
MEMORY EFFICIENT IP LOOKUP IN 100 GBPS NETWORKS

Jiřı́ Matoušek

CESNET, z. s. p. o.
Zikova 4,

Praha 6, 160 00,
Czech Republic

imatousek@fit.vutbr.cz

Martin Skačan, Jan Kořenek

IT4Innovations Centre of Excellence
Faculty of Information Technology

Brno University of Technology
Božetěchova 2, Brno, 612 66, Czech Republic

xskaca00@stud.fit.vutbr.cz, korenek@fit.vutbr.cz

ABSTRACT

The increasing number of devices connected to the Internet
together with video on demand have a direct impact to the
speed of network links and performance of core routers. To
achieve 100 Gbps throughput, core routers have to imple-
ment IP lookup in dedicated hardware and represent a for-
warding table using a data structure, which fits into the on-
chip memory. Current IP lookup algorithms have high mem-
ory demands when representing IPv6 prefix sets or intro-
duce very high pre-processing overhead. Therefore, we per-
formed analysis of IPv4 and IPv6 prefixes in forwarding ta-
bles and propose a novel memory representation of IP prefix
sets, which has very low memory demands. The proposed
representation has better memory utilization in comparison
to the highly optimized Shape Shifting Trie (SST) algorithm
and it is also suitable for IP lookup in 100 Gbps networks,
which is shown on a new pipelined hardware architecture
with 170 Gbps throughput.

1. INTRODUCTION

The increasing speed of network links has a direct impact
to the design and performance of core routers. To achieve
100 Gbps throughput, core routers need dedicated hardware
for IP lookup in a forwarding table. Moreover, the size of
forwarding tables is increasing with the amount of devices
and networks connected to the Internet [1]. It means that
core routers have to perform faster IP look up in larger for-
warding tables.

The most demanding part of IP packet forwarding is the
Longest Prefix Match (LPM) operation. It implements look-
up of the longest prefix from a forwarding table, which cor-
responds to the destination IP address of a packet. For ex-
ample, let us consider the prefix set from Fig. 1 and a packet
with the 8-bit destination address IP = 11100010. In this

This work was supported by the grant TAČR TA03010561, the
IT4Innovations Centre of Excellence CZ.1.05/1.1.00/02.0070, the research
program MSM 0021630528, and the grant BUT FIT-S-11-1.

case, prefixes P1, P4, and P7 correspond to the destina-
tion address. However, since the prefix P7 is the longest
one among these prefixes, it is the only result of the LPM
operation.

Core routers supporting 100 Gbps throughput have to be
able to perform more than 150 million lookups per second
(MLPS). Therefore, a new LPM result has to be provided
every 6.72 ns. It is possible to achieve such lookup perfor-
mance only with hardware implementation of the LPM op-
eration [2]. However, in such a case there is usually a bottle-
neck in relatively slow access to the external memory, where
a prefix set extracted from a forwarding table is stored. This
can be solved by storing the prefix set in the easily accessi-
ble on-chip memory. Nevertheless, the on-chip memory has
a limited capacity, therefore the prefix set has to be repre-
sented using a memory efficient data structure.

In this paper we propose a novel memory efficient rep-
resentation of prefix sets, which can be stored in the on-chip
memory with a limited capacity. The proposed representa-
tion was designed according to analysis of different prefix
sets (real IPv4 and IPv6, generated IPv6). We also pro-
pose a pipelined hardware architecture, which utilize the de-
signed prefix set representation and is able to perform more
than 150 MLPS.

The rest of the paper is organized as follows. Section 2
contains a brief summary of related LPM algorithms. Sec-
tion 3 describes performed analysis and its results. The pro-
posed novel prefix set representation is introduced in sec-
tion 4 and the hardware architecture for its processing is de-
scribed in section 5. Next section 6 shows results of the per-
formed experiments. Conclusion of the paper and remarks
about our future work are in section 7.

