
Extracting Information from Scientific Papers in the Cloud

Petr Škoda, Svatopluk Šperka, Pavel Smrž
Brno University of Technology

Faculty of Information Technology
IT4Innovations Centre of Excellence

Bozetechova 2, 612 66 Brno, Czech Republic
{iskoda,isperka,smrz}@fit.vutbr.cz

Abstract—This paper deals with a system for extracting infor-
mation from scientific papers. We analyze drawbacks of an
existing implementation running on the N1 Grid Engine. Rea-
sons for moving extraction to the Cloud are presented next.
The architecture of the Cloud port is discussed and the links to
the API and the platform developed within the mOSCAIC
project are elaborated.

Keywords—information extraction; N1GE; Cloud; mOSAIC

I. INTRODUCTION

ReReSearch is an experimental project being developed
by our team which aims at building a knowledge base and
derived personalized portals about research. The key entities
it operates on include researchers, teams and universities,
papers, reports and deliverables, books, journals, proceedings
and various collections, conferences, workshops and semi-
nars, projects and funding agencies. Information on all of
these entities has to be interconnected in order to be useful.
To gather the data, the system first identifies relevant sources
on the Web and then downloads and processes specific web
pages and papers. To transform data from unstructured form
into a structured one, information extraction methods are
applied.

This paper focuses on a crucial step of the process – in-
formation extraction from scientific papers. Papers are col-
lected by special crawlers that search the Web for the pages
possibly containing links to papers (e.g., online proceedings
or lists of publications linked from homepages of authors
that the system already “knows”). Printable formats (PDF,
PS, DOC, etc.) are transformed into a semi-structured text
(text structuring information such as sections or list items
can be recovered). The process of information extraction
from the texts may take from a few seconds to several min-
utes, depending on the complexity and the length of the
document.

It is hard or practically impossible to exactly predict the
number of scientific papers that the system can acquire in a
given time. It is essential to process all the acquired docu-
ments as fast as possible in order to maintain the database
actual. Currently, we employ the N1 Grid Engine (N1GE,
formerly developed by Sun, now owned by Oracle) to proc-
ess large batches of papers. The grid is available to all teams
at our faculty so it is often highly utilized. There are also
other drawbacks that will be discussed in the paper.

Based on the analysis of the current state, we decided to
port the processing components into a Cloud. The platform
should provide scalability and elasticity so that the applica-
tion can deal with large peaks of incoming papers and can
process them faster and more reliably than with the current
implementation based on N1GE. Moreover, we aim to use
the platform developed within the mOSAIC project 1 that
offers provider-agnostic APIs allowing migrating between
cloud providers and even scaling beyond one, if necessary.

The rest of this paper is organized as follows: Section II
describes the process of information extraction from scien-
tific articles in detail. Section III elaborates on the current
implementation which employs the N1 Grid Engine and de-
tails the analysis of limited performance and other weak-
nesses of the realized system. Section IV describes the pro-
posed architecture of the Cloud-based implementation and its
key components.

II. PROCESSING SCIENTIFIC PAPERS

As mentioned in Introduction, the information extraction
from scientific papers takes several steps before the data can
be stored in the ReReSearch (RRS) system. We briefly in-
troduce the workflow of the part of RRS responsible for the
document processing in this section. We also detail the
metadata extraction process and characterize major building
blocks of the current implementation.

A. Getting data into the ReReSearch database

There are multiple ways in which information about a
publication can be identified and added to the RRS database.

The metadata of documents for which there is no fulltext
version yet are typically obtained from digital repositories
like CiteSeerX or DBLP. Bibliographic data can also be ob-
tained by means of information extraction from references
contained in texts of publications. Using these data, we can
model relationships between papers, authors and other enti-
ties in the database.
A simplified schema of the part of ReReSearch concerned
with publications is depicted in Figure 1. Only a subset of
data gathering modules are represented in the schema. The
key elements can be characterized as follows:

1 http://www.mosaic-cloud.eu

2012 Sixth International Conference on Complex, Intelligent, and Software Intensive Systems

978-0-7695-4687-2/12 $26.00 © 2012 IEEE

DOI 10.1109/CISIS.2012.176

775

• RRS DB — the main database of the ReReSearch system
storing structured data as well as indexes for the fulltext
search;

• Document source files store — storage of original ver-
sions of documents (source files);

• Metadata extractor — the component performing infor-
mation extraction on given documents;

• CiteSeerX/DBLP import — a module for searching Cite-
SeerX and DBLP for bibliographic data about new arti-
cles and publications;

• Homepage search — a module searching author’s home-
pages and lists of their publications and citations; results
can be either document source files themselves or just
bibliographic data;

• Document source file search — a module searching for
document source file according to given bibliographic
data.

