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Abstract—In our previous work we have designed a method
for fast and precise Web page segmentation. In this paper
we propose a complementary algorithm and data structures
that extend the original design. The extension is focused
on isomorphic mapping between two DOM trees. Our main
objective is to improve robustness of our original solution.
We successfully design and implement a solution that is more
robust while keeping the efficiency of the original simple one. To
prove qualities of our new design we also offer an experimental
evaluation of the new implementation.
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I. INTRODUCTION

In recent years, the quantity of information on the Web
increased considerably. The problem is that the information
on a Web page is rather unstructured and noisy which makes
it difficult to perform tasks like information retrieval or con-
tent classification. There is much information on every Web
page that can significantly distort machine understanding of
the page.

Several algorithm types exist to deal with the problem,
Template Detection and Page Segmentation being the most
important two of them. Each of these algorithm types has
its shortcomings. However using their right combination
presents a solution with all these shortcomings minimized.

Vision-based page segmentation (VS) methods focus on
splitting the Web page into coherent blocks. These can be
then considered atomic information carriers. To properly
do that, these algorithms try to comprehend the layout of
the page in the same way human user would comprehend
it when looking at the page. The main problem of these
methods is scaling. They have to render each page[1],
[2], [3] which is a very time-consuming task. Template
detection[4], [5], [6] methods are much faster than VS but
their granularity is often too coarse, as they just split the page
in two parts and not individual segments. However some of
these methods also offer a way to measure a “distance” from
other pages to detect whether they are based on the same
template.

When we look at the big picture, a set of pages is
usually processed at once. In our previous work [7] we have

designed an algorithm that crawls through the entire Web
site, performs segmentation on some pages and stores the
result of every segmentation it performs. When encountering
other pages based on the same template, the algorithm just
re-uses previously cached result instead of performing the
segmentation again. To re-use the previous result, we need
to isomorphically map Document Object Model (DOM) tree
of the new page to DOM tree of the cached page. In our
previous work we have used just a crude implementation of
such mapping. No other references of mapping algorithms
like the one we propose here have been found in existing
literature, not even in papers that seem to be using it. In
such cases authors probably use some intuitive approaches
and therefore don’t describe them explicitly.

In this paper we propose data structures and algorithms
necessary to achieve the isomorphic mapping. The moti-
vation of our work is to improve the original approach
that is used in [7]. In this paper, we focus on space and
time optimization of the mapping algorithm, as well as its
robustness, since each page in the cluster may contain slight
differences when compared to the segmented one.

Sections II and III cover concepts related to our work. To
understand what are we trying to achieve, it is important to
also understand these concepts. Sections IV and V describe
the improved approach itself and finally section VI evaluates
results of the proposed method.

II. TEMPLATES

The principle of templates is key for algorithms we
propose. It is also very simple. Most of the modern Web
sites are created using some sort of content management
systems. A basic idea of such systems is that authors create
content without any knowledge of the structure of Web pages
on the site. Templates defined in the content management
application itself are carriers of that structure. There is a
number of templates for every site. Each template defines the
core structure of the corresponding set of pages within that
site. Some places in these structures are specially marked
and a specific content is filled in them when a visitor displays
any page based on the template.

The principle of templates directly supports the concept of
consistent Web pages through the Web site. The consistency



of Web pages enhances user experience and orientation on
the site[8]. That’s why a vast majority of modern Web sites
is based on templates[9].

III. TEMPLATE CACHING AND TREE MAPPING

We use a processing model where the entire site is
processed at once and the result of every performed segmen-
tation is stored right after the segmentation is performed[7].
One cycle of this process is represented by the block schema
displayed on figure 1. In this cycle we look if there is a
“pattern page” in the cache which is based on the same
template as currently inspected “input page”. If there is no
such pattern page, the input page is segmented, becomes one
of the pattern pages and can be used in the following cycles.
If there is one, no segmentation is performed and requested
result is retrieved via isomorphic mapping between the input
and the corresponding pattern.

Figure 1. Block schema of site processing model

Considering that the algorithm already exists and we don’t
need to modify it, we focus only on the isomorphic mapping.
On a closer look at the node mapping process itself, it is
important to note that our approach doesn’t perform generic
tree-to-tree node mapping as described in the literature[10],
[5]. We are trying to find a single node in given DOM tree
with a generic DOM-tree-searching algorithm, having an
address of requested node as an input. This simplification
decreases time complexity of the mapping process and thus
allows its performance increase.

The mapping process is displayed on figure 2 in slightly
wider context. The left branch of the diagram corresponds to
the left branch of the diagram displayed on figure 1, while
the right branch loosely corresponds to the middle part of

figure 1. Visual model refers to the output of utilized vision-
based segmentation algorithm. The model is stored in the
local cache together with corresponding DOM tree.

