
Cluster-based Page Segmentation – a fast and precise
method for web page pre-processing

Jan Zeleny
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic

izeleny@fit.vutbr.cz

Radek Burget
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic

burgetr@fit.vutbr.cz

ABSTRACT
Segmenting a web page may be one of initial steps of infor-
mation retrieval or content classification performed on that
page. While there has been an extensive research in this
area, the approaches usually focus either on performance or
quality of the results. Vision based segmentation is one of
the quality focused methods, which are considerably slow.
This paper proposes an approach for boosting the perfor-
mance of vision based algorithms. Our approach is based
on concepts of modern web and a very common scenario in
which an entire web site is processed at once. In this sce-
nario, a great amount of performance boost can be gained
by isomorphic mapping of previous results gathered from
pages within the site to other pages on the same site. We
provide the results of experiments performed on VIPS, the
most common algorithm for page segmentation.

Keywords
VIPS, vision-based page segmentation, clustering, template,
template detection

1. INTRODUCTION
In recent years, the World Wide Web has become perhaps
the most important source of information in the world. A
family of algorithms for web-focused information retrieval
grows with it. When performing the information retrieval,
a big problem arises and that is the fact that one web page
can contain multiple areas with very different information
content[19]. Hence the page has to be split into parts and
these parts examined separately for the results to be more
precise. Web page segmentation and related methods have
been developed for a number of years to address this task.
Also, other tasks can be addressed by page segmentation,
for example from area of content classification.

Page segmentation is a process of splitting up a web page
into hierarchically organized smaller blocks which are con-
sistent in some way, most often either visually or logically.

In our work we focus on unsupervised page segmentation.
Although this area has been extensively researched, there
are just two usual ways how to approach the task. The first
one usually utilizes DOM tree of a web page or its textual
content and focuses on performance with the result being
potentially inaccurate[9, 7, 10, 13]. The source of this in-
accuracy is that large portions of information from the web
page, such as computed CSS styles, are dropped. The second
one on the other hand strongly prefers accurate results even
at the expense of the result being produced more slowly1[2,
11, 3, 1]. One of the most significant families of algorithms
using the latter approach is vision-based page segmentation.
This family of algorithms will be described more closely is
this paper.

Template detection is an approach which is close to page
segmentation but the main aspect is different. The result
of page segmentation is a set or tree of page areas, each
containing single type of content (text, advertisements, nav-
igation, . . .) whereas the result of template detection is a
web page split into two regions – template and content. In
this perspective, template detection can be observed as a
very specific and very limited page segmentation. Although
the result might be perceived as similar to page segmenta-
tion, the way how to get to the result is completely different.
Template detection algorithms work on a principle of com-
paring more web pages and identifying repetitive patterns in
them. This approach is much faster compared to page seg-
mentation at the expense of very rough granularity which is
acceptable for template detection.

In this paper we propose a method combining vision-based
page segmentation with clustering algorithms, utilizing tem-
plate detection algorithms as measurement methods. This
approach is faster than the vision-based segmentation while
keeping high accuracy. The method, called Cluster-based
Page Segmentation, builds on existing algorithms but it is
not strictly bound to any particular one of them. It is not
even strictly bound to vision-based segmentation although
it has the greatest potential when used with it. From this
perspective, the Cluster-base Page Segmentation is a com-
plementary algorithm. It is based on templates, a principle
on which modern web pages greatly depend.

When we consider the principle of templates, it is possi-
ble to group pages from the same site in several clusters.

1Literature usually defines accuracy as a level of coherence
between results of segmentation and human perception.

Then we can create cluster-bound structures containing in-
formation common to all pages in their respective clusters.
These structures are called Cluster Representatives. Each
of these representatives contains information about DOM
tree of its cluster, meaning it can be segmented. From that
point the segmentation of all other pages is unnecessary be-
cause each Cluster Representative corresponds to every page
in its cluster. In this paper we take the most known seg-
mentation algorithm, called VIPS[2], enhance it with our
method and demonstrate that Cluster-based Page Segmen-
tation improves performance of the segmentation process
significantly, when applied to a set of pages at once. This
paper summarizes what structures and what features must
each Cluster Representative have so it can be used for fur-
ther site processing as easily as possible. Besides that this
paper offers algorithms for utilizing these structures.

The rest of this paper is organized as follows: section 2
explains state of the art in web page preprocessing, including
reason why is it performed. Page preprocessing includes
page segmentation and template detection. Section 3 gives
an overview of Cluster-based Page Segmentation. Sections 4
and 5 closely describe data structures and algorithms used in
Cluster-based Page Segmentation. Finally, section 6 shows
result of our experimental evaluation. It also describes some
detail of the implementation that are deviated from previous
text. Finally, section 7 summarizes results of this paper and
concludes the potential of this work.

2. WEB PAGE PREPROCESSING
Because web pages are semi-structured (or weakly struc-
tured) documents containing text mixed with HTML tags,
they need some preprocessing before one can use data min-
ing techniques on their content. The simplest option is to
strip all HTML tags and related data from the document
thus leaving just bare text. The problem is that results of
this approach are not entirely accurate, because a lot of data
on a modern web pages is just a noise [4] which can be mis-
leading when it comes to information retrieval or content
classification. This noise can consist of elements like adver-
tisements, navigation, links to similar pages, user comments
and various other data. Thus, to gather relevant data from
the page, we need to do the above mentioned preprocessing.
The goal of this preprocessing can vary from cleaning up
those noisy parts [18, 12] to identifying semantically distin-
guished blocks that the page contains[3]. The goal is usually
depending on circumstances. The former of the two exam-
ples can be used for information retrieval where the author
just wants to have a clear-text representation of data on a
web page as a source for the information retrieval. The lat-
ter one is more convenient for content classification if we
want to replace a web page by an information block as an
atomic unit of web content.

