
Load-Adaptive Monitor-Driven Hardware

for Preventing Embedded Real-Time Systems
from Overloads Caused

by Excessive Interrupt Rates

Josef Strnadel

Brno University of Technology, IT4Innovations Centre of Excellence
Bozetechova 2, 61266 Brno, Czech Republic

strnadel@fit.vutbr.cz

Abstract. In the paper, principle, analysis and results related to a spe-
cial embedded hardware/software architecture designed to prevent the
real-time software from both timing disturbances and interrupt overloads
is presented. It is supposed that the software is driven by a real-time op-
erating system and that the software is critical, so it is expected not to
fail. The architecture is composed of an FPGA (MCU) utilized to run
the hardware (software) part of a critical application. Novelty of the pro-
posed architecture can be seen in the fact it is able to adapt interrupt
service rates to the actual software load, the priority of a task being ex-
ecuted by the MCU and priorities of interrupts occured. The load and
priority are monitored by the FPGA on basis of low-overhead signals
produced by the MCU for minimizing impacts of the load-monitoring
hardware to the software execution because of the monitoring process.

Keywords: task, operating system, load monitoring, interrupt control,
scheduling, overload prevention, priority space.

1 Introduction and Problem Formulation

If the load hypothesis is not defined precisely or there are no computational re-
sources available to process the peak load, then a conflict can arise between spec-
ified and real behaviors of a system, so the system can fail to operate correctly.
Especially, it holds for embedded systems (ES) required to be both I/O intensive
and real-time (RT). Such an ES must be able to react to stimuli both correctly
and on-time even though the stimuli are of various rates and (a)periodicity and
the ES is equipped with very limited computational resources. Typically, oc-
curence of a stimulus is signalized by an interrupt (INT) mechanism, advantage
of which can be seen in its high reactivity. Disadvantage of the mechanism is
that each INT occurence and related service routine (ISR) are assigned com-
putational resources prior to the main-loop instructions. As a consequence, the
SW part may stop working correctly or collapse suddenly as the INT rate (fint)
increases. This is typically denoted as the interrupt overload (IOV) problem,
seriousness of which grows with criticality of the SW.

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 98–109, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Load-Adaptive Monitor-Driven Hardware 99

Thus, a critical ES must be designed so that it may never give up to recover
even if the load hypothesis is violated by the reality [3]. Several solutions exist
to solve the IOV problem, e.g. [3, 6–8, 10, 12, 14, 16, 17].

The paper is organized as follows. In the section 2, the background related to
the research is outlined. In particular, basic terms related to real-time systems are
summarized there along with the solved problem definition and typical solutions
(2.1). In the section 3, the proposed HW solution to the problem is presented
with a special attention paid to monitoring interface and signal generation details
w.r.t. proposed HW monitor unit (3.1, 3.2) and its operating principle 3.3. In the
section 3.4, experimental results achieved by the proposed solution are presented
and compared to results of typical solutions to the problem followed by the sum
of crucial implementation overheads w.r.t. proposed monitor and the section 4
concludes the paper.

2 Research Background

The paper is related to systems, perfection of which is based on both the cor-
rectness and the timeliness of the outputs. Such a system – i.e., that is able to
produce the right response to given stimuli on time – is called an RT system [1].
For event-driven RT systems, it is typical that each stimulus (considered as an
event) is associated with a computational unit called a task, responsible to react
correctly to the event. There are two basic types of RT tasks: hard and soft [2,4].
For hard tasks it holds their timing constraints must be strictly met; violating
any of them can lead to a failure of the system. The latter (soft) constraints are
not required to be strictly met as their violation typically leads to a temporal
degradation of some system services only, but not to a failure of the system
as a whole. While hard tasks are typically running at high priority levels, soft
tasks are running at lower priorities because they are less time-critical than the
hard tasks. To organize task executions in time (i.e., to schedule them to meet
their timing and other constraints) and to simplify design and analysis of an RT
system, RT operating systems (RTOS) are often used [2, 4]. In the paper, it is
supposed the critical SW is driven by an RTOS.

