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Abstract. The paper is a part of student cooperation in AKTION project (Austria-Czech). Theoretical work on the numerical
solution of ordinary differential equations by the Taylor series method has been going on for a number of years. The simulation
language TKSL has been created to test the properties of the technical initial problems and to test an algorithm for Taylor
series method [1].

The Residue Number System (RNS) has great potential for accelerating arithmetic operation, achieved by breaking
operands into several residues and computing with them independently.
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INTRODUCTION

Methods of numerical solutions of ordinary differential equations (ODEs) have been studied since the end of the
last century. A large number of integration formulas have been published especially for solving special systems of
differential equations. In general, it was not possible to choose the best method but for a subclass of tasks defined by
similar properties the most suitable method could always be found. "Modern Taylor Series Method" has proved to be
both very accurate and fast. It is based on a direct use of the Taylor series.

The Modern Taylor Series Method used in the computations increases the method order ORD automatically, i.e. the
values of the Taylor series terms are computed for increasing order until adding the next term does not improve the
accuracy of the solution.

The main problem connected with using Taylor series is the need to generate higher derivatives. This is in fact the
reason why Runge-Kutta formulas of various orders have been used. If we succeed, however, to obtain the terms with
higher derivatives, the accuracy of calculations by Taylor series method is extreme (it is in fact only limited by the
type of the arithmetic unit used). This is typical, in particular, of the solution of the technical initial problems.

Technical initial problems are defined as initial problems where the right-hand side functions of the system are those
occurring in the technical practice, that is functions generated by adding, multiplying and superposing elementary
functions. Such systems can be expanded into systems with polynomials on the right-hand sides of the equations. In
such a case the Taylor series terms can easily be calculated.

The Residue Number System (RNS) has great potential for accelerating arithmetic operation, achieved by breaking
operands into several residues and computing with them independently.

Many of the fundamental difficulties with RNS arithmetic have been overcome (like fast conversion from RNS to
binary [2],[3] or comparsion [4]) and RNS could offer a good accelaration of computation. Most implementations are
based on FPGA and are used for error detection [5], FIR filters [6], cryptography [7] and another fields of electronics.
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AUTOMATIC TRANSFORMATION

In this article we are concerned with initial problems described by autonomous systems of differential equations. We
can often observe that, if the functions on the right-hand sides of the autonomous systems of differential equations are
of a particular type frequently encountered in engineering applications, a sequence of substitutions can be found that
transforms the original system into a new system with polynomials on the right-hand sides [8].

As an example a simple transformation of an initial problem

y′ = y+ sin(t) y(0) = y0 (1)

is presented.
New initial problem after the transformation can be written in the form

y′ = y+ y1 y(0) = y0 (2)
y′1 = y2 (3)
y′1 = y2 y1(0) = 0 (4)
y′2 = −y1 y2(0) = 1 (5)

Coresponding block diagram is in Fig. 1. Fig. 1 represents a parallel cooperation of numerical integrators.
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FIGURE 1. Corresponding block diagram

Basic demonstration of the elementary function transformation of y1 = sin(t) follows.

y′1 = cos(t) y1(t0) = sin(t0)
y2 = cos(t)
y′2 = −sin(t) y2(t0) = cos(t0)
y′2 = −y1

Higher derivatives are

y′′1 = (y′1)
′ = (y2)

′ = y′2 =−y1

y′′′1 = (y′′1)
′ =−y′1 =−y2

Elementary function transformation is based on the identity of the Taylor series of functions sin(t) and y1(t):

sin(t +h) = sin(t)+hsin′(t)+ h2

2! sin′′(t)+ h3

3! sin′′′(t)+ · · ·=
= sin(t)+hcos(t)+ h2

2! (−sin(t))+ h3

3! (−cos(t))+ · · ·

y1(t +h) = y1(t)+hy′1(t)+
h2

2! y′′1(t)+
h3

3! y′′′1 (t)+ · · ·=
= y1(t)+hy2(t)+

h2

2! (−y1(t))+
h3

3! (−y2(t))+ · · ·=
= sin(t)+hcos(t)+ h2

2! (−sin(t))+ h3

3! (−cos(t))+ · · ·
Of course, Modern Taylor Series Method must be used for computation of the new (transformed) intial problem -

using as many as possible Taylor series terms.
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THE IDEA OF PARALLEL COMPUTATIONS

This paper concentrates on large systems of numerical integrators. The idea of this approach comes from analogue
methods of computations. Analogue methods are basically parallel methods and their analysing shows that independent
parallel cooperation of multiple processors may be implemented by applying differential calculus. Using analogue
methods, independent parallel cooperation of microprocessors is going to be effective if each microprocessor is going
to be numerically integrating.

