
On Design of Priority-Driven Load-Adaptive
Monitoring-Based Hardware for Managing Interrupts

in Embedded Event-Triggered Real-Time Systems

Josef Strnadel
Brno University of Technology, Faculty of Information Technology,

IT4Innovations Centre of Excellence, Brno, Czech Republic, strnadel@fit.vutbr.cz

Abstract—The paper details design of a hardware unit for
preventing real-time systems from overloads caused by excessive
interrupt rates. Novelty of the hardware can be seen in the fact it
is able to adapt interrupt service rate to the RT system load and
to the actual priority assignment policy. The load is monitored
on basis of special low-overhead signals produced by the system
for this purpose. The hardware is designed to pre-process all
interrupts before they arrive to the system. Then, the hardware
is able to buffer each interrupt-related communication until the
system is underloaded or running an activity having a lower
priority comparing to the interrupt. Design of the hardware was
described in VHDL and synthesized into Xilinx Spartan-6 devices.
Details such as buiding blocks, overheads and limits related to
the realization are presented in this paper.

I. INTRODUCTION

For many systems it is typical that occurence of an event
is signalized by the interrupt (INT) mechanism. Advantage of
the mechanism can be seen in the fact an INT is serviced
prior and asynchronously to the main-loop control flow in
order to minimize the INT response time. Disadvantage can
be seen in the computational overhead (i.e., memory and time
for re/storing the CPU context) related to an INT occurence.
As a consequence of the overhead, the main-loop control flow
is delayed until all arisen INTs are serviced. The problem is
that the CPU time available for the main-loop execution is
proportional to the INT interarrival time.

In the extreme case it can happen that the INT interarrival
time drops below the INT service time; then, no CPU time
remains for the main-loop execution. It can happen despite
the INT criticality is lower than the criticality of the actual
main-loop control flow. This is being denoted as the interrupt
overload (IOV) problem and it must be solved when the
main-loop part is executed at a high criticality level. As a
consequence, the part may stop working correctly or collapse
suddenly [3]. Especially, it holds for (so-called Real-Time, RT)
systems, perfection of which is based on both the correctness
and timeliness of the outputs [1]. In these systems, each an
event is typically associated with a computational unit (called
a task) responsible to react correctly to the associated event.
There are two basic types of RT tasks [4]:

• hard, timing constraints of which must be strictly met,

• soft, for which it suffice the constraints are ”some-
times” met.

To guarantee the hard-task constraints will be always met, hard
(soft) tasks are being executed at high (low) priority levels. To

organize task executions in time (i.e., to schedule them to meet
their timing and other constraints) and to simplify design and
analysis of an RT system, it is common practice that tasks
are managed by an RT operating system (RTOS, RT kernel)
designed to guarantee timeliness of their responses [1], [2], [4].
As the RTOS code is being executed as a part the main-loop
control flow, its operation can be threatened by the excessive
rate of INT stimuli too.

Several solutions to the IOV problem has been already
published [5]–[12], [16]. Some of them (such as polling, strict
or bursty INT limiters [11], middleware [8], [12] or task-
level scheduling mechanisms [5], [9], [16]) are either software
solutions to the IOV problem or trivial, non-adaptive or high-
cost hardware solutions such as [6], [7], [10] suitable for
PC-based realizations. While the SW solutions to the IOV
inherently worsen the RT-task schedulability as they increase
the CPU utilization factor, the HW solutions require significant
modifications and/or extensions of common commercial off-
the-shelf (COTS) components. Moreover, none of them is able
to minimize undesired INT effects such as

• timing disturbance problem composed e.g. of distur-
bance due to soft real-time (RT) tasks and priority
inversion sub-problems [6], [12],

• predictability problem originating from a system in-
ability to predict arrival times and the rate of INTs

induced by external events [6], [10], [11] along with adaptation
of the INT throughput to load and priority of a platform
supposed to be stimulated by interrupts.

This motivated us to design the architecture not suffering
these shortcomings.

The paper is organized as follows. In the section II,
motivation and actual state of our research are presented. In
III, interface and protocol utilized for load-monitoring pur-
poses (III-A), load-monitor/INT-limiter architecture (III-B) and
properties and realization overheads w.r.t. to the architecture
(III-D) are detailed. The section IV concludes the paper.