2.1 Interrupt Overload Problem Solutions

In existing works those problems are typically solved w.r.t. INT management:
i) the timing disturbance problem composed mainly of a disturbance due to soft
real-time (RT) tasks and priority inversion sub-problems [6,7,14] and ii) the pre-
dictability problem originating from the ES inability to predict arrival times and
the rate of INTs induced by external events [10, 12]. The timing disturbance
problem can be efficiently solved at the kernel level – e.g., it was shown in [6], [7]
that ESes can suffer significantly from a disjoint priority space where ISRs are
serviced by the HW prior to tasks managed by the SW; as the solution, they
suggested to implement a joint priority space so the ISR and task priorities can
be mutually compared to detect the highest-priority ISR/task in the joint set.

100 J. Strnadel

They suggested not to service an INT immediately in its ISR but later in an
associated (deferred) task – called an interrupt service task, IST – running at
a predefined task-level priority. At the ISR level, it is supposed only necessary
actions are performed such as INT acknowledge or signaling the corresponding
IST. It was shown the concept minimizes disturbance effects induced by inter-
rupting high-level tasks by ISRs serviced by low-level ISTs. Similar approaches
can be found e.g., in [14, 16, 17]. However, although the solutions minimize the
disturbances produced by ISRs, they do not solve the predictability problem.
They are still susceptible to INT-overload scenarios in which the CPU can be
overloaded when the INT interarrival times (tarrival) are very close to or smaller
than the ISR context switch time [15].

The latter (predictability) problem solutions – presented e.g. in [6,10,12] – are
typically designed to bound the tarrival times (or, maximal interrupt arrival rate
fint). In [12], the INT overload prevention solutions – called interrupt limiters
(IL) there – are classified to SW ILs (SIL) and HW ILs, (HIL). The SILs can be
classified to the following sub-types:

i) Polling SIL. It is designed to check periodically (with tarrival period) if any
event flag is set or not. If it is then an IST corresponding to the event is
started. A timer or a well-tuned block of instructions can be utilized to start
a new polling period after ttimer units of time.

ii) Strict SIL. It works as follows: an ISR prologue is modified to disable INTs
(except those from timers) and configure a one-shot timer to expire after
tarrival units measured from the INT occurence time (treq). After it expires,
INTs are re-enabled. Main disadvantage of the approach can be seen in the
fact INTs are practically doubled as each external INT request leads to an
internal INT utilized to signalize the one-shot timer expiration.

iii) Bursty SIL. It is designed to reduce the double-INT overhead w.r.t. strict
SIL. Comparing to the strict SIL, the bursty SIL is driven by the two pa-
rameters: maximum arrival rate (farrival = 1/tarrival) and maximum burst
size (N). The reduction is based on the following idea: INTs are disabled
after a burst of N≥2 requests rather than disabled after each INT request.
An ISR prologue is modified to increment the counter; INTs are disabled as
soon as the counter reaches N . INTs are re-enabled and the counter is reset
after a timer overflows (after tarrival time units measured from treq).

In the latter (HIL) approach [6], INT requests are processed before they are
directed to the device the ES runs on – a HIL guarantees that at most one INT
is directed to the device within a time interval long tarrival units (i.e., the HIL
is designed to limit fint to a predefined, fixed maximum farrival rate). Further
solution to the HIL – based on the Real-Time Bridge (RTB) concept – was
presented by Pellizzoni [10]: Each I/O interface is serviced by a separate RTB
able to buffer all incoming/outgoing traffic to/from peripherals, and deliver it
predictably according to the actual scheduling policy; the PCI(e) bus is utilized
to interconnect the RTB-based HIL and the control parts of the ES based on a
high-performance (1Ghz Intel Q6700 quad-CPU) platform.

Load-Adaptive Monitor-Driven Hardware 101

3 Proposed Solution

It can be concluded that actual solutions to the IOV problem are either limited
to solving one of the timing disturbance and predictability problems, they are
too complex for (limited) embedded realizations, they require significant modifi-
cations and/or extensions of common commercial off-the-shelf (COTS) compo-
nents or they inherently worsen the RT-task schedulability as they increase the
CPU utilization factor. Motivation and goals of the research w.r.t. this paper can
be summarized as follows: Reachability: to offer a solution to the IOV problem
on basis of instruments accessible at the market, i.e., using COTS components
such as MCUs/FPGAs and operating systems (OSes), Generality: the solution
must result to an architecture that is general enough to abstract from products
of particular producers and is able to solve both the timing disturbance and
predictability problems, Simplicity: the solution must reduce a need to modify
existing components to a minimum, Adaptability: the solution must be able to
adapt the INT service rate to the actual SW load and constraints implying from
the system specification.

