
MLSP: Mining Hierarchically-Closed Multi-Level

Sequential Patterns

Michal �ebek, Martin Hlosta, Jaroslav Zendulka, and Tomá² Hru²ka

Faculty of Information Technology, IT4Innovations Centre of Excellence, Brno
University of Technology, Boºet¥chova 2, Brno, Czech Republic,

{isebek, ihlosta, zendulka, hruska}@fit.vutbr.cz

Abstract The problem of mining sequential patterns has been widely
studied and many e�cient algorithms to solve this problem were pub-
lished. In some cases, there can be implicitly or explicitely de�ned tax-
onomies (hierarchies) over input items (e.g. product categories in a e-shop
or sub-domains in the DNS system). However, how to deal with taxonom-
ies in sequential pattern mining was discussed marginally. In this paper,
we formulate the problem of mining hierarchically-closed multi-level se-
quential patterns and demonstrate its usefulness. We present the MLSP
algorithm based on the on-demand generalization that outperforms other
similar algorithms for mining multi-level sequential patterns.

Keywords: closed sequential pattern mining, taxonomy, generalization,
GSP, MLSP

1 Introduction

Mining sequential patterns is interesting and long studied research problem in a
data mining community and it is used for many applications such as analysis of
customer purchase patterns, analysis of web log data or biology sequences. Given
a sequence database, the goal is to �nd sequential patterns that occur frequently
in this database, i.e. more often than a given user de�ned threshold. Taking
market basket as an application example, the sequential pattern 〈PC_midtower
ink_printer〉 can be discovered. This means that many people buy midtower PC
and later, they also buy an ink printer. The problem was �rstly presented by
Agrawal and Srikant in [1] and since then, many of algorithms has been published
trying to solve this problem.

Often, one or more taxonomies of items can be stored in the database. These
taxonomies can be utilized to �nd patterns which items of sequences can be on
di�erent levels of hierarchy. It allows to �nd patterns, which wouldn't be re-
trieved without de�ned taxonomies. Our motivation to deal with the taxonom-
ies is primary to analyse some important facts over internet domains taxonomy
(top-level domain, second-level domain, etc.), but, due to privacy issues, we
demonstrate our examples on customer purchase analysis. Following the previ-
ous sequence pattern example, in addition to 〈PC_midtower ink_printer〉 the
pattern 〈PC printer〉 can be found by replacing the items by items on higher level

of hierarchy. Unfortunately, the amount of such patterns can grow enormously,
but many of the resulting patterns can be considered as unuseful. For example
the pattern 〈PC printer〉 doesn't bring any new information if the number of its
occurrence in the database is the same as for 〈PC_midtower ink_printer〉.We
de�ne hierarchically-closed sequential patterns which are the most useful for the
analyst. In addition, the patterns can be divided to multi-level and level-crossing
[2]. In multi-level (known also as intra-level) patterns, all items in one pattern
are one the same level of hierarchy whereas in level-crossing (known also as inter-
level), the level can be di�erent. The amount of retrieved level-crossing patterns
is often greater than the number of multi-level patterns, and so is the search
space. This leads to longer execution time of algorithms that mine level-crossing
patterns. In contrast to the amount of algorithms for mining sequential patterns,
very few algorithms tackled this problem with taxonomies.

Our contribution in the presented paper can be summarized as: formal de�n-
ition of the mining hierarchically-closed multi-level sequential patterns problem,
the MLSP algorithm for solving the problem and the experimental comparison
of the algorithm with existing approaches.

The paper is organized as follows. In the next section, the mathematical ba-
sics for mining sequential patterns are described. In Section 3, the related work
in mining sequential patterns is discussed. The section is �nalized by analysis
of using taxonomies in this research area. In Section 4, terminology for multi-
level sequential pattern mining is introduced. Our algorithm MLSP for mining
sequential patterns is presented in Section 5. In Section 6, the algorithm is com-
pared with techniques presented in other papers. Conclusions and future work
are presented in Section 7.

2 Preliminaries

In this section the problem of mining sequential patterns is formalized.

De�nition 1. (Itemset) Let I = {i1, i2, i3, . . . , ik} be a nonempty �nite set of
items. Then an itemset is a nonempty subset of I.