II. MOTIVATION AND ACTUAL STATE OF OUR RESEARCH

Motivation and goals of our research were outlined in [14]
and they can be summarized as follows.

• Reachability: to offer a solution to the IOV problem
on basis of instruments accessible at the market, i.e.,



using COTS components such as MCUs/FPGAs and
operating systems (OSes),

• Generality: the solution must result to an architecture
that is general enough to abstract from products of
particular producers and is able to solve both the
timing disturbance and predictability problems,

• Simplicity: the solution must reduce a need to modify
existing components to a minimum,

• Adaptability: the solution must be able to adapt the
INT service rate to the actual platform load and
constraints implying from the system specification.

In our previous papers, the operating principle and basic
properties of a novel hardware/software (HW/SW) architecture
designed to adapt the INT service rate to the actual SW load
being monitored by the HW were presented [13]. Afterwards,
details related to the research background and realization
overheads related to the architecture were presented in [14].

Main goal of this paper is to present details related to
implementation of the proposed architecture – a special at-
tention is paid there to present details related to generation of
monitoring signals by the SW and to inner structure and limits
of the proposed INT-management hardware.

As the SW (running on a microcontroller unit, MCU)
was supposed to be safety&time-critical, it was undesirable to
forward an INT to the MCU while it is overloaded or executing
an action of a priority higher or equal to the INT priority. INTs
were managed by the HW realized by an FPGA designed to
recognize and stall/release ”undesirable” interrupts. Let it be
denoted there that (among its other inner components) an MCU
is composed of a CPU responsible for software execution. So,
it can happen that the ”CPU” will be utilized instead of ”MCU”
where applicable in this paper.

III. PROPOSED MONITOR DETAILS

In order to monitor (i.e., to observe in a non-intrusive way)
the SW load, it was decided to utilize a simple interface able
to be realized by any COST component – the interface is
composed of the MON_INT MON_TICK, MON_PRI, MON_CTX
and MON_SLACK signal lines (see Fig. 1) being produced
(processed) by the MCU (FPGA) for the monitoring purposes.
Details related to signal generation follows.

A. Signal Generation

Particular implementation steps needed to realize the signal
generation part of the proposed architecture are going to be
illustrated using the µC/OS-II kernel instruments. However, it

t
MON_TICK

MON_CTX

MON_PRI

MON_SLACK

X

A B

PRI_L

OSTick

PRI_IDLEPRI_H

C E

t

t

t

PRI_L

D

t
MON_INT H L

T

M

C

U

F

P

G

A

Fig. 1. An illustration to the monitoring signals/interface introduced in [13].
In the worst case, 4 + n pins are needed to realize the interface, where n is
the priority adress bit-width

can be emphasized there that the concept is general enough
to abstract from an RTOS case-study. The signal generation
can start after the operating system kernel is ready to operate,
i.e., if an RTOS structures are initialized and a hardware timer
(TIM) is configured and enabled to produce a periodic TOSTick

interrupt. In the µC/OS-II case, this can be done after the
OSInit() function is over – i.e., either after OSInit()
call in the main() or in the in the OSInitHookEnd()
function body being called by the kernel at the end of the
OSInit() body (for details, see the listing 1 and the listing
2). The generation start is signaled to the FPGA by producing a
short HIGH-level impulse at each of the MON_INT, MON_TICK,
MON_CTX and MON_SLACK lines (Fig. 1).

Listing 1. ”uC/OS-II example #1 to the signal generation start”
1 #include "includes.h"
2 #include <stdio.h>
3
4 int main (void) {
5 OSInit(); /* creation and initialization of OS data

structures, system timer, ... */
6
7 /* signal generation commands can be placed here */
8
9 OSStart(); /* starting the multitasking; return is

NOT expected from this function */
10 return(0);
11 }

This gives the FPGA possibility to synchronize with the
MCU and to start the signal monitoring process, but at the
price of increasing the system startup time by a predefined and
constant number of CPU cycles (number of which depends on
pins and instructions selected to control the lines).