2.1 Page segmentation
All these preprocessing methods often have a common ele-
ment and that is page segmentation. Its task is to divide
given page to smaller blocks which are consistent either log-
ically or visually, based on input parameters and used algo-
rithm.

Basic segmentation methods can be split into two groups:
DOM-based (text-based) and vision-based. Methods in the

former group are based on analyzing web page without any
need for rendering it. That means selected approach is ei-
ther based on inspecting HTML code directly or (more of-
ten) traversing DOM tree corresponding to the HTML code
and evaluating information gathered from it. Quality and
speed of these methods is usually completely dependent on
used heuristics. The array of heuristics can vary from pure
text evaluation[9] to complex algorithms taking a wide va-
riety of properties into account[13]. However these methods
always fail to take one very important aspect into account
and that is layout of the page. As Burget discussed in [1],
the DOM based model isn’t accurately describing real rela-
tion of individual blocks in terms of their visual appearance.
If the complexity of CSS is taken into account, any node of
DOM tree can be situated at a completely different part of
a page when compared with the position in the DOM tree.
It can be even invisible, thus virtually nonexistent.

DOM-based methods in the literature are in general much
faster than vision-based methods and caching their results
most likely wouldn’t get much performance gain. As already
mentioned, the reason for their speed is that they don’t com-
pute all the information contained in CSS about true layout
of the inspected page. Therefore in further text we will be
interested only in vision-based segmentation methods. This
family of methods is based on an approach with a simple
concept but quite large computing demands. The concept
is to identify blocks on a web page as any user would per-
ceive them if he was looking at the rendered page in his
browser. This implies an advantage of these methods over
DOM-based of not being strictly limited to web page pro-
cessing but also being applicable (with minor changes) to
PDF and other document formats. Vision-based segmen-
tation algorithms have to simulate user view of given web
page, which means a page has to be rendered either to an
actual picture or at least to a corresponding internal repre-
sentation of the visual information contained on that page.
This process of rendering is very complex due to complexity
of both HTML and CSS specifications. That means de-
mands both for computational power and time to process
one page are quite high, which is problematic. After being
rendered, the page has to be segmented in several iterations
which is also very demanding. The most commonly used
algorithm in the area of vision base segmentation is VIPS[2]
and algorithms using it as a black box and improving its
results[11, 3]. Another approach, partially derived from the
original VIPS specification, has been offered by Burget[1].
In this paper we will demonstrate results of Cluster-based
Page Segmentation working on top on VIPS algorithm, as
it is currently considered to be industry standard.

2.2 Templates and template detection
As it is outlined in section 1, the principle of templates de-
fines that there is a number of templates for a site, each
one defining core structure of a set of pages within that site.
Physically, each template is a pre-defined code which creates
a frame with marked spaces in it. Based on user input, a
data set is fetched from underlying data source and a web
page is created by filling these fetched data into the frame.
An example of template is displayed on figure 1. The data
areas are untouched, whereas template areas are darkened.

While being a great help to web designers and content au-

Figure 1: An example of a template

thors, templates pose a problem for information retrieval
algorithms. As section 2.1 already covered, a great extent of
every page consists of information unrelated to the core topic
of the page, navigation, advertisements and other noise. In
context of templates and template detection, all this unre-
lated content is considered to be a part of template, as figure
1 illustrates.

Template detection (further designated also as TD) can be
perceived as a special type of page segmentation. Template
detection methods[17, 5, 16, 18] are used to identify and
subsequently filter out noise which is part of template of
given page, leaving only the useful content from that page.
That is however the one disadvantage these methods have.
They can be only used to detect and filter out the template,
no finer granularity is usually available.

TD algorithms are important for this paper because their
modifications can be used as a distance measurement meth-
ods when we want to perform clustering on a set of web
pages to split them into groups based on pages’ templates.
Examples of such algorithms can be found in the family of
tree edit distance algorithms[17, 15]. The important thing
about these algorithms is that they are usually designed to
be as fast as possible. That will play a key role in one of the
steps of Cluster-based Page Segmentation.

3. CLUSTER-BASED SEGMENTATION
The classic segmentation procedure is to process one page
at a time. After one page is segmented and we start with
another page, the process is started from the very begin-
ning again. The obvious shortcoming of this approach is
scaling. For example modern web search engines don’t want
to process just one page, but potentially thousands of web
pages. This means the entire process of rendering a web
page has to be gone through thousands of times. Even with
great optimizations in the rendering engine, that will take
unacceptably long time.

This paper proposes a new way how to deal with perfor-
mance problems when processing a set of web pages. The

bigger the set of web pages is, the greater optimization this
approach achieves. Our method can be summarized in fol-
lowing proposition.

Proposition 1. When processing more pages within the
same site, it is possible to increase performance of segmen-
tation algorithm by performing the actual segmentation only
for a limited number of pages and make these pages represen-
tatives of their respective template-based clusters. Instead
of segmenting each page on the site, an isomorphic mapping
between the page and corresponding Cluster Representative
can be used to retrieve the same information from any web
page in the cluster.

In practical application, it won’t be convenient to store all
pages from a site in a buffer, then cluster them and retrieve
the information afterwards. In fact the goal will be more
likely the opposite – to optimize the memory and disk con-
sumption by having as small page set in each cluster as pos-
sible and process2 one page at a time from that point. Tak-
ing this optimization to the maximum, each cluster of pages
will be replaced by a single structure representing all the
information we need for assigning a page to the right cluster
and extract the desired information from it. The structure
of these Cluster Representatives is described in section 4.
The set of algorithms working on these Cluster Represen-
tatives is described in section 5. The high-level overview of
Cluster-based Page Segmentation is summarized by figure
2.