The algorithms of parallel cooperation of numerical integrators can be derived from one step of numerical solutions.
This parallel cooperation of independent numerical integrators may be completed using arbitrary chosen numerical
integration formula including Euler’s method, 2nd, 3rd and 4th order Runge-Kutta method, Taylor series method etc.

INDEPENDENT COMPUTATIONS IN NUMERICAL INTEGRATORS

As an example, parallel cooperation of solution of

y′′+ y = 0 y(0) = 1, y′(0) = 0 (6)

is presented.
The well known transformation of the 2nd order differential equation into a set of two 1st order differential equations

is in (4),(5)
The equations for independent calculation of the first step of differential equation (6) using Euler (E), Runge-Kutta

(R-K of the 2th order, 4th order) integration formulas for independent integrators Y1, Y2 (Fig. 1) are shown in Tab. 1.

TABLE 1. Formulas for solving 2nd order differential equation (6)

E y1,0 = y1(0)

K0y1,0 = h(y2,0)

y1,1 = y1,0 +K0y1,0

R-K y1,0 = y1(0)

2nd order K0y1,0 = h(y2,0)

K1y1,0 = h(y2,0 +K0y2,0)

y1,1 = y1,0 +
K0y1,0

2 +
K1y1,0

2

4th order y1,0 = y1(0)

K1y1,0 = h(y2,0 +
K0y2,0

2 )

K2y1,0 = h(y2,0 +
K1y2,0

2 )

K3y1,0 = h(y2,0 +K2y2,0)

y1,1 = y1,0 +
K0y1,0

6 +
K1y1,0

3 +
K2y1,0

3 +
K3y1,0

6

E y2,0 = y2(0)

K0y2,0 = h(−y2,0)

y2,1 = y2,0 +K0y1,0

R-K y2,0 = y2(0)

2nd order K0y2,0 = h(−y1,0)

K1y2,0 = h(−(y1,0 +K0y1,0))

y2,1 = y2,0 +
K0y2,0

2 +
K1y2,0

2

4th order y2,0 = y2(0)

K1y2,0 = h(−(y1,0 +
K0y1,0

2 ))

K2y2,0 = h(−(y1,0 +
K1y1,0

2 ))

K3y2,0 = h(−(y1,0 +K2y1,0))

y2,1 = y2,0 +
K0y2,0

6 +
K1y2,0

3 +
K2y2,0

3 +
K3y2,0

6

There are following mathematical operations for computations: multiplication,addition, subtraction and divison.
Addition in hardware is typically done in adders, multiplication in hardware can be done by either serial or parallel
way.

A very promising way is to apply arithmetic operations in modular arithmetic. As an example a multiplication in
modular arithmetics is presented.

MULTIPLICATION IN MODULAR ARITHMETIC

Two mostly used algorithms for computation modular multiplication exploit binary shifts:

• Barrett reduction [9] requires the precomputation of the quantity μ = �b2k/m� (b is base, k is number of bits, m
is modulo). The main idea of algorithm is based on relation �(x/bk−1)(b2k/m)(1/bk+1)�, where x = (A ·B).
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• Montgomery multiplication [10] which is based on transformation to modulo space and back to standard repre-
sentation.

Note: A new algorithm of modular computation is just uder the development at the Brno University of Technology.

CONCLUSIONS

A simple transformation of an initial problem was presented in the paper. Similar constructions could be created for
all elementary functions, such as exp, tg, cotg, ln, sinh, . . . .
The idea above requires software capable of automatically performing the decomposition of the right-hand sides of
ordinary differential equations. This new approach has been implemented in a simulation language TKSL. In fact, the
well-known rules of differential and integral calculus have been used.

The idea of a very special program for numerical solution of ODEs based on floating point RNS is presented, too.
As a result RNS, exact solution and high speedup factor using parallel procesors could be obtained.

Detailed information will be given during the ICNAAM 2013 conference.
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