Homepage

search

CiteSeerX

DBLP

Import RRS

DB

Document

source file

search

Document

source files

store

Metadata extractor

(Information Extraction)

Bibliogr. data

Source files

Metadata

Figure 1. ReReSearch — getting the data into the database.

CiteSeerX/DBLP import and Homepage search modules
import bibliographic data directly into the database. Docu-
ment source file search and also Homepage search are able
to find publications in the form of PDFs, PostScripts, etc.
that are later processed by the Metadata extractor compo-
nent. Output of this extractor is then fed into the database.

The process can start by giving a name of an author to
the Homepage search module by the RRS control system. It
can be a result of an addition of new documents to the RRS
DB or it can be triggered by an end user’s request to find
information on a particular author and his publications. The
Homepage search module starts a search for a web home
page of the author by using various search engines. The
HTML code of the home page is analyzed and the module
tries to detect links to a page with author’s publications or to
find publications on the homepage itself. All extracted bib-
liographical data are loaded into the ReReSearch database
and publications are saved to the Document source files store
in order to be processed by the Metadata extractor as soon as
possible. The Homepage search module then starts again by
looking for home pages of previously unknown persons en-
countered as co-authors and as authors of cited publications.

Bibliographic data of new publications, for which the
publication itself was not found, are meanwhile passed to the
Document source file search module that tries to find it on

the Internet. Currently, this module is successful for 10 % of
publications. Found files are again processed by the Meta-
data extractor module.

The process triggered by one person passed to the Home-
page search module can continue for a long time and can
find thousands of new persons and documents.

We used our current database that contains bibliographic
data on about 10 million documents to estimate how many
authors and publications we can obtain by following co-
authorship and citations. Because many authors quote fa-
mous authors, at some point the amount of new publications
and new authors is the same no matter who one we start
with. An example graph characterizing the total number of
authors and publications collected after several iterations is
given in Figure 2. An iteration consists of gathering: publica-
tions of authors found in the previous iteration; all co-authors
of these publications; and publications and their authors cited
in those from the previous iteration. After a few iterations,
the number of publications and authors gets easily above
100,000.

0

50000

100000

150000

200000

250000

1 2 3 4
iteration

publications found

Figure 2. Number of publications obtained by following co-authorship

and citation links during four iterations for “Daniel Abadi”.

For a practical perspective, Figure 3. captures a number
of publications found by the Homepage Search module for a
starting name. As the process continuously progresses and
more connected authors are found, after two hours the num-
ber of publications found reaches 1,100.

0

200

400

600

800

1000

1200

3
2

5
5
4

8
4
1

9
9
0

1
1
5
1

1
3
0
2

1
4
4
7

1
5
9
5

1
6
8
9

1
9
0
7

2
1
0
8

2
1
8
1

2
5
8
6

2
6
7
0

2
8
9
0

3
0
1
9

3
2
8
2

3
5
8
6

3
7
4
9

4
8
6
1

5
7
1
5

5
8
9
6

5
9
7
3

6
2
0
2

6
2
6
1

6
4
1
2

6
7
4
8

7
1
7
2

7
2
6
1

7
4
3
8

[s]

publications found

Figure 3. Process of finding publications by the Homepage Search
module for starting name “Weatherhead” captured in time.

B. From printable versions to semi-structured data

Documents in PDF, PS, DOC and other formats down-
loaded in the previous phase need to be transformed into a
semi-structured form appropriate for the full-text indexing.
Additional metadata (such as author’s affiliation and e-mail
address) are extracted as well. The process comprises a

776

number of steps. Some of them are tied together so they need
to be executed in a given order. Some metadata extractors
use large dictionaries to support the analysis of documents.
These aspects influence the way the processes can be imple-
mented (see the next subsection). A simplified schema of the
extractor used in RRS is given in Figure 4.