3.1 Architecture

To achieve the above-mentioned goals, we have decided i) to utilize an FPGA (for
realization a HIL function) and an MCU (for executing the safe part of an RTOS-
driven ES) as the realization platforms for our monitor-based architecture, ii)
to define a monitoring protocol and interface between FPGA and MCU, iii) to
describe a monitoring hardware in VHDL for its implementation into the FPGA
and iv) to analyze RTOS kernel changes and overheads necessary to realize the
monitoring protocol and interface at the MCU side.

In the proposed solution, we have decided to combine the existing RTB con-
cept [10] with the joint task/IST scheduling [6, 7, 14] and novel load-monitoring
solution able to adapt the INT management mechanism to the actual SW load.
Design and utilization of the monitoring protocol/interface for load-estimation
purposes as well as the estimation mechanism itself can be seen as the most
important contributions of this paper. Main idea of the proposed solution can
be summarized as follows: the FPGA is designed to preprocess all INTs before
they are directed to the MCU; each interface (IFC i) able to generate an INT
request is processed by a separate RTB responsible for processing stimuli related
to the INT – during the high load of the MCU’s CPU any INT is buffered by
the FPGA until the CPU is underloaded or the INT priority is higher than the
priority of the task running in the RTOS; then the INT is directed to the MCU.
Buffers w.r.t. the RTBs must be of a ”sufficiently large” capacity to store stalled
communication related to delayed INTs.

3.2 Monitoring Signals: Timing and Overheads

Details related to the MON INT to MON SLACK signals (see Fig. 1) produced by the
MCU for the monitoring purposes are summarized as follows:

102 J. Strnadel

i) Start: The signal generation begins just after a free-running hardware timer
(TIM) is started to periodically generate an INT for signalizing new tick
of the (logical) operating system time. The start is signalled by producing
a short pulse at each of the MON INT to MON SLACK lines (Fig. 1, A). The
overheads w.r.t. the short pulse generation can be summarized as follows.
Number of FPGA/MCU pins needed to realize the monitoring interface is

Npins = 4 + n (1)

where n is the joint priority bit-width. Moreover, for the SW part it holds
that few instructions must be added to the end of the TIM-start routine
in order to produce a short pulse at each of the lines; this increases the
ES-startup time by about few CPU cycles (tSTARTovr), number of which
depends on pins and instructions selected to control the lines.

ii) ISR-Presense Monitor: Each INT prologue (epilogue) is modified to set the
MON INT signal to HIGH (LOW) just at the beginning (end) of an ISR body to
ease the monitoring of ISR execution times. This extends the ISR execution
a bit (e.g., one instruction for setting and one for clearing the line), but in
a deterministic and the same way across all ISRs except of the TIM-ISR
(let the execution delay implying from the extension be denoted as tISRovr).
Moreover, execution of the (special) TIM-ISR is signalled by generating a
short pulse at the MON TICK line.
So, the TIM-ISR execution time is increased by about

tTICKovr = 2× tISRovr (2)

because of the signal generation. ISR nesting is disallowed. This saves limited
embedded resources such as memory and simplifies the ES analysis, but puts
greater demands on ISR-coding efficiency – execution of an ISR must be as
short as possible not to delay the execution of a consecutive ISR, which
could be of higher priority.

iii) Context-Switch Monitor: The MON CTX signal is set to HIGH each time the
task-level context switch (CTXSW) is being (re)stored; otherwise, it is set
to LOW. Pulse between A, B parts in Fig. 1 represent a (half) CTXSW
to the very first task to run while pulses between B, C (C, D and D, E)

t
MON_TICK

MON_CTX

MON_PRI

MON_SLACK

X

A B

PRI_L

OSTick

PRI_IDLEPRI_H

C E

t

t

t

PRI_L

D

t
MON_INT H L

T

M
C
U

F
P
G
A

Fig. 1. An illustration to the monitoring signals/interface introduced in [15]