Listing 2. ”uC/OS-II example #2 to the signal generation start”
1 void OSInitHookEnd (void) { /* this function is called

at the end of the OSInit() function */
2 /* signal generation commands can be placed here */
3 }

Next, an INT prologue (epilogue) must be modified to set
the MON_INT signal to HIGH (LOW) just at the beginning
(end) of an ISR body. In relation to the µC/OS-II kernel, this
can be done before calling the OSIntEnter() function (after
returning from the OSIntExit() function). This extends the
ISR execution in a deterministic and the same way across
all ISRs and allows the ISR execution time as well as ISR
enter/exit times be monitored both in a non-intrusive way and
at runtime. As the MON_INT signal is set to HIGH (LOW) after
(before) the CPU enters (exists) the INT execution level, it is
evident that this generation principle leads to certain MON_INT
monitoring error, implying from the fact that the monitored
MON_INT length will be smaller than the real one. Let the
error be denoted by eINT and let it hold for it

0 ≤ eINT − (↪→ST
INT + ↪→LD

INT + mE) ≤⇑HINT + ⇓LINT (1)

where ↪→ST
INT (↪→LD

INT ) is the ISR context store (load) delay
implying from processing an INT request by the MCU’s INT
subsystem, ⇑HINT (⇓LINT ) is a delay implying from adjusting
the MON_INT line to HIGH (LOW) level and mE is a further
overhead being 0 herein, but non-zero in the following – (2),
(3) – cases.

Moreover, execution of the (special) TIM-related ISR is
signalled by generating a short pulse at the MON_TICK line; this



allows the FPGA to monitor the OS time in order to observe
phenomena such as a jitter. For the purpose, the start (end)
of the OSTickISR() routine body must be modified to set
the MON_TICK signal to HIGH (LOW). Because of this extra
overhead, for the TIM-related ISR it holds

mE=⇑HTICK + ⇓LTICK (2)

where ⇑HTICK (⇓LTICK) is a delay of adjusting the
MON_TICK line to HIGH (LOW) level.

As embedded resources are very limited (comparing e.g.
to a deskdop PC), an ISR nesting is disallowed and the ISR
execution must be as short as possible not to delay much the
execution of any consecutive ISR.

In order to monitor amount of time the CPU spends by
storing and restoring task-level contexts, the beginning (end)
of the OSCtxSw() function is modified to set the MON_CTX
signal to HIGH (LOW). It is supposed the context switch is
performed within a special CTX-related ISR for which it holds

mE=⇑HCTX + ⇓LCTX + ⇑PRI (3)

where ⇑HCTX (⇓LCTX ) is a delay of adjusting the MON_CTX
line to HIGH (LOW) level and ⇑PRI is further delay is
explained below w.r.t. the next (MON_PRI) signal being utilized
to monitor the priority of a running task. As the MON_PRI
signal is set in the context-restore phase of the CTXSW as
soon as the task priority is taken from the context, ⇑PRI is a
delay of adjusting the priority to the MON_PRI line.

If there is no ready task in the system then the CTX is
switched to the idle task. Before (in the CTXSW phase), the
MON_PRI line is set to PRI IDLE. Also, just after the MON_CTX
signal is set to HIGH in the OSCtxSw() body – this is already
included in (3) – then the MON_SLACK line is set to HIGH too
there if it holds the priority of a task the CTX is going to
be switched to is below the predefined (hard-priority) level.
Delay related to the conditioned code must be included into
the ⇑PRI part of (3).

Operational principle of the proposed monitoring-based
INT-management platform can be described using the follow-
ing algorithm:

Algorithm Description of the proposed monitor function
1: if (an INT occurs or a MON * signal changes) then
2: if (the INT priority > MON PRI) then
3: forward the INT to the MCU
4: return
5: else if (the maximum number of INTs allowed in the critical floating

window is not exceeded) then
6: forward the INT to the MCU
7: return
8: else if (MON SLACK signal is HIGH) then
9: forward the INT to the MCU

10: return
11: else
12: stall the INT until the system becomes ready to service it
13: return
14: end if
15: end if

IDU_1

IDU_2

IDU_n

FPGA

MCU

C
E
U

MON_PRI, ...