2. RELATED WORK

The LPM operation is in many commercial devices imple-
mented using (TCAM) Ternary Content-Addressable Mem-
ory. Such implementation is able to provide an LPM result
in just one clock cycle, but TCAMs are expensive, power-

978-1-4799-0004-6/13/$31.00 ©2013 IEEE

Fig. 1. Sample Prefix Set Represented by Trie

hungry and slow in updating their content. Therefore, many
algorithmic solutions to LPM have been proposed [3], [4],
[5], [6].

A basic data structure utilized in the majority of LPM
algorithms is called trie [3]. It is a binary tree with prefixes
encoded into its structure. The root node of a trie represents
the empty prefix. Left and right child nodes of any trie node
represent prefixes created from their parent’s prefix by ap-
pending 0 and 1, respectively. Trie nodes representing pre-
fixes from a prefix set are called prefix nodes, while other
trie nodes are referred to as place holder nodes. The repre-
sentation of the sample prefix set using the trie is shown in
Fig. 1. The LPM operation using a trie data structure is per-
formed by traversing a trie from the root to leaves according
to bit values of packet’s destination address taken from the
most significant bit to the least significant bit. The last pre-
fix node visited during such a traversal represents the longest
matching prefix.

Adding and removing prefixes from a trie can be done
using standard operations on a binary tree. Performing the
LPM operation on a trie is also straightforward. However,
only one bit of the input can be processed in each step, which
means the worst case performance of 32 and 64 steps for
IPv4 and IPv6 prefixes, respectively. A trie data structure
also has high memory demands, which are caused mainly
by the high number of pointers in a trie.

In order to increase lookup performance of trie-based
LPM algorithms, multibit tries have been designed. One
of the best known multibit trie algorithm is called the Tree
Bitmap (TBM) [4]. This algorithm represents a set of pre-
fixes using a 2SL-tree, where the parameter SL (i. e. stride
length) determines the number of input bits processed in
each step of TBM. Mapping of TBM nodes with SL = 3 on
the trie from Fig. 1 is shown on the left hand side of Fig. 2.
On the right hand side of the same figure, there is a sam-
ple TBM node and its encoding using two bitmaps and two
pointers. The external bitmap contains 2SL bits and it deter-
mines the presence of child nodes, while the internal bitmap
with 2SL − 1 bits contains information about prefixes rep-
resented by the TBM node. Child and prefix pointers refer

Fig. 2. Tree Bitmap Mapping and Encoding (SL = 3)

Fig. 3. Shape Shifting Trie Node Encoding (K = 4)

to information about child nodes and prefix-related data, re-
spectively.

Use of bitmaps for encoding of a TBM node makes this
algorithm easy to implement in hardware. Moreover, the
compact representation of a TBM node allows it to be read
from a memory in just one clock cycle. The fixed structure
of a node is advantageous when updates of a prefix set are
performed, however, it may cause high memory overhead in
a sparse prefix tree.

Another multibit trie algorithm is called the Shape Shift-
ing Trie (SST) [5]. This algorithm is based on TBM, but it
tries to overcome its main drawback by introducing adaptive
shape of a node, which reduces memory overhead in sparse
prefix trees. Adaptive shape is allowed by the shape bitmap
consisting of 2K bits (see Fig. 3). The parameter K deter-
mines the maximum number of underlying trie nodes, that
can be represented by a single SST node. SST has excep-
tionally low memory demands, but its computational com-
plexity is usually unacceptable. Moreover, to the best of our
knowledge, there is no hardware architecture implementing
SST.

A representation of prefix set with low memory demands
and a hardware architecture for its processing, which pro-
vides lookup performance higher than 150 MLSP, has been
introduced in [6]. We will further refer to this algorithm
as the Prefix Partitioning Lookup Algorithm (PPLA). PPLA
uses a trie data structure, but a trie is utilized only for par-
titioning a set of prefixes into several disjoint subsets. Each
subset is then represented using a separate binary search
tree or a 2-3 tree data structure and processed in a sepa-
rate processing pipeline. This algorithm has good mem-
ory efficiency – it needs approximately only one byte of
memory to store one byte of IPv4 or IPv6 prefix. However,
the proposed representation causes linear growth of mem-