Figure 2: Block schema of the entire approach

2Note that processing in this context means going through
the entire process displayed on figure 2

From the block schema we focus on a very specific subset of
problems. Transformation from HTML code to DOM tree
is done by DOM parsers. Our design starts at assigning to
cluster where we try to identify which cluster is the right
one for the page. Any algorithm measuring similarity of
two web pages can be used. We use a variation of algorithm
designed by Gottron in [5] and design data structures for this
algorithm to be effective. If there is no cluster corresponding
to a page on the input, we have to create a new cluster and
use the input web page as an initial representative of this
cluster. Together with structures directly derived from the
web page we also need its segmented representation which
is created in the segmentation process. This process is a
black box for us around which we build our system. The
important point of our work is that this black box basically
represents any algorithm which can be used for segmentation
and we can very simply adapt all other components to it.
Therefore the only thing that is necessary for us are well
described inputs and outputs which we can work with. For
the isomorphic mapping of DOM nodes we offer a simple
algorithm which finds corresponding nodes of one DOM tree
in another DOM tree. The main focus of this work lies in the
Cluster set and all around it. We propose data structures
which together put the cluster set and are used in all other
parts of the system.

There are some conditions that need to be kept for Cluster-
based Page Segmentation to work. These conditions are
most obvious when implementing the system. First of all it
is important to state that even big web sites consist of a very
small number of templates compared to the number of pages
they contain. We confirm this claim in section 6. A small
number of templates means that memory consumption is
not a problem. The next constraint of our approach is that
it is only good for processing one site at a time. That means
if there are links on that site leading outside, these have to
be stored for later processing and only after processing on
one site is done, one of those in queue can start. Again,
more details about this will follow in section 6.

4. CLUSTER SET DATA STRUCTURES
We will be describing the maximally optimized cluster set
as introduced in section 3. That means each cluster consists
only of the one representative and structures related to it.
There are three parts we have to consider:

• templates represented by pruned DOM trees

• trees or sets of visual areas

• mapping between the previous two

Before going more deep, let’s formally define the cluster set
in general, based on previous brief overview.

Definition 1. Let the cluster set be defined as a set of
Cluster Representatives S = {C} where each Cluster Rep-
resentative is defined as an n-tuple C = (V,D,MV D). V
represents a result of segmentation performed on the Clus-
ter Representative, D represents its pruned DOM tree and
MV D represents mapping between V and D.

Each of these parts will be explained in detail in following
parts of the paper. Section 4.1 focuses on the DOM tree as
a whole and on individual nodes of the tree (DOM nodes).
Since only pruned trees are part of Cluster Representatives,
some specifics of both the original tree in conformance with
the W3C specification and the pruned tree are pointed out.
In section 4.2 two different vision-based segmentation algo-
rithms and most importantly their output formats are de-
scribed and then a generic tree design is proposed. Finally,
section 4.3 describes the mapping between pruned DOM tree
and tree of visual areas.

4.1 DOM tree
The first part of each Cluster Representative is a represen-
tation of its DOM tree, designated D. The Document Ob-
ject Model (DOM) is both language and architecture inde-
pendent model used to represent SGML-based documents.
DOM model is basically a definition of API which consists of
many partial interfaces, some of them are even overlapping.
These interfaces can be used to describe not only content,
but also structure and visual style of the a page. The im-
portant thing is that representations of DOM tree can be
different, depending on interfaces which are supported for
each type of element by used implementation of the DOM
tree. Therefore it’s necessary to make our design as simple
as possible while being sufficiently generic.

This paper doesn’t focus on parsing HTML documents into
a DOM tree. However for further definitions, it is important
to note following properties related to HTML-DOM trans-
formation[6]. Other than that we just assume a valid DOM
tree on the input.

• node of a DOM tree can represent various items on the
page or even only their parts.

• The order of elements in HTML code matters.

• No element overlaps are allowed. Next sibling element
can be opened only after the previous one was closed.

• No parent-child overlapping is allowed. Parent ele-
ment must be closed only after the last child element
is closed.

Definition 2. Let the DOM tree be defined as a three-
tuple D = (VD, vr, PD) where VD is a set of vertices, vr is
a root node and PD is a set of paths. Each vertex in the
set VD represents a node of the DOM tree, i.e. DOM node.
A structure of the tree is encapsulated within these DOM
nodes.

Some general features of the DOM tree which should be
considered when storing it follow[8, 14]. There are four basic
data types in the DOM tree: string, timestamp represented
by integer number, user data blob and object. The last one
represents a reference to any other DOM node. Each DOM
node can have, depending on its type, 0..N child nodes.
Similarly, a DOM node can have 0..N attributes. These
attributes can be represented either by one of basic data
types as element properties (deprecated) or by child nodes
of Attr type.

Definition 3. Let the DOM node be defined as an n-tuple
v = (pv, Cv, Av), where pv ∈ VD is a parent of the node, Cv

represents an ordered set of its child nodes and Av is a set
of its attributes.

As it was stated above, tags in HTML follow one another
in a specific order and this order does usually matter for
rendered output. That means the same order has to be
preserved in the DOM tree. Following definition specifies
the relation on top of elements of Cv which makes the set
ordered.

