
limiting the calculation to 2k+1 diagonals (the array is k+1
elements long). At the beginning of calculations the elements
are activated sequentially until they all process cells on the
antidiagonal in parallel. In general, the calculations are carried
out in bands and the highest parallelization is obtained on the
antidiagonals of the DP matrix. As soon as a PE reaches the
last diagonal, it continues calculations on the first diagonal of
the next band (see figure 6b).
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Fig. 6. Organization of PE elements and separation of computation into the
stripes

Please note that while in software implementations the
calculation of global alignment is accelerated via operations
on a suffix array, in hardware this is achieved by sequential
calculation of as many antidiagonals as are needed to detect

prefixes/suffixes with up to k errors. Finding a suffix array
solution in hardware is still an open problem.

B. Calculating the wave maximum

In each step the PE elements process one antidiagonal of the
DP matrix. Scores generated on PE outputs therefore represent
the scores on the DP matrix antidiagonal. The maximum on
the wave can then be calculated as follows: (1) Calculate the
minimal score on antidiagonals (minimum of the PE outputs),
(2) if the minimum changes from k to k + 1 while traversing
from antidiagonal i to i+1, then maximum of the wave for k
errors has been reached on antidiagonal i. The function of this
circuit can be easily demonstrated on figure 3. The maximum
of the wave for 2 errors lies on the eight antidiagonal. This
maximum corresponds to the minimum of all scores on this
antidiagonal. Other waves are solved in a similar manner.
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Fig. 7. Architecture of circuit for wave maximum detection: a) tree structure
of units, b) detailed architecture of unit for minimum selection

The circuit architecture is made of comparators joined in a
tree-like structure. They output the minimum of the two input
elements (see figure 7b). There is a unit at the end of the tree-
like structure that detects the change in the minimum identified
by the previous step and outputs the position (antidiagonal
number) that caused the change. The whole circuit can be
pipelined to obtain desired working frequency.

C. Tandem detection

The role of the circuit is to detect whether there is a tandem
satisfying the conditions l1[h] + l2[h′] ≥ p and h + h′ ≤ k
between the calculated prefix (l1) and suffix (l2). Also, if more
tandems are detected at the same position, the one with the
minimal number of errors is chosen. To select the tandem
repeat with the lowest number of errors, the tandem condition
has to be tested for positions corresponding to 0, 1, . . . k errors.
Table I shows all indexes of l1 and l2 arrays that need to be
evaluated for a given number of errors.

The circuit architecture is made of an array of k + 1
comparator units which for each pair of positions a and b
evaluates whether the analyzed sequence fulfills the condition
for a tandem repeat a+b ≥ p. Input values of wave maximum
in forward direction l1[h] are shifted into the first register array
from left to rigth. Input values of wave maximum in the reverse
direction l2[h′] are shifted into the second register array in



TABLE I
LIST OF INDEXES OF l1 AND l2 ARRAYS TO BE COMPARED FOR

DETECTION OF TANDEM WITH THE LOWEST NUMBER OF ERRORS

0 1 2 . . . k

h0, h0‘ h0, h1‘ h0, h2‘ . . . h0, hk‘
h1, h0‘ h1, h1‘ . . . h1, hk−1‘

h2, h0‘ . . . h2, hk−2‘
. . . . . .

hk , h0‘

opposite direction. As soon as the values from both arrays
meet each other (somewhere in the center), the calculation
starts. Arrival of next values triggers evaluation of next number
of errors. All positions referenced in Table I are compared and
the tandem repeat with the lowest number of errors is labelled
on the output.
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h0’ h3’ hk’h1’ h2’

Fig. 8. Architecture of circuit for tandem detection: a) organization of
comparison units, b) detailed architecture of comparison unit

The entire calculation of one iteration is finished when the
prefix and suffix with at most k errors is detected (output Max
Score on Wave). The control logic detects this state and gets
ready for the next iteration.

Please note that the proposed architecture does not limit
the length of the detected tandem repeat. Moreover it is
capable of detecting tandem repeats with both types of errors
(mismatches and indels). The proposed architecture creates a
general framework for tandem repeat detection that can be
fine-tuned by a set of generic parameters: the number of errors
k or data width characteristics (input symbols, score values and
positions in string). Using configurable FPGA technology all
these parameters can be set at the time of synthesis and thus
optimize the resulting circuit for the amount of resources used
as well as working frequency.

V. EVALUATION AND RESULTS

The goal of this chapter is to compare the algorithm
implemented in software (SW) and the proposed hardware
architecture (HW) in terms of performance. As the basic
metric for this comparison the number of iterations computed
in unit time is chosen. In this context, a single iteration
represents the three core phases of the algorithm: calculating
forward and reverse prefixes/suffixes by global alignment,
calculating the wave maximum and tandem repeat detection
with the minimum number of errors. As the algorithm sotfware

implemenentation and its performance characteritics are not
available as free, we implemented the algorithm core described
in Chapter II in the C programming language. To calculate
the suffix array and find the longest common prefix, we used
available optimized libraries [23], [24]. The program has been
tested on a computer equipped with an Intel Core2 Duo E8400
3GHz processor and 2GB of RAM. To evaluate computation
speed we ran 1 million iterations and calculated the average
number of iterations per second. The results for different
values of k are presented in Table II.