Load-Adaptive Monitor-Driven Hardware 103

represent (full) CTXSWs between the tasks – i.e., the CTXSWs formed of
context store (the light filled area) and context restore (the dark filled area)
parts. In Fig. 1, it is supposed the full CTXSW is performed in the ISR body
of a special (Exception/Trap/Software Interrupt) instruction, so MON INT is
HIGH too. Each CTXSW is processed in the critical section (INT disable)
mode, so an extra response delay is added to INTs arisen during a CTXSW
execution. The SW overhead related to generating the signal is similar to
those presented above – one instruct. to set, one to clear the line per half
CTXSW (tHCTXovr), i.e., twice as much for the full CTXSW:

tCTXovr = 2× tHCTXovr. (3)

iv) Priority Monitor: The MON PRI signal is utilized to monitor the running-task
priority. The signal is set in the context restore phase of the CTXSW (as
soon as the priority is known). Let the execution overhead needed to adjust
the MON PRI line be denoted as tPRIovr . So, the total CTXSW overhead is

tCTXovr = 2× tHCTXovr + tPRIovr (4)

In Fig. 1, it is illustrated how the value of MON PRI changes if a lower priority
task (PRI L priority, part B) is preempted by a higher priority task (PRI H
priority, part C) and then back to PRI L (part D) after the higher priority
task becomes unready. If there is no ready task in the system (part E) then
the idle task is started (i.e., MON PRI is set to PRI IDLE).

v) Slack Monitor: The MON SLACK signal is utilized to detect slack time in the
schedule. The value of the signal is given by the formula (where PRIHmin

is the least significant hard-level priority):

MON SLACK =

{
HIGH if((MON PRI = PRI IDLE)or(MON PRI ≤ PRIHmin)),
LOW otherwise.

(5)

3.3 Proposed HIL: Operation Principle

In this paragraph, the operation principle of the FPGA-based HIL proposed in
the paper is described. A special attention is paid there to principles utilized
to process the monitoring signals by the FPGA. For the description, let the
PRI : SINT ∪ Sτ → N be a function assigning a joint-priority value to an INT
(INTi ∈ SINT where SINT is the set of all INT sources) or a task (τi ∈ Sτ

where Sτ is the set of all non-IST tasks). Let A be a preemptive, fixed-priority
assignment policy, let Sτ = {τ1, . . . , τm, τm+1, . . . , τn} be the set of all tasks to be
scheduled by A and let the following subsets be distinguished in the Sτ set: the
set (SτH = {τ1, . . . , τm}) of hard tasks, the set (SτS = {τm+1, . . . , τn}) of soft
tasks, the set (SτP) of periodic tasks forming a repetitive part of the ES behavior
and the set (SτA) of aperiodic event-driven tasks being released/executed once
iff an event (INT) occurs.

104 J. Strnadel

It is supposed these parameters are known for a τi ∈ Sτ : ri (release time), Ci

(worst-case exec. t.), Di (relative deadline), Ti (period; for an aperiodic task it is
set to Di or – if it is known – to the min. interarrival t. of a corresponding INT).
Alike, it is supposed these parameters are known for a INTi ∈ SINT : CINTi

(worst-case INTi service t.), WINTi (worst-case data bandwidth w.r.t. INTi).
The proposed architecture was designed to meet the following requirements:

i) the CPU will not get overloaded by an excessive stream of INTs, ii) timing
constraints of hard tasks will be always met, iii) soft tasks will be executed if
a slack time is detected on the MON SLACK line or if the CPU is not fully loaded
by the hard tasks, iv) the worst-case blocking-time boundary w.r.t. INTs is
known.In [15] it is shown that the requirements can be met if a new INT (INTi) is
signaled to the CPU after at least one of the conditions (7) – (9) is satisfied along
with (6). To avoid a non-deterministic behavior, the conditions are evaluated in
the following, left-to-right order: (7), (8), (9).

i) NoISR Condition:
MON INT = LOW (6)

ii) Priority Condition:
PRI(INTi) > MON PRI. (7)

INT nesting is not allowed, so a new highest-priority INT is i) blocked at
most by one (recently executed) lower-priority ISR and ii) directed to the
CPU just after the actual ISR ends.

iii) Underload Condition: the total CPU load (ρ) at hard-PRI levels plus the
CINTi-induced load is smaller than 100% where ρ = maxi=1,...,m(ρi(t)) and

ρi(t) =

∑
dk≤di

remk(t)