Definition 4. Let Cv be an ordered set of child nodes of
node v: Cv = {u1, u2, . . . , un}; ∀i : ui ∈ VD. The element
order preservation in Cv can be expressed as: let ui, uj ∈
Cv; i 6= j, then following condition must be obliged i < j ↔
ui precedes uj in the HTML code.

The unordered set of attributes Av can contain virtually
any HTML attribute as well as style definition. All these
attributes can be later used for both more accurate matching
of DOM trees and more accurate mapping of DOM nodes.
In this paper only one attribute is important and that is
attribute id. All other can be dropped from the set Av.
The formal definition of set Av is following.

Definition 5. Let the set of node attributes of node v be
defined as Av = {(k, v)}, that is a set of key-value pairs,
where k designates a name of the attribute and v its value.

The algorithm for matching DOM trees works with path
sets. It is highly inconvenient to retrieve paths by traversing
the tree every time we need to match a Cluster Representa-
tive to new page. Thus the best option is to create the set
and store it as a part of the DOM tree itself. The path set
is designated PD and is defined as follows.

Definition 6. Let a path in the tree be defined as an n-
tuple p = (vr, v1, . . . , vn−2, vl) with following conditions met:
v1 ∈ Cvr ; vl ∈ Cvn−2 ; ∀0 < i < n − 2 : vi+1 ∈ Cvi , Cvn = ∅.
Path set in an unordered set of paths PD = {p}.

Note that the path set is not multiset. Even though some
paths in DOM tree can be identical even though they lead
to different elements. However this is not the case in our
representation of path set.

Each piece of text on the web page is always considered to
be a special node in the DOM tree. Text on a web page is
split into these pieces by any occurrence of HTML element.
As it will be explained in section 5, DOM nodes representing
text are exluded from paths in path set, however we still need
them for mapping of DOM nodes between Cluster Represen-
tative and inspected page. Therefore we are keeping them
in the DOM tree but just as bare DOM nodes, the content
itself won’t be included. The same applies for images – only
the DOM node will be included, not their content.

4.2 Tree of visual areas
For the purpose of this paper let’s consider the output of
every visual segmentation algorithm to be the Tree of Visual
Areas. Different algorithms have different output formats,
but they all have similar characteristics, for example the tree
structure.

After being processed by VIPS[2], the web page is repre-
sented by a set of blocks O, a set of separators Φ and a
relation between blocks δ(two blocks are in relation if they
are adjacent).

The most important feature of blocks is that they are not
overlapping. Each block in the set is recursively segmented
and then represented by another set of blocks, separators
and relation. Formally, it is designated as follows:[2] Ω =
(O,Φ, δ) where O = Ω1,Ω2, . . .Ωn and every Ωi is defined
in the same way as Ω. This definition implies the tree struc-
ture of the whole construct. It also means that the web
page is considered and treated the same as any other visual
block. Leaf nodes of the resulting tree are called basic ob-
jects. Besides being a leaf node in the tree of visual areas, it
is also a leaf node in the DOM tree. Therefore each visual
block can contain one or more nodes of the DOM tree. Note
that the Tree of Visual Areas and the DOM tree don’t have
to correspond, i.e. a non-leaf visual block doesn’t have to
correspond to a particular node in the DOM tree.

For each block an information about its position and size is
absolutely essential. These properties can be expressed as
absolute numbers or relative to the parent block[11]. Also
the alignment with its parent (for example float left) is
used[11]. If considering how VIPS works, an information
about the Degree of Coherence as defined in [2] could be
stored for each block as well. For separators it is important
to store their visual impact, which can be in form of width
or visibility defined e.g. by borders of adjacent blocks. Rela-
tions between blocks have one feature and that is the degree
of visual similarity of blocks in relation. This information
is not a part of VIPS output, but it is added in some other
algorithms using it[11].

Burget in his work [1] focuses on similar problems as VIPS
but structures he uses are slightly different. The tree pro-
duced by his algorithm contains two node types: visual areas
and content nodes called boxes. All visual areas contain in-
formation about the position and dimensions of the area.
To define both of these, a special topographical grid is con-
structed for each non-leaf visual area. An example of this
grid is displayed on figure 3

All child areas are then placed on the grid. A position of
each area is represented by the cell of grid in which is the
top-left corner of the area. Dimensions are represented by
number of rows and columns the area takes. Every non-leaf
visual area in the tree can contain only other visual areas.
Each leaf visual area contains one or more boxes, but no
grid is necessary for them since no further segmentation is
performed on top of them.

Leaf visual areas contain one or more boxes which, con-
catenated to a string, create a single continuous area of the
document. There are two types of content elements: images

Figure 3: An example of the topographical grid

and text. Each of them contains different attributes describ-
ing appearance. Taking description of text nodes in section
4.1 into account, it is possible to consider text and image
nodes in the DOM tree as content elements, because they
are basically equal.

4.2.1 Design of the tree of visual areas
From section 4.2 it is obvious that different methods have
very different representation of the tree of visual areas. Yet,
for storage, a single unifying representation is needed.

Definition 7. Let the tree of visual areas be defined as a
two-tuple V = (VV , vr) where VV is a set of visual vertices
and vr is a root node of the tree. Each vertex in the set VV

represents a node in the tree of visual areas, i.e. a visual
area. A structure of the tree is encapsulated within these
visual areas.

The definition is derived from the definition of DOM tree.
The difference between a DOM tree and a tree of visual areas
lies in the definition of their nodes.

Definition 8. Let the visual node v ∈ VV be defined as
v = (Av, Cv, Dv), where Av = {(k, v)} is an implementation
specific set of area attributes, defined as key-value pairs. Cv

is a set of child nodes and Dv is a set of corresponding DOM
nodes.