To ensure, that our SW implementation has appropriate
performance characteristics, we converted the measured com-
putation times to the number of operations per unit time, where
single operation corresponds to LCP or DP rule application.
This performance achieves roughly 20 millions operations per
second for sufficiently high values of k (for small values of
k the overhead of other algorithm parts is more noticeable).
Implementations of similar algorithms, such as approximate
string matching (ASM) usually achieve performance between
25 and 40 millions operation per second (for a 3GHz Xeon
processor [25]). However, since ASM is based on simpler
operations (only DP rules are used) we consider our imple-
mentation to be satisfactory, close enough to the theoretical
maximum.

When comparing the speed of SW and HW computation, we
need to take into account the use of different implementations
of sequence alignment. While the SW implementation uses a
suffix array, the HW architecture calculates the global align-
ment by dynamic programming. Please note, that SW always
carries out the same number of operations to get the global
alignment (dependent on k) regardless of the input sequence.
The number of steps in the hardware implementation, on
the other hand, will depend on the number of processed
antidiagonals before k errors are reached. The number of steps
in hardware will therefore be higher in sequences with a low
proportion of errors. In the best case (every symbol introduces
an error), the HW implementation will go through 2k+1 steps.
In the worst case (the sequence contains n symbols of the
same kind), the HW implementation will carry out n steps.
To evaluate the HW implementation in regards to its intended
real-life use, we decided to determine the number of steps
necessary on different types of real-life and model sequences.
The testing set included the following sequences:

1) Random sequence of 10k bases (all four symbols gen-
erated with equal probability)

2) Common DNA sequences. 100 randomly chosen seg-
ments of 1000 bases from chromosome Y of the human
genome. Chromosome Y has a higher content of repeats
(about 61%)

3) DNA sequences made solely of VNTRs (period 6 and
more) and STRs (period 2-5 symbols). We have ran-
domly chosen 100 segments from chromosome Y for
each type)

For each group of sequences we measured the number of
steps l carried out by the HW implementation and averaged



Fig. 9. Characteristics of the number of computation steps performed in the
HW circuit based on the number of detected errors k, for different types of
sequences

the number over all sequences in the group. The resulting
graph of the dependency between k and l is shown in figure 9.
As expected, the lowest number of steps was necessary for a
random sequence and only fractionally more steps for common
DNA. Sequences containing repeats contained longer common
prefixes and suffixes causing l to be higher. This effect was
more pronounced in the sequences with STR repeats. Because
the dependency between l and k is very close to being linear,
we only consider the slope r = l/k of the relationships
to evaluate HW performance. The slope is 3.6 for random
sequences, 4.0 for DNA, 5.1 for VNTR and 10.4 for STR.

Let us now derive the true number of steps in HW necessary
to finish one iteration. The number of clock cycles needed to
calculate the global alignment will be, on average, l = r.k.
All the other parts of the circuit work in pipelined manner,
up to the moment the end of calculation is detected by
the Max wave score unit when k errors are reached. Upon
complete pipelining of the Max wave score unit, it will take
log(k + 1) cycles to detect the end of calculation, so that
new iteration can begin. The average time for one iteration
will therefore be l + log(k + 1) cycles. Please note, that the
computation can be terminated sooner, e.g. if a tandem repeat
with less than k errors is presented in the input sequence,
then Tandem detection circuit can announce such occurrence
before all l steps are executed. However this optimization can
be performed at SW level as well. To avoid irregularities in
algorithm structure, we exclude such mechanism from our
algorithm.

The proposed architecture was implemented in the VHDL
language. The code is well written, but not strongly optimized.
As target FPGA chip we used Virtex 5 xc5vlx330t speedgrade
-2. Synthesis was carried out using Xilinx ISE tools. The re-
sulting amount of utilized resources and the working frequency
(after Place and Route process) for selected number of errors
k are given in Table II. Based on the derived number of steps
in HW, we calculated the number of iterations achievable per

second. The amount of utilized resources clearly shows we can
place several units on one chip and further increase the degree
of parallelization. We therefore also present an estimate of the
number of arrays that can be place on the chip to estimate the
overall speedup.

With respect to the results shown in Table II , we can
conclude:
• The amount of necessary resources grows linearly with

increasing k. However, it contains a hidden logarithmic
component introduced by the generic setting of data width
for score value distribution. This is demonstrated by
saving resources in the block to calculate wave maximum
(see Chapter IV). From the increase in resource utilization
we estimate that Virtex5 chip can hold an array for
detection of tandems with about 500 errors.

• For higher values of k we can see a tendency for
lower working frequency. This decrease is caused by
the increasing length of busses supplying the PE array
with new symbols from the computation matrix column.
This effect can be eliminated by increasing the amount
of resources used (for example by prefetching strings or
their parts into the register array).