(di − t)
× 100 (8)

is the CPU load of a hard-task τi ∈ SτH in the < t, di > interval, t is actual
time, di = ri +Di (dk = rk +Dk) is the absolute deadline of a task τi (τk)
and remk(t) = Ck − runk(t) is the remaining execution time of a hard-task
τk ∈ SτH in time t where runk(t) is the consumed exe-time of the task τk
in time t measured on a basis of monitoring the MON PRI=PRI(τk) width.

iv) Slack Condition:
MON SLACK = HIGH. (9)

The maximum number of INTs allowed between consecutive hard-level execu-
tions (an implicit update interval) is

Nmax
INT (t) = � (100− ρ(t))× (dmax − t)

100 ×CINT
� (10)

where CINT = max∀i(CINTi) is the worst-case execution overhead related to
servicing an INT and dmax = maxi=1,...,m(di). If time t′ ≤ dmax exists for which
it holds that wint(t

′, t′′) – i.e. the accumulated MON INT’HIGH observed from the

last Nmax
INT update done in t” – exceeds the � t′−t′′

CINT
� × CINT value then no INT

is forwarded to the MCU until the exceeding is over, excluding INTs satisfying
the (7) condition.

Load-Adaptive Monitor-Driven Hardware 105

Actually, MON TICK and MON CTX are not involved in the formulas; they are
utilized to measure the actual OSTime value/jitter and gather CTXSW statis-
tics only. Crucial lemmas (theorems) w.r.t. impact of the architecture to the
parameters of an RT system can be found in [15] along with outlines of the
corresponding proofs. Because of the limited space, they are not included in this
paper. Instead, more details related to experimental results and implementation
overheads are presented in the next. Details related to inner structure of the pro-
posed monitoring-driven limiter can be seen in Fig. 3 – each INT is recognized
by a separate INT Detect Unit and prospective INT stimulus and related data
are stored in the Stall-INT Buffer until the MCU is ready to service the INT.

102

103

104

105

 0

 25

 50

 75

 100
 0

 20

 40

 60

 80

 100

total
CPU utilization [%]

interrupt load [Hz]

main-loop
CPU utilization [%]

total
CPU utilization [%]

 0

 20

 40

 60

 80

 100

(a) no INT limiter

102

103

104

105

 0

 25

 50

 75

 100
 0

 20

 40

 60

 80

 100

total
CPU utilization [%]

interrupt load [Hz]

main-loop
CPU utilization [%]

total
CPU utilization [%]

 0

 20

 40

 60

 80

 100

(b) Polling SIL

102

103

104

105

 0

 25

 50

 75

 100
 0

 20

 40

 60

 80

 100

total
CPU utilization [%]

interrupt load [Hz]

main-loop
CPU utilization [%]

total
CPU utilization [%]

 0

 20

 40

 60

 80

 100

(c) Strict SIL

102

103

104

105

 0

 25

 50

 75

 100
 0

 20

 40

 60

 80

 100

total
CPU utilization [%]

interrupt load [Hz]

main-loop
CPU utilization [%]

total
CPU utilization [%]

 0

 20

 40

 60

 80

 100

(d) Bursty SIL

102

103

104

105

 0

 25

 50

 75

 100
 0

 20

 40

 60

 80

 100

total
CPU utilization [%]

interrupt load [Hz]

main-loop
CPU utilization [%]

total
CPU utilization [%]

 0

 20

 40

 60

 80

 100

(e) Simple (static) HIL

102

103

104

105

 0

 25

 50

 75

 0

 20

 40

 60

 80

 100

total
CPU utilization [%]

0
105

interrupt load [Hz]

main-loop
CPU utilization [%]

total
CPU utilization [%]

 0

 20

 40

 60

 80

 100

(f) Proposed dynamic HIL

Fig. 2. Comparison of CPU utilization factors of the limiter techniques for farrival =
4kHz. It can be seen that our approach (f) offers ”small” CPU utilization comparable
to (e) while the other approaches need a higher (c, d) or constant (b) utilization to
offer the same level of the IOV protection.

106 J. Strnadel

INT_n
Detect
UnitINT_1

Detect
Unit

rdy_1

MON_...

