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Abstract—This paper deals with a system for extracting infor-
mation from scientific papers. We analyze drawbacks of an 
existing implementation running on the N1 Grid Engine. Rea-
sons for moving extraction to the Cloud are presented next. 
The architecture of the Cloud port is discussed and the links to 
the API and the platform developed within the mOSCAIC 
project are elaborated. 
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I.  INTRODUCTION 

ReReSearch is an experimental project being developed 
by our team which aims at building a knowledge base and 
derived personalized portals about research. The key entities 
it operates on include researchers, teams and universities, 
papers, reports and deliverables, books, journals, proceedings 
and various collections, conferences, workshops and semi-
nars, projects and funding agencies. Information on all of 
these entities has to be interconnected in order to be useful. 
To gather the data, the system first identifies relevant sources 
on the Web and then downloads and processes specific web 
pages and papers. To transform data from unstructured form 
into a structured one, information extraction methods are 
applied. 

This paper focuses on a crucial step of the process – in-
formation extraction from scientific papers. Papers are col-
lected by special crawlers that search the Web for the pages 
possibly containing links to papers (e.g., online proceedings 
or lists of publications linked from homepages of authors 
that the system already “knows”). Printable formats (PDF, 
PS, DOC, etc.) are transformed into a semi-structured text 
(text structuring information such as sections or list items 
can be recovered). The process of information extraction 
from the texts may take from a few seconds to several min-
utes, depending on the complexity and the length of the 
document. 

It is hard or practically impossible to exactly predict the 
number of scientific papers that the system can acquire in a 
given time. It is essential to process all the acquired docu-
ments as fast as possible in order to maintain the database 
actual. Currently, we employ the N1 Grid Engine (N1GE, 
formerly developed by Sun, now owned by Oracle) to proc-
ess large batches of papers. The grid is available to all teams 
at our faculty so it is often highly utilized. There are also 
other drawbacks that will be discussed in the paper. 

Based on the analysis of the current state, we decided to 
port the processing components into a Cloud. The platform 
should provide scalability and elasticity so that the applica-
tion can deal with large peaks of incoming papers and can 
process them faster and more reliably than with the current 
implementation based on N1GE. Moreover, we aim to use 
the platform developed within the mOSAIC project 1  that 
offers provider-agnostic APIs allowing migrating between 
cloud providers and even scaling beyond one, if necessary. 

The rest of this paper is organized as follows: Section II 
describes the process of information extraction from scien-
tific articles in detail. Section III elaborates on the current 
implementation which employs the N1 Grid Engine and de-
tails the analysis of limited performance and other weak-
nesses of the realized system. Section IV describes the pro-
posed architecture of the Cloud-based implementation and its 
key components. 

II. PROCESSING SCIENTIFIC PAPERS 

As mentioned in Introduction, the information extraction 
from scientific papers takes several steps before the data can 
be stored in the ReReSearch (RRS) system. We briefly in-
troduce the workflow of the part of RRS responsible for the 
document processing in this section. We also detail the 
metadata extraction process and characterize major building 
blocks of the current implementation. 

A. Getting data into the ReReSearch database 

There are multiple ways in which information about a 
publication can be identified and added to the RRS database. 

The metadata of documents for which there is no fulltext 
version yet are typically obtained from digital repositories 
like CiteSeerX or DBLP. Bibliographic data can also be ob-
tained by means of information extraction from references 
contained in texts of publications. Using these data, we can 
model relationships between papers, authors and other enti-
ties in the database.  
A simplified schema of the part of ReReSearch concerned 
with publications is depicted in Figure 1. Only a subset of 
data gathering modules are represented in the schema. The 
key elements can be characterized as follows:  

                                                           
1  http://www.mosaic-cloud.eu 

2012 Sixth International Conference on Complex, Intelligent, and Software Intensive Systems

978-0-7695-4687-2/12 $26.00 © 2012 IEEE

DOI 10.1109/CISIS.2012.176

775



 

• RRS DB — the main database of the ReReSearch system 
storing structured data as well as indexes for the fulltext 
search; 

• Document source files store — storage of original ver-
sions of documents (source files); 

• Metadata extractor — the component performing infor-
mation extraction on given documents; 

• CiteSeerX/DBLP import — a module for searching Cite-
SeerX and DBLP for bibliographic data about new arti-
cles and publications; 

• Homepage search — a module searching author’s home-
pages and lists of their publications and citations; results 
can be either document source files themselves or just 
bibliographic data; 

• Document source file search — a module searching for 
document source file according to given bibliographic 
data. 
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Document 
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Document
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Figure 1.  ReReSearch — getting the data into the database. 