SBU

I
F
U

INT_1

INT_2

INT_n

INT_i

Fig. 2. Block schema of the proposed monitor-based interrupt limiter

B. Architecture

The following key units can be distinguished in the pro-
posed load-monitoring architecture designed to manage inter-
rupts (for its block schema, see the Fig. 2):

i) INT Detection Unit (IDU) – each an INT is associated
a separate IDU goal of which is to detect the INT. Key
components of an IDU are: INT sensitivity (level/edge)
unit and INT priority storage. If necessary, both the
components can be updated at the run-time in order to
support the reconfiguration and dynamic priority assign-
ment policies.

INT detection logic

Edge/level sensitivity

configuration

IDU

INT_i INT_iRDY

setup

bus

Priority storage

Fig. 3. Block schema of the INT Detection Unit

ii) Condition Evaluation Unit (CEU) – it is utilized to
evaluate special (Priority, Underload, Slack) conditions.
Each of the conditions is designed to check a partial
relation between properties (such as priority) of catched –
but unserviced yet – interrupts and actual properties of the
SW (such as the running task priority, the CPU load/slack
progress – being observed on basis of the monitoring
signals). At least, let it be noted there that the purpose
of the conditions are:
• Priority condition – to check whether the priority

of an INT is higher than the priority of a task
being executed by the MCU; let it be noted there
that the joint INT/task priority space is utilized
to abstract from hardware-level INT priorities in
order to allow mutual comparison of INT and task
priorities,

• Underload condition – to check whether releasing
a task for servicing and INT would lead to the
MCU overload (and consequently, to violation of
some, e.g. RT, properties) and

• Slack condition – to check whether the SW is in
the idle state (thus, able to service an INT aside
from its priority).

If none (any) of the conditions is met for the highest-
priority unserviced INT, the INT is processed by the
SBU (IFU) unit – see III-B–iv. Main components of the
only CEU are: Maximum INT-priority select unit, Priority



comparator unit and Slack time evaluator unit. As a detail
description of the conditions is beyond the scope of this
paper, readers are kindly invited to find it in [13].

INT forward signal unit

CEU

INT_1RDY
max. 

priority

select 

unit
INT_nRDY

INT_2RDY

MON_xxx

priority

compare

unit

MON_PRI

INT_FWD

load

detect

unit

slack

detect

unit

MON_INT

Fig. 4. Block schema of the Condition Evaluation Unit

iii) Stall-INT Buffer Unit (SBU) – goal of the unit is
to store an INT (request and associated data, if any,
such as multiple INT requests and their timestamps) that
cannot be forwarded to the MCU because of unmeeting
the contidions. The INT is stalled in the buffer until a
condition becomes met. SBU is a memory accessible to
all IDUs and the IFU (see III-B–iv).

iv) INT Forward Unit (IFU) – alike CEU and SBU, there
is only one IFU unit invlolved in the architecture. IFU
is activated after a condition becomes met. In this case,
the IFU is informed about the highest-priority INT that
is ready to be forwarded to the MCU and about the INT
sensitivity adjusted at the MCU side. Then, the IFU reads
the INT-related data from SBU (if there are any) and
forwards the INT – and its prospective data – to the MCU.

Besides the published resource consumation overheads
[13], [14] there is one that is very important from the RT
point of view: it is the worst-case delay (∆INT ) of transporting
the highest-priority INT through the proposed architecture and
forwarding it to the MCU. The delay is measured from a
time the INT priority became the highest in the joint INT/task
priority space and a time the INT stimulation started at the
MCU pins. In order to quantify the delay, let us suppose Tclk
is the system clock period. Then, the delay can be expressed
by the formula:

∆INT = ∆IDU + ∆CEU + ∆IFU + ∆SBU (4)

where the partial delays are:

• ∆IDU = 2 × Tclk: this is the two clock-period delay
of detecting a (edge/level) sensitivity condition related
to an INT by its associated IDU. As all IDUs operate
in parallel, the delay is fixed and independent from
the number of priority levels and number of INTs
supported by the architecture.

