
Easily Reprogrammable embedded Logic Control

Václav Dvo ák and Petr Mikušek
Faculty of Information Technology, Brno University of Technology, Bozetechova 2, Brno, Czech Republic

dvorak@fit.vutbr.cz , petr@mikusek.info

Keywords: Logic Control, Multiple-output Logic Functions, Look-Up Table (LUT) Cascades.

Abstract: The paper deals with software implementation of logic-intensive control algorithms in a form of look-up

table cascades. Provided that logic control is described by multiple-output Boolean function, control output

evaluation then reduces to several table look-ups. Depending on a required speed, one or more input

variables are used for the look-ups in a single step, and the size of tables varies accordingly. Trade-offs

between performance and memory footprint are thus possible. Changes in logic control can be implemented

rapidly by reloading data into look-up tables. The presented method is thus useful for logic control

embedded in microcontroller software.

1 INTRODUCTION

Micro-controller-based systems such as automobile

engine control systems, implantable medical

devices, remote controls, appliances, office

machines etc. are ubiquitous. Reducing the size and

cost of these systems is essential. One area

susceptible to such reduction is customized logic

that frequently uses separate devices (PLAs or

FPGAs). As we will show later, logic devices can be

replaced by fast enough evaluation of Boolean

functions in software, often without additional space

requirements.

Traditional serial evaluation of Boolean

functions one at a time, e.g in programmable logic

controllers, has been done with redundant reading of

input variables. Representing logic functions by

means of binary decision diagrams (BDD) helped to

remove that redundancy and implement single-

output logic functions using a RAM and a sequencer

(Sasao et al., 2001). However, evaluation of multiple

outputs was still done serially by means of auxiliary

variables. The similar partitioning of outputs was

used even in special purpose processors (Decision

Diagram Machines, DDMs) that evaluate decision

diagrams via branching programs (Nakahara et al.,

2010a). Parallel evaluation of Boolean functions

specified by Multi-terminal BDDs (MTBDDs) was

done on parallel branching machine (Nakahara et al.,

2010b), but with quaternary branching only. This

evaluation can be much too slow, unless we use a

number of branching machines.

In this paper we will try to avoid branching

programs and MTBDDs completely. Our approach

is based on the iterative decomposition of the given

function, one variable at a time, producing a cascade

of look-up tables (LUTs). The next step is optimal

clustering of these LUTs into larger ones. The goal

is the minimum total size of look-up tables or the

number of LUTs in a cascade (corresponding to

evaluation time from reading the input to appearance

of the output).

 The main contribution of the paper is the

upgraded algorithm of iterative decomposition

(Mikušek and Dvo ák, 2008) accepting a set of

incomplete Boolean functions in cube notation and

its implementation. The paper is structured as

follows. In the following Section 2 we explain

representation of logic functions in cube notation

and then the concept of simple decomposition. In

Section 3 we deal with iterative decomposition and

related software tools. The decomposition method is

applied to two sorts of examples in Section 4. The

results are commented on in Conclusions.

2 LOGIC FUNCTIONS

To begin our discussion, we define the following

terminology. A system of m Boolean functions of n

Boolean variables,

 fn
(i) : (Z2)

n Z2 , i = 1, 2, ..., m (1)

will be simply referred to as a multiple-output

Boolean function Fn. We denote Z2 = {0, 1}.

Function Fn is incomplete if it is defined only on

set X (Z2)
n; (Z2)

n \ X = DC is the don’t care set.

The elements in DC are input vectors that for some

reason cannot occur. Our concern will be an

incompletely specified, multiple-output function of n

Boolean variables

Fn: X Z , X (Z2)
n, Z {0,1, }m. (2)

Function Fn is not defined on a don´t care set DC =

(Z2)
n \ X. Binary output cubes b {0,1}m will be

alternatively coded by integer values from ZR = {0,

1, 2, …, R 1}, R 2m.

Espresso input format fr is assumed for function

fn
(i); it means that each input vector belongs to the

ON-set, to the OFF-set, or to the DC-set depending

on the ternary value 1, 0, or "~" of the output. If the

function is given in Espresso format f (PLA format),

only the ON-set is specified and an extra step is

required to generate the OFF-set.

Instead of full input vectors from (Z2)
n we prefer

to use a compact cube notation [Brzozowski,1997].

(n+m)-tuples are called function cubes, in which an

element of {0, , 1}n is called an input cube and

element of {0, ~, 1}m is called an output cube. The

value of symbol " " is 0 or 1, so that one cube can

cover several input vectors.