CiteSeerX/DBLP import and Homepage search modules 
import bibliographic data directly into the database. Docu-
ment source file search and also Homepage search are able 
to find publications in the form of PDFs, PostScripts, etc. 
that are later processed by the Metadata extractor compo-
nent. Output of this extractor is then fed into the database.  

The process can start by giving a name of an author to 
the Homepage search module by the RRS control system. It 
can be a result of an addition of new documents to the RRS 
DB or it can be triggered by an end user’s request to find 
information on a particular author and his publications. The 
Homepage search module starts a search for a web home 
page of the author by using various search engines. The 
HTML code of the home page is analyzed and the module 
tries to detect links to a page with author’s publications or to 
find publications on the homepage itself. All extracted bib-
liographical data are loaded into the ReReSearch database 
and publications are saved to the Document source files store 
in order to be processed by the Metadata extractor as soon as 
possible. The Homepage search module then starts again by 
looking for home pages of previously unknown persons en-
countered as co-authors and as authors of cited publications. 

Bibliographic data of new publications, for which the 
publication itself was not found, are meanwhile passed to the 
Document source file search module that tries to find it on 

the Internet. Currently, this module is successful for 10 % of 
publications. Found files are again processed by the Meta-
data extractor module. 

The process triggered by one person passed to the Home-
page search module can continue for a long time and can 
find thousands of new persons and documents. 

We used our current database that contains bibliographic 
data on about 10 million documents to estimate how many 
authors and publications we can obtain by following co-
authorship and citations. Because many authors quote fa-
mous authors, at some point the amount of new publications 
and new authors is the same no matter who one we start 
with. An example graph characterizing the total number of 
authors and publications collected after several iterations is 
given in Figure 2. An iteration consists of gathering: publica-
tions of authors found in the previous iteration; all co-authors 
of these publications; and publications and their authors cited 
in those from the previous iteration. After a few iterations, 
the number of publications and authors gets easily above 
100,000. 
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Figure 2.  Number of publications obtained by following co-authorship 

and citation links during four iterations for “Daniel Abadi”. 

For a practical perspective, Figure 3. captures a number 
of publications found by the Homepage Search module for a 
starting name. As the process continuously progresses and 
more connected authors are found, after two hours the num-
ber of publications found reaches 1,100.  
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Figure 3.  Process of finding publications by the Homepage Search 
module for starting name “Weatherhead” captured in time. 

B. From printable versions to semi-structured data 

Documents in PDF, PS, DOC and other formats down-
loaded in the previous phase need to be transformed into a 
semi-structured form appropriate for the full-text indexing. 
Additional metadata (such as author’s affiliation and e-mail 
address) are extracted as well.  The process comprises a 
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number of steps. Some of them are tied together so they need 
to be executed in a given order. Some metadata extractors 
use large dictionaries to support the analysis of documents. 
These aspects influence the way the processes can be imple-
mented (see the next subsection). A simplified schema of the 
extractor used in RRS is given in Figure 4.  

The extraction process starts by passing a source file of a 
document to the Document to Text Transformer where the 
source file (PDF, PS, DOC) is transformed into the semi-
structure form. The resulting text is cleaned from unsuitable 
characters, special characters, dashes and ligatures by the 
Text Cleaner. The Document Splitter then detects main struc-
ture of the document (chapters, citations, etc.) and the Lan-
guage Identifier recognizes the language of the document so 
that it can be handled using language-specific dictionaries 
and rules. The Meta Extractor searches documents for key-
words, abstracts and titles. The Email Extractor then looks 
for all e-mail addresses in the document. In the next step, the 
Entity Extractor finds authors of the document and makes 
relations between authors and their e-mail addresses, if they 
were identified. In the end, the Entity Extractor searches for 
a publisher of the document. All data gathered during the 
extraction are finally composed into an XML file and sent 
back as a result. 