• ∆CEU = 1× Tclk: it is a combinational circuit delay
limiting the maximum operating frequency (fmax ≤
∆−1

CEU ) of the proposed architecture. The delay grows
significantly with the number of priority levels and
number of INTs supported by the architecture. Let it
be noted there that a significant portion of ∆CEU is
introduced by the maximum-selection component of
CEU. For the impact, see Tab. I.

• ∆IFU = 2 × Tclk: this is the two clock-period delay
of forwarding the highest-priority INT stimulus to

the MCU pins, generation of which is based on
the (edge/level) sensitivity configured for each INT
source. As in ∆IDU case, ∆IFU is fixed and indepen-
dent from the number of priority levels and number
of INTs supported by the architecture too.

• ∆SBU = n × Tclk: this is the n clock-period de-
lay of reading the INT-related data being previously
stalled in the SBU. The delay cannot be fixed if the
information such as memory type/parameters and data
throughput/size are unknown for the INT. For an INT
that is associated with no data it holds n = 0, i.e.,
it is not necessary to (re)store anything to (from) the
SBU.

The INT throughput is a function of the maximum operat-
ing frequency fmax (Tab. I), ∆INT value and the actual MCU
load, so it cannot be expressed and evaluated independently
from the information. However, the theoretical upper bound
for the throughput can be estimated using the formula:

1

∆INT
=

1

∆IDU + ∆CEU + ∆IFU + ∆SBU
=

=
1

(2 + 1 + 2 + n)× Tclk
=

fmax

(5 + n)
(5)

If the load is not reflected and ∆SBU is 0, it can be con-
cluded the maximum theoretical throughput of the proposed
architecture lies cca in the 8× 104INTs/s (the limit for 256
INT sources/priority levels configuration) to 132×106INTs/s
(the limit for 2 INT sources/priority levels configuration)
range. As the load is a dynamic, priority-dependent quantity
(i.e., it changes in time [13]), it cannot be simply involved in
the formula. But typically, the INT throughput decreases with
increasing load in general. However, this does not hold if the
INT priority is higher than the priority of the running task.

C. Functional Properties

In [13], [14], it is published that for high INT-rate values
our IOV solution is able to prevent the RT system from
INT overload and to service significantly higher number of
INTs during MCU underload than the other approaches at
comparable CPU-load values – this is because our concept
is able to utilize main-loop idle intervals to service excessive
interrupts.

Moreover, other important properties of the proposed ar-
chitecture – list of which follows – are detailed and proven in
[13]:

• No interrupts are directed to the MCU while an ISR
is being executed.

• Disturbing tasks due to low priority interrupts is
avoided.

• Delay in servicing the highest priority event is
bounded.

• INT blocking can be bounded.

• Stall INT buffer size can be bounded.

• The system can’t overload due to IOV problem.

• Timing constraints of hard tasks are met.



TABLE I. PARAMETERS OF THE PROPOSED ARCHITECTURE – XILINX SPARTAN6 RESULTS

Number of INTs to service (n) 4 4 4 64 64 64 256 256 256 Spartan6 deviceNumber of priority levels (m) 4 64 256 4 64 256 4 64 256
Max. operating frequency [MHz] 219 108 90 62 8 5 44 2 0.4 all (max 663 for n = m = 2)(fmax)

∆SBU
Tclk

= 0 43.8 21.6 18 12.4 1.4 1 8.8 0.4 0.08
INT throughput [106 INTs/s], . . . = 102 2.08 1.03 0.86 0.59 0.08 0.05 0.4 0.02 0.004 all (max 132 for n = m = 2)

. . . = 104 0.002 10−3 10−3 10−3 10−4 10−4 10−3 10−4 10−6 ≈
6.1 6.1 6.1 5.9 5.9 5.8 5.6 5.3 4.8 xc6slx150
5.8 5.8 5.8 5.5 5.4 5.3 5.0 4.6 4.0 xc6slx100
3.8 3.8 3.8 3.5 3.4 3.3 3.0 2.7 2.2 xc6slx75

