
Easily Reprogrammable embedded Logic Control 

Václav Dvo ák and Petr Mikušek 
Faculty of Information Technology, Brno University of Technology, Bozetechova 2, Brno, Czech Republic 

dvorak@fit.vutbr.cz , petr@mikusek.info 

Keywords: Logic Control, Multiple-output Logic Functions, Look-Up Table (LUT) Cascades. 

Abstract: The paper deals with software implementation of logic-intensive control algorithms in a form of look-up 

table cascades. Provided that logic control is described by multiple-output Boolean function, control output 

evaluation then reduces to several table look-ups. Depending on a required speed, one or more input 

variables are used for the look-ups in a single step, and the size of tables varies accordingly. Trade-offs 

between performance and memory footprint are thus possible. Changes in logic control can be implemented 

rapidly by reloading data into look-up tables. The presented method is thus useful for logic control 

embedded in microcontroller software.    

1 INTRODUCTION 

Micro-controller-based systems such as automobile 

engine control systems, implantable medical 

devices, remote controls, appliances, office 

machines etc. are ubiquitous. Reducing the size and 

cost of these systems is essential. One area 

susceptible to such reduction is customized logic 

that frequently uses separate devices (PLAs or 

FPGAs). As we will show later, logic devices can be 

replaced by fast enough evaluation of Boolean 

functions in software, often without additional space 

requirements. 

Traditional serial evaluation of Boolean 

functions one at a time, e.g in programmable logic 

controllers, has been done with redundant reading of 

input variables. Representing logic functions by 

means of binary decision diagrams (BDD) helped to 

remove that redundancy and implement single-

output logic functions using a RAM and a sequencer 

(Sasao et al., 2001). However, evaluation of multiple 

outputs was still done serially by means of auxiliary 

variables. The similar partitioning of outputs was 

used even in special purpose processors (Decision 

Diagram Machines, DDMs) that evaluate decision 

diagrams via branching programs (Nakahara et al., 

2010a). Parallel evaluation of Boolean functions 

specified by Multi-terminal BDDs (MTBDDs) was 

done on parallel branching machine (Nakahara et al., 

2010b), but with quaternary branching only. This 

evaluation can be much too slow, unless we use a 

number of branching machines.  

In this paper we will try to avoid branching 

programs and MTBDDs completely. Our approach 

is based on the iterative decomposition of the given 

function, one variable at a time, producing a cascade 

of look-up tables (LUTs). The next step is optimal 

clustering of these LUTs into larger ones. The goal 

is the minimum total size of look-up tables or the 

number of LUTs in a cascade (corresponding to 

evaluation time from reading the input to appearance 

of the output). 

 The main contribution of the paper is the 

upgraded algorithm of iterative decomposition 

(Mikušek and Dvo ák, 2008) accepting a set of 

incomplete Boolean functions in cube notation and 

its implementation. The paper is structured as 

follows. In the following Section 2 we explain 

representation of logic functions in cube notation 

and then the concept of simple decomposition. In 

Section 3 we deal with iterative decomposition and 

related software tools. The decomposition method is 

applied to two sorts of examples in Section 4. The 

results are commented on in Conclusions. 

2 LOGIC FUNCTIONS 

To begin our discussion, we define the following 

terminology. A system of m Boolean functions of n 

Boolean variables, 

               fn
(i) : (Z2)

n  Z2 ,  i = 1, 2, ..., m (1)

will be simply referred to as a multiple-output 

Boolean function Fn. We denote Z2  = {0, 1}. 



Function Fn is incomplete if it is defined only on 

set X  (Z2)
n; (Z2)

n \ X = DC is the don’t care set. 

The elements in DC are input vectors that for some 

reason cannot occur. Our concern will be an 

incompletely specified, multiple-output function of n 

Boolean variables 

Fn: X  Z ,    X  (Z2)
n, Z   {0,1, }m. (2)

Function Fn is not defined on a don´t care set DC = 

(Z2)
n \ X. Binary output cubes b  {0,1}m will be 

alternatively coded by  integer values from ZR = {0, 

1, 2, …, R  1}, R  2m. 

Espresso input format fr is assumed for function 

fn
(i); it means that each input vector belongs to the 

ON-set, to the OFF-set, or to the DC-set depending 

on the ternary value 1, 0, or "~" of the output. If the 

function is given in Espresso format f (PLA format),   

only the ON-set is specified and an extra step is 

required to generate the OFF-set.  