The extraction process starts by passing a source file of a
document to the Document to Text Transformer where the
source file (PDF, PS, DOC) is transformed into the semi-
structure form. The resulting text is cleaned from unsuitable
characters, special characters, dashes and ligatures by the
Text Cleaner. The Document Splitter then detects main struc-
ture of the document (chapters, citations, etc.) and the Lan-
guage Identifier recognizes the language of the document so
that it can be handled using language-specific dictionaries
and rules. The Meta Extractor searches documents for key-
words, abstracts and titles. The Email Extractor then looks
for all e-mail addresses in the document. In the next step, the
Entity Extractor finds authors of the document and makes
relations between authors and their e-mail addresses, if they
were identified. In the end, the Entity Extractor searches for
a publisher of the document. All data gathered during the
extraction are finally composed into an XML file and sent
back as a result.

Document to Text

Transformer

Text Cleaner

Document Splitter

Language Identifier Meta Extractor

Email Extractor

Entity Extractor

Dictionary

store

RRS

Control

System

Metadata extractor

Doc. source

Doc. text

Dictionaries

Metadata

Extractor

Other module

Figure 4. Metadata extractor—from document source to metadata.

The metadata extractor can be extended by other extrac-
tion modules, depending on the requirements of each particu-
lar case. Currently, the extractors are implemented as Python
classes, while Document to Text Transformers are legacy
libraries written in various languages.

III. CURRENT IMPLEMENTATION

Even before the development of the Metadata Extractor
had been finished, it was clear that this process would be
extremely demanding on a single machine. For example,
there are more than 900,000 source files of documents in our
store that have not been processed yet (they were download-

ed using links gathered from a CiteSeerX traversal). It would
take several months to process this amount of documents on
a single machine. Obviously, alternative scenarios need to be
considered.

A. N1 Grid Engine

There are various ways to use the power of multiple
computers. The general concept of a computer grid (consist-
ing of heterogeneous nodes) is the direction our system cur-
rently follows. The N1 Grid Engine (N1GE) is able to per-
form operations on unused computers in a network that are
configured as the execution hosts of the N1GE. The com-
puters do not need to be dedicated for the grid so any work-
station can be in it’s idle times (e.g. during the night) em-
ployed in the grid. The N1GE scheduler takes care of moni-
toring available resources of computers in the grid and plans
jobs for them accordingly [1].

The Faculty of Information Technology, Brno University
of Technology, runs the N1GE on a number of dedicated
high-performance servers and hundreds of workstations from
computer labs and offices. The number of available single
thread cores in this grid is usually between 700 and 1,200.
The grid is available for any research group at the faculty so
the load is often very high. Priorities are used for job plan-
ning, a higher priority means sooner finalization of the job. A
disadvantage of the simple priority approach is that a high
priority for a large long-running job can remarkably lower
the computational power for all other jobs.

B. Metadata extraction on N1GE

The overall schema of the RRS extraction on the N1GE
is showed in Figure 5. As the execution hosts are distributed
across the network, we are using a shared file server as a
source of all necessary data and executables: source files of
documents (PDF, PS, DOC, etc.), dictionaries, executables
and libraries. In the other direction, outputs of the extraction
modules (in the form of XML with metadata and files with
extracted texts) can be stored on the shared file server.

N1GE (grid)

Document to Text

Transformer 1

Source files

store

N1GE

job 1

Text files

store

Metadata

XML file

store

Document to Text

Transformer 2

Document to Text

Transformer n

N1GE

job 2

N1GE

job n

Metadata

extractor 1

Metadata

extractor 2

Metadata

extractor n

Dictionary

store

Doc. source

Doc. text

Metadata

Dictionaries

Execute

Figure 5. Extracting metadata—current environment with the N1 Grid

Engine; extraction in the grid runs on n machines.

777

N1GE operations are handled as jobs. A scheduler de-
cides when and on which hosts will be jobs executed. From
the scheduler’s point of view, an ideal execution time is ra-
ther minutes than seconds as there is a provisioning over-
head. That is why we run 10 extractions per job. The overall
average time needed to run all extractions is 83 seconds (see
in Figures 6 and 7). The RRS control system prepares jobs
and sends them to the N1GE queue.