Table 1. Details of Used Prefix Sets
Prefix Set Prefixes Source Date

IPv4
rrc00 332 118 http://data.ris.ripe.net/ 2010-06-03
IPv4-space 220 779 http://bgp.potaroo.net/ 2011-12-21
route-views 442 748 http://archive.routeviews.org/ 2012-09-20

IPv6
AS1221 10 518 http://bgp.potaroo.net/ 2012-09-21
AS6447 10 814 http://bgp.potaroo.net/ 2012-09-21

Generated IPv6
rrc00 ipv6 319 998 generated using [7] from rrc00
IPv4-space ipv6 150 157 generated using [7] from IPv4-space
route-views ipv6 439 880 generated using [7] from route-views

ory demands with the number of represented prefixes and
initial partitioning of a prefix set introduces very high pre-
processing overhead.

Linear dependence of memory demands on the number
of represented prefixes is one of the most significant issues
connected with PPLA. In trie-based LPM algorithms, nodes
close to the root of a tree are shared by several prefixes. This
property should allow to represent one byte of prefix using
less than one byte of memory. Therefore, we focus our anal-
ysis on previously introduced trie-based algorithms.

3. ANALYSIS

Basic information about prefix sets extracted from forward-
ing tables of core routers, which we use in our analysis, are
summarized in Table 1. In order to obtain results relevant
for many different situations, we use sets of real IPv4 and
IPv6 prefixes as well as sets of IPv6 prefixes generated using
[7]. Moreover, diversity of data for analysis is increased by
using real IPv4 and IPv6 sets from different sources and ac-
quired on different days. Experiments with prefix sets were
performed using Netbench tool [8].

The first part of analysis was focused on memory de-
mands of Trie, TBM, and SST algorithms and its results
are shown in Table 2. Parameters SL and K of TBM and
SST algorithms, respectively, were chosen with respect to
the minimum memory demands. As can be seen, K was
set to the same value for all prefix sets, while SL was set
to a different value for each group of prefix sets. This re-
flects different density of the prefix tree (smaller value of SL
means lower density) between groups of prefix set. Missing
results of SST memory demands for generated IPv6 prefix
sets cannot be provided because of very high computational
complexity of SST.

Table 2 shows, that the lowest memory demands can be
achieved when SST is used, while the highest memory de-
mands are connected with the Trie algorithm. Such results
would propose SST to be a candidate for further optimiza-
tion of memory demands. However, as stated in section 2,
SST suffers from high computational complexity and there

Table 2. Memory Demands of Different LPM Algorithms
Prefix Set Prefixes Memory Demands [Kb]

IPv4 Trie TBM (SL=5) SST (K=32)
rrc00 332 118 47 639.7 9 689.4 6 930.4
IPv4-space 220 779 24 252.4 5 702.1 4 081.0
route-views 442 748 62 650.5 11 942.1 8 775.0

IPv6 Trie TBM (SL=3) SST (K=32)
AS1221 10 518 3 518.3 1 076.9 588.5
AS6447 10 814 3 673.8 1 125.1 617.1

Generated IPv6 Trie TBM (SL=4) SST
rrc00 ipv6 319 998 307 641.5 87 257.1 N/A
IPv4-space ipv6 150 157 153 877.3 43 958.7 N/A
route-views ipv6 439 880 418 663.7 118 889.4 N/A

Table 3. Classification of Nodes From a TBM Representa-
tion of route-views (434 552 Nodes, SL = 3)

Child Nodes
Prefixes 0 1 2 3 4 5 6 7 8

0 0 26 829 11 859 6 876 5 422 3 679 3 547 4 297 14 138
1 278 804 6 220 4 244 2 840 4 463 1 683 2 416 876 2 051
2 21 005 3 270 4 198 1 599 2 688 724 792 393 842
3 5 716 1 093 2 000 596 806 293 286 160 306
4 3 786 447 543 220 322 106 129 102 267
5 679 63 55 22 48 20 25 25 78
6 298 30 22 9 23 3 9 6 64
7 70 6 3 3 8 4 3 7 46

Table 4. Classification of Nodes From a TBM Representa-
tion of AS1221 (25 063 Nodes, SL = 3)

Child Nodes
Prefixes 0 1 2 3 4 5 6 7 8

0 0 11 303 1 666 812 538 184 145 131 249
1 8 965 547 142 19 17 3 2 1 1
2 193 21 14 4 3 0 1 0 0
3 50 3 3 3 1 0 1 0 0
4 29 3 1 1 3 1 1 0 0
5 0 1 0 1 0 0 0 0 0

is no hardware architecture for this algorithm. Therefore,
the next part of our analysis was focused on identification of
possibilities for optimization of TBM’s memory demands.