De�nition 2. (Sequence) A sequence is an ordered list of itemsets. A sequence
s is denoted by 〈s1s2s3 . . . sn〉, where sj for 1 ≤ j ≤ n is an itemset. sj is also
called an element of the sequence. The length of a sequence is de�ned as the
number of instances of items in the sequence. A sequence of length l is called
an l-sequence. The sequence α = 〈a1a2 . . . an〉 is a subsequence of the sequence
β = 〈b1b2 . . . bm〉 where n ≤ m if there exist integers 1 ≤ j1 < j2 < · · · < jn ≤ m
such that a1 ⊆ bj1 , a2 ⊆ bj2 , . . . , an ⊆ bjn . We denote it α v β and β is a
supersequence of α .

Example 1. In the following examples, we use well established convention from
sequence pattern mining for denoting elements of sequences [3]. An element that
has m items is denoted as (i1i2 . . . im) where m ≥ 1. If an element contains only
one item, the braces are omitted for brevity.

Given I = {a, b, c, d, e}, an example of an itemset is {a, b, d}, example of
a sequence is 〈a(ab)(ce)d(cde)〉. This sequence has 5 elements and 9 items. Its
length is 9 and it is called a 9-sequence.

De�nition 3. (Sequence database) A sequence database D is a set of tuples
〈SID, s〉, where SID is a sequence identi�er and s is a sequence. The sup-
port of a sequence s1 is de�ned as the number of sequences in D containing
a subsequence s1. Formally, the support of a sequence s1 is support(s1) =
|{〈SID, s〉|(〈SID, s〉 ∈ D) ∧ (s1 v s)}|.

De�nition 4. (Sequence Pattern, Mining Sequential Patterns) Given
sequence database D and minimum support threshold min_supp, a frequent se-
quence is such a sequence s whose support(s) ≥ min_sup. A frequent sequence
is called sequence pattern. For a given sequence database D and a minimal sup-
port min_supp, the goal of mining sequential patterns is to �nd all frequent
sequences in D.

In the problem of mining multi-level sequential patterns, taxonomies exist
over items in D and they are de�ned as follows.

De�nition 5. (Taxonomy of Items) Taxonomy structure of an item set V
is a rooted tree T = (V,E) with with a root r ∈ V . In the context of the tree.
we refer to V as a set of nodes representing items. For each node v in a tree, let
UP (v) be the simple unique path from v to r. If UP (v) has exactly k edges then
the level of v is k for k ≥ 0. The level of the root is 0. The height of a taxonomy
is the greatest level in the tree. The parent of v 6= r, formally parent(v), is
neighbour of v on UP (v), and for each node v ∈ V, v 6= r there exists a set of its
ancestors de�ned as:

ancestors(v) = {x|x ∈ UP (v), x 6= v}. (1)

The parent of r and the ancestors of r are not de�ned. If v is the parent of u
then u is a child of v. A leaf is a node having no child [4].

In every taxonomy structure there exists a is-a relation which is de�ned as
follows:

is− a : V × V :≡ {(a, b)|b ∈ ancestors(a)}. (2)

Let ι = {I1, . . . , Im} be a partition of a nonempty �nite set of items I. Then a
set of taxonomy structures of items I is a nonempty set of taxonomy structures
τ = {T1, . . . , Tm} corresponding to ι such that Ti = (Vi, Ei) where Ii ∈ ι for
1 ≤ i ≤ m. It means that each item i ∈ I appears in exactly one taxonomy
structure Ti ∈ τ . Notice that we do not require that items need to be only leaf
nodes. In addition we refer to any ancestor of a node representing a item x a
generalized item of the item x.

Example 2. We use s running example based on taxonomies on Figure 1. In
terms de�ned above, the parent of black is Ink printer ; ancestors is the set {Ink
printer, printer} and the level of black is 2. In next examples, some node names
will be shorted (e.g. LCD monitor to LCD).

towerminitower

PC

CRT monitorLCD monitor

monitor

ink printerlaser printer

printer

colorblack

Figure 1: Three taxonomies for running example.