Def. 1. Compatibility relation. Two cubes c, c´

are compatible, c c´, if they are compatible

component-wise; except pairs [0,1] and [1,0], all

other component pairs are compatible.

In other words, two cubes c and c´are compatible

if and only if they have a non-empty common sub-

cube. The compatibility relation is reflexive and

symmetric.

3 DECOMPOSITION METHOD

Def. 2. Functional decomposition of function

Fn (x1, x2, …,xn) = Fn (X)

is a serial disjunctive separation of F into two
functions G and H such that

Fn(X) = Hk+n-h(U, Gh(V)), (3)

where

U, V are disjunctive subsets of set X,

U V = , U V = X,

see Fig.1. Of course, we are interested only in non-

trivial decompositions when functions G and H have

strictly fewer inputs than F, i.e.

h < n, k+ n – h < n k < h < n. (4)

In a functional decomposition, the minimization of

the value of k is important.

G H F
 h

F
n m

U

X

 V

 k

 n-h

Figure 1: Disjunctive decomposition of multiple output

Boolean function F of n variables.

Decomposition can be applied iteratively to a

sequence of residual functions with a decreasing

number of variables. The method to decompose

multiple-output logic functions by means of the

BDD for characteristic function [Nakahara, 2004c]

required large data structures. In this section we will

present a more efficient method of iterative

disjunctive decomposition based on notion of

blankets (Brzozowski et al., 1997) simplified for the

iterative removal of a single input variable (|U|=1).

Instead of the exact formulation of a

decomposition algorithm, we prefer to illustrate it on

a small example, an incomplete fuction F4 in Table

1. Let us note that a set of (n+m)-tuples does not

always define a Boolean function, because it is

possible to assign conflicting output values.

Acceptable functions must satisfy the consistency

condition, which guarantees that there are no

contradictions; shortly, if two input cubes are

compatible, their corresponding output cubes must

also be compatible.

Table 1: Cube specification of function F4.

x1 x2 x3 x4 y1 y2

1 0 0 0 1 1

2 1 0 0 1 0

3 0 0 1 ~

4 1 1 0 ~

5 1 1 0 0 0

6 1 1 ~ 1

7 0 0 1 1 ~

For now we will select input variables for iterative

decomposition simply in a natural sequence x1, x2,

x3, x4. Optimization of variable ordering will be

discussed later on. A single variable will be removed

from the function in one decomposition step.

Starting with variable x1 in our example, we first

create two-block blankets 2, 3, 4 for each input

variable x2, x3, x4:

2 = {1, 2, 3, 4, 7; 4, 5, 6, 7}

3 = {1, 2, 3, 6, 7; 1, 2, 4, 5, 6}

4 = {1, 2, 3, 5; 3, 4, 6, 7}.

(5)

Blankets consist of subsets (blocks) of cubes

denoted by line numbers from Table 1. The first

block in each blanket includes cubes which contain

“0” or “–” in place of variable xi, cubes in the second

block have value “1” or “–” in place of variable xi.

The input blanket for the subset V is then obtained as

an intersection (*) of two-block blankets (5):

V = 2 * 3 * 4 =

={1, 2, 3; 3, 7; 1, 2; 4; 6, 7; 5; 4, 6}.
(6)

The main task in a serial decomposition of a

function F with given sets U and V is to find a

blanket G by merging blocks of V as much as

possible. A condition for two blocks be mergeable is

given in (Brzozowski et al., 1997). We can create

mergeable classes of blocks, preferably maximal

classes with minimal cardinality that cover all the

blocks. In our example seven compatible classes in

blanket V can be merged to four blocks of G1

G1 ={1, 2, 3, 7; 4, 6; 6, 7; 5}, (7)

and encoded arbitrarily with two bits - G1 outputs,

see Table 2. The minimal cardinality of G1 ensures

that parameter k in Fig. 1 is as small as possible. Let

us note that all relevant min-terms of G1 must be

covered in the cube table as well. Function G1 in our

example is specified by four cubes (7) in Table 2.

Table 2: Cube specification of function G1.

 block V block G1 x2 x3 x4 G1
 1 1, 2, 3, 1, 2, 3, 7 0 0 0 00
 2 3, 7 1, 2, 3, 7 0 0 1 00
 3 1, 2 1, 2, 3, 7 0 1 0 00
 4 4 4, 6 0 1 1 11
 5 6, 7 6, 7 1 0 1 10
 6 5 5 1 1 0 01
 7 4, 6 4, 6 1 1 1 11

To construct function H1, we need two more
blankets:

U = 1 = {1, 3, 4, 5, 6, 7; 2, 3, 4 5, 6}.