Document to Text

Transformer

Text Cleaner

Document Splitter

Language Identifier Meta Extractor

Email Extractor

Entity Extractor

Dictionary

store

RRS

Control

System

Metadata extractor

Doc. source

Doc. text

Dictionaries

Metadata

Extractor

Other module

 
Figure 4.  Metadata extractor—from document source to metadata. 

The metadata extractor can be extended by other extrac-
tion modules, depending on the requirements of each particu-
lar case. Currently, the extractors are implemented as Python 
classes, while Document to Text Transformers are legacy 
libraries written in various languages. 

III. CURRENT IMPLEMENTATION 

Even before the development of the Metadata Extractor 
had been finished, it was clear that this process would be 
extremely demanding on a single machine. For example, 
there are more than 900,000 source files of documents in our 
store that have not been processed yet (they were download-

ed using links gathered from a CiteSeerX traversal). It would 
take several months to process this amount of documents on 
a single machine. Obviously, alternative scenarios need to be 
considered. 

A. N1 Grid Engine 

There are various ways to use the power of multiple 
computers. The general concept of a computer grid (consist-
ing of heterogeneous nodes) is the direction our system cur-
rently follows. The N1 Grid Engine (N1GE) is able to per-
form operations on unused computers in a network that are 
configured as the execution hosts of the N1GE. The com-
puters do not need to be dedicated for the grid so any work-
station can be in it’s idle times (e.g. during the night) em-
ployed in the grid. The N1GE scheduler takes care of moni-
toring available resources of computers in the grid and plans 
jobs for them accordingly [1]. 

The Faculty of Information Technology, Brno University 
of Technology, runs the N1GE on a number of dedicated 
high-performance servers and hundreds of workstations from 
computer labs and offices. The number of available single 
thread cores in this grid is usually between 700 and 1,200. 
The grid is available for any research group at the faculty so 
the load is often very high. Priorities are used for job plan-
ning, a higher priority means sooner finalization of the job. A 
disadvantage of the simple priority approach is that a high 
priority for a large long-running job can remarkably lower 
the computational power for all other jobs. 

B. Metadata extraction on N1GE 

The overall schema of the RRS extraction on the N1GE 
is showed in Figure 5. As the execution hosts are distributed 
across the network, we are using a shared file server as a 
source of all necessary data and executables: source files of 
documents (PDF, PS, DOC, etc.), dictionaries, executables 
and libraries. In the other direction, outputs of the extraction 
modules (in the form of XML with metadata and files with 
extracted texts) can be stored on the shared file server.  
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Figure 5.  Extracting metadata—current environment with the N1 Grid 

Engine; extraction in the grid runs on n machines. 
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N1GE operations are handled as jobs. A scheduler de-
cides when and on which hosts will be jobs executed. From 
the scheduler’s point of view, an ideal execution time is ra-
ther minutes than seconds as there is a provisioning over-
head. That is why we run 10 extractions per job. The overall 
average time needed to run all extractions is 83 seconds (see 
in Figures 6 and 7). The RRS control system prepares jobs 
and sends them to the N1GE queue. 
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Figure 6.  Histogram of extraction times (data from 7854 extractions) 
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Figure 7.  Percentage of documents that can be processed in a given time 

(data from 7854 extractions) 

C. Shortcommings of the current implementation 

ReReSearch allows users to target the system to new top-
ics, authors, publications and other relevant entities reflect-
ing their specific needs. Unfortunately, N1GE cannot scale 
up behind some limits. Also, the actual performance cannot 
be estimated in particular cases as the availability of compu-
tational power depends on other activities in the system [2]. 
Though there are concepts supporting market-like scheduling 
policies in N1GE [3], they are not easy to apply in heteroge-
neous environments. The current system cannot deal with 
peaks in the number of documents to be processed. 