Figure 2. Block schema of tree matching

The data flow considered is as follows:
1) the processing algorithm receives input page and a

pattern page (represented by a tree of visual areas)
corresponding to it

2) a query executed by an external entity (user or process)
selects a particular visual region of input page (e.g.
“retrieve the heading of the article”)

3) the DOM nodes associated with the visual region are
retrieved and their addresses constructed

4) addresses from the previous step are used to locate the
corresponding nodes in the input DOM tree

5) the content of located nodes from the input page is
returned

Note that the main part (node mapping on figure 2) is
represented by item four – the item number four is also the
part we are focusing on. By mapping DOM nodes and
extracting the content directly, we eliminate the need to
segment the new page. Without this step the entire Cluster-
based page segmentation[7] would not work.

IV. NODE IDENTIFICATION

Our design is strictly based on generic properties of DOM
trees. This section analyzes various techniques which we use
to find a particular node in a DOM tree. It is divided into
three parts – first we cover location of the target node, then
error detection mechanisms and the last part covers final
verification.

There are two properties of DOM trees defined in the
W3C recommendations[11], [12] which we can utilize. The
first is that the order of sibling nodes has its significance and
second that each DOM node has a label assigned. It usually
corresponds to its HTML tag name. It is also important to



note that the DOM tree can contain other nodes besides those
representing HTML elements, such as nodes representing
element attributes. We need to drop all these to prevent
malformation of the algorithm output.

Our design consists of two parts which have a strong con-
nection with each other: design of nodes’ addresses (further
designated as descriptors) and algorithms working with these
descriptors. There are several ways how to unambiguously
identify node in a DOM tree. We look for a method (or
combination of methods) that matches the following criteria:

• speed: localization of the node has to be as fast as
possible

• space: the representation of the node location has to be
space-saving

• uniqueness: results have to be unambiguous
• reliability: results have to be deterministic and error-

prone
To elaborate on the last item: when we perform mapping

between two pages P1 and P2 that are based on the
same template, the method has to return either the same
(corresponding) node or nothing – if there is a node on P2
which seems to correspond to a node on P1 according to
the address but it is a different node from the perspective
of user looking at the page, the method should detect such
situation and return empty result.

Note that there is already an existing solution that is close
to fulfill the requirement list. The XPath language addresses
all the requirements. Taking that into account, we are looking
for a solution that is even more robust and has a potential
for a more time-effective implementation.

A. Path of positions

The path of positions is basically a string of numbers.
Each number designates a position of a certain node within
its siblings. The concept is based on the fact that every DOM
tree is ordered. The first number designates the position of
the node among children of the root node, the second one
designates the position within child nodes of the one selected
by the first number and so on.

This method meets almost all prerequisites for safe node
identification. It offers great speed, its complexity is only
O(n) where n is a maximal depth of the tree. It is space
saving since the representation of descriptor is just a series of
numbers and it gives unique results due to the given order of
siblings on each level. The only problem is limited guarantee
that the returned result will be the correct one since we have
no other clues to verify that the node is really the one we
are seeking. We need some an detection mechanism to do
that. That will be described in the following section.

B. Feature Fingerprints

Feature fingerprint can be defined as a combination of
various attributes that DOM nodes can have. These attributes
can be either visual (like size or position of rendered box

corresponding to the DOM node), tree-based (e.g. tag name
or value of any specific attribute) or content-based (e.g. word
count). Specific combination of these features can be used
to find node in a DOM tree or verify that we picked the
right node. For example Hao et al. in [13] use combination
of position within one level of the tree combined with visual
position and size.

A good fingerprint has to be as unique as possible. The
problem is that no fingerprint will be 100% reliable since
there is no way how to identify a node with complete
accuracy (the only exception would be if every node in
the DOM tree had a unique id). Therefore we try to find
such combination of properties that would maximize the
probability of correct node identification while minimizing
the number of attributes included in the fingerprint (the more
attributes we add, the more space they take and the longer
time their evaluation takes).

Besides the uniqueness we also want the fingerprint to be
as generic as possible. Generic fingerprints are those that
are applicable for as many nodes in the tree as possible,
ideally all of them. Fingerprint is applicable to a node
if the node contains some (ideally all) attributes that the
fingerprint contains. There is also a third constraint for
fingerprints – we ruled out all vision-based attributes like
position on the page and size of the rendered box because
getting their actual values would require rendering the page
and therefore it would be too time-consuming. Even though
ruling out vision-based attributes increases time efficiency,
it may decrease the accuracy. In our experimental results
we show that this problem doesn’t appear in practical
application. However if necessary, this decreased accuracy
can be compensated by node verification described in section
IV-C.