Instead of full input vectors from (Z2)
n we prefer 

to use a compact cube notation [Brzozowski,1997]. 

(n+m)-tuples are called function cubes, in which an 

element of {0, , 1}n is called an input cube and 

element of {0, ~, 1}m is called an output cube. The 

value of symbol " "  is 0 or 1, so that one cube can 

cover several input vectors.  

Def. 1. Compatibility relation. Two cubes c, c´ 

are compatible, c  c´, if they are compatible 

component-wise; except pairs [0,1] and [1,0], all 

other component pairs are compatible. 

In other words, two cubes c and c´are compatible 

if and only if they have a non-empty common sub-

cube. The compatibility relation  is reflexive and 

symmetric. 

3 DECOMPOSITION METHOD  

Def. 2.  Functional decomposition of function 

Fn (x1, x2, …,xn) = Fn (X) 

is a serial disjunctive separation of F into two 
functions G and H such that  

Fn(X) = Hk+n-h(U, Gh(V)), (3)

where 

U, V are disjunctive subsets of set X,  

U  V = , U  V = X, 

see Fig.1. Of course, we are interested only in non-

trivial decompositions when functions G and H have 

strictly fewer inputs than F, i.e. 

h < n,  k+ n – h < n    k < h < n. (4)

In a functional decomposition, the minimization of 

the value of k is important. 
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Figure 1: Disjunctive decomposition of multiple output 

Boolean function F of n variables. 

Decomposition can be applied iteratively to a 

sequence of residual functions with a decreasing 

number of variables. The method to decompose 

multiple-output logic functions by means of the 

BDD for characteristic function [Nakahara, 2004c] 

required large data structures. In this section we will 

present a more efficient method of iterative 

disjunctive decomposition based on notion of 

blankets (Brzozowski et al., 1997) simplified for the 

iterative removal of a single input variable (|U|=1).   

Instead of the exact formulation of a 

decomposition algorithm, we prefer to illustrate it on 

a small example, an incomplete fuction  F4  in Table 

1. Let us note that a set of (n+m)-tuples does not 

always define a Boolean function, because it is 

possible to assign conflicting output values. 

Acceptable functions must satisfy the consistency 

condition, which guarantees that there are no 

contradictions; shortly, if two input cubes are 

compatible, their corresponding output cubes must 

also be compatible. 

Table 1: Cube specification of function F4. 
  

x1 x2 x3 x4 y1 y2 

1 0 0  0 1 1 

2 1 0  0 1 0 

3   0 0   1 ~ 

4     1 1 0 ~ 

5   1 1 0 0 0 

6   1   1 ~  1 

7 0   0 1 1 ~ 
 

For now we will select input variables for iterative 

decomposition simply in a natural sequence x1, x2, 

x3, x4. Optimization of variable ordering will be 

discussed later on. A single variable will be removed 

from the function in one decomposition step. 

Starting with variable x1 in our example, we first 

create two-block blankets 2, 3, 4 for each input 

variable x2, x3, x4: 

2 = {1, 2, 3, 4, 7;  4, 5, 6, 7} 

3 = {1, 2, 3, 6, 7; 1, 2, 4, 5, 6} 

4 = {1, 2, 3, 5; 3, 4, 6, 7}. 

(5)



Blankets consist of subsets (blocks) of cubes 

denoted by line numbers from Table 1. The first 

block in each blanket includes cubes which contain 

“0” or “–” in place of variable xi, cubes in the second 

block have value “1” or “–” in place of variable xi. 

The input blanket for the subset V is then obtained as 

an intersection (*) of two-block blankets (5): 

V = 2 * 3 * 4 = 

={1, 2, 3; 3, 7; 1, 2; 4; 6, 7; 5;  4, 6}. 
(6)

The main task in a serial decomposition of a 

function F with given sets U and V is to find a 

blanket G by merging blocks of V as much as 

possible. A condition for two blocks be mergeable is 

given in (Brzozowski et al., 1997). We can create 

mergeable classes of blocks, preferably maximal 

classes with minimal cardinality that cover all the 

blocks. In our example seven compatible classes in 

blanket  V   can  be  merged  to  four  blocks of  G1 

G1 ={1, 2, 3, 7; 4, 6; 6, 7; 5}, (7)

and encoded arbitrarily with two bits - G1 outputs, 

see Table 2. The minimal cardinality of G1 ensures 

that parameter k in Fig. 1 is as small as possible. Let 

us note that all relevant min-terms of G1 must be 

covered in the cube table as well. Function G1 in our 

example is specified by four cubes (7) in Table 2. 