U* G1 = {1, 3, 7; 5; 6, 7; 4, 6; 2, 3; 5; 6; 4, 6}.
(8)

The truth table of function H1 is given in Table 3.

In the 2nd decomposition step we could apply the

same procedure to function G1, removing variable x2

and looking for the input blanket V for the subset V

= {x3, x4}, and so on. Fig.2. shows the iterative

decomposition up to the last variable x4. The original

function F can be implemented as a cascade of

LUTs generating functions Hi. We call this cascade

with one variable per LUT the generic cascade. To

reduce the cascade length and thus the overall serial

access to LUTs, we can combine several consecutive

LUTs into a single LUT. For example, function F in

Fig.2 can be implemented as two LUTs, each with 8

words 2 bit wide, specified by functions G1 and H1.

Table 3: The truth table of function H1.

 1* G1 x1 G1 H1
 1, 3, 7 0 0 0 1 1
 5 0 0 1 0 0
 6, 7 0 1 0 1 1
 4, 6 0 1 1 0 1
 2, 3 1 0 0 1 0
 5 1 0 1 0 0
 6 1 1 0 1
 4, 6 1 1 1 0 1

H1

G1

H2

G2

H3

G3

H4
F

x1 x2 x3 x4

 F = H1 (x1, G1)

G1= H2 (x2, G2)

G2 = H3 (x3, G3)

G3 = H4 (x4)

Figure 2: Disjunctive decomposition of multiple output

Boolean function F of 4 variables.

LUT cascade composed of p-input/q-output LUTs

can be implemented by storing all LUTs in one

memory. Cascaded LUTs are accessed one by one

under a supervision of a controller. Outputs from the

previous LUT and external input(s) address together

the next LUT, until the last LUT is reached. LUTs

are stored in a RAM and can be changed at will.

Even if the memory is accessed once for each LUT

in the cascade, operation is approximately ten times

faster than branching programs (Sasao et al., 2001).

The most important characteristics of logic

functions targeted for cascade implementation is

their profile. It is cardinality of blanket Gi along the

LUT cascade. The random functions have the profile

(the upper bound) in the shape of a mountain peak

with slope that rises as powers of 2 at the beginning

of the cascade and descending much faster as 2k-

powers of R at its end. E.g. the function

implemented as a case study (n = 13 inputs, m = 8

outputs, see Appendix) has had a profile

2, 4, 8, 14, 25, 41, 62, 81, 88, 103, 90, 77, 256 (9)

The log2 of these values give the number of binary

values transferred between neighbor LUTs. To

minimize the total size of all LUTs in a cascade, it is

thus necessary

1. to minimize the values in the profile

2. to combine consecutive LUTs in an optimal way.

As regards the first option, the program tool

HIDET1 (Heuristic Iterative Decomposition Tool)

was developed to aid LUT cascade synthesis

(Mikušek and Dvo ák, 2008). The HIDET1 made

use of iterative decomposition of multiple output fr

Boolean functions specified by cubes with the

restriction that input cubes must be disjoint and

output cubes use only binary elements 0 and 1. This

restriction has been removed in HIDET3 used at

present: don´t cares are allowed in output cubes and

input cubes may overlap (share one or more input

vectors). It also uses a variable-ordering heuristic to

order variables optimally, because the ordering of

variables may sometimes influence the profile

dramatically (Drechsler and Becker, 1998).

Another optimization tool has been developed

for clustering of cascade LUTs, which explores all

possible groupings of n inputs, n 32. The input to

this tool is a profile of the given function obtained

by HIDET. There are three optional optimization

criteria, searching a minimum of

 the memory area, regardless the number of LUT

inputs;

 the product of memory area and cascade length;

 the memory area when the number of LUT inputs

is the given value N or less.

4 EXPERIMENTAL RESULTS

Two types of functions have been explored: functions

specified by weight and the real-world function

implemented in MCS 51 microcontroller as a PLA.

Def. 3 The weight of function Fn, denoted by u, is the

cardinality of set X in Def. 2, u = |X|.

Theorem 1 (Dvo ák and Mikušek, 2011) Let the

function specified by weight Fn: (Z2)
n

 ZR attains

non-zero values 1, 2, …, R-1 in |X| = u binary

vectors, X (Z2)
n, R u << 2n. Then the profile of

the function is upper-bounded by

(2, 4, 8,…, 2h , u+1, u+1, u+1, …,
i

R 2
, …,

12R , R) (10)

where h = log2 (u+1) and i = log2 logR (u+1) .

It is therefore possible for these functions to

estimate the size of LUTs for the given clustering of

input variables.