INT_n
Forward

UnitINT_1
Forward

Unit

Stall-INT
Buffer Unit

Cond. Eval.
Unit go_1

to

F
P
G
A

to

M
C
U

s
t
i

m
u
l
i

s
t
i

m
u
l
i

Fig. 3. Block schema of the proposed load-adaptive limiter

The MCU readiness is analyzed by the Condition Evaluation Unit – designed
to evaluate the (6) to (10) formulas – and signalled to the INT Forward Unit
responsible to forward the INT stimulus to the MCU along with its data. All
the mentioned units work in parallel.

3.4 Solution Properties and Implementation Overheads

The solution presented in 3.1 to 3.3 was implemented and compared to those
presented in 2.1. In the figures, it can be seen that for high fint values our
dynamic HIL solution is able to prevent the ES from INT overload and to service
higher number of INTs during CPU underload than the others at comparable
CPU loads. Fig. 4a(b) compares CPU loads (INT throughputs) achieved by our
solution and common SIL (polling, strict, bursty) and HIL (static) approaches.

In order to analyze practical applicability of the proposed IOV mechanism, we
have decided to summarize its implementation overheads. Because the overheads
w.r.t. MCU side of the mechanism are minimal (they are practically limited to
inserting a couple of simple instructions to into the original RT kernel source
code, which was outlined in the section 3.2), the summary herein (see Fig. 5,
Fig. 6) is limited to overheads w.r.t. the HW part of the mechanism.

a)

05010
0

15
0

20
0

25
0

30
0

(for farrival=4kHz)
fint=0.1kHz
fint=2.5kHz, polling SIL
fint=10kHz

(for farrival=4kHz)
fint=0.1kHz
fint=2.5kHz, strict SIL
fint=10kHz

(for farrival=4kHz, b.size=16)
fint=0.1kHz
fint=2.5kHz, bursty SIL
fint=10kHz

(for farrival=10kHz)
fint=0.1kHz
fint=2.5kHz, static HIL
fint=10kHz

(farrival is adaptive)
fint=0.1kHz
fint=2.5kHz, dynamic HIL
fint=10kHz

total CPU load [%]

IN
T

 li
m

it
te

ch
ni

qu
e

ha
rd

-t
as

k
se

t C
P

U
 u

til
iz

at
io

n
[%

]
10

50
75

b)

0x
10

0

1x
10

3

2x
10

3

3x
10

3

4x
10

3

5x
10

3

6x
10

3

7x
10

3

8x
10

3

9x
10

3

(for farrival=4kHz)
fint=0.1kHz
fint=2.5kHz, polling SIL
fint=10kHz

(for farrival=4kHz)
fint=0.1kHz
fint=2.5kHz, strict SIL
fint=10kHz

(for farrival=4kHz, b.size=16)
fint=0.1kHz
fint=2.5kHz, bursty SIL
fint=10kHz

(for farrival=10kHz)
fint=0.1kHz
fint=2.5kHz, static HIL
fint=10kHz

(farrival is adaptive)
fint=0.1kHz
fint=2.5kHz, dynamic HIL
fint=10kHz

of INTs serviced during CPU underload

IN
T

 li
m

it
te

ch
ni

qu
e

ha
rd

-t
as

k
se

t C
P

U
 u

til
iz

at
io

n
[%

]
10

50
75

Fig. 4. Comparing accumulated a) CPU loads and b) INT throughputs achieved by the
proposed solution (the topmost 3 columns denoted as ”dynamic HIL”) and by common
SIL (polling, strict, bursty) and static HIL approaches. For each of them (vert. axis)
results are plotted for 3 various fint values: 0.1kHz, 2.5kHz and 10kHz, determined
by farrival and by burst size values (where applicable).

Load-Adaptive Monitor-Driven Hardware 107

The HW was targeted to Xilinx Spartan6 family and synthesized using Xil-
inx ISE 13.1. Device utilization data (such as No. Slice Reg., No. Slice LUTs,
No. fully used LUT-FF pairs, No. bonded IOBs and No. BUFG/CTRLs) were
collected from Device Utilization Summary report produced by ISE after the
synthesis process was over (terminology was taken from the ISE reports).