Table 2: Cube specification of function G1. 

         block V   block G1    x2 x3 x4       G1    
    1  1, 2, 3,      1, 2, 3, 7        0 0 0          00 
    2    3, 7         1, 2, 3, 7        0 0 1          00 
    3    1, 2         1, 2, 3, 7        0 1 0          00 
    4      4              4, 6             0 1 1          11 
    5    6, 7            6, 7             1 0 1          10 
    6      5                5               1 1 0          01 
    7    4, 6            4, 6             1 1 1          11 

To construct function H1, we need two more 
blankets: 

U = 1 =  {1, 3, 4, 5, 6, 7; 2, 3, 4 5, 6}. 

U* G1 = {1, 3, 7; 5; 6, 7; 4, 6; 2, 3; 5; 6; 4, 6}. 
(8)

The truth table of function H1 is given in Table 3. 

In the 2nd decomposition step we could apply the 

same procedure to function G1, removing variable x2 

and looking for the input blanket V for the subset V 

= {x3, x4}, and so on. Fig.2. shows the iterative 

decomposition up to the last variable x4. The original 

function F can be implemented as a cascade of 

LUTs generating  functions Hi. We call this cascade 

with one variable per LUT the generic cascade. To 

reduce the cascade length and thus the overall serial 

access to LUTs, we can combine several consecutive 

LUTs into a single LUT. For example, function F in 

Fig.2 can be implemented as two LUTs, each with 8 

words 2 bit wide, specified by functions G1 and H1. 

Table 3: The truth table of function H1. 

           1* G1    x1          G1            H1 
           1, 3, 7      0           0 0           1 1 
               5          0           0 1           0 0 
             6, 7        0           1 0           1 1 
             4, 6        0           1 1           0 1 
             2, 3        1           0 0           1 0 
                5         1           0 1           0 0  
                6         1           1 0            1 
              4, 6       1           1 1           0 1 
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Figure 2: Disjunctive decomposition of multiple output 

Boolean function F of 4 variables. 

LUT cascade composed of p-input/q-output LUTs 

can be implemented by storing all LUTs in one 

memory. Cascaded LUTs are accessed one by one  

under a supervision of a controller. Outputs from the 

previous LUT and external input(s) address together 

the next LUT, until the last LUT is reached. LUTs 

are stored in a RAM and can be changed at will. 

Even if the memory is accessed once for each LUT 

in the cascade, operation is approximately ten times 

faster than branching programs (Sasao et al., 2001). 

The most important characteristics of logic 

functions targeted for cascade implementation is 

their profile. It is cardinality of blanket Gi along the 

LUT cascade. The random functions have the profile 

(the upper bound) in the shape of a mountain peak 

with slope that rises as powers of 2 at the beginning 

of the cascade and descending much faster as 2k-

powers of R at its end. E.g. the function 

implemented as a case study (n = 13 inputs, m = 8 

outputs, see Appendix)  has had a profile  
 

2, 4, 8, 14, 25, 41, 62, 81, 88, 103, 90, 77, 256 (9)
 

The log2 of these values give the number of binary 

values transferred between neighbor LUTs. To 

minimize the total size of all LUTs in a cascade, it is 

thus necessary 

1. to minimize the values in the profile 

2. to combine consecutive LUTs in an optimal way. 

As regards the first option, the program tool 



HIDET1 (Heuristic Iterative Decomposition Tool) 

was developed to aid LUT cascade synthesis 

(Mikušek and Dvo ák, 2008). The HIDET1 made 

use of iterative decomposition of multiple output fr 

Boolean functions specified by cubes with the 

restriction that input cubes must be disjoint and 

output cubes use only binary elements 0 and 1. This 

restriction has been removed in HIDET3 used at 

present: don´t cares are allowed in output cubes and 

input cubes may overlap (share one or more input 

vectors). It also uses a variable-ordering heuristic to 

order variables optimally, because the ordering of 

variables may sometimes influence the profile 

dramatically (Drechsler and Becker, 1998).  