0

500

1000

1500

2000

2500

0

1
3

3
2

5
3

7
6

1
0
0

1
2
5

1
5
0

1
7
6

2
0
3

2
3
0

2
5
8

2
8
6

3
1
4

3
4
3

3
7
2

4
0
1

4
3
0

4
6
0

4
9
0

5
2
0

5
5
1

5
8
2

6
1
2

6
4
3

Extraction time [s]

Extracted articles

Figure 6. Histogram of extraction times (data from 7854 extractions)

0

10

20

30

40

50

60

70

80

90

100

0

6
0

1
2
0

1
8
0

2
4
0

3
0
0

3
6
0

4
2
0

4
8
0

5
4
0

6
0
0

6
6
0

7
2
0

7
8
0

8
4
0

9
0
0

9
6
0

1
0
2
0

1
0
8
0

1
1
4
0

1
2
0
0

1
2
6
0

1
3
2
0

1
3
8
0

1
4
4
0

1
5
0
0

Time [s]

%

Figure 7. Percentage of documents that can be processed in a given time

(data from 7854 extractions)

C. Shortcommings of the current implementation

ReReSearch allows users to target the system to new top-
ics, authors, publications and other relevant entities reflect-
ing their specific needs. Unfortunately, N1GE cannot scale
up behind some limits. Also, the actual performance cannot
be estimated in particular cases as the availability of compu-
tational power depends on other activities in the system [2].
Though there are concepts supporting market-like scheduling
policies in N1GE [3], they are not easy to apply in heteroge-
neous environments. The current system cannot deal with
peaks in the number of documents to be processed.

On the other hand, even if a job contains only one or a
few documents, the job will be very probably just queued
and executed much later than would correspond to an aver-
age processing time. The length of the queue grows either
because of high utilization of the grid by other users or be-
cause of hardware limits (e.g., the network bandwidth) pre-
venting the system from running more jobs at the same time.
We were able to run only 110 or less jobs at a time during
tests on a heavy loaded N1GE.

Another issue consists in sequential processing of docu-
ments in each job. Unfortunately, it is not always possible to
predict the processing time from the metadata or the length
of the document (given by the number of pages or its size in
bytes—Figure 8). Our testing on 7854 documents showed
that the average of the processing times is about 2.5 higher
than the median. Further analysis revealed that about 0.5 %
of documents take a time much longer than expected. Docu-
ments in a job after a “slow” one have to wait, there is cur-
rently no way to re-schedule the processing.

10

100

1000

10000

9

4
1

5
9

7
3

8
6

1
0
0

1
1
2

1
2
5

1
3
5

1
4
8

1
5
9

1
7
1

1
8
4

1
9
6

2
0
7

2
2
1

2
3
6

2
5
3

2
7
2

2
9
5

3
2
2

3
5
3

3
8
5

4
2
5

4
6
8

5
2
7

6
0
7

6
9
8

8
1
8

9
8
6

12
5
3

17
1
8

24
5
8

44
5
4

PDF size [kB]

overall time [s]

Figure 8. Extraction time in relation to size of an input PDF file.

Finally, the faculty grid is primarily intended for new re-
search; it should not be occupied by continuous computation
of long-term applications in their deployment phase.

IV. TOWARDS IMPLEMENTATION IN CLOUD

Limitations described in the previous section—mainly
the lack of guarantees concerning availability of computa-
tional resources and the inability to scale the system accord-
ing to actual needs make us to choose a new infrastructure
that would better meet the requirements of applications based
on ReReSearch.

Cloud can be defined as a type of parallel and distributed
system consisting of a collection of inter-connected and vir-
tualized computers that are dynamically provisioned and
presented as one or more unified computing resource(s)
based on service-level agreements established through nego-
tiation between the service provider and consumers [4].
Thus, one of the essential characteristics of the Cloud envi-
ronment is elasticity—the ability to add or remove resources
at a fine grain and with a lead time of minutes rather than
weeks that allows matching resources to workload much
more closely [5]. Elasticity is exactly the feature that fulfills
the key requirement of ReReSearch – the ability to process
incoming papers as fast as possible by scaling up computa-
tional resources whenever they are needed.