Experiments have been done on benchmark

index-generating (i.e. u = R) functions with n = 10,

16 and 20 variables. Maximal optimum profiles of

these functions have been found by HIDET tool and

are given in Table 4. The optimum LUT cascades

for random index-generating functions are listed in

Table 5. The table gives memory requirements for

the cascades with only a single cell, two cells,

generic cascades with n cells, and then cascades

optimized for memory area or for memory area -

cascade length product. The fraction of memory in

% obtained when several #LUTs are used in place of

a single LUT is also given. The interesting result is

that the memory consumption has a local minimum

for #LUTs < n. The generic cascades with the finest

granularity (#LUTs = n) are not optimal in this

respect.

The biggest drop in memory area comes from

dividing a single cell into two. Further benchmark-

specific subdivision of cascades to 4-12 cells

produces some additional decrease in memory area,

but after reaching a minimum, the memory area goes

up again. This typical trend is illustrated on the

example of lrs6 benchmark with 21 input variables

in Fig. 4. Optimization for area-time product leads to

slightly shorter cascades (2 – 6 cells) and slightly

larger memory area.

10 2 2

8 8 8

 2, 4, 8, …, 256, 256, 256, 256, 256

10 3

7 8

 2, 4, 8, …103, 90, 77, 256 profile

Figure 3: Two decompositions of PLA1 in MCS-51.

The second example has to do with LUT cascade

replacing 13-input, 8-output PLA1 in MCS-51 chip.

Here u = 175, but only logic equations are known,

see the Appendix. Equations have been converted to

PLA matrix in f format via eqntott tool and further

converted to fr format by means of Espresso

synthesizer. The resultant matrix of 147 cubes has

been processed by HIDET3 and the profile (9)

obtained. By inspection, this profile suggests 2

LUTs, first one indexed by 10 variables, the second

one by 7 outputs from the first LUT (given by | G| =

103) plus 3 remaining variables, Fig.3. By contrast,

had we relied on Theorem 1, then for any function of

(one more) n = 14 variables with u 256 we would

need 3 LUTs with 10, 2 and 2 input variables, all

generating 8-bit outputs, Fig.3.

Table 4: Optimum profiles of index generating functions of 10, 16 and 20 variables and values of u as shown.

n10_u31 2 4 8 14 20 24 27 29 30 32

n10_u63 2 4 8 15 26 37 43 51 58 64

n10_u127 2 4 8 16 30 54 80 101 116 128

n16_u31 2 4 7 11 18 22 26 28 29 30 31 31 31 31 31 32

n16_u63 2 4 8 14 25 35 44 51 54 59 61 62 63 63 63 64

n16_u127 2 4 8 16 30 50 69 90 103 111 116 120 122 124 126 128

n20_u31 2 4 8 11 15 19 24 27 28 29 30 30 30 31 31 31 31 31 31 32

n20_u63 2 4 8 15 25 37 45 51 54 58 60 61 62 63 63 63 63 63 63 64

n20_u127 2 4 8 16 29 49 71 89 99 110 116 120 122 125 126 127 127 127 127 128

Table 5: Memory requirements of LUT cascades for benchmark functions with 1, 2, in, and optimum number of cells with

respect to memory area or product memory * speed (#LUTs).

#LUT=1

M [b] M [b] M [%] #L M [b] M [%] #L M [b] M [%] #L M [b] M [%]

n10_u31 10 5 5120 1920 37,50% 10 1858 36,29% 3 1600 31,25% 2 1920 37,50%

n10_u63 10 6 6144 3072 50,00% 10 3714 60,45% 2 3072 50,00% 2 3072 50,00%

n10_u127 10 7 7168 5376 75,00% 10 6914 96,46% 2 5376 75,00% 2 5376 75,00%

n16_u31 16 5 327680 15360 4,69% 16 3778 1,15% 6 3520 1,07% 4 4480 1,37%

n16_u63 16 6 393216 24576 6,25% 16 8322 2,12% 5 7680 1,95% 4 9216 2,34%

n16_u127 16 7 458752 43008 9,38% 16 17666 3,85% 5 16128 3,52% 3 21504 4,69%

n20_u31 20 5 5242880 61440 1,17% 20 4866 0,09% 8 4608 0,09% 5 6400 0,12%

n20_u63 20 6 6291456 98304 1,56% 20 11394 0,18% 7 10752 0,17% 5 13824 0,22%

n20_u127 20 7 7340032 172032 2,34% 20 24834 0,34% 7 23296 0,32% 5 28672 0,39%

memory memory * speed#LUT=in

total LUT memory in bits, % of a single LUT

#LUT=2

name in out

lrs6

1,0E+02

1,0E+03

1,0E+04

1,0E+05

1,0E+06

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

#LUT

M
e
m

,
M

e
m

 x
 L

e
n
g
th

Mem Mem x Length

Figure 4: Memory area and memory area times cascade length vs the number of LUTs.