3 Related Work

Sequential pattern mining is a temporal extension of frequent pattern mining
[5], [6]. Basic algorithms for mining sequential patterns are AprioriAll [1] and
GSP [7] which are based on the generating and pruning candidates sequences.
Other representatives of this category are SPADE [8] algorithm using a vertical
format of database and SPAM [9] using a bitmap structure as an optimization.
The second family of algorithms is based on the pattern growth. It is represented
by the well-known fast algorithm Pre�xSpan [10]. For reduction of search space,
the closed patterns mining was de�ned by CloSpan [11].

The GSP algorithm is important for this work therefore it will be described
in more detail. The algorithm works iteratively. In each iteration it makes a pass
over the sequence database:

1. Initially, the support of items is counted in �rst pass over the sequence
database and those having it higher than a minimal support min_sup are
inserted in the resulting set L1 containing frequent 1-sequences.

2. Then the following steps are executed iteratively in 1 < k ≤ n iterations
until no k-sequence is generated:
(a) The Join step, a candidate set Ck is generated from sequential patterns

in Lk−1. A pair of sequences s1, s2 ∈ Lk−1can be joined if sub-sequences
generated from s1 and s2 such that if the �rst item of s1 and the last
item x of s2 are omitted, are the same. Then the candidate k-sequence
is formed by adding the last item of the s2 at the and of the sequence
s1 as:
i. the last new element containing one item x if x was in a separate
element in s2;

ii. as a next item of the last element in s1 otherwise.
iii. When joining x ∈ L1with y ∈ L1 both sequences < (y)(x) > and

< (yx) > are generated as candidate sequences.
(b) In the Prune step, the database is passed and the support of each

candidate sequence is counted. Candidates with support greater than
min_supp are added into the set Lk of sequential patterns.

3. The result sequential patterns set is
⋃n

k=1 Lk.

Multi-level frequent patterns (itemsets) and association rules was described by
Han and Fu in [2]. They proposed a family of algorithms for mining multi-level
association rules based on Apriori which process each level separately. It allows

to use a di�erent minimum support threshold for di�erent levels of taxonomies.
However, mining multi-level sequential patterns has not been deeply studied. The
straightforward idea how to mine level-crossing sequential patterns using GSP
was presented in [7]. Authors proposed to use an extended-sequence database
where each item of a sequence of origin database D is extended by all ancestors
within its element. The disadvantage is that many redundant sequences are
generated by this method.

Plantevit et al. in [12] �rstly describe the idea of mining the most speci�c se-
quences to avoid redundancy. The presented algorithm performs a generalization
only in the �rst step over single items to create maf-subsequences (maximally
atomic frequent 1-sequences). However, the algorithm does not perform the gen-
eralization during generation of their supersequences.

The information theory concept was used for solving the problem of mining
level-crossing sequential patterns in [13]. Proposed hGSP algorithm does not
reveal a complete set of level-crossing sequential patterns but only the most
speci�c sequential patterns. The algorithm works on the bottom-up principle
and performs generalization only if the candidate sequence should be pruned . It
was demonstrated that mining level-crossing sequential patterns has extremely
large search space.

In this paper, we focus on bene�ts of multi-level mining against to level-
crossing sequential pattern mining from an algorithm's performance point of
view.

4 Mining multi-level sequential patterns

The search space of mining level-crossing sequential patterns problem (studied
in [13]) can be reduced by the constraint where levels of all items of frequent
sequence are equal to a constant ls (�rstly used in [2]). The constraint could lead
to substantial simpli�cation of the mining process. The constraint brings a com-
promise between an execution time of the algorithm and speci�city of sequential
patterns for a user. The experimental veri�cation is discussed in Section 6.

Example 3. The di�erence between the complexity of level-crossing and multi-
level sequential patterns mining is shown on Figure 2. In level-crossing way, the
sequence <tower (LCD, laser)> has 6 ancestors whereas in multi-level way it
has only one ancestor sequence.

A constrained element (ML-element) and a constrained sequence (ML-se-
quence) are derived from de�nitions of element and sequence as follows.

De�nition 6. (ML-element, ML-sequence) Let l ∈ N be a level of items
in a taxonomy T ∈ τ . Then a ML-sequence is an ordered list of itemsets sML =
〈s1s2s3 . . . sn〉, such that the level of all items of the itemsets is equal to l. The
itemset of the ML-sequence is called an ML-element. The length, subsequence
and supersequence of ML-sequence is de�ned analogously to ones in De�nition
2.