There are two service models relevant for a developer
who wants to run an application at a Cloud provider. The
first model is Platform as a Service (PaaS) where the con-
sumer does not have control over the underlying infrastruc-
ture (servers, storage, OS or network) but only over deployed
applications created using programming languages and tools
supported by the provider. The second model—
Infrastructure as a Service (IaaS)—provides capability to
provision fundamental computing resources where the con-
sumer is able to deploy and run arbitrary software [6]. The

778

developer then usually configures or provides his environ-
ment in the form of a Virtual Machine (VM).

It would be tedious and error-prone to rewrite the code-
base of ReReSearch from Python to another language. The
existing code uses many libraries; it requires a specific ver-
sion of Python and a specific setting represented by envi-
ronment variables. It is necessary to reuse as much as possi-
ble when porting the system to the Cloud. This fact made us
to aim at the IaaS concept and target Cloud infrastructures
that allow setting up all necessary features in custom VMs.

It is also essential to avoid the provider lock-in – ReRe-
Search is a representative of systems that can benefit from
portability across clouds and cloud providers. mOSAIC—a
language- and platform-agnostic API for usage of multi-
Cloud resources, and at the same time a portable platform for
utilization of Cloud services based on the API and Cloud
usage patterns [7] provides such flexibility. It allows one
version of an application to be deployed to any supported
provider. Moreover, it aims at auto-scalability of applica-
tions [8], i.e., elasticity.

The mOSAIC’s API has several layers: Connector API
abstracts types of resources commonly offered by cloud pro-
viders such as message queues, key-value stores or distrib-
uted file systems. Driver API is at the bottom of the mO-
SAIC API hierarchy; it sits on top of a native API for a par-
ticular resource and enables a uniform access protocol. This
layer offers plugins where each plugin enables access to one
implementation of a resource type. Intermediate Interopera-
bility API ensures language independency of the API and
thus it mediates between the Connector API implementation
and a compatible driver implementation. Connector API and
Cloudlet API—the APIs offered by the platform to develop-
ers—are currently only available in the Java programming
language.

User components are called cloudlets. They use the
Cloudlet API that handles life-cycle of cloudlets, enables
initialization, configuration, migration and obtaining bind-
ings to used resources [8]. In mOSAC terms, a cloud compo-
nent is a cloudlet and there are one or several containers
within which one or more cloudlet instances execute. The
number of instances is under control of the container and is
managed in order to grant scalability [9], i.e. the mOSAIC
platform controls scaling up and scaling down of an applica-
tion. In order to ensure scalability, components should com-
municate indirectly—usually by using message queues as
intermediary so more cloudlet instances can dispatch mes-
sages from the same queue.

A. Application Architecture

The architecture of the scientific paper processing appli-
cation expressed in terms of cloudlets and Cloud resources
can be seen in Figure 9. The purpose of individual compo-
nents and application’s overall workflow is described in the
following paragraphs.

Communication between the ReReSearch control system
and the application in the Cloud is realized by means of
HTTP gateways. The process starts when the RRS control
system submits an HTTP POST request containing a URL of
the document to be processed by the Cloud. Delivery of ex-

tractors’ output is handled by the same method with roles of
the control system and Cloud app switched (i.e. Cloud app
submits an HTTP POST request to the RRS control system).

The Saver cloudlet receives URLs through a queue from
the HTTP gateway (cloudlets always communicate indirectly
through a queue in the designed system). It downloads doc-
uments from given locations and passes them to the Source
File Processor along with respective URLs. The Source File
Processor combines several modules from the architecture
depicted in Figure 4 (Section II.B)—the Document to Text
Transformer that extracts a textual content from the source
file; the Text Cleaner; the Document Splitter and the Lan-
guage Identifier. After the source file is processed by the
pipeline consisting of these modules, the Source File Proces-
sor adds the output into the key-value store under the key
computed as a hash of the URL from which the file was
downloaded by the Saver.