Max. on-Spartan6 buffer size [Mb] 2.5 2.5 2.5 2.2 2.1 2.0 1.7 1.3 0.7 xc6slx45
1.1 1.1 1.1 0.9 0.8 0.7 0.5 0.1 xc6slx25
0.7 0.7 0.7 0.5 0.4 0.3 0.1 xc6slx16
0.6 0.6 0.6 0.3 0.2 0.1 xc6slx9
0.2 0.2 0.2 xc6slx4

2 3 4 6 11+ 17+ xc6slx150 (+ max 250 INTs)
3 4 7 9+ 14+ 21+ xc6slx100 (+ max 222 INTs)

≈ 0 5 6 9 13+ 21+ 31+ xc6slx75 (+ max 192 INTs)
Slice LUT utilization [%] 9 11 16 23+ 36+ 57+ xc6slx45 (+ max 160 INTs)

16 20 30 42+ 69+ xc6slx25 (+ max 96 INTs)
1 1 27 33 50 70+ xc6slx16 (+ max 90 INTs)
1 2 43 52 63 85+ xc6slx9 (+ max 84 INTs)

2 4 5 61+ 68+ 79+ xc6slx4 (+ max 34 INTs)

D. Realization Overheads and Limits

To demonstrate practical applicability and reveal realization
overheads and limits w.r.t. proposed IOV solution, we have
decided to realize it using AX32 platform [15] available at our
faculty. Main computational components of the platform were:
an MCU (ARM Cortex-A9) and an FPGA (Xilinx Spartan6).
As the MCU-related (monitoring signal/interface realization)
overheads were minimal and discussed in III-A, the summary
present in Tab. I is limited to the FPGA part of the proposed
architecture. The architecture was described in VHDL and
synthesized using Xilinx ISE 13.1.

From the practical point of view, especially the following
facts are important:

• how many priority levels can be distributed among
INT sources and RT tasks,

• how many INT sources can be processed by the
proposed architecture,

• how many INT-related data-bits can stored in a
Spartan6-device and

• what is the maximum INT throughput of the architec-
ture.

In case of i), ii) and iii), it is expected that a higher
number can be achieved if a more complex Spartan6 device
is utilized to realize the proposed architecture. In case of iv),
it is expected that the INT throughput is a dynamic quantity
that is inversely proportional to the number of INT sources,
number of priotity levels and the MCU load. It can happen that
in some applications, a cost/quality trade-off must be searched
in this contradictory design sub-space.

In the Tab. I, parameters of the proposed architecture are
presented as functions of i) the number of INTs to be serviced
by the architecture (n) and ii) the number of joint task/INT
priority levels (m) utilized by the architecture. In the leftmost
column of the table, a particular parameter is identified. In the
rightmost column of the table, it is specified which Spartan6
device the parameter values are valid for. In the middle part

of the table, impact of n and m (and Spartan6 device) to the
parameter value can be observed. Let the data from Tab. I be
interpreted now, starting from the top to the bottom of the
table.

First, it can be seen that the max. operating frequency
(fmax) of the proposed architecture ranges from cca 219 MHz
to 400 kHz for n = m = 4 to n = m = 256 range; outside the
range, fmax can change (e.g., to 663 MHz for n = m = 2).

Next, the max. INT throughput of the architecture is pre-
sented as a function of n, m and various ∆SBU values (resp.
various numbers of Tclk cycles needed to access data of stalled
INTs). It can be seen the throughput decreases dramatically
with the increasing ∆SBU value – from ≈ 132× 106INTs/s
for n = m = 2, ∆SBU

Tclk
= 0 (i.e., if no data are to be

stalled along with their INT requests) to ≈ 1INT/s for
n = m = 256, ∆SBU

Tclk
= 104 (i.e., it is supposed that 105

Tclk cycles are needed to stall an INT and its associated data).