TBM analysis was performed by classification of TBM
nodes according to the number of child nodes and the num-
ber of prefixes represented by a TBM node. Results of this
classification for selected IPv4, IPv6 and generated IPv6
prefix sets are shown in Tables 3, 4, and 5, respectively.
Even though all tables show classification of TBM nodes
with SL = 3, presented results can be used for identifica-
tion of general trends in TBM.

Analysis of the TBM representation of all selected prefix
sets shows two significant groups of node. The first group
contains leaf nodes (the leftmost column in Tables 3, 4, and
5), while the second group contains internal nodes without
prefixes (the first row in Tables 3, 4, and 5). Therefore, effi-
cient encoding of nodes from these two groups will signifi-
cantly reduce memory demands of TBM.

Table 5. Classification of Nodes From a TBM Representa-
tion of route-views ipv6 (2 239 971 Nodes, SL = 3)

Child Nodes
Prefixes 0 1 2 3 4 5 6 7 8

0 0 1 597 683 143 258 39 958 21 056 9 332 5 637 3 958 4 462
1 406 100 3 503 746 263 108 45 15 10 6
2 2 623 171 118 40 39 21 8 6 1
3 475 37 24 5 7 3 1 3 1
4 155 11 7 3 1 1 0 0 0
5 44 1 4 3 2 1 0 0 0
6 12 0 1 0 0 0 0 0 0
7 2 0 0 0 0 0 0 0 0

Fig. 4. Newly Proposed Types of Node

4. PREFIX SET REPRESENTATION

Performed analysis has shown two groups of TBM nodes,
whose more efficient encoding could reduce memory de-
mands of TBM. To this end, we propose a representation
of prefix set using thirteen different types of node. These
thirteen types can be divided into two groups – nine newly
proposed nodes (see Fig. 4) and four variants of a TBM
node. Properties of nodes in Fig. 4 are reflected in their
name. A node can encode 1 branch (1B), 2 branches (2B)
or 3 branches (3B) of an underlying trie. It can also con-
tain a prefix node (P), but such a prefix node is allowed only
in the lowest level of the node and it may not occur in all
branches. Presence of a prefix node in the lowest level of
all branches is compulsory only in the case of leaf nodes
(L). Used TBM nodes include a standard node for SL = 3
(TBM3) and leaf TBM nodes for SL = 3, 4, 5 (TBM3-L,
TBM4-L, TBM5-L).

Table 6. Basic Parameters of Different Types of Node When
Aligned to 8-bit and 16-bit Boundary

Size Aligned to 8 bits Size Aligned to 16 bits
Branch Unaligned Aligned Branch Unaligned Aligned

Node Type Length Size Size Length Size Size
[bits] [bits] [bits] [bits] [bits] [bits]

1B 24 56 56 17 48 48
1BP 19 72 72 13 64 64
1BP-L 20 48 48 20 48 48
2B 16 72 72 14 64 64
2BP 10 80 80 11 80 80
2BP-L 12 55 56 15 61 64
3B 11 78 80 12 78 80
3BP 5 80 80 6 80 80
3BP-L 7 53 56 9 62 64
TBM3 3 75 80 3 67 80
TBM3-L 3 30 32 3 30 48
TBM4-L 4 38 40 4 38 48
TBM5-L 5 54 56 5 54 64

In order to make hardware implementation of the pro-
posed representation feasible, it is necessary to align the size
of node representations to some boundary. A smaller bound-
ary implies smaller memory overhead but higher number of
different sizes of node, hence higher utilization of resources
for processing such data structures. Therefore, we consider
two different alignments (to the 8-bit and 16-bit boundary),
which should allow us to achieve a reasonable compromise
between memory overhead and resources utilization. We
will examine real memory demands and resources utiliza-
tion for both alignments.

