
Generator of Synthetic Datasets for Hierarchical
Sequential Pattern Mining Evaluation

Michal Šebek, Jaroslav Zendulka

Department of Information Systems
Faculty of Information Technology

Brno University of Technology Technology
Brno, Czech Republic

Email: {isebek,zendulka}@fit.vutbr.cz

Abstract—Evaluation is an important part of an algorithm
design. Algorithms are typically evaluated on real-world and
synthetic datasets. Real-world datasets are appropriate for an
evaluation of algorithm properties in practice but it is not easy to
make changes only on a selected statistic property of the dataset,
e.g. number of input items. In contrast, generated synthetic
dataset simply allows changing any of statistic property of the
dataset with keeping all others statistic properties. In the paper,
we present a procedure for generation of sequence databases with
taxonomies for an evaluation of hierarchical sequential pattern
mining algorithms.

Index Terms—Sequence pattern mining, synthetic dataset gen-
erators, taxonomy.

I. INTRODUCTION

The problem of the generating synthetic dataset is closely
linked with the problem of data mining. Typically, when a
new data mining problem is formulated, scientists need to
verify their algorithms or methods on comparable problems.
Therefore there exists some benchmark real-world datasets
such as UCI1 or KDD Cup datasets2 ideal for comparing of
performance of algorithms. Besides these real-world datasets
there were described synthetic data sets generators which allow
to generate statistically similar data sets and which allow to
change only some statistic property of generated dataset.

A pattern mining [1] is in general important problem of data
mining. The task tries to recognize some patterns in the dataset
that occurs more frequently than others. The basic problem of
pattern mining is mining of frequent patterns and association
analysis [2]. Association analysis is abundantly used in market
basket analysis to discover habits of customers. Its results can
be employed for product recommendation. An example of such
a rule can be TV→DVD player telling that when customers
buy a TV it’s likely that a DVD player will appear in their
market basket too.

If the dataset contains an information that reflects that some
event occurs before another, than we get sequences. The time
extension of mining frequent patterns is a sequential pattern
mining [3]. Following an example before, the example of

1UCI Machine Learning Repository. URL: http://archive.ics.uci.edu/ml
2KDD Cup. URL: http://www.sigkdd.org/kddcup/index.php

sequence can be 〈TV DVD〉 which mean that a customer buys
TV and later he buys DVD.

More precisely, the itemset e is a non-empty subset of set
of all items I ∈ {i1, i2, . . . , iN}, itemset is called element
in the context of sequential patterns mining. A sequence is
defined as an ordered list of itemsets (elements) denoted as
S = 〈e1e2 . . . en〉. For the given sequence database D and
some sequence s, the support of sequence s is a percentage of
all sequences of D that contains s. Then the sequence patterns
are sequences which has support greater than given threshold
called minimum support. For formal definitions see [3].

We extended the sequential pattern mining by the con-
cept of hierarchical sequential patterns in [4]. The idea is,
that sequential patterns with items of different level has
a different support. For example, the sequence 〈LCD_TV
DVD_recorder〉is not frequent but sequence with generalized
items 〈TV DVD〉 could be. The generator presented in this
paper is designed to prepated testing datasets for this type of
data mining algorithms.

The related work is summarized in Section 2. The section
is focused on the IBM Quest Synthetic Data Generator. Basic
mathematic and statistics tools are defined in the Section 3.
Our method of the generator of synthetic dataset is described
in Section 4. We verify output datasets and performance of
generator in Section 5. Finally, the results are summarized in
Section 6.

II. RELATED WORK

A well-known generator of synthetic dataset is IBM Quest
Synthetic Data Generator [5]. The last available version sup-
ports three types of datasets: association rules, multi-level
association rules and sequential patterns. Parameters of each
type of dataset is shown in Table I.