The set of attributes can contain attributes like position, vi-
sual features, size and other attributes which can be used for
example by classification algorithm bound to the segmenta-
tion method that was used. What is important about the
attribute Cv is that unlike in case of DOM tree, this time
the order of children doesn’t matter. The same situation
applies to Dv, therefore both these attributes are plain sets.

The attribute set Av is a solution for the condition of the
design being generic for any type of tree of visual areas, as it
can be simply ignored in generic implementation. Attributes
Cv and Dv reflect common properties of outputs of both
segmentation algorithms described in section 4.2.

4.3 Tree mapping
The description in sections 4.1 and 4.2 leads to a conclusion
that the cluster set can be viewed as a forest of D and V . If
references from nodes of V to nodes in D are not omitted,
as one big tree rooted at node vr ∈ V .

References from V to D are important and only their basic
version has been described. Because these connections are
utilized in some algorithms working on top of vision-based
page segmentation[11, 3], the mapping between both trees
should be well defined:

Definition 9. Let the relationship A ⊃ B,A ∈ VV , B ∈
VD be defined as A visually contains entire B. Let the map-
ping MV D between V and D be defined as a set of two-
tuples:
MV D = {(v, d)|v ∈ VV , d ∈ VD, v ⊃ d, @v1(v1 ⊃ d, v1 ∈
Cv)}.

In order to be consistent with previous sections, we go to-
wards more clear definition of a visual area’by following def-
inition:

Definition 10. Let Dv be a set of DOM nodes correspond-
ing to a visual area v. This set is defined as Dv = {d|(v, d) ∈
MV D}.

5. CPS ALGORITHMS
Now that all structures related to cluster set and Cluster
Representatives have been described, algorithms working on
top of them can be defined. Algorithm 1 displays plain seg-
mentation algorithm while algorithm 2 displays the Cluster-
based Page Segmentation algorithm, utilizing structures de-
fined in section 4. We mention both algorithms so they can
be easily compared. Note that Algorithm 2 is more formal
expression of figure 2.

Algorithm 1 Plain segmentation algorithm

def segment_plain(page):

dom = parse_page(page)

visual = segment_page(dom)

return visual

Algorithm 2 Segmentation using the CPS algorithm

def segment_cps(page, cluster_set):

dom = parse_page(page)

representatives = cluster_set.get_all()

for representative in representatives:

if dom.matches(representative):

return dom.visual_tree()

visual = segment_page(dom)

cluster_set.store(dom, visual)

return visual

The algorithm is fully automatic, no human intervention
is needed. Also no learning phase is necessary, it “learns”
new templates while processing the web site. Based on the
algorithm outline, it is possible to identify three non-trivial
parts that we need to attend to.

1. Creating a Cluster Representative

2. Matching DOM tree to the cluster set

3. Matching nodes of DOM tree on input to correspond-
ing tree D

Creating a Cluster Representative
This task consists of series of small transformations of DOM
tree and tree of visual areas of the original page that serves
as Cluster Representative origin. This transformation leads
to the Cluster Representative’s n-tuple C = (V,D,MV D).

Before the tree V is built, the simplified representation of
DOM tree D has to be created by cleaning the original DOM
tree of redundant nodes, according to definition in section
4.1. That is straightforward – a simple recursive, post-order
tree traversing algorithm can be used for this. After trans-
forming the DOM tree, creating the graph structure as de-
fined in section 4.1 is trivial.

Since V is very similar to the output returned by segmenting
algorithm, the only thing to build V is to ensure that each
node has a set of DOM nodes it visually contains. This is
done during the creation of MV D. For purpose of this paper,
the assumption is that this is handled by the segmenting
algorithm in use, since the algorithm knows this information
the best. With this assumption in consideration, we have
Dv for every node v at the moment V is created and we
just have to extract all the information into MV D and then
verify that MV D is correct by definitions 9 and 10. After
this step, we have a valid Cluster Representative which can
be added into the cluster set.

Matching DOM tree to the cluster set
After everything is stored, the trivial approach would be
to segment another page. But with the Cluster-based Page
Segmentation we can utilize having the cluster set and try to
find a cluster which the new page is part of. A comparison
with all loaded Cluster Representatives for the site (more
specifically with their D elements) has to be performed first.
As it was outlined in section 3, a simple iteration over the
set D containing all clusters and matching one by one can
be performed. Note that there is only a small number of
clusters for the site in memory so simple iteration is sufficient
to gain considerable performance boost against the plain
page segmentation assuming the matching algorithm is fast.

For this matching, we use modification of Common Paths
Distance measuring algorithm[5] as it has been proven sig-
nificantly faster than tree-edit-distance algorithms while still
being precise enough. However in our practical evaluation
we needed to adjust the original algorithm for better preci-
sion. Our modifications are following:

• filter out all nodes that are not representing particular
HTML elements (e.g. attribute nodes, text nodes, etc.)

• if any element has an id, don’t use the plain element
name in the path, use the name concatenated with the
id

These simple modifications improved results of the match-
ing algorithm significantly and enabled higher level of result
granularity. That mean more clusters are created, thus less
false-positives for cluster matches are encountered.

When a web page has been matched to a D belonging to
some Cluster Representative, it is possible to use the tree
of visual areas V associated with it. If no matching Cluster
Representative is found, we consider the page to be based
on a template that the algorithm hasn’t encountered yet.
In such case the segmentation process has to be performed
upon it and results have to be used to create a new Cluster
Representative.