5 CONCLUSIONS

The decomposition technique based on blankets

has been found quite suitable for engineering

applications, such as designing application-specific

systems. It has been successfully applied to

random functions specified by weight, for which

the size of the LUT cascade is computable

beforehand, and to PLA1 used in microcontroller

MCS 51. Output vectors are computable by few

accesses to LUTs.

The HIDET3 tool used for decomposition has

no restrictions on input functions; scalability is at

present limited to functions with around 20 input

variables, but the work on extending this range is

in progress. One way to reduce complexity is

partitioning of binary outputs and parallel

execution of resulting LUT cascades. The future

research should address this issue as well as

optimal packing of LUTs into memory when the

number of LUT inputs varies.

ACKNOWLEDGEMENTS

This research has been carried out under the

financial support of the research grants "Natural

Computing on Unconventional Platforms", GA R

GP103/10/1517, and "Security-Oriented Research

in Information Technology", the research plan

MSM0021630528.

REFERENCES

Brzozowski, J. A., Luba, T.: Decomposition of Boolean

Functions Specified by Cubes. Research report CS-

97-01, University of Waterloo, Canada, p.36, 1997.

Drechsler, R., Becker, B. Binary Decision Diagrams -

Theory and Implementation. Springer, 1998.

Dvo ák, V., Mikušek, P. (2011). On the cascade

realization of sparse logic functions, In: Proc. of the

14th EUROMICRO Conf. on Digital System Design

DSD 2011, pp. 21-28, IEEE CS, Oulu, FI.

Mikušek, P. and Dvo ák, V. (2008). On Lookup Table

Cascade-Based Realizations of Arbiters, Proc. of the

11th EUROMICRO Conf. on Digital System Design

DSD 2008, pp. 795-802, IEEE CS, Parma, IT.

Nakahara, H., Sasao, T., and Matsuura, M. (2010a). A

comparison of architectures for various decision

diagram machines, International Symposium on

Multiple-Valued Logic ISMVL 2001, pp. 229-234.

IEEE CS, Barcelona, Spain,

Nakahara, H., Sasao, T., Matsuura, M., and Kawamura,

Y. (2010b). A parallel branching program machine

for sequential circuits: Implementation and

evaluation, IEICE Transactions on Information and

Systems, Vol. E93-D, No. 8, pp. 2048-2058.

Nakahara, H., Sasao. (2004c). A method to decompose

multiple-output logic functions, 41st Design

Automation Conference DAC 2004, pp. 428-433,

IEEE, San Diego, CA.

Sasao, T., Matsuura, M., and Iguchi,Y. (2001). A

cascade realization of multiple-output function for

reconfigurable hardware, International Workshop

on Logic and Synthesis IWLS01, pp.225-230. Lake

Tahoe, CA, June 12-15, 2001.

APPENDIX

Description of PLA1 in MCS-51:

INORDER = A B C D E F G H I J K L M ;

SO = !A !G !I J M | A !B !I J M | A F !I M;

CS = !A !B D !E !F !G !H !I !K !L M | A B !E !F !G !H !I !J !K !L
!M | !A !E !I M | !E !I J M | !D !I M ;

BL = !B E !F !G !H !I !J !K !L | !B C !D !H !I !J M | !B D E !H !I !J
!M | !D !I !J K M | !A !G !I J M | E H !I !L M | C !D G !I M | !A F !I
M | G !I K M | E G !I M ;

NL = !B E !F !G !H !I !J !K !L | C !D !H !I L M | !D !I !J K M | !A
!G !I J M | D E !H !I M | !A F !I M | E !I !L M | G !I K M;

V1 = !A !G !I J M | C !D F !I M | A !B !I J M | !A F !I M | F !I K M |
E F !I M ;

V3 = !B !C !D E !F !G !H !I !J !K !L | !B !G !I J K M | !D !I !J K M |
B C !I K M ;

V4 = !B C !D E !F !G !H !I !J !K !L | !B D E !F !G !H I !J !K !L M |
!A !G !I J L M | C !D !H !I L M | !A F !I L M | C !D H !I M | D E !I
L M ;

V5 = !B D E !F !G !H I !J !K !L M | !B E !F !G !H !I !J !K !L | C !D
!H !I L M | !D !I !J K M | !A !G !I J M | C !D H !I M | A !B !I J M |
D E !I L M | !A F !I M | E !I !L M .