One feature is common to all nodes in the DOM tree
and that is the name of corresponding HTML tag (p, strong,
. . . ), let’s call it element type. We use this element type in
combination with value of id attribute (if the element in
question has one) as a node fingerprint for each node on the
path described in section IV-A.

C. Subtree Fingerprints

While generic feature fingerprints are somewhat reliable,
there is a method that offers even bigger amount of reliability
for most nodes in the DOM tree. It is a subtree-fingerprinting
which is a very specific case of feature fingerprinting.
Subtree fingerprinting is based on a simple premise:

Premise 1: Two nodes in two trees are equivalent if their
position in their respective trees is at least approximately
corresponding and if their content is equivalent.

This premise comes from the definition of templates –
the core structure of two Web pages based on the same
template is the same, therefore the position of all nodes
belonging to the template will be the same on both pages.
This rule doesn’t apply for the content itself, as it is not part



of the core template structure. For the same reason it is not
important to us, as segmentation algorithms are not supposed
to select part of the content as a visual block. To deal with
complex definition of content equivalence we came up with
the following simplification.

Definition 1: Content of two nodes is considered equiv-
alent if subtrees rooted at each of the two nodes are
equivalent.

To evaluate this subtree equivalence, we use method of
tree-path comparison used in [6]. It measures similarity of
two DOM trees (or in this case their subtrees) by comparing
their path sets. Each path in the set is a string of nodes
starting at the root of the subtree and ending at one of the leaf
nodes. This method was chosen for its superior performance
over other methods used for the purpose of measuring the
distance between the two DOM trees.

This verification method can help to significantly increase
the accuracy of the mapping algorithm. However, the sub-
tree fingerprinting is much more demanding than simple
type-id feature fingerprinting, hence we use this only as
a verification method for our results. It is important to
note that this means we don’t expect this step to be used
in practical application of our algorithm unless someone
requires even more strongly assured accuracy. When we
perform the verification, we verify only the target node, not
all nodes on the path leading to it.

V. DESCRIPTORS AND ALGORITHM

As we have outlined in section IV, our approach consists
of two parts which are strongly connected to each other.
This section will describe both of them.

A. Descriptors

The core of our descriptors is a position-based path. This
representation is simple, it is basically string of numbers,
as described in section IV-A. Such a string is formally
represented as P = (p1, p2, . . . , pn), where P is desig-
nation of the path. Its elements, designated pX , are the
numbers representing positions of their respective nodes.
Implementation-wise, pX is an index of a node in the array
of child nodes on the Xth level of the DOM tree. Note that
only child nodes of the previously selected node are in this
array, not all nodes on that particular level of the DOM tree.

The shortcoming of this method (its inability to verify the
located node) is addressed by feature fingerprinting. With the
fingerprinting included in the model, the descriptor would
contain the fingerprint of the last element in the path pn.
However in our implementation we go further and we extend
the verification process to every single node along the path.
Each node in the path is then represented by a structure n =
(pX , id, type) where id contains the value of ID attribute and
type contains name of the HTML element represented by the
node.

On top of the described feature fingerprinting we add
one more check and that is a total number of nodes on
the particular level of DOM tree (i.e. sibling count + 1).
This number is very useful indicator of a difference between
the two trees. It is not 100% accurate but if the number is
different from the actual count of nodes on that level of
DOM tree, it always means that the tree is different than
expected and the algorithm should fail.

Taking that into account, the final descriptor will be
defined as follows:

Definition 2: The descriptor is a string of node-
representing structures P = (n1, n2, . . . , nn). Each
node-representing structure is described as nX =
(pX , cntX , idX , typeX) where cntX and pX designate the
total count of nodes within the sibling array and the position
of node in this array respectively and id and type represent
feature-fingerprint of the node. X designates the depth of
the node within the DOM tree.

B. Search algorithm

The search function is directly derived from the repre-
sentation of Descriptors. Although all parts of the function
were described in section V-A, it is due to write the function
here as a whole. Algorithm 1 shows a formal declaration of
the function written in pseudocode with syntax similar to
Python.

Algorithm 1 Node search
function find_node(tree, node):
cur = tree.root
for each n in node.path:
if length of cur.children > 0:

return None
cur = cur.children[pos]
if cur.type != n.type or

cur.id != n.id:
return None

if verify_node(cur, node) is not None:
return cur

else
return None

The first half of the algorithm was already described and
is therefore self-explaining. The second part implements ver-
ification of the result by the means of subtree-fingerprinting
as described in section IV-C. Note that the algorithm returns
empty result represented by the None value in case any of
the verification checks fails.