Matching nodes of both DOM trees
One last problem remains when web page has been matched
to its Cluster Representative’s D and corresponding tree V
is retrieved. When processing a web page by plain segmen-
tation algorithm, the next step after segmentation is clas-
sification of created visual blocks. That is not necessary in
Cluster-based Page Segmentation, as the classification could
have been already performed on the retrieved V . However
the step after classification, most likely an identification and
retrieval of all DOM nodes within blocks of certain class, has
to be considered. This step is simple for Cluster Represen-
tatives, since the mapping is already a part of its stored
structure.

However in case of any other page in the cluster the process
is more difficult. Again, we have a set of visual blocks of
the Cluster Representative in which are we interested and
corresponding set of Cluster Representative’s DOM nodes.
Now we need to find corresponding DOM node of the input
page for each DOM node of the Cluster Representative. If
we designate the DOM tree on input as DI , we are looking
for a Tree mapping between DI and D. Note that this is not
the main objective of this paper but its needed for the out-
put to be equally usable as output of normal segmentation.
Also note that the tree mapping problem is very extensive
in its generic form so we focus on solving only a very specific
scenario of this generic problem.

We are not looking for a mapping of each node, we are look-
ing for a subtree rooted at corresponding node. Therefore
the assumption is that once we find a root, all descendant
nodes will correspond in both trees. For finding that root we
use a distinguished path to a node. In its simplest version,
this path is defined as follows.

Definition 11. Let the distinguished path pN from root of
given DOM tree to a node in that DOM tree N be defined
as n-tuple of two-tuples:
pN = ((p1, c1), (p2, c2), . . . , (pk, ck)) where pi is a position of
a node withing its siblings and ci is a total count of siblings
including that node. i is an index designating a level of
DOM tree from its root, i.e. how many nodes deep in the
structure is the selected node and its siblings.

This indexing approach is based on the premise stated in
section 4.1 that order of DOM nodes within DOM tree has
to be preserved to preserve the content layout on the web

page. Therefore if a certain node in Cluster Representative
was on position 3/5 within its siblings, its corresponding
DOM nodes from other pages in that cluster will again be
positioned as 3/5. This condition will be always true when
traversing the part of DOM tree that corresponds to tem-
plate. Once out of the template scope, thus in a particular
data region, the condition might not be true but the assump-
tion is that interesting visual areas don’t have root outside
of the template scope. To add at least some level of error
detection in case DOM nodes of Cluster Representative and
inspected page don’t correspond, there is the ci parameter
which is used as a simple failsafe mechanism – if ci differs for
Cluster Representative and inspected web page, two things
could have caused this. Either the page has been incorrectly
matched to the Cluster Representative or the node identified
on level i is already outside the template and within one of
its data regions. In any case, the algorithm stops at that
moment, as the result would be wrong anyway.

With the indexing approach described above, the algorithm
using it will need to store these distinguished paths some-
where or they have to be constructed on the fly. If they
are stored as part of DOM nodes or visual areas of Cluster
Representatives, the algorithm for finding the DOM node
within inspected page can be used directly.

Algorithm 3 Finding a node within given DOM tree

def find_dom_node(distinguished_path, root_node):

node = root_node

for (position, count) in distinguished_path:

if node == None or count != len(node.C):

return None

node = node.C[position]

return node

If distinguished paths are not stored as a part of Cluster
Representatives, we need to use algorithm 4 for their con-
struction first. After construction of each path, algorithm 3
can be be used again for finding corresponding DOM node
within inspected web page using the path.

Algorithm 4 Construction of the path from root to the
given node

def get_path(node):

if node.p == None:

path = () # empty tuple

else:

path = get_path(node.p)

sibling_count = len(node.p.C)

node_pos = 0

for n in node.p.C:

if n == node:

break

node_pos += 1

path.prepend((node_pos, sibling_count))

return path

6. EXPERIMENTAL EVALUATION
An experimental implementation has been designed and re-
alized as a proof of concept. We used our own Java im-
plementation of VIPS. It gives comparable results as the
original with slightly worse performance.

Implemented scenario
The following scenario has been considered: we have a pro-
gram, outlined by figure 4, which is given a web site to pro-
cess in a form of starting URL3. It is processing the site page
by page and printing out important content of each page. In
our specific implementation, headings of articles are consid-
ered to be the important content but the algorithm can be
easily adjusted. Besides performing the content extraction,
the algorithm stores all links found on the site. Three lists
of links are used: (1) visited links, (2) extracted links and (3)
outgoing links.

The program on figure 4 uses very simple breadth-first-search
crawler implementation. Everything outside of the dashed
box can be considered a part of the crawler. For that we need
a global list of all links which are planned to be inspected.
This list is designated extracted links. The crawler always
takes the first URL in this list that has not yet been visited
and loads the page on this URL for further processing. In
reality, extracted links are separated into two lists – there is
the global list and a small local list that is composed when
parsing a page. After the page is processed, the local list is
merged with the global one.

Visited links are used as a hash table for convenience so we
can quickly filter out already visited pages. Not performing
this would cause deviations in our measurement.

Outgoing links are links that lead outside of the site. In
most cases of our definition of a web site, the site is defined
as set of pages within the same second-level domain. Note
that there are some domains where top-level-domain con-
tains two parts (like .co.uk), it is important to take this
into account when writing algorithm for detecting whether
the target page is on the same site or not. If a link leads
to different site than the one that is currently inspected,
instead of processing it is just stored for later usage. The
crawling mechanism doesn’t start parsing new site before
the entire site it is currently parsing is processed. At that
point, we stop our inspection but the program has capability
to continue to the other site by clearing the Extracted list,
adding the first link from Outgoing list into it and continue
crawling on the new site.