Generator details for association rules datasets were de-
scribed in [2]. Firstly, the sizes of all transactions |D| are
initialized by picking random numbers from a Poisson dis-
tribution with mean equal to the generator parameter aver-
age transaction size |T |. Then, the algorithm generates all
potentially large (frequent) itemsets T by given parameters
number of maximal potentially large itemsets |L| and average
large itemset size |I| and assign each potentially large itemset

Table I
PARAMETERS OF IBM QUEST SYNTHETIC DATA GENERATOR FOR

ASSOCIATION RULES (AR), SEQUENTIAL PATTERNS (SP) AND
MULTI-LEVEL ASSOCIATION RULES (TAX).

Parameter AR SP Tax
Number of Transactions |D| |D| |D|
Avg. size of Transaction |T | |T | |T |
Avg. size of potentially large itemsets |I| |I| |I|
Number of potentially large itemsets |L| NI |L|
Number of items N N N
Avg. length of potentially large seqeucnes |S|
Number of potentially large seqeucnes NS

Number of roots |R|
Avg. taxonomy fanout f
Avg. depth of items in transactions d

with probability to be generated. Finally, each transaction if
filled by selected subset of itemsets from T . Futher, the
algorithms reflecting other real-world dataset properties such
as corruption of itemsets or inter itemset similarity. However,
it is impossible to set some important parameters such as
expected threshold of minimum support for large itemsets.
Instead of this, the support is inversely related with the |L|.
In the case of taxonomy generation, the only difference is that
items are firstly assigned to taxonomies. The contept of gen-
erating asscoation rules datasets was extended to generation
of sequence patterns datasets in [6].

Another approach for generating synhetic datasets is pre-
sented in [7]. Authors described a method for generating
datasets for clustering and outlier analysis combining distri-
bution propertied with transformation functions.

III. PRELIMINARIES

The basic concepts of dataset generators is strongly con-
nected with math, especially statistics [8]. In this section, we
describe mathematical tools used for generating of synthetic
datasets.

A random variable is a outcome number of a random
experiment. A discrete random variable is a random variable
with a finite or countably finite range. A continuous random
variable is a random variable with an interval of real numbers
for its range.

A. Discrete random variable

For a discrete random variable X with possible values
x1, x2, . . . , xn a probability mass function is a function:
f(xi) ≥ 0,

∑n
n=1 f(xi) = 1 and f(xi) = P (X = xi). The

cumulative distribution function F (x) of a discrete random
variable X is defined as F (x) = P (X ≤ x) =

∑
xi≤x f(xi).

The main measures for discrete random variable is mean and
variance. The mean E(X) of the discrete random variable
X is E(X) =

∑
x xf(x). The variance D(X) of X is

D(X) = E(X − E(X))2.
The distribution of a random variable reflects its measure

properties. In the paper, we use a discrete random distribution
called Poisson distribution. The random variable X that equals
the number of counts in the interval is a Poisson random

���

����

���

����

��� ��	�

��	�

�

����

���

� � �� �� �� ��

Figure 1. Poisson random variables with different parameters λ = {2, 5}.

variable with parameter 0 < λ which probability mass function
f(x) is

f(x) =
e−λλx

x!
x = 0, 1, 2, . . . (1)

The Poisson random variable X with parameter λ has fol-
lowing mean and variance: E(X) = λ, D(X) = λ. We denote
a random X variable with Poisson distribution with parameter
λ as Po(λ). The examples of Poisson random variables with
parameters 2 and 5 are shown on Fig. 1. In practice, using of
this distribution of random variable guarantees that the number
λ will be generated with the highest probability wrt. E(X) and
D(X).