Basic parameters of different types of node, when align-
ed to the 8-bit and 16-bit boundary, are summarized in Ta-
ble 6. The size of a node is determined mainly by the max-
imum branch length and the presence of child and prefix
pointers. The maximum branch length, which is the same
for all branches in a node, is shown in Table 6. The prefix
pointer encoded on 19 bits is present only in nodes, that can
represent prefixes, i. e. nodes with P in their name and TBM
nodes. The child pointer is encoded on 23 bits (in the case of
alignment to the 8-bit boundary) or 22 bits (in the case of the
16-bit boundary) and it is present in all non-leaf nodes, i. e.
nodes without L in their name. Since Table 6 shows aligned
as well as unaligned size of each type of node, memory over-
head introduced by alignment can be computed as difference
of these two values.

The mapping of proposed nodes on a trie is done accord-
ing to the algorithm in Fig. 5. This algorithm uses, except
standard queue operations ENQUEUE and DEQUEUE, three
auxiliary functions. MAP COST returns the cost of mapping
of given type of node from the specified position in the trie.
The cost is determined using equation (1), where p is the
number of covered prefix nodes, n is the number of all cov-
ered trie nodes, and size is the size of given type of node.
Mapping of the selected type of node to the specified posi-

Input: pointer root pointing to the root node of the trie
Output: pointer root pointing to the root node of the

mapped tree

1: Q← ∅
2: if root 6= NULL then
3: ENQUEUE(Q, root)
4: while Q 6= ∅ do
5: trie← DEQUEUE(Q)
6: max cost← 0
7: best type← NULL
8: for each type ∈ node types do
9: cost← MAP COST(type, trie)

10: if cost > max cost then
11: max cost← cost
12: best type← type

13: trie← MAP(best type, trie)
14: for each child ∈ CHILDREN(trie) do
15: ENQUEUE(Q, child)

Fig. 5. Pseudocode of the Mapping Algorithm

tion in the trie is done using MAP function and CHILDREN
returns a list of child nodes of the given node.

cost =


p

size if p
size > 0

n
size otherwise

(1)

5. HARDWARE ARCHITECTURE

Since the proposed representation of prefix set can be clas-
sified as multibit trie approach to LPM, a matching result
is in the worst case available after processing of n nodes,
where n is the height of the tree, which represents the prefix
set. In order to achieve lookup performance of 150 MLSP,
it is necessary to employ a processing pipeline, where each
processing element (PE) performs one step of the LPM al-
gorithm.

We propose the hardware architecture in Fig. 6 for pro-
cessing of our representation of prefix set. This architecture
consists of two processing pipelines with uniform PEs and
dual port memory blocks shared between PEs from corre-
sponding stages. By utilization of the dual port memory,
we can achieve double performance of a single pipeline ar-
chitecture without compromising on memory access. The
memory block for each pipeline stage contains two paral-
lel memories, each of which has data width of 80 bits (the
maximum size of a node, see Table 6). Use of two parallel
memories allows to read the whole node in one clock cycle,
even if it is stored in two consecutive data words.

A high-level architecture of one PE is also shown in

Fig. 6. Double Processing Pipelines With Detail of One Pro-
cessing Element (PE)

Fig. 6. Processing of a node in PE is like a processing of
an instruction in a standard CPU. First of all, PE fetches the
node from the memory. The representation of the node is
then decoded and sent in parallel to the execute submod-
ule. The internal structure of the execute part is shown in
Fig. 7. The main part of execution is done in branch A proc,
branch B proc, branch C proc, and TBM node proc submod-
ules. The first three of them are dedicated for processing
of corresponding branches of newly proposed types of node
(branches are marked by letters A, B, and C in Fig. 4), while
the TBM node proc submodule is dedicated for processing
of TBM nodes. Since processing of different branches and
different types of node is done in parallel, the select branch
and the select result modules are used to select correct val-
ues for outputs of PE.