The reason for the program to process one site at a time is
simple: there is only a very limited number of templates for
each site. Our measurements show us that the most con-
sistent sites can have as few as 5 templates on the entire
site. However even complex web sites have at most several
tens of templates (usually depending on granularity of the
template-matching algorithm). Since the number of Cluster
Representatives is equal to the number of templates used
on the web site, having this number small makes it simple
to store Cluster Representatives in memory while inspecting
the web site they belong to. Such approach is highly con-

3For example http://www.slashdot.org

Figure 4: Implementation schema of the CPS algorithm

venient because we want fast access to these Cluster Repre-
sentatives when processing the site. However storing them
only in memory would mean that all Cluster Representa-
tives of the site are dropped once inspection of that site
finishes. That’s not something we want because it would
mean longer processing of the site the next time. Rather
than that we store all Cluster Representatives in persistent
storage. Once a site is selected for processing, all its Cluster
Representatives are loaded from database and after the pro-
cessing finished, the database is updated if necessary. This
is displayed on the figure 4 by dotted line between OrientDB
and Cluster list.

Implementation details
We used in-memory database in form of a simple list of Clus-
ter Representatives. This list is retrieved from persistent
storage managed by OrientDB object-oriented database en-
gine4 before processing any pages on the site. Our object
hierarchy has been loosely based on the description in sec-
tion 4. For matching DOM trees against Cluster Represen-
tatives we use the algorithm described in section 5. One
modification has been performed in the implementation for
the sake of simplicity – section 5 suggests that the algorithm
is working on the tree structure D, however the implemen-
tation works with string representation of all paths. A set
of paths of a DOM tree is constructed when the DOM tree
is prepared for matching and in case the DOM tree is used
for a Cluster Representative, this set of paths is used along
with it. As suggested in section 5, the algorithm just iter-
ates over all Cluster Representatives from the web site and
compares input DOM tree with them one-by-one. After the

4http://code.google.com/p/orient/

DOM tree is matched, its segmented counterpart is fetched
and desired content is extracted as described in section 5.

Testing and measurements
The implementation has been tested on several Czech and
world-wide web sites. Each testing set contained 500 pages
recursively fetched from index page of that site. Test were
performed on following hardware: Intel Core2Duo P8700
2.53GHz, 4GB RAM, HDD 5400RPM.

Table 1 illustrates how many clusters were detected per site.
The column clusters gives the actual number of clusters on
the site, while hit ratio illustrates how many percent of pages
were matched when 500 pages were inspected. Note that
matched page doesn’t have to be segmented therefore the
higher the hit ratio is the more time saving is achieved. One
important observation has been made during the testing and
that is that during the first inspection of a site, the majority
of clusters is usually detected early in the process. If the
number of total processed web pages has been doubled, the
number of detected templates has risen for at most 33%.
This demonstrates logarithmic growth of cluster set size,
leading to confirmation that the number of clusters is low
compared to number of the web pages on the site. Figure 5
demonstrates graphically that the number of templates on
a single site converges fast to a relatively small number.

Table 2 demonstrates time difference between standard VIPS
segmentation and Cluster-based Page Segmentation for each
web site. The VIPS column tells the time necessary to seg-
ment inspected 500 pages within the site. The time includes
only segmentation and retrieval of all desired data. The
CPS column contains time necessary to retrieve data with

site clusters hit ratio

iDnes.cz 42 91.6%
novinky.cz 15 97%
telegraph.co.uk 32 93.6%
slashdot.org 18 96.4%
finmag.cz 5 99%

Table 1: Cluster counts for different sites

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400 500 600 700 800 900 1000

T
em

pl
at

es
 fo

un
d

Pages processed

finmag.cz
idnes.cz

novinky.cz
slashdot.org

telegraph.co.uk

Figure 5: Dependency of cluster count on page count

Cluster-based Page Segmentation. This time includes seg-
mentation of pages when creating new cluster, comparison
of incoming pages against existing Cluster Representatives
and retrieval of desired content from the page through node
matching. The time represents the worst case scenario for
CPS, i.e. the first processing of the site. This scenario
is worst case because if the site is already processed and
corresponding Cluster Representatives are retrieved from
database, the time to do this is orders of magnitude better
than the time necessary to create Cluster Representatives by
segmentation, even if the cluster set to create is very small.
Back to the table, the time saved intuitively demonstrates
how many percent of time necessary for VIPS segmentation
of each page on a site is saved when using Cluster-based Page
segmentation. Both VIPS and CPS times are measured as
a sum of times necessary to retrieve the data from all 500
processed pages.

Our results clearly prove that Cluster-based Page Segmen-
tation offers high performance boost while keeping the same

site VIPS CPS time saved

iDnes.cz 776 s 92 s 88.1%
novinky.cz 1 529 s 41 s 97.3%
telegraph.co.uk 5 476 s 267 s 95.1%
slashdot.org 1 172 s 74 s 93.7%
finmag.cz 7 283 s 101 s 98.6%

Table 2: Performance measurements of the caching
algorithm

accuracy compared to vision based page segmentation. This
is confirmed by one result not visible in table 2. The time
necessary for retrieving data from page belonging to exist-
ing cluster is lower by one to three orders of magnitude com-
pared to the time necessary for retrieving the data from page
not belonging to any cluster.

Note that some times in VIPS column are significantly higher
than others. This is caused by complexity of web pages. For
example some blogs have quite extensive JavaScript menus
which are not displayed but still occupy segmentation algo-
rithm quite a lot.