B. Continuous random variable

For a continuous random variable X , a probability density
function is a function f(x) ≥ 0,

´∞
−∞ f(x)dx = 1 and P (a ≤

X ≤ b) =
´ b
a
f(x)dx. A cumulative distribution function of a

continuous random variable X is defined as F (X) = P (X ≤
x) =

´ x
−∞ f(u)du. The mean E(X) of the discrete random

variable X is E(X) =
´∞
−∞ xf(x)dx. The variance D(X) of

X is D(X) =
´∞
−∞(x− E(X))2f(x)dx =

´∞
−∞ x2f(x)dx−

E(X)2.
In this part, we will describe next distribution used by

our generator. A continuous uniform random variable X is a
continuous random variable with probability density function

f(x) =
1

b− a
a ≤ x ≤ b (2)

The continuous uniform random variable has following
measures: E(X) = (a+b)

2 , D(X) = (b−a)2
12 . The example of

the continuous random variable with parameters a = 0, b = 1
is shown on Fig. 2.

C. Taxonomies

Taxonomy structure is a rooted tree. A rooted tree R =
(V,E) is a tree with one vertex r ∈ V chosen as its root. We

���

���

���

�

��� �	
�����

�

���

���

���� ���� ���� ��� ��� ��� ��� ��� ��� ��� ���

Figure 2. Uniform distribution on interval (0, 1).

refer to a vertex of a rooted tree as a node. For each node
v in a tree, let UP (v) be the simple unique path from v to
r. If UP (v) has exactly k edges then the level of v is k for
k ≥ 0. The level of the root is 0. The height of a taxonomy
is the greatest level in the tree. The parent of v 6= r, formally
parent(v), is neighbour of v on UP (v). The parent of r is
not defined. We say if v is the parent of u then u is a child
of v. A leaf is a node having no child [9].

Let τ be a nonempty set of taxonomy structures such that
nodes in taxonomy structures represent items and each item
i ∈ I appears in exactly one taxonomy structure R ∈ τ . Notice
that we do not require that items need to be only leaf nodes.

IV. GENERATOR OF HIERARCHICAL SEQUENCES

In this section, our algorithm for generating hierarchical
sequential datasets is described. We specify the set of set-
table parameters and the process of generating of the dataset
(referred simply as generator).

A. Parameters of the Generator

The list of parameters of our generator is in the Table
II. The parameters different to generator presented in [2],
[6] are in bold. The main difference is that our generator
allows to specify expected (minimum) threshold SuppS for
strong sequences in the output dataset. Note, that the dataset
must have transactions of enough average length othervise the
support will not be abide (e.g. strong sequences of length |S|
cannot have support 60% if the average length of sequences
is equal to |S|).

Next differences are in the definition of taxonomies. Num-
ber of children of each taxonomy node is counted wrt. to the
parameters Rd, |R| and N (details are presented in the next
subsection). The level of items inside the strong sequences and
sequences are managed by parameter PRch, respectively PSch.

B. The method of the generator

The generator works basically in two phases:

Table II
PARAMETERS OF OUR HIERARCHICAL SEQUENCE GENERATOR.

Parameter H-SP
Number of transactions (sequences) |D|
Avg. size of transaction (sequence) |T |
Avg. size of strong itemsets |I|
Number of items N
Avg. length of strong sequences |S|
Number of strong sequences NS

Avg. support of strong sequences SuppS
Number of taxonomies (roots) |R|
Avg. taxonomy height Rh

Probability of children (general items) P I
ch

Probability of children (items of strong sequences) PS
ch

1) preparation of the result model – in this phase, all the
strong sequences with the probability of occurrence are
prepared,

2) generating of the output dataset – this phase generates
sequences into the output sequence database.

In following paragraphs we will describe each step of gener-
ator in more details.

1. Create Hierarchies. The very first step of the generator
is to create |R| hierarchies and the set of all possible items
in the dataset. The generator assign to each each taxonomy
R a count of items of taxonomy NRi = Po(|N ||R|). The sum
of all items Nrand =

∑
Ri∈τ NRi

generated by the random
generator is probably not equal to required number of items
N , therefore the numbers NRi

are normalized from interval
1, . . . , Nrand to interval 1, . . . , N . Than, the optimal number
of children ch of each node is evaluated expecting the tree R
is a full ch-ary tree. Note, that the total count of nodes in the
full ch-ary tree of height Rh is NRi

≈ (chRh+1−1)/(ch−1).
Finally starting with a root nodes R, the number of Po(ch)
children are generated for each tree node recursively.