The last two parameters present in the table are i) the
maximum size of INT-stall buffers realizable on a Spartan6
device and ii) the Spartan6 slice LUT utilization factor. For
the foremost parameter, it can be seen in the table that the
maximum buffer size ranges from cca 6.1 Mb (for xc6slx150
device and n = m = 4) to cca 100 kb. If the buffer size does
not suffice for a particular device, an external memory can be
utilized to increase the buffer capacity. However, in that case
an extra on-chip FPGA resources are needed to implement
a controller of such a memory. For the latter parameter, the
the slice LUT utilization factor can be found in the table for
particular n, m and Spartan6 device. It can be seen there that
the ratio grows faster with increasing n than with increasing m,
so it is minimal for ”small” values of n and that for ”greater” n,
m values some Spartan6 devices became out of their resources,
so the values were put down until the architecture become
realizable on such a device. Those cases are marked by +

symbol in the table – for example, the ratios for n = 256,
m = 64 n = 256, m = 256) and the xc6slx150 device were
11% (17 %), but as the number of xc6slx150 pins is limited,
realizations of those architectures had to be limited to n = 250
to soften impacts of this drawback. On the other side, it can be



seen there are many unused slice LUT resources, which can
be utilized to realize the architecture even for n = m = 256
if there were more pins.

It can be concluded that the only limiting factor for the
implementation was the number of bonded IOBs – even the
most complex Spartan6 (xc6slx150) was not equipped with
enough bonded-IOB resources to service 256 or more INT
sources at 256 or more priority levels. In the Tab. I, it can
be seen that the maximum number of 250 (34) INTs can
be serviced by the architecture if it is realized on the most
complex xc6slx150 (the simplest xc6slx4) Spartan6 device and
64 or more joint-priority levels are needed. Alike, max. 64
(32 for the xc6slx4 device) INTs can be serviced if 256 or
more joint-priority levels are needed. As common real-time
kernels support not more than 256 priority levels, it can be
stated that a Spartan6 realization of the proposed architecture
is able to support a sufficient number of priority levels. Other
Spartan6 resources (statistics of which were collected from
Device Utilization Summary report produced by ISE after
the synthesis process was over) such as the number of slice
registers (FFs), number of fully used LUT-FF pairs or number
of BUFG/CTRLs remain almost constant, so the number of
slice LUTs is the only parameter summarized in the Tab. I.

IV. CONCLUSION

In the paper, realization details w.r.t. proposed hardware
solution to the INT overload problem were presented. It was
supposed there that an event-driven embedded application is
composed of an MCU utilized to execute a critical part of the
application and of an FPGA utilized to protect the MCU from
consequences of the presented IOV problem. In other words,
it is supposed the critical part execution may not be threatened
by an external event being signalized by an INT. It was shown
in the paper the treat can be avoided if the MCU is equipped
with an interface allowing it to produce special signals being
monitored at the FPGA side in order to evaluate the dynamic
load of the MCU at run-time. Key features of the proposed
monitoring-based concept can be summarized as follows: the
FPGA is able to adapt the INT service rate to the actual SW
load (as a consequence, low-priority INTs are not forwarded to
the MCU while it is overloaded; moreover, idle SW intervals
can be utilized to service significantly higher number of INTs
during MCU underload comparing to existing approaches), the
CPU running the critical code is not disturbed by low-priority
INTs and the minimal forwarding delay is guaranteed for an
INT with the highest joint priority in the system.

Although common COST components (the µC/OS-II ker-
nel running on the ARM Cortex-A9 MCU and the Xilinx-
Spartan6 FPGA) were utilized to show the applicability, im-
plementation overheads and limits related to the IOV concept
proposed in this paper, the proposed concept is more general
and is not tied to those components – each of them can be
substituted by a different one.

Future research activities w.r.t. the paper are going to be fo-
cused on real-world applications and real-traffic measurements
based on the proposed load-adaptive architecture, comparison
to advanced SW-level approaches such as sporadic servers,
overload-scenario scheduling and priority assignment mecha-
nisms and device drivers designed to solve the aperiodic event
occurence problem by the means of software instruments.

ACKNOWLEDGMENT

This work has been partially supported by the Research
Plan No. MSM 0021630528 (Security-Oriented Research in
Information Technology), the RECOMP MSMT project (Na-
tional Support for Project Reduced Certification Costs Using
Trusted Multi-core Platforms), the BUT FIT-S-11-1 and the
IT4Innovations Centre of Excellence CZ.1.05/1.1.00/02.0070.