Combinatorial logic of fetch and execute submodules of
PE is relatively complex. Therefore, in order to achieve de-
sired lookup performance, it is necessary to use intra-stage
registers within these two submodules. Each of them con-
tains two sets of internal registers. In total, each PE con-
tains four sets of intra-stage registers, thus processing a node
within one PE is done in five clock cycles.

Section 4 describes two variants of node alignment in
a memory – to the 8-bit or 16-bit boundary. Both variants
can be processed using conceptually the same hardware ar-
chitecture with only some minor changes in fetch, decode,
and execute submodules. Different node alignment has the

Fig. 7. Internal Structure of PE’s Execute Part

biggest influence on data reorder logic in the fetch module.
It also has to be reflected in the decode submodule by differ-
ent interconnection of decoding logic. Relatively the small-
est changes have to be done in the execute module, where it
is sufficient to change data width of some internal buses.

6. EXPERIMENTAL RESULTS

First of all, we have measured memory demands of the pro-
posed representation of prefix set on our sample IPv4 and
IPv6 (both real and generated) prefix sets. The measure-
ment has been done for both variants of node alignment in
a memory and its results are presented in Table 7. Results
show lower memory demands in the case of 8-bit node align-
ment. The difference between memory demands of the rep-
resentation with nodes aligned to 8 bits and 16 bits is the
most evident for IPv4 prefix sets. This is because of differ-
ent density of prefix trees in their leaf part. The prefix tree
of IPv4 sets is denser than the tree in the case of IPv6 sets.
Therefore, leafs of the IPv4 tree are represented mainly by
TBM nodes (which introduce the highest memory overhead
when aligned to the 16-bit boundary), while leafs of the IPv6
tree are represented mainly by newly proposed nodes (which
introduce almost the same memory overhead for both 8-bit
and 16-bit alignment). Table 7 also shows the height of the
tree, which represents particular prefix sets.

Both variants of the proposed architecture have been im-
plemented for a Xilinx Virtex-6 XC6VSX475T FPGA. Uti-
lization of resources and maximum frequency after place &
route using Xilinx ISE 14.3 are shown in Table 8. As can be
seen, the main difference between two proposed architec-
tures is in the number of utilized LUTs, where the 16-bit ar-
chitecture shows better results. This is mainly due to smaller
data width of some buses in this architecture. The number of
utilized registers is practically the same and maximum fre-
quency is little higher in the case of the 8-bit architecture.
Table 8 contains information about utilization of resources
by one PE, the complete processing pipeline and also by
the whole proposed architecture, which consists of two pro-
cessing pipelines. Even though the length of each pipeline

Table 7. Memory Demands and Tree Height of the Proposed
Representation on Different Prefix Sets

Memory Demands [Kb]
8-bit 16-bit Tree

Prefix Set Prefixes Alignment Alignment Height
IPv4

rrc00 332 118 6 330.8 7 287.6 12
IPv4-space 220 779 3 571.4 4 297.4 12
route-views 442 748 7 779.8 9 039.6 12

IPv6
AS1221 10 518 475.8 489.0 18
AS6447 10 814 493.8 506.6 23

Generated IPv6
rrc00 ipv6 319 998 21 264.3 21 373.2 21
IPv4-space ipv6 150 157 10 412.2 10 421.4 18
route-views ipv6 439 880 29 039.5 29 207.4 20

Table 8. Resources Utilization and Maximum Frequency of
Proposed Hardware Architecture (Xilinx ISE 14.3, Virtex-6
XC6VSX475T)

8-bit Alignment LUTs Registers Frequency
(% of All) (% of All) [MHz]

1 PE 3 647 1 825 127.162
(1.23 %) (0.31 %)

1 pipeline (23 PEs) 83 881 41 957 127.162
(28.19 %) (7.05 %)

2 pipelines (46 PEs) 167 762 83 950 127.162
(56.37 %) (14.11 %)

16-bit Alignment LUTs Registers Frequency
(% of All) (% of All) [MHz]

1 PE 3 194 1 817 123.183
(1.07 %) (0.31 %)

1 pipeline (23 PEs) 73 462 41 791 123.183
(24.69 %) (7.02 %)

2 pipelines (46 PEs) 146 924 83 582 123.183
(49.37 %) (14.04 %)

(23 PEs) allows processing the prefix set represented by the
highest tree (real IPv6 set AS6447, see Table 7), the whole
architecture fits into the target FPGA.