< tower (LCD,laser) >

< tower (monitor,laser) > < tower (LCD,printer) >

< PC (monitor,laser) > < tower (LCD,printer) >

< PC (monitor,printer) >

< PC (LCD,laser) >

 equal-level generalization

 constraint

Figure 2: Level-crossing and constrained multi-level generalization combinations.

Example 4. For better understanding of de�ned notions, we return to our run-
ning example and the Figure 2 using taxonomies from the Figure 1. From all the
sequences here, only the most speci�c 〈tower(LCD, laser)〉 and the most gen-
eric 〈PC(monitor, printer)〉 are ML-sequences. In contrast, 〈PC(LCD, laser)〉
is not a ML-sequence because the level of item PC is 0 and the level of the items
in the element (LCD, laser) is 1. The levels of items in the other sequences are
di�erent.

The existence of the taxonomy over items allows is to introduce ML variants
of a parent and of ancestors.

De�nition 7. (ML-element parent)Given an ML-element e = {i1, i2, . . . , in},
an ML-element parent of the ML-element e is an element whose all items are
replaced by their parents. This is de�ned as

parentel(e) = {parent(ik)|1 ≤ k ≤ n ∧ ik ∈ e}. (3)

De�nition 8. (ML-sequence parent, ML-sequence ancestors) Given a
ML-sequence s = 〈e1e2 . . . en〉, where ek is ML-element on position k, the ML-
sequence parent of s is a ML-sequence such that all ML-elements of s are replaced
by their ML-element parents. Formally,

parentseq(s) = 〈f1f2 . . . fn〉, fk ∈ parentel(ek), 1 ≤ k ≤ n. (4)

For a given set of taxonomies τ , a root ML-sequence is a ML-sequence consist-
ing of ML-elements with items corresponding to root nodes of taxonomies. The
ML-sequence parent of a root ML-sequence is not de�ned. Based on the de�n-
ition of the ML-sequence parent, the ML-sequence ancestors of a ML-sequence
s, ancestorsseq(s) is de�ned recursively as follows:

ancestorsseq(s) =Mi, if Mi+1 =Mi,where (5)

M0 = {parentseq(s)}
Mi+1 =Mi ∪ {parentseq(x) | x ∈Mi} for i ≥ 0.

Example 5. The element(monitor, printer) is ML-element parent of the (LCD,
laser) element because all of its items are replaced by their parents. The ML-
sequence 〈PC(monitor, printer)〉 is the ML-sequence parent of the sequence

〈tower(LCD, laser)〉 and it is also the only member of its ML-ancestors set
because 〈tower(LCD, laser)〉 does not have any ML-sequence parent.

The generalized support gen_supp is based on the de�nition of support in
De�nition 2. It's only necessary to rede�ne the subset relation for two elements
to deal with taxonomies according to Def. 9.

De�nition 9. (The generalized support) A generalized subset relation ⊆g

is de�ned as

e1 ⊆g e2 ⇔ ∀i ∈ e1 : i ∈ e2 ∨
∃j ∈ e2 : i ∈ ancestors(j). (6)

A sequence α = 〈a1a2 . . . an〉 is a generalized subsequence of a sequence β =
〈b1b2 . . . bm〉 if there exist integers 1 ≤ j1 < j2 < · · · < jn ≤ m such that
a1 ⊆g bj1 , a2 ⊆g bj2 , . . . , an ⊆g bjn . We denote α vg β. Then, the the generalized
support of a sequence sML is

gen_supp(sML) = |{〈SID, s〉|(〈SID, s〉 ∈ D) ∧ (sML vg s)}|.

Recall the term closed in closed sequential pattern mining. The closed means
that if a sequence s and a supersequence of s has the same support, then the
result set will contain only a supersequence of s. In this case, any omitted sub-
sequence can be derived from the result set. In contrast, the problem disscussed
in the paper allows to modify sequence in two dimensions � a sequence length
(same with closed sequential pattern mining) and a level of sequence (new for
ML-sequences). We will discuss closed only in the taxonomy dimension.