REFERENCES

[1] CHENG, A. M. K. Real-Time Systems, Scheduling, Analysis, and
Verification. John Wiley & Sons, Hoboken NJ, United States, 2002.

[2] COTTET, F., DELACROIX, J., KAISER, C., AND MAMMERI, Z.. Schedul-
ing in Real-Time Systems. John Wiley & Sons, Hoboken NJ, United
States, 2002.

[3] KOPETZ, H.. On The Fault Hypothesis For A Safety-Critical Real-Time
System. Automotive Software-Connected Services, LNCS 4147, 1, pp.
31–42, 2006.

[4] LAPLANTE, P. A.. Real-Time Systems Design and Analysis. Wiley-IEEE
Press, Hoboken NJ, United States, 2004.

[5] LEE, M., LEE, J., SHYSHKALOV, A., SEO, J., HONG, I., AND SHIN,
I. On Interrupt Scheduling Based On Process Priority For Predictable
Real-Time Behavior. SIGBED Rev. 7, 1, 6:1–6:4, 2010.

[6] LEYVA-DEL-FOYO, L. E., MEJIA-ALVAREZ, P., AND NIZ, D.. Pre-
dictable interrupt management for real time kernels over conventional pc
hardware. In Proceedings of the IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium. IEEE Computer Society, Washington
DC, United States, pp. 14–23, 2006.

[7] LEYVA-DEL-FOYO, L. E., MEJIA-ALVAREZ, P., AND NIZ, D.. In-
tegrated task and interrupt management for real-time systems. ACM
Transactions on Embedded Computing Systems 11, 2, 32:1–32:31, 2012.

[8] LIU, M., LIU, D., WANG, Y., WANG, M., AND SHAO, Z.. On improving
real-time interrupt latencies of hybrid operating systems with two-level
hardware interrupts. IEEE Transactions on Computers 60, 7, 978–991,
2011.

[9] LEE, M., LEE, J., SHYSKALOV, A., SEO, J., HONG, I., AND SHIN, I..
On interrupt scheduling based on process priority for predictable real-
time behavior. ACM SIGBED Review - Special Issue on the RTSS’09
WiP Session, 6th article, 4 p., 2010.

[10] PELLIZZONI, R. Predictable and monitored execution for cots-based
real-time embedded systems. Ph.D. thesis, University of Illinois at
Urbana-Champaign, 2010.

[11] REGEHR, J. AND DUONGSAA, U.. Preventing interrupt overload. In
Proceedings of the ACM SIGPLAN/SIGBED Conference On Languages,
Compilers, And Tools For Embedded Systems. ACM, New York, United
States, pp. 50–58, 2005.

[12] SCHELER, F., HOFER, W., OECHSLEIN, B., PFISTER, R., SCHRODER-
PREIKSCHAT, W., AND LOHMANN, D.. Parallel, hardware-supported
interrupt handling in an event-trigered real-time operating system. In
Proc. of the Int. Conf. on Computers, Architectures and Synthesis of
Embedded Systems. ACM, pp. 167–174, 2009.

[13] Strnadel, J. Monitoring-Driven HW/SW Interrupt Overload Prevention
for Embedded Real-Time Systems, In: Proc. of the 15th IEEE Int. Sym-
posium on Design and Diagnostics of Electronic Circuits and Systems,
IEEE CS, pp. 121–126, 2012.

[14] Strnadel, J. Load-Adaptive Monitor-Driven Hardware for Preventing
Embedded Real-Time Systems from Overloads Caused by Excessive
Interrupt Rates, Lecture Notes in Computer Science, Vol. 7767, pp. 98–
109, 2013.

[15] ZEMČÍK, P. et al. AX32 Low Power Embedded Video Enabled
System Using FPGA. In Proceedings of the 21th Conference on Field
Programmable Logic and Applications Workshop. IEEE, 2 p., 2011.

[16] ZHANG, Y.. Prediction-based interrupt scheduling. In WiP Proc. of
the 30th IEEE Real-Time Systems Symposium. University of Texas, San
Antonio, pp. 81 – 84, 2009.