Since resources utilized by both variants of the hardware
architecture are significantly lower than resources available
in the target FPGA, selection of ”better” variant is governed
mainly by their memory demands, whose optimization is the
main objective of this work. Therefore, we select the repre-
sentation of prefix set with nodes aligned to the 8-bit bound-
ary.

The selected variant can also operate on a little higher
frequency, which implies higher lookup performance. Both
processing pipelines are able to provide one matching result
in each clock cycle, which translates into total lookup per-
formance of almost 255 MLPS. Thus, the proposed solution
is able to support throughput of 170 Gbps. Frequency of the
proposed solution also determines, together with the number
of pipeline stages, the overall latency. As stated in section
5, each PE consists of five pipeline stages. Therefore, the
whole pipeline contains 5 × 23 = 115 stages. Since pro-

Table 9. Memory Demands of the Proposed Representation
of Prefix Set and its Comparison to TBM and SST

Prefix Set Prefixes Memory [Kb] Savings
IPv4 New Nodes TBM (SL=5) SST (K=32)

rrc00 332 118 6 330.8 34.67 % 8.65 %
IPv4-space 220 779 3 571.4 37.37 % 12.49 %
route-views 442 748 7 779.8 34.85 % 11.34 %

IPv6 New Nodes TBM (SL=3) SST (K=32)
AS1221 10 518 475.8 55.82 % 19.16 %
AS6447 10 814 493.8 56.11 % 19.98 %

Generated IPv6 New Nodes TBM (SL=4) SST
rrc00 ipv6 319 998 21 264.3 75.63 % N/A
IPv4-space ipv6 150 157 10 412.2 76.31 % N/A
route-views ipv6 439 880 29 039.5 75.57 % N/A

cessing in one stage takes 7.86 ns, the overall latency of the
proposed solution is 903.90 ns. The overall latency also de-
termines the size of the buffer for packets waiting for the
LPM result, which has to be at least 8.6 KB for 100 Gbps
Ethernet link.

Comparison of our prefix set representation, TBM, and
SST in terms of memory demands is provided in table 9. Ex-
cept memory demands of our solution, we show its savings
compared to other LPM algorithms. The proposed prefix set
representation overcomes both TBM and SST, but reduction
of memory demands is higher for TBM (between 34.67 %
and 76.31 %) than for SST (between 8.65 % and 19.98 %).
Moreover, it is shown that the sparse prefix tree of IPv6 pre-
fix set allows higher savings, which is due to higher utiliza-
tion of memory efficient newly proposed types of node (see
Fig. 4).

In order to compare memory efficiency of the proposed
prefix set representation with PPLA, we provide a memory
efficiency ratio (bytes of memory required to store one byte
of prefix) of our solution on different prefix sets in Table 10.
The value of this parameter is shown also for TBM and SST.
According to [6], the average memory efficiency ratio of
PPLA on generated IPv6 prefix sets is 1.01 when a 2-3 tree
data structure is used. Therefore, our solution is comparable
to PPLA on generated IPv6 prefix sets. However, our prefix
set representation is significantly better than PPLA on IPv4
prefix sets, where [6] reports the average memory efficiency
ratio of 1.00. Moreover, both TBM and SST, which were not
taken into account in [6], shows better memory efficiency
than PPLA on IPv4 sets. Memory efficiency of our solu-
tion and PPLA on real IPv6 prefix sets cannot be compared,
because this value is not reported in [6].