Another optimization tool has been developed 

for clustering of cascade LUTs, which explores all 

possible groupings of n inputs, n  32. The input to 

this tool is a profile of the given function obtained 

by HIDET. There are three optional optimization 

criteria, searching a minimum of  

 the memory area, regardless  the number of LUT 

inputs; 

 the product of memory area and cascade length; 

 the memory area when the number of LUT inputs 

is the given value N or less. 

4 EXPERIMENTAL RESULTS 

Two types of functions have been explored: functions 

specified by weight and the real-world function 

implemented in MCS 51 microcontroller as a PLA.     

Def. 3 The weight of function Fn, denoted by u, is the 

cardinality of set X in Def. 2, u = |X|. 

Theorem 1 (Dvo ák and Mikušek, 2011) Let the 

function specified by weight Fn: (Z2) 
n

   ZR attains 

non-zero values 1, 2, …, R-1 in |X| = u binary 

vectors,  X  (Z2)
n, R   u << 2n. Then the profile of 

the function is upper-bounded by 

(2, 4, 8,…, 2h , u+1, u+1, u+1, …, 
i

R 2
, …, 

12R , R) (10)

 

where  h = log2 (u+1)  and i = log2 logR (u+1)   . 

It is therefore possible for these functions to 

estimate the size of LUTs for the given clustering of 

input variables. 

Experiments have been done on benchmark 

index-generating (i.e. u = R) functions  with n = 10, 

16 and 20 variables. Maximal optimum profiles of 

these functions have been found by HIDET tool and 

are given in Table 4. The optimum LUT cascades 

for random index-generating functions are listed in 

Table 5. The table gives memory requirements for 

the cascades with only a single cell, two cells, 

generic cascades with n cells, and then cascades 

optimized for memory area or for memory area - 

cascade length product. The fraction of memory in 

% obtained when several #LUTs are used in place of 

a single LUT is also given.  The interesting result is 

that the memory consumption has a local minimum 

for #LUTs < n. The generic cascades with the finest 

granularity (#LUTs = n) are not optimal in this 

respect. 

The biggest drop in memory area comes from 

dividing a single cell into two. Further benchmark-

specific subdivision of cascades to 4-12 cells 

produces some additional decrease in memory area, 

but after reaching a minimum, the memory area goes 

up again. This typical trend is illustrated on the 

example of lrs6 benchmark with 21 input variables 

in Fig. 4. Optimization for area-time product leads to 

slightly shorter cascades (2 – 6 cells) and slightly 

larger memory area. 

10 2 2 
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 2, 4, 8, …, 256,   256,   256,   256,   256 

10 3 

7 8 

  2, 4, 8, …103, 90, 77, 256   profile 

 
Figure 3: Two decompositions of  PLA1 in MCS-51. 

The second example has to do with LUT cascade 

replacing 13-input, 8-output PLA1 in MCS-51 chip. 

Here u = 175, but only logic equations are known, 

see the Appendix. Equations have been converted to 

PLA matrix in f format via eqntott tool and further 

converted to fr format by means of Espresso 

synthesizer. The resultant matrix of 147 cubes has 

been processed by HIDET3 and the profile (9) 

obtained. By inspection, this profile suggests 2 

LUTs, first one indexed by 10 variables, the second 

one by 7 outputs from the first LUT (given by | G| = 

103) plus 3 remaining variables, Fig.3. By contrast, 

had we relied on Theorem 1, then for any function of 

(one more) n = 14 variables with u  256 we would 

need 3 LUTs with 10, 2 and 2 input variables, all 

generating 8-bit outputs, Fig.3. 

 



Table 4: Optimum profiles of index generating functions of 10, 16 and 20 variables and values of u as shown. 

n10_u31 2 4 8 14 20 24 27 29 30 32

n10_u63 2 4 8 15 26 37 43 51 58 64

n10_u127 2 4 8 16 30 54 80 101 116 128

n16_u31 2 4 7 11 18 22 26 28 29 30 31 31 31 31 31 32

n16_u63 2 4 8 14 25 35 44 51 54 59 61 62 63 63 63 64

n16_u127 2 4 8 16 30 50 69 90 103 111 116 120 122 124 126 128

n20_u31 2 4 8 11 15 19 24 27 28 29 30 30 30 31 31 31 31 31 31 32

n20_u63 2 4 8 15 25 37 45 51 54 58 60 61 62 63 63 63 63 63 63 64

n20_u127 2 4 8 16 29 49 71 89 99 110 116 120 122 125 126 127 127 127 127 128
 

Table 5: Memory requirements of LUT cascades for benchmark functions  with 1, 2, in, and optimum number of cells with 

respect to memory area or product memory * speed  (#LUTs). 