5 The MLSP algorithm

In this section, the problem of mining hierarchically-closed multi-level sequential
patterns is speci�ed and the e�ective MLSP (Multi-Level Sequential Patterns)
algorithm for mining these patterns is presented.

De�nition 10. (Mining hierarchically-closed multi-level sequential pat-
terns) The set of hierarchically-closed ML-sequences is such a set of ML-sequences
which does not contain any ML-sequence s and ML-sequence ancestor of s
with equal generalized support. Then, the problem of mining hierarchically-
closed multi-level sequential patterns (hereinafter ML-sequential patterns)
for given input sequence database D and minimal generalized support threshold
min_supp is to �nd a set LML of all ML-sequences over D such that

LML = {sML v s|〈SID, s〉 ∈ D ∧ gen_supp(sML) ≥ min_supp (7)

∧ 6 ∃sx[sx vg s ∧ gen_supp(sx) ≥ min_supp
∧gen_supp(sx) = gen_supp(sML)

∧sML ∈ ancestorseq(sx)]}.

The proposed algorithm MLSP is based on the candidate generation principle
(adapted from the GSP, see Section 3) combined with the on-demand generaliz-
ation. The algorithm runs in two steps (join step and prune step).

Prune step modi�cation. The idea is that if the candidate ML-sequence
should be pruned, the generalization of the ML-sequence is performed. The
generalization of the ML-sequence means to �nd a ancestor with the greatest
level of the sequence which satis�es minimal support threshold. The on-demand
bottom-up generalization procedure GetFirstFrequentAncestor() is shown
in Algorithm 1.

Algorithm 1 Method GetFirstFrequentAncestor()

1: procedure GetFirstFrequentAncestor(s,min_supp)
2: repeat

3: if gen_supp(s) ≥ min_supp then

4: return s
5: end if

6: s← parentseq(s)
7: until s is root sequence

8: return null
9: end procedure

Example 6. Prune step generalization. If none of the candidate ML-sequences
〈minitower CRT〉 and 〈minitower LCD〉 is frequent, there can exist the ancestor
of both ML-sequences 〈PC monitor〉 which could be frequent and be important.

Nevertheless, this modi�cation of prune step does not guarantee the al-
gorithm completeness. Also, the generalization has to be performed for join
step. Recall that the GSP allows to join a pair of sequences if the common sub-
sequence is the same (see Section 3 for details). In di�erence, the MLSP algorithm
�rstly tries to �nd the common ancestor of the candidate ML-subsequences in
bottom-up way. If the common ML-subsequence exists, then the generalized ML-
sequences are joined to the new candidate ML-sequence, otherwise, no candidate
is generated. Notice that the levels of input ML-sequences can be di�erent but
the levels of items of a generated ML-sequence are the same. The modi�ed pro-
cedure for candidate generation is shown in Algorithm 2.

Example 7. Join step generalization. The pair of 2-ML-sequences 〈minitower
CRT〉 and 〈LCD laser_printer〉 cannot be joined in GSP, because items CRT
and LCD. However, they have a common parent monitor. Therefore, the items
should be generalized to the common subsequence <monitor> and the sequences
are joined to the 3-ML-sequence <PC, monitor, printer> by MLSP.

Finally, we summarize the complete MLSP algorithm in Algorithm 3. In the
�rst phase, the algorithm count the generalized support for all items of the data-
base D and their parents and 1-sequences are formed as candidate ML-sequences

Algorithm 2 Method GenerateCandidateMLSequences()

1: procedure GenerateCandidateMLSequences(Lk−1, k)
2: Ck = ∅
3: for all s1, s2 ∈ Lk−1 do

4: if ML-subsequences wrt. GSP join rule of s1 and s2 are equal
or can be generalized to common subsequence/s then

5: Add ML-sequence joined from s1, s2 on the greatest level into Ck.
6: end if

7: end for

8: return Ck

9: end procedure

C1. Then, the ML-sequences for each candidate 1-sequence with su�cient sup-
port are generated as ML-sequential patterns or the generalization is performed.