• Performance of the SW implementation running on the
CPU has a quadratic relationship to k, since it must
carry out k2 steps to calculate the global alignments. The
performance of the HW circuit decreases linearly, because
all diagonals are processed in parallel and l only grows
linearly with increasing k. For higher values of k, the
effect of lower working frequency enters the equation.

• To compare performance of a program running on the
CPU and a HW circuit in FPGA, the speedup per array
lies between 80 and 873. Using the available resources
on the chip we can create more arrays and thus increase
the parallellism and speed of computation. The number
of arrays that can be created in this manner can reach
up to 271, depending on the value of k. For the sake of
simplicity, we only approximated the number of arrays
with respect to the amount of available resources. In
real implementation, it is necessary to include circuits
distributing input data to individual arrays, blocks con-
trolling DMA operations and other characteristics of the
specific target platform.

• The overall speedup decreases with the decreasing num-
ber of arrays on the chip and lies between 2 441 and
28 255. These HW performance values are based on the
assumption that searches are done on DNA sequences. In
the case of searching repeat-rich sequences, like those of
VNTR or STR, the number of steps in HW increases and
speedup needs to be adjusted according to the following
table:
The overall speedup is in the order of thousands in respect
to the SW algorithm using suffix arrays

VI. CONCLUSIONS

In this work we proposed a new architecture for detection
of approximate tandem repeats in DNA sequences. This ar-



TABLE II
CHARACTERISTICS OF HW IMPLEMENTATION SUCH AS AMOUNT OF CONSUMED RESOURCES AND WORKING FREQUENCY (AFTER PAR), COMPARISON

OF HW AND SW PERFORMANCE AND CALCULATION OF THE RESULTING SPEEDUP

k SW Perf. [iters/sec] Res. util. [Slices] HW Steps Freq. [MHz] HW Perf. [iters/sec] Speedup #Arrays Overall Speedup
1 492,611 191 6 256 42,735,043 104 271.4 28,255
2 307,692 231 11 246 23,310,023 80 224.4 17,920
5 102,775 446 24 244 10,675,549 103 116.2 12,011

10 34,710 800 45 235 5,183,630 154 64.8 9,979
20 10,077 1,452 86 226 2,650,537 264 35.7 9,429
50 1,759 3,502 207 182 870,749 501 14.8 7,422
100 694 8,445 408 148 363,755 814 6.1 4,996
150 201 12,496 609 106 174,685 870 4.1 3,611
200 113 19,786 809 80 98,888 873 2.6 2,287

TABLE III
RANGE OF SPEEDUP FOR DIFFERENT TYPES OF INPUT SEQUENCES

Sequence Type Speedup
DNA 2,441 - 28,255

VNTR 1,918 - 20,182
STR 945 - 11,773

chitecture allows us to search for tandem repeats with both
types of errors (mismatches and indels) and does not limit the
length of the tandem repeat. With the increasing number of
tolerated errors, the amount of resources used by the circuit
only grows linearly. We implemented the proposed architecture
on a Virtex5 FPGA chip and compared the performance of
this implementation to the best available solution in software,
based on suffix arrays. The obtained speedup on single FPGA
chip with several instances of this architecture reaches thou-
sands, compared to software running on a 3GHz processor.

The proposed hardware architecture utilizes the advantages
of FPGA technology. Configurability of the chips allows us
to specify parameters such number of detected errors and
data widths for input sequence, computed scores and positions
before the synthesis process and thus create circuit optimized
for target application. The created circuit can achieve higher
working frequency, consume less resources and contain more
processing elements.

Further development and improvements of HW architectures
will to a certain level depend on the development of general
algorithms for software implementations. For some time it
has been assumed that algorithms for detection of tandem
repeats cannot be improved. The most cited algorithms in this
respect were the algorithm for perfect tandem repeats [16] with
time complexity n.log(n) and the algorithm for approximate
tandem repeats [8] with time complexity n.k.log(k).log(n/k).
However, in 2004, a new approach has been published [3], al-
lowing to find perfect tandems in linear time. A corresponding
algorithm for approximate tandems has not been described so
far. It will be interesting to follow future developments in this
area and study the possibility to accelerate the new approaches
using FPGA technology.

Our increasing ability to utilize hardware acceleration to
manipulate and analyze huge amounts of biological sequence
data for similarities and occurrence of patterns becomes im-

portant in the light of the rapid developments in sequencing
technology taking place today. While it took a decade to
decipher the first human genome, next-generation sequenc-
ing methods and new methods under development, (single-
molecule sequencing and nanopore sequencing of DNA) are
aiming at generating billions of bases per minute at a cost
of hundreds of dollars at most. For example the newest
sequencing machine from Helicos contains a two-processor
server connected by fiber-optics to the sequencing microscope
just to process the raw data in real-time and sequencing is
seen as a future method of choice for personal genomics and
a number of medical diagnostic procedures. Even with smaller
datasets, users have an increasing need to browse the available
data in real time. Hardware acceleration techniques such as
the one proposed in this paper may well be the best choice
to handle the speed requirements and ever increasing volume
of biological sequence data generated by sequencing centers
world-wide.
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