Textual content is fed into extractors by means of the key
identifying it in the key-value store. Extractors can run paral-
lel in order to speed up the process. Serialization is only en-
forced when there is dependence between modules (see
Figure 9). That is the case of the Entity Extractor that assigns
persons to email addresses extracted by the Email Extractor.
We refer to the rest of the extractors as Extractor 1 to Ex-
tractor N to stress the fact that the number of extractors will
increase in time as more components are being developed.

Each extractor processes the content and passes a result
of the extraction either to the next extractor or to the queue
from which the Sender cloudlet reads messages. The Sender
simply submits a POST request to the specified URL with
the result of a particular extraction. Outputs of extractors
from one source file are combined by a ReReSearch special-
ized module. This task is not handled in the Cloud.

Figure 9. Architecture of information extraction application in the cloud

As already mentioned, it is undesirable to rewrite our
codebase from Python to another language—e.g. Java (or
other JVM compatible language such as Scala)—in order to
run extractions on the mOSAIC platform. The extractor
cloudlets and the Source File Processor cloudlet thus simply
wrap existing Python and other legacy code. The rest of
cloudlets implement their functionality directly in Java. We
are preparing a Virtual Machine containing all required li-

779

braries, scripts and software so that it could be used from the
mOSAIC cloudlets.

V. CONCLUSION

We presented a system for information extraction from
scientific papers and an existing infrastructure based on
N1GE the software currently runs on. As we do not have an
exclusive access to the infrastructure, the availability of
computational capacity cannot be guaranteed. This limits an
ability to handle peaks of requests (a number of scientific
papers waiting to be processed). We argue that the Cloud
environment and its elasticity can cope with the discussed
issues. In order to guarantee portability of our application to
new Cloud providers and, in case of a need, to be able to
scale beyond one provider, we aim to use the mOSAIC plat-
form and its API. We describe the architecture of the appli-
cation that is being implemented.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community's Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement num-
ber 256910 (mOSAIC Cloud) and by the IT4Innovations
Centre of Excellence project, Registration num-
ber CZ.1.05/1.1.00/02.0070, supported by Operational Pro-
gramme “Research and Development for Innovations” fund-
ed by Structural Funds of the European Union and the state
budget of the Czech Republic.

REFERENCES
[1] Sun Microsystems, Inc. Sun N1 Grid Engine 6 User’s Guide. Santa

Clara, CA, USA. http://docs.sun.com/app/docs/doc/817-6117/, 2004.

[2] C. Chaubal. Scheduler Policies for Job Prioritization in the Sun N1
Grid Engine 6 System. Technical report, Sun BluePrints Online, Sun
Microsystems, Inc., Santa Clara, CA, USA. 2005.

[3] Stößer J., Bodenbenner P., See S., Neumann D. A Discriminatory
Pay-as-Bid Mechanism for Efficient Scheduling in the Sun N1 Grid
Engine. Institute of Information Systems and Management
Universität Karlsruhe. 2008.

[4] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg and I. Brandic, “Cloud
Computing and Emerging IT Platforms: Vision, Hype, and Reality for
Delivering Computing as the 5th Utility”, Future Generation
Computer System, vol. 25, issue 6, June 2009, pp. 599–616,
doi:10.1016/j.future.2008.12.001

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica and M.
Zaharia, “A View of Cloud Computing”, Communications of the
ACM, vol. 53, issue 4, April 2010, pp. 50–
58:10.1145/1721654.1721672

[6] P. Mell and T. Grance, “NIST Definition of Cloud Computing”,
National Institute of Standards and Technology, 2009

[7] B. Di Martino, D. Petcu, R. Cossu, P. Goncalves, T. Máhr, M.
Loichate, “Building a Mosaic of Clouds”, Euro-Par 2010 Parallel
Processing Workshops, LNCS, vol. 6586, pp. 571–578, Springer,
2011

[8] D.Petcu, C. Crăcium, M. Neagul, M. Rak, I. L. Larrarte, “Building an
Interoperability API for Sky Computing”, Proc. 2011 International
Conference on High Performance Computing and Simulation,
Workshop on Cloud Computing Interoperability and Services
(InterCloud 2011), IEEE CS, pp. 405–412, 2011

[9] G. Macariu, “mOSAIC API: Java Programming Guide”, eAustria
Research Institute, 2011

780