Next phases run iteratively while some ML-sequential patterns are generated
in the previous phase. In each phase, candidate ML-sequences are generated by
the generalized join procedure (join step). In the prune step, the database D is
passed and the generalized supports for the generated candidate ML-sequences
are counted. It is e�ective to count also the generalized supports for the all an-
cestors of candidate ML-sequences, because it will be be used by following gen-
eralization procedure. The generalization tries to �nd the frequent ML-sequence
with the greatest level for each candidate ML-sequence.

Sets of candidate ML-sequences can contain non-hierarchically-closed ML-
sequences, the prune step veri�es does not exist any child of the candidate ML-
sequence with the same generalized support in the set of candidates, otherwise
it is pruned.

Algorithm 3 The MLSP algorithm

1: procedure MLSP(D,min_supp)
2: k ← 1 . First phase.
3: Count gen_supp for all items in D . Count also for ancestors.
4: C1 ←Add all 1-ML-sequences for candidates c created from all items in DB
5: Process sequences c ∈ C1 by procedure GetFirstFrequentAncestor(c)

and add resulting sequences into L1

6: while Lk = ∅ do . Next iterative phases.
7: k ← k + 1
8: Ck ←GenerateCandidateMLSequences(Lk−1, k)
9: Count gen_supp for all candidate sequences in Ck and their ancestors
10: Process items c ∈ Ck by procedure GetFirstFrequentAncestor(c)

and add resulting hierarchically-closed sequences into Lk

11: end while

12: return
⋃k

i=1 Li

13: end procedure

Algorithm heuristic. The algorithm often performs �is a subsequence� test
(e.g. for the generalized support counting). This test can be optimized to the lin-
ear time-complexity if a suitable complete ordering exists over items. The simple
ordering is not usable for MLSP because the subsequence uses the generalized
subset relation vg. Therefore, MLSP uses two step ordering: 1) �rstly sorts tax-
onomies lexicographically by their roots, 2) items in one taxonomy are sorted
in the post-order walk. The �rst rule provides grouping of items in elements by
a taxonomy, the second rule guarantees that it is possible to check for an ideal
mapping to ancestors in the linear time complexity (the lexicographical ordering
cannot be used because of the generalization which changes the order).

6 Experiments

We performed experiments on a PC in the con�guration CPU i5 3.3GHz, 8GB
RAM, OS MS Windows 7. Because there was not published any algorithm for
the mining multi-level sequential patterns, we compare results of our algorithm
to the GSP. Authors of GSP recommended using the GSP over an extended
database [7], which is a modi�cation of the origin dataset D such that an each
item of the origin database D is replaced by a set of all its ancestors within its
element, for mining sequential patterns with taxonomies. Both GSP and MLSP
algorithms were implemented in C# on .NET platform. The experiments were
executed over synthetic datasets generated by a random generator similar to [1]
modi�ed to generate sequences with items on di�erent levels of taxonomies.

The �rst experiment compares scalability of GSP and MLSP. The parameters
of the synthetic datasets are: |D| = from 100 000 to 1 000 000, avg. sequence
length = 4, sequential patterns count = 5, avg. sequential pattern length = 3, avg.
support of sequential patterns=5%, taxonomies count = 0.1% of D, avg. count of
taxonomies levels=4. The comparison of execution times is shown on Fig. 3a. The
MLSP algorithm is about 5-10 times faster than the GSP on all sizes of datasets.
For both GSP and MLSP, the execution time grows approximately linearly with
the size of the dataset (it corresponds to results presented by Agrawal et. al. in
[1]). The main reason of higher speed is a smaller set of candidates (see the Fig.
3b). It results in much lower number of sequence comparisons when computing
support. Moreover, the GSP algorithm generates a higher number of sequential
patterns in contrast to MLSP, because sequential patterns generated by GSP
are not hierarchically-closed. Notice that the numbers of candidate patterns
and sequential patterns were summarized over all phases (when the average
sequential pattern length is 3, then expected number of phases is 4).

The second experiment shows the dependency of the execution time and of
the number of sequential patterns on the minimum support threshold. In this
case, all experiments were executed over the same dataset and only the minimum
support threshold parameter was changed. It was used a smallest dataset from
the previous experiment where |D| = 100 000 sequences. The minimum support
threshold was set to 1%, 3%, 5% and 7%. The results are shown on Fig. 4a and
Fig. 4b. Total execution time decreases with greater minimum support threshold.