On the other hand, even if a job contains only one or a 
few documents, the job will be very probably just queued 
and executed much later than would correspond to an aver-
age processing time. The length of the queue grows either 
because of high utilization of the grid by other users or be-
cause of hardware limits (e.g., the network bandwidth) pre-
venting the system from running more jobs at the same time. 
We were able to run only 110 or less jobs at a time during 
tests on a heavy loaded N1GE.  

Another issue consists in sequential processing of docu-
ments in each job. Unfortunately, it is not always possible to 
predict the processing time from the metadata or the length 
of the document (given by the number of pages or its size in 
bytes—Figure 8). Our testing on 7854 documents showed 
that the average of the processing times is about 2.5 higher 
than the median. Further analysis revealed that about 0.5 % 
of documents take a time much longer than expected. Docu-
ments in a job after a “slow” one have to wait, there is cur-
rently no way to re-schedule the processing. 
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Figure 8.  Extraction time in relation to size of  an input PDF file. 

Finally, the faculty grid is primarily intended for new re-
search; it should not be occupied by continuous computation 
of long-term applications in their deployment phase. 

IV. TOWARDS IMPLEMENTATION IN CLOUD 

Limitations described in the previous section—mainly 
the lack of guarantees concerning availability of computa-
tional resources and the inability to scale the system accord-
ing to actual needs make us to choose a new infrastructure 
that would better meet the requirements of applications based 
on ReReSearch. 

Cloud can be defined as a type of parallel and distributed 
system consisting of a collection of inter-connected and vir-
tualized computers that are dynamically provisioned and 
presented as one or more unified computing resource(s) 
based on service-level agreements established through nego-
tiation between the service provider and consumers [4]. 
Thus, one of the essential characteristics of the Cloud envi-
ronment is elasticity—the ability to add or remove resources 
at a fine grain and with a lead time of minutes rather than 
weeks that allows matching resources to workload much 
more closely [5]. Elasticity is exactly the feature that fulfills 
the key requirement of ReReSearch – the ability to process 
incoming papers as fast as possible by scaling up computa-
tional resources whenever they are needed. 

There are two service models relevant for a developer 
who wants to run an application at a Cloud provider. The 
first model is Platform as a Service (PaaS) where the con-
sumer does not have control over the underlying infrastruc-
ture (servers, storage, OS or network) but only over deployed 
applications created using programming languages and tools 
supported by the provider. The second model—
Infrastructure as a Service (IaaS)—provides capability to 
provision fundamental computing resources where the con-
sumer is able to deploy and run arbitrary software [6]. The 
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developer then usually configures or provides his environ-
ment in the form of a Virtual Machine (VM). 

It would be tedious and error-prone to rewrite the code-
base of ReReSearch from Python to another language. The 
existing code uses many libraries; it requires a specific ver-
sion of Python and a specific setting represented by envi-
ronment variables. It is necessary to reuse as much as possi-
ble when porting the system to the Cloud. This fact made us 
to aim at the IaaS concept and target Cloud infrastructures 
that allow setting up all necessary features in custom VMs. 

It is also essential to avoid the provider lock-in – ReRe-
Search is a representative of systems that can benefit from 
portability across clouds and cloud providers. mOSAIC—a 
language- and platform-agnostic API for usage of multi-
Cloud resources, and at the same time a portable platform for 
utilization of Cloud services based on the API and Cloud 
usage patterns [7] provides such flexibility. It allows one 
version of an application to be deployed to any supported 
provider. Moreover, it aims at auto-scalability of applica-
tions [8], i.e., elasticity. 

The mOSAIC’s API has several layers: Connector API 
abstracts types of resources commonly offered by cloud pro-
viders such as message queues, key-value stores or distrib-
uted file systems. Driver API is at the bottom of the mO-
SAIC API hierarchy; it sits on top of a native API for a par-
ticular resource and enables a uniform access protocol. This 
layer offers plugins where each plugin enables access to one 
implementation of a resource type. Intermediate Interopera-
bility API ensures language independency of the API and 
thus it mediates between the Connector API implementation 
and a compatible driver implementation. Connector API and 
Cloudlet API—the APIs offered by the platform to develop-
ers—are currently only available in the Java programming 
language. 