#LUT=1

M [b] M [b] M [%] #L M [b] M [%] #L M [b] M [%] #L M [b] M [%]

n10_u31 10 5 5120 1920 37,50% 10 1858 36,29% 3 1600 31,25% 2 1920 37,50%

n10_u63 10 6 6144 3072 50,00% 10 3714 60,45% 2 3072 50,00% 2 3072 50,00%

n10_u127 10 7 7168 5376 75,00% 10 6914 96,46% 2 5376 75,00% 2 5376 75,00%

n16_u31 16 5 327680 15360 4,69% 16 3778 1,15% 6 3520 1,07% 4 4480 1,37%

n16_u63 16 6 393216 24576 6,25% 16 8322 2,12% 5 7680 1,95% 4 9216 2,34%

n16_u127 16 7 458752 43008 9,38% 16 17666 3,85% 5 16128 3,52% 3 21504 4,69%

n20_u31 20 5 5242880 61440 1,17% 20 4866 0,09% 8 4608 0,09% 5 6400 0,12%

n20_u63 20 6 6291456 98304 1,56% 20 11394 0,18% 7 10752 0,17% 5 13824 0,22%

n20_u127 20 7 7340032 172032 2,34% 20 24834 0,34% 7 23296 0,32% 5 28672 0,39%

memory memory * speed#LUT=in

total LUT memory in bits, % of a single LUT

#LUT=2

name in out
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Figure 4: Memory area and memory area times cascade length vs the number of LUTs. 

5 CONCLUSIONS 

The decomposition technique based on blankets   

has been found quite suitable for engineering 

applications, such as designing application-specific 

systems. It has been successfully applied to 

random functions specified by weight, for which 

the size of the LUT cascade is computable 

beforehand, and to PLA1 used in microcontroller 

MCS 51. Output vectors are computable by few 

accesses to LUTs.  

The HIDET3 tool used for decomposition has 

no restrictions on input functions; scalability is at 

present limited to functions with around 20 input 

variables, but the work on extending this range is 

in progress. One way to reduce complexity is 



partitioning of binary outputs and parallel 

execution of resulting LUT cascades. The future 

research should address this issue as well as 

optimal packing of LUTs into memory when the 

number of LUT inputs varies.     
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APPENDIX 

Description of PLA1 in MCS-51: 

INORDER = A B C D E F G H I J K L M ; 
 

SO = !A !G !I J M | A !B !I J M | A F !I M; 
 

CS = !A !B D !E !F !G !H !I !K !L M | A B !E !F !G !H !I !J !K !L 
!M | !A !E !I M | !E !I J M | !D !I M ; 
 

BL = !B E !F !G !H !I !J !K !L | !B C !D !H !I !J M | !B D E !H !I !J 
!M | !D !I !J K M | !A !G !I J M | E H !I !L M | C !D G !I M | !A F !I 
M | G !I K M | E G !I M ; 
 

NL = !B E !F !G !H !I !J !K !L | C !D !H !I L M | !D !I !J K M | !A 
!G !I J M | D E !H !I M | !A F !I M | E !I !L M | G !I K M; 
 

V1 = !A !G !I J M | C !D F !I M | A !B !I J M | !A F !I M | F !I K M | 
E F !I M ; 
 

V3 = !B !C !D E !F !G !H !I !J !K !L | !B !G !I J K M | !D !I !J K M | 
B C !I K M ; 
 

V4 = !B C !D E !F !G !H !I !J !K !L | !B D E !F !G !H I !J !K !L M | 
!A !G !I J L M | C !D !H !I L M | !A F !I L M | C !D H !I M | D E !I 
L M ; 
 

V5 = !B D E !F !G !H I !J !K !L M | !B E !F !G !H !I !J !K !L | C !D 
!H !I L M | !D !I !J K M | !A !G !I J M | C !D H !I M | A !B !I J M | 
D E !I L M | !A F !I M | E !I !L M .  