The remaining data present in the ISE reports were processed to estimate
the number of slices needed to implement our limiter into particular Spartan6
devices (Fig. 6). It was estimated that the maximum number of INTs limited
by an on-chip Spartan6 realization of the adaptive INT limiter proposed in
this paper is about 250. Higher number leads to exhaustion of bonded IOB
resources and cannot be implemented on a Spartan6 device. It can be seen that
some of the resources are more critical as their utilization is constantly high or
grows significantly with decreasing complexity of Spartan6 device while some of
them are less critical as their utilization is near to low-constant value across the
devices. No. slices needed for implementations are summarized in the Fig. 6c
and detailed (for the low-end devices) in Fig. 6b. As common real-time kernels
support not more than 256 priority levels, it can be concluded that the presented
Spartan6-realization of the limiter is able to limit up to 32–250 INT stimuli.

Limits of memory needed to store data related to interrupts delayed by the
FPGA both to prevent the monitored CPU from excessive interrupt stimuli
and to guarantee timeliness of responses related to critical interrupts are as
follows. The maximum memory size available on-chip of a Spartan6 device along
with the limiter mechanism is 6164 kbit (xc6slx150). In the Fig. 6a, details to
low-end devices are presented. It can be seen that for XC6SLX9/XC6SLX16
(XC6SLX25) devices, about 600 (1100) kbits can be stored on-chip of an FPGA
if the number of limited interrupt sources is not much greater than 32. Otherwise,
the maximum of available on-chip memory decreases significantly, so an external
memory must be utilized for the purpose. However, in that case, an extra on-chip
FPGA resources are needed to implement the controller of such a memory.

Fig. 5. Summary of utilization bounds (the left sub-figure) and service limits (the right
sub-figure) w.r.t. Spartan6 realizations of the proposed IOV mechanism

108 J. Strnadel

(a) (b) (c)

Fig. 6. Requirements and limits w.r.t. on-chip Spartan6 realizations of the adaptive
limiter solution proposed in the paper depicted as functions of i) number of limited
interrupts and ii) number of supported priority levels. As a Spartan6-slice is composed
of 4 LUTs and 8 FFs, ISE outputs were transformed into the number of slices (NSlices)
value using the formula NSlices = (Npairs +NLUTs)/4+NFFs/8 where i) Npairs is the
number of fully used LUT-FF pairs (each of them composed of 1 LUT and 2 FFs –
i.e., a slice it is composed of 4 LUT-FF pairs), ii) NLUTs is the number of LUTs not
paired with a FF and iii) NFFs is the number of FFs not paired with a LUT.

4 Conclusion

In the paper, a novel hardware solution to the INT overload problem was pre-
sented. Novelty of the solution can be seen in the fact it shows that although an
RTOS is equipped with a very simple, but properly designed interface then it is
possible to precisely monitor its dynamic load by a simple external device and
utilize this dynamic information to adapt the INT service rate to the actual load,
so the CPU running the safe part of an RT application is not threatened by low-
priority INT sources. For the implementation of the proposed approach, common
COST components (μC/OS-II RTOS running on ARM Cortex-A9 and Spartan6
FPGA) were utilized to show the applicability and implementation overheads
w.r.t. the proposed approach, but it should be emphasized there that the pro-
posed approach is general enough to be realized using another RTOS, MCU/CPU
or FPGA. Moreover, an RTOS is not required to run on an MCU/CPU (it can be
run e.g. on an FPGA to produce the same monitoring signals) and the monitor
is not required to be implemented by an FPGA (instead, a different device such
as CPU can be utilized supposing it is able to analyze the monitoring signals).
Because of the adaptability, the presented architecture offers an efficient and
low-cost load-driven solution to the timing disturbance and predictability prob-
lems w.r.t. INT management, which was shown in the paper. Future research
activities w.r.t. the paper are going to be focused on real-world applications and
real-traffic measurements based on the proposed load-adaptive architecture.

This work has been partially supported by the RECOMP MSMT project
(National Support for Project Reduced Certification Costs Using Trusted Multi-
core Platforms), the Research Plan No. MSM 0021630528 (Security-Oriented Re-
search in Information Technology), the BUT FIT-S-11-1 and the IT4Innovations
Centre of Excellence CZ.1.05/1.1.00/02.0070.