�

����

����

����

�����

� ��� ��� ��� ����

�
�
�
��
��
�
	

�
��

�

��

��������	�
���������������

	
� �
�

(a) Execution times of algorithms.

�

����

����

����

����

����

� ��� ��� ��� ����

�
�
�
�
�
��
�
	�

�
�
�
�
�
�
�

��������	�
���������������

�	
������������ ��	
������������

�	
���
������� ��	
���
�������

(b) Number of cadidates and patterns.

Figure 3: Scalability experiment of GSP and MLSP algorithms.

Also, the number of sequential patterns decreases rapidly. In all cases, MLSP
algorithm is much faster than GSP and produces more readable result set.

�

����

����

����

�����

� � � � � � � 	

�
�
�
��
��
�
	

�
��

�

��

������������	
���
��	������

�� ���

(a) Execution times of algorithms.

�

��

���

����

�����

������

�������

� � � � � � � � 	

�
�
�
�
�
��
�
	�

�
�
�
�
�
�
�

������������	
���
��	������

������������� ���������������

����������� �������������

(b) Number of cadidates and patterns.

Figure 4: Dependency on the minimum support threshold.

7 Conclusion

In this paper, we discussed the important problem of the multi-level sequential
pattern mining. We introduced the term hierarchically-closed sequential pat-
tern mining which reduces the number of output multi-level sequential patterns.
We also proposed the MLSP algorithm for mining hierarchically-closed multi-
level sequential patterns. We experimentally veri�ed, that MLSP generates much
smaller result set of sequential patterns without the loss of useful information for
the user and the mining process is much more e�ective comparing to GSP when

the extended database is used. In a future work, there is a challenge to develop
an algorithm what does not generate candidates. We also plan to research the
problem of mining multi-level sequential patterns for data streams.

Acknowledgement

This work has been supported by the research programme TA�R TA01010858,
BUT FIT grant FIT-S-11-2, by the research plan MSM 0021630528, and the
European Regional Development Fund in the IT4Innovations Centre of Excel-
lence project (CZ.1.05/1.1.00/02.0070).

References

1. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Data Engineering, 1995.
Proceedings of the Eleventh International Conference on. (mar. 1995) 3 �14

2. Han, J., Fu, A.: Mining multiple-level association rules in large databases. Know-
ledge and Data Engineering, IEEE Transactions on 11(5) (1999) 798�805

3. Han, J., Kamber, M.: Data mining: concepts and techniques. The Morgan
Kaufmann series in data management systems. Elsevier (2006)

4. Nakano, S.I.: E�cient generation of plane trees. Inf. Process. Lett. 84(3) (nov.
2002) 167�172

5. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. VLDB '94
(1994) 487�499

6. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
SIGMOD Rec. 29(2) (may 2000) 1�12

7. Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and perform-
ance improvements. In Apers, P., Bouzeghoub, M., Gardarin, G., eds.: Advances
in Database Technology - EDBT '96. Volume 1057 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (1996) 1�17

8. Zaki, M.: Spade: An e�cient algorithm for mining frequent sequences. Machine
Learning 42 (2001) 31�60

9. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a
bitmap representation. In: Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining. KDD '02, New York, NY,
USA, ACM (2002) 429�435

10. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu,
M.C.: Mining sequential patterns by pattern-growth: the pre�xspan approach.
Knowledge and Data Engineering, IEEE Transactions on 16(11) (2004) 1424 �
1440

11. Yan, X., Han, J., Afshar, R.: Clospan: Mining closed sequential patterns in large
datasets. In: In SDM. (2003) 166�177

12. Plantevit, M., Laurent, A., Laurent, D., Teisseire, M., Choong, Y.W.: Mining
multidimensional and multilevel sequential patterns. ACM Trans. Knowl. Discov.
Data 4(1) (jan. 2010) 4:1�4:37

13. �ebek, M., Hlosta, M., Kup£ík, J., Zendulka, J., Hru²ka, T.: Multi-level sequence
mining based on gsp. Acta Electrotechnica et Informatica (2) (2012) 31�38