User components are called cloudlets. They use the 
Cloudlet API that handles life-cycle of cloudlets, enables 
initialization, configuration, migration and obtaining bind-
ings to used resources [8]. In mOSAC terms, a cloud compo-
nent is a cloudlet and there are one or several containers 
within which one or more cloudlet instances execute. The 
number of instances is under control of the container and is 
managed in order to grant scalability [9], i.e. the mOSAIC 
platform controls scaling up and scaling down of an applica-
tion. In order to ensure scalability, components should com-
municate indirectly—usually by using message queues as 
intermediary so more cloudlet instances can dispatch mes-
sages from the same queue. 

A. Application Architecture 

The architecture of the scientific paper processing appli-
cation expressed in terms of cloudlets and Cloud resources 
can be seen in Figure 9. The purpose of individual compo-
nents and application’s overall workflow is described in the 
following paragraphs. 

Communication between the ReReSearch control system 
and the application in the Cloud is realized by means of 
HTTP gateways. The process starts when the RRS control 
system submits an HTTP POST request containing a URL of 
the document to be processed by the Cloud. Delivery of ex-

tractors’ output is handled by the same method with roles of 
the control system and Cloud app switched (i.e. Cloud app 
submits an HTTP POST request to the RRS control system). 

The Saver cloudlet receives URLs through a queue from 
the HTTP gateway (cloudlets always communicate indirectly 
through a queue in the designed system). It downloads doc-
uments from given locations and passes them to the Source 
File Processor along with respective URLs. The Source File 
Processor combines several modules from the architecture 
depicted in Figure 4 (Section II.B)—the Document to Text 
Transformer that extracts a textual content from the source 
file; the Text Cleaner; the Document Splitter and the Lan-
guage Identifier. After the source file is processed by the 
pipeline consisting of these modules, the Source File Proces-
sor adds the output into the key-value store under the key 
computed as a hash of the URL from which the file was 
downloaded by the Saver. 

Textual content is fed into extractors by means of the key 
identifying it in the key-value store. Extractors can run paral-
lel in order to speed up the process. Serialization is only en-
forced when there is dependence between modules (see 
Figure 9). That is the case of the Entity Extractor that assigns 
persons to email addresses extracted by the Email Extractor. 
We refer to the rest of the extractors as Extractor 1 to Ex-
tractor N to stress the fact that the number of extractors will 
increase in time as more components are being developed. 

Each extractor processes the content and passes a result 
of the extraction either to the next extractor or to the queue 
from which the Sender cloudlet reads messages. The Sender 
simply submits a POST request to the specified URL with 
the result of a particular extraction. Outputs of extractors 
from one source file are combined by a ReReSearch special-
ized module. This task is not handled in the Cloud. 

 
Figure 9.  Architecture of information extraction application in the cloud 

As already mentioned, it is undesirable to rewrite our 
codebase from Python to another language—e.g. Java (or 
other JVM compatible language such as Scala)—in order to 
run extractions on the mOSAIC platform. The extractor 
cloudlets and the Source File Processor cloudlet thus simply 
wrap existing Python and other legacy code. The rest of 
cloudlets implement their functionality directly in Java. We 
are preparing a Virtual Machine containing all required li-
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braries, scripts and software so that it could be used from the 
mOSAIC cloudlets. 

V. CONCLUSION 

We presented a system for information extraction from 
scientific papers and an existing infrastructure based on 
N1GE the software currently runs on. As we do not have an 
exclusive access to the infrastructure, the availability of 
computational capacity cannot be guaranteed. This limits an 
ability to handle peaks of requests (a number of scientific 
papers waiting to be processed). We argue that the Cloud 
environment and its elasticity can cope with the discussed 
issues. In order to guarantee portability of our application to 
new Cloud providers and, in case of a need, to be able to 
scale beyond one provider, we aim to use the mOSAIC plat-
form and its API. We describe the architecture of the appli-
cation that is being implemented. 
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