7. CONCLUSION
In this paper we presented a new way how to deal with
performance shortcomings of vision-base page segmentation
algorithms. Templates, one of fundamental concepts of mod-
ern web has been used for that. By combining precision of
vision-based segmentation algorithms with performance su-
periority of template detection algorithms, it is possible to
create an algorithm both precise and fast while keeping its
universality.

We showed that Cluster-based Page Segmentation signifi-
cantly improves performance of vision based page segmen-
tation when used on large sites and therefore compensates
for its greatest disadvantage, making it a superior to other
methods assuming that the original precision of algorithms
in this family is better than precision of other methods.

While there is still some room for improvement, a solid foun-
dation for further research has been laid down by work in
this paper. Our future work shall focus on post-matching
processing. In this area it is important to identify what ac-
tions are usually performed on a page after it is segmented
and adapt the clustering algorithm and structures for these
actions.

Acknowledgement
This work was supported by the research programme MSM
0021630528, the BUT FIT grant FIT-S-11-2 and
the IT4Innovations Centre of Excellence
CZ.1.05/1.1.00/02.0070.

8. REFERENCES
[1] R. Burget. Layout based information extraction from

html documents. In Proceedings of the Ninth
International Conference on Document Analysis and
Recognition - Volume 02, ICDAR ’07, pages 624–628,
Washington, DC, USA, 2007. IEEE Computer Society.

[2] D. Cai, S. Yu, J. rong Wen, and W. ying Ma. Vips: a
vision-based page segmentation algorithm. Microsoft
technical report MSR-TR-2003-79, November 2003.

[3] P. G., P. Fragkou, A. Theodorakos, V. Karkaletsis,
and C. D. Spyropoulos. Segmenting html pages using
visual and semantic information. In Proceedings of the
4th Web as a Corpus Workshop, 6th Language
Resources and Evaluation Conference., LREC 2008,
pages 18–25, June 2008.

[4] D. Gibson, K. Punera, and A. Tomkins. The volume
and evolution of web page templates. In Special
interest tracks and posters of the 14th international

conference on World Wide Web, WWW ’05, pages
830–839, New York, NY, USA, 2005. ACM.

[5] T. Gottron. Bridging the gap: from multi document
template detection to single document content
extraction. In Proceedings of the IASTED
International Conference on Internet and Multimedia
Systems and Applications, EuroIMSA ’08, pages
66–71, Anaheim, CA, USA, 2008. ACTA Press.

[6] W. H. W. Group. Xhtml 1.0 the extensible hypertext
markup language. W3C Recommendation, August
2002.

[7] J. L. Hong, E.-G. Siew, and S. Egerton. Information
extraction for search engines using fast heuristic
techniques. Data Knowl. Eng., 69(2):169–196,
February 2010.

[8] A. L. Hors, P. L. Hegaret, L. Wood, G. Nicol,
J. Robie, M. Champion, and S. Byrne. Document
object model (dom) level 3 document object model
core. W3C Recommendation, April 2004.

[9] E. S. Laber, C. P. de Souza, I. V. Jabour, E. C. F.
de Amorim, E. T. Cardoso, R. P. Renteŕıa, L. C.
Tinoco, and C. D. Valentim. A fast and simple method
for extracting relevant content from news webpages. In
Proceedings of the 18th ACM conference on
Information and knowledge management, CIKM ’09,
pages 1685–1688, New York, NY, USA, 2009. ACM.

[10] B. Liu, R. Grossman, and Y. Zhai. Mining data
records in web pages. In Proceedings of the ninth ACM
SIGKDD international conference on Knowledge
discovery and data mining, KDD ’03, pages 601–606,
New York, NY, USA, 2003. ACM.

[11] W. Liu, X. Meng, and W. Meng. Vide: A vision-based
approach for deep web data extraction. IEEE Trans.
on Knowl. and Data Eng., 22(3):447–460, March 2010.

[12] D. C. Reis, P. B. Golgher, A. S. Silva, and A. F.
Laender. Automatic web news extraction using tree
edit distance. In Proceedings of the 13th international
conference on World Wide Web, WWW ’04, pages
502–511, New York, NY, USA, 2004. ACM.

[13] M. Spousta, M. Marek, and P. Pecina. Victor: the
Web-Page Cleaning Tool. In Proceedings of the 4th
Web as Corpus Workshop, LREC, 2008.

[14] J. Stenback, P. L. Hegaret, and A. L. Hors. Document
object model (dom) level 2 document object model
html. W3C Recommendation, January 2003.

[15] G. Valiente. An efficient bottom-up distance between
trees. In Proceedings of the 8th International
Symposium of String Processing and Information
Retrieval, pages 212–219. Press, 2001.

[16] K. Vieira, A. L. Costa Carvalho, K. Berlt, E. S.
Moura, A. S. Silva, and J. Freire. On finding
templates on web collections. World Wide Web,
12(2):171–211, June 2009.

[17] K. Vieira, A. S. da Silva, N. Pinto, E. S. de Moura,
J. a. M. B. Cavalcanti, and J. Freire. A fast and
robust method for web page template detection and
removal. In Proceedings of the 15th ACM international
conference on Information and knowledge
management, CIKM ’06, pages 258–267, New York,
NY, USA, 2006. ACM.

[18] L. Yi, B. Liu, and X. Li. Eliminating noisy information
in web pages for data mining. In Proceedings of the

ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’03, pages
296–305, New York, NY, USA, 2003. ACM.

[19] S. Yu, D. Cai, J.-R. Wen, and W.-Y. Ma. Improving
pseudo-relevance feedback in web information retrieval
using web page segmentation. In Proceedings of the
12th international conference on World Wide Web,
WWW ’03, pages 11–18, New York, NY, USA, 2003.
ACM.