2. Generate hierarchical sequential patterns model. The
result sequential patterns, which would get a data mining algo-
rithm applied on the dataset, are are prepared in this step. The
generator prepares NS sequences and initializes theirs lengths
by numbers get from a random variable with distribution
Po(|S|). Then, elements and items of sequences are generated.
Firstly, the generator randomly selects the taxonomy Ri. Then
the concrete item from Ri is selected randomly by top-down
traversing a tree. Next child-node is selected with probability
P Ich during traversing if any child exists, otherwise actual item
is added into the last element of sequence. If the number
of items in actual element reach the number get by Po(|I|),
new element added into the sequence. Finally, each sequential
pattern is associated with its probability of selection.

3. Generate the result dataset. The generator generates |D|
dataset sequences. The length of each dataset sequence is set
to random number Po(|S|). The dataset sequence can contain
items of some sequential pattern or a noise (random items).
While dataset sequence is being generating, it is decided, if the
next generated item should be noise or next sequential pattern.
The probability of generating sequential pattern is related with

the support of sequence – if the support is higher, then the
noise probability should be lower. The probability of noise in
our generator is PNOISE = NS∗SuppS∗|S|

|T | . The 1− PNOISE
probability ensures reservation of necessary number of items to
reach sufficient support of sequential patterns. The sequential
pattern to be generated is selected randomly wrt. probabilities
of sequential patterns. If the generator process of generating
sequential pattern is started, the items of the sequential pattern
are copied into the sequence. If the actual selected item has
any child, the item is replaced by its child with probability
P Ich (respectively with PSch for items of patterns) recursively.
This allows generate various hierarchical sequence datasets.
In addition, the items can be interleaved with noise of by the
gap probability or the item can be replaced randomly by noise
according to the corruption level.

V. EXPERIMENTS AND VERIFICATION

VI. CONCLUSIONS

In this paper

ACKNOWLEDGEMENT

This work has been supported by the research programme
TAČR TA01010858, BUT FIT grant FIT-S-11-2, by the re-
search plan MSM 0021630528, and the European Regional
Development Fund in the IT4Innovations Centre of Excellence
project (CZ.1.05/1.1.00/02.0070).

REFERENCES

[1] J. Han and M. Kamber, Data mining: concepts and techniques. Elsevier,
2006.

[2] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,”
in Proc. of 20th Intl. Conf. on VLDB, 1994, pp. 487–499.

[3] ——, “Mining sequential patterns,” in Data Engineering, 1995. Proceed-
ings of the Eleventh International Conference on, 1995, pp. 3–14.

[4] M. Šebek, M. Hlosta, J. Kupčík, J. Zendulka, and T. Hruška, “Multi-
level sequence mining based on gsp,” Acta Electrotechnica et Informatica,
no. 2, pp. 31–38, 2012.

[5] IBM, “Ibm quest synthetic data generator,” 2010. [Online]. Available:
http://sourceforge.net/projects/ibmquestdatagen/

[6] R. Agrawal and R. Srikant, “Mining sequential patterns,” IBM Research
Division. Almaden Research Center, Tech. Rep.

[7] Y. Pei and O. Zaïane, “A synthetic data generator for clustering and outlier
analysis,” Department of computing Science, University of Alberta, Tech.
Rep.

[8] D. C. Montgomery and G. C. Runger, Applied Statistics and Probability
for Engineers, 4th ed. John Wiley & Sons, May 2006.

[9] S.-I. Nakano, “Efficient generation of plane trees,” Inf. Process. Lett.,
vol. 84, no. 3, pp. 167–172, Nov. 2002.