C. Alternative search algorithm

As an alternative approach we devised a modified ver-
sion of the search algorithm and Descriptor structure. This
modified version (designated as compact) tries to optimize



space required for descriptors by trimming some of them.
The algorithm trims the descriptor so it contains only the last
node having non-empty id attribute and all the followings
nodes. Using the id attribute is the only way to ensure the
root node is correctly found.

The search algorithm in this case is the same as the
one described in section V-B, the only difference is that
the reference to the tree is replaced by a reference to the
subtree rooted at the node found by depth-first search (DFS)
algorithm:

Algorithm 2 Compact search – finding root of a descriptor
function compact_find(tree, node):

subtree = dfs(tree, node.path[0].id)

return find_node(subtree, node)

The dfs function on the first line of the function com-
pact find implements the depth first search. That is one of
the few effective ways to find a node identified just by id
in DOM tree without having any more information about its
position. Our evaluation showed that breadth first search has
similar time-consumption characteristics but DFS is slightly
better.

VI. EXPERIMENTAL EVALUATION

We have implemented a program for experimental evalua-
tion of our design. It is a part of our original implementation
of Cluster-based page segmentation. It tests the previously
described method for finding the node as well as various
fingerprinting methods for error detection. The main part of
the lookup uses the position-based path. All possible com-
binations of id, type and count are tested as fingerprinting
error detection.

All the combinations are used in descending order of their
precision, starting with the “full combination” of all three
attributes, ending with the “empty combination” where none
of them is used (i.e. no check is in fact performed). Note
that more precise methods have higher risk of returning
false-negatives (filtering out correct nodes). For each node
in the path, the algorithm starts with the most restrictive
combination. If it fails (i.e. it indicates an error) the less
restrictive one is tried as a fall back. The same fall back
mechanism is then used repeatedly until no error is detected.
This approach allows us to track potential false-negatives.
Besides this error detection for every node on the path
we also use the final node verification via the subtree
fingerprinting.

Several sites were chosen for testing (see table I for
details). Most of them are news sites because the underlying
segmentation mechanism has the best results with them. It is
important to note that the choice of this segmentation mech-
anism doesn’t influence quality of the mapping algorithm,

site type mappings nodes avg. time
iDnes.cz full 5024 59499 7.6 ms
iDnes.cz compact 5024 19375 0.64 s + 4.7 ms

novinky.cz full 5130 40592 7.3 ms
novinky.cz compact 5130 17741 1.1 s + 5.7 ms

theregister.co.uk full 323 2044 30.7 ms
theregister.co.uk compact 323 752 0.5 s + 20.1 ms
telegraph.co.uk full 7140 66107 8.4 ms
telegraph.co.uk compact 7140 31736 0.7 s + 4.1 ms

penize.cz full 17537 177020 4 ms
penize.cz compact 17537 80500 0.2 s + 2.2 ms

Table I
STATS OF THE NODE IDENTIFICATION ALGORITHM

it just influences the choice of testing sites. A set of 1500
pages was inspected on each site. We measured primarily the
total number of mappings performed, and time consumption
of each search. Since these statistics were measured on
a per-template basis we had to put them together. The
final number of matches is a sum of all template matches
and the time is a weighted mean of time results of all
templates. The table I also contains one other column and
that is the number of nodes inspected by our error detection
mechanisms. This number also illustrates the space saved by
compact descriptors.

Both full paths and alternative compact paths are included
in the evaluation. For the compact method we separated time
of root search from the path search. Both BFS and DFS were
performed for each root node search and the lower time is
displayed in the table. These results indicate that the lookup
time of root paths makes these compact descriptors worse
by two orders of magnitude.

Accuracy was evaluated as well. All hits were made by the
most restrictive error detection: the combination of sibling
count, HTML element name and (if possible) id match.
That indicates no false-negatives are caused by the detection.
After each target node was found, subtree fingerprinting was
applied on it for verification of the result. The results were
verified with this method in 100% of cases. A subset of
tested pages (randomly selected 10% of the pages) were
additionally verified by human, again with 100% success.
That shows that the method doesn’t produce false positives.
Bottom line is that the method will very likely return the
node corresponding to the one on the pattern page, if such
node exists.

To sum up our results: full descriptors with the triple
check based on ID match, element name and sibling count
provides strong verification options while still being reason-
ably fast. That makes it the best approach of all considered
alternatives.



VII. CONCLUSION

In this paper we analyzed several methods for finding
nodes in DOM trees. These methods are evaluated and
then combined in order to utilize all their strengths. In our
evaluation we demonstrated that the final method is effective
and can be used in practical applications.

Besides finding the desired node, this work is focused
on error detection methods. The resulting error detection
method is quite strong, as proven by our evaluation. By
including error detection to the scope of this work we have
laid down foundation for the next research which should be
focused on methods for error correction.
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