Load-Adaptive Monitor-Driven Hardware 109

References

1. Cheng, A.M.K.: Real-Time Systems, Scheduling, Analysis, and Verification. John
Wiley & Sons, Hoboken (2002)

2. Cottet, F., Delacroix, J., Kaiser, C., Mammeri, Z.: Scheduling in Real-Time Sys-
tems. John Wiley & Sons, Hoboken (2002)

3. Kopetz, H.: On the Fault Hypothesis for a Safety-Critical Real-Time System.
In: Broy, M., Krüger, I.H., Meisinger, M. (eds.) ASWSD 2004. LNCS, vol. 4147,
pp. 31–42. Springer, Heidelberg (2006)

4. Laplante, P.A.: Real-Time Systems Design and Analysis. Wiley-IEEE Press, Hobo-
ken (2004)

5. Lee, M., Lee, J., Shyshkalov, A., Seo, J., Hong, I., Shin, I.: On Interrupt Schedul-
ing Based On Process Priority For Predictable Real-Time Behavior. SIGBED
Rev. 7(1), 6:1–6:4 (2010)

6. Leyva-del-Foyo, L.E., Mejia-Alvarez, P.: Custom interrupt management for real-
time and embedded system kernels. In: Proceedings of the Embedded Real-Time
Systems Implementation Workshop at the 25th IEEE International Real-Time Sys-
tems Symposium, p. 8. IEEE Computer Society, United States (2004)

7. Leyva-del-Foyo, L.E., Mejia-Alvarez, P., Niz, D.: Predictable interrupt management
for real time kernels over conventional pc hardware. In: Proceedings of the IEEE
Real-Time and Embedded Technology and Applications Symposium, pp. 14–23.
IEEE Computer Society, Washington, DC (2006)

8. Lee, M., Lee, J., Shyskalov, A., Seo, J., Hong, I., Shin, I.: On interrupt scheduling
based on process priority for predictable real-time behavior. In: ACM SIGBED
Review - Special Issue on the RTSS 2009 WiP Session, 6th article, p. 4 (2010)

9. Parmer, G., West, R.: Predictable interrupt management and scheduling in the
composite component-based system. In: Proc. of the Real-Time Systems Sympo-
sium, pp. 232–243. IEEE Computer Society, Washington, DC (2008)

10. Pellizzoni, R.: Predictable and monitored execution for cots-based real-time em-
bedded systems. Ph.D. thesis, University of Illinois at Urbana-Champaign (2010)

11. Regehr, J.: Safe And Structured Use Of Interrupts In Real-Time And Embedded
Software. In: Lee, I., Leung, J.Y.-T., Son, S.H. (eds.) Handbook of Real-Time and
Embedded Systems, pp. 16-1–16-12. Chapman & Hall/CRC, US (2007)

12. Regehr, J., Duongsaa, U.: Preventing interrupt overload. In: Proceedings of the
ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools For
Embedded Systems, pp. 50–58. ACM, New York (2005)

13. Regnier, P., Lima, G., Barreto, L.: Evaluation Of Interrupt Handling Timeliness
in Real-Time Linux. SIGOPS Oper. Syst. Rev. 42(6), 52–63 (2008)

14. Scheler, F., Hofer, W., Oechslein, B., Pfister, R., Schroder-Preikschat, W.,
Lohmann, D.: Parallel, hardware-supported interrupt handling in an event-trigered
real-time operating system. In: Proc. of the Int. Conf. on Computers, Architectures
and Synthesis of Embedded Systems, pp. 167–174. ACM (2009)

15. Strnadel, J.: Monitoring-Driven HW/SW Interrupt Overload Prevention for Em-
bedded Real-Time Systems. In: Proc. of the 15th IEEE Int. Symposium on Design
and Diagnostics of Electronic Circuits and Systems, IEEE CS, pp. 121–126 (2012)

16. Zhang, Y.: Prediction-based interrupt scheduling. In: WiP Proc. of the 30th IEEE
Real-Time Systems Symposium, pp. 81–84. University of Texas, San Antonio
(2009)

17. Zhang, Y., West, R.: Process-aware interrupt scheduling and accounting. In:
Proceedings of the 27th IEEE International Real-Time Systems Symposium,
pp. 191–201. IEEE Computer Society, Los Alamitos (2006)

	Load-Adaptive Monitor-Driven Hardware for Preventing Embedded Real-Time Systems from Overloads Caused by Excessive Interrupt Rates
	Introduction and Problem Formulation
	Research Background
	Interrupt Overload Problem Solutions

	Proposed Solution
	Architecture
	Monitoring Signals: Timing and Overheads
	Proposed HIL: Operation Principle
	Solution Properties and Implementation Overheads

	Conclusion
	References