Since both our solution and TBM are based on the trie,
they should achieve better (i.e. lower) memory efficiency
ratio on prefix sets with high number of prefixes (generated
IPv6), than on prefix sets with a small number of prefixes
(real IPv6). However, according to the results presented in
Table 10, this is not true in our case. The most probable
explanation of this situation is that IPv6 prefix sets generator

Table 10. Memory Efficiency Ratio (Bytes of Mem-
ory/Bytes of Prefixes) of the Proposed Representation of
Prefix Set, TBM and SST

Prefix Set Prefixes
IPv4 New Nodes TBM (SL=5) SST

rrc00 332 118 0.610 0.934 0.668
IPv4-space 220 779 0.518 0.826 0.592
route-views 442 748 0.562 0.863 0.634

IPv6 New Nodes TBM (SL=3) SST (K=32)
AS1221 10 518 0.724 1.638 0.895
AS6447 10 814 0.731 1.665 0.913

Generated IPv6 New Nodes TBM (SL=4) SST (K=32)
rrc00 ipv6 319 998 1.063 4.363 N/A
IPv4-space ipv6 150 157 1.109 4.684 N/A
route-views ipv6 439 880 1.056 4.324 N/A

[7] does not model the process of assigning IPv6 addresses
correctly. We have used this generator in order to be able to
compare our results with results presented in [6].

7. CONCLUSION AND FUTURE WORK

The paper proposed a novel representation of IP prefix sets
using thirteen different types of node designed for a mem-
ory efficient representation of the most common situations in
a prefix tree. This prefix set representation has significantly
lower memory demands than TBM and it also overcomes
the SST algorithm. Moreover, the proposed representation
shows better memory efficiency than PPLA on real IPv4
prefix sets and comparable results on generated IPv6 pre-
fix sets. Memory efficiency of the proposed representation
and PPLA on real IPv6 prefix sets cannot be compared.

We also introduced a pipelined hardware architecture,
which utilizes the proposed prefix set representation. The ar-
chitecture was implemented on Xilinx Virtex-6 FPGA with
170 Gbps throughput.

As future work, we want to optimize resources utiliza-
tion and lookup performance of the proposed architecture.
We would also like to utilize dynamic partial reconfigura-
tion for allocation of memory blocks to particular pipeline
stages according to the actual prefix set.

8. REFERENCES

[1] (2013, Jan.) IPv6 / IPv4 Comparative Statistics. [Online].
Available: http://bgp.potaroo.net/v6/v6rpt.html

[2] M. Á. Ruiz-Sánchez, E. W. Biersack, and W. Dabbous, “Sur-
vey and Taxonomy of IP Address Lookup Algorithms,” IEEE
Network, vol. 15, no. 2, pp. 8–23, Mar. 2001, ISSN 0890-8044.

[3] E. Fredkin, “Trie Memory,” Communications of the ACM,
vol. 3, no. 9, pp. 490–499, Sept. 1960, ISSN 0001-0782.

[4] W. Eatherton, G. Varghese, and Z. Dittia, “Tree Bitmap: Hard-
ware/Software IP Lookups with Incremental Updates,” SIG-
COMM Comput. Commun. Rev., vol. 34, no. 2, pp. 97–122,
Apr. 2004, ISSN 0146-4833.

[5] H. Song, J. Turner, and J. Lockwood, “Shape Shifting Tries
for Faster IP Route Lookup,” in Proc. of the 13th IEEE Inter-
national Conference on Network Protocols (ICNP’05). IEEE
Computer Society, 2005, pp. 358–367, ISBN 0-7695-2437-0.

[6] H. Le and V. K. Prasanna, “Scalable Tree-based Architectures
for IPv4/v6 Lookup Using Prefix Partitioning,” IEEE Trans.
Comput., vol. 61, no. 7, pp. 1026–1039, July 2012, ISSN 0018-
9340.

[7] M. Wang, S. Deering, T. Hain, and L. Dunn, “Non-random
Generator for IPv6 Tables,” in Proc. of the 12th Annual IEEE

Symposium on High Performance Interconnects, 2004. IEEE
Computer Society, Aug. 2004, pp. 35–40, ISBN 0-7803-8686-
8.

[8] V. Pus, J. Tobola, V. Kosar, J. Kastil, and J. Korenek, “Net-
bench: Framework for Evaluation of Packet Processing Algo-
rithms,” in Seventh ACM/IEEE Symposium on Architecture for
Networking and Communications Systems (ANCS’11). IEEE
Computer Society, Oct. 2011, pp. 95–96, ISBN 978-0-7695-
4521-9.

