
2-D Discrete Wavelet Transform Using GPU

Michal Kucis David Barina Michal Kula Pavel Zemcik
Faculty of Information Technology

Brno University of Technology
Czech Republic

Abstract—With the wide spread of the discrete wavelet
transform, the need for its efficient implementation becomes
increasingly important. This work presents an improved version
of an algorithm suitable to compute the 2-D discrete wavelet
transform on GPU. Depending on the GPU platform, it is suitable
to split the 2-D transform computation into separated horizontal
and vertical passes. Considering the horizontal passes, we have
examined and chosen the best performing method among the
already known ones. Furthermore, we have adapted this method
for an existing algorithm computing the vertical transform pass.
This step helps to reduce several synchronizations and arithmetic
operations in the utilized computation scheme. For large data,
the proposed vertical method achieves speed-up about 30 %
compared to the current state of the art methods. In contrast
to previously published works, the presented approach is built
on the OpenCL parallel programming framework.

I. INTRODUCTION

The discrete wavelet transform (DWT) is a mathematical
tool which is suitable to decompose discrete signal into several
frequency components. It is frequently used as a basis of so-
phisticated compression algorithms. This paper focuses on the
CDF 9/7 wavelet which is often used for image compression
(e.g., JPEG 2000 standard). Responses of this wavelet can be
computed by a convolution with two FIR filters, one with 7 and
the other with 9 taps. In case of two-dimensional transform,
the transform can be realized using a separable decomposition
scheme. In this paper, we present several algorithms for 2-D
transform computation suitable for modern GPUs.

In present personal computers, programmable graphics
cards are almost always found. OpenCL is a framework for
programming of heterogeneous computer systems, e.g. modern
graphics processing units (GPU) found in personal computers,
servers or mobile devices. When compared to CUDA frame-
work, CUDA is limited to Nvidia hardware while OpenCL is
not platform dependent. The performance analysis [1] remarks
that OpenCL offers similar performance to CUDA in general
when compared fairly.

Several algorithms for the 2-D DWT computation using
GPU have been published in the last decade. Some of them
used the pixel shader through the Cg programming language.
These were able to take advantage of SIMD operations offered
by shader units. Other algorithms were built over the CUDA
framework. We are not aware of any approach that use the
OpenCL framework.

In this paper, we present several algorithms for 2-D
DWT computation focusing on the parallel capabilities of
programmable GPUs. Our implementation is based on the
OpenCL framework. All the methods presented in this paper
are evaluated using Nvidia GeForce GTX 580 graphics card

equipped with 3072 MiB RAM and 512 streaming processors
and Nvidia Quadro NVS 4200M graphics card equipped with
1024 MiB RAM and 48 streaming processors. Only the
forward transform is evaluated since the inverse one has a
symmetric nature and performs almost identically. We have
also evaluated only one level of the DWT decomposition as the
others again perform almost identically. In the chosen memory
layout, the sub-bands are interlaced.

The rest of the paper is organised as follows. Related Work
section summarizes the state of the art, especially existing GPU
implementations. Proposed Approach section reviews signifi-
cant algorithms and presents the proposed method. Finally,
Conclusion section summarizes the paper and outlines the
future work.

II. RELATED WORK

The discrete wavelet transform [2] (DWT) is a mathemat-
ical tool suitable to decompose a signal into low-pass and
high-pass frequency components. Such a decomposition can
be performed at several scales resulting in a multi-scale signal
representation. It is often used as a basis for sophisticated com-
pression algorithms. A basis of such a transform consists of
dilated and shifted wavelets. The Cohen-Daubechies-Feauveau
[3] (CDF) 9/7 wavelet is a popular one as used, e.g., in JPEG
2000 image compression standard. One level of the discrete
wavelet transform can be computed using the convolution
with two mirror filters (a high-pass and a low-pass one).
According to the total number of arithmetic operations, the
more efficient computational scheme – the lifting – introduced
by W. Sweldens in [4] exists. Using this scheme, the whole
signal can be transformed in-place. In [5], I. Daubechies and
W. Sweldens factored CDF 9/7 wavelet into four successive
lifting steps employing short symmetric two-taps FIR filters.

For understanding of the following text, it may be im-
portant to understand the lifting scheme in more detail. Any
discrete wavelet transform with finite filters can be factored
into a finite sequence of N pairs of predict and update
convolution operators Pn and Un. Each predict operator Pn

corresponds to a filter p
(n)
i and each update operator Un to a

filter u
(n)
i . These operators alternately modify even and odd

signal coefficients.

Pn(z) =

gn∑
i=−ln

p
(n)
i z−i (1)

Un(z) =

fn∑
i=−mn

u
(n)
i z−i (2)



The discrete wavelet transform was also extended [6] to
two (and more) dimensions. Specifically, the classical 2-D
DWT is separable to series of 1-D transforms performed
successively on rows and columns (or vice versa). For various
requirements, different strategies of 2-D DWT implementa-
tion were developed. For example, the simplest row-column
methods transform the whole image at once. Furthermore, the
block-based methods transform the image using smaller blocks
utilizing the row-column method inside. Finally, the pipelined
methods such as [7] transform the image using column strips
while employing the sliding window on them. Inside this
window, the row and column transforms are combined together
in a way that a vertical transform is interleaved on multiple
columns. This concept was also extended to whole image
resulting into the single-loop approach [8].

Implementation of 2-D DWT was also studied on modern
programmable graphics cards. In this scenario, the input image
have to be initially transferred from main memory into memory
on the graphics card. Similarly, the resulting coefficients have
to be transferred back.

OpenCL is a framework for general-purpose parallel pro-
gramming across multiple device types (like GPUs, CPUs,
etc.) and platforms. In this framework, a platform independent
executable program is called the kernel. The kernel is executed
on required number of threads (work-items) that identify their
data and control flow by their N-dimensional indices. These
threads are organized into work-groups with identical user-
defined number of threads. The threads in such a group can
cooperate with each other through local memory and barriers.
Threads executing a kernel have access to: global memory –
device memory that is accessible to all threads (like main GPU
memory); local memory – small memory region that is shared
by threads in work-group; constant memory – small memory
that remains constant during the kernel execution; private
memory – the private thread memory. Optionally, a device
can support additional functionalities like textures, double type
operations, etc.

In recent GPU architectures, the GPU contains the thread
scheduler, multiprocessors, L2 cache and a memory controller.
The thread scheduler allocates as much work-groups to mul-
tiprocessors as their resources allow. Thus, the resources like
local memory size should be minimized. The multiprocessor
contains blocks of processors, warp schedulers, local memory,
load store units, etc. The allocated work-groups created by
OpenCL framework is then divided into warps (hardware
blocks with 32 threads). Execution instructions of these warps
on blocks of processors are provided using warp schedulers
dynamically. Due to fact that each instruction is executed
on whole warp (half-warp on some architectures) at once,
recommendations for ensuring good performance of memory
operations exist. Global memory indices in warp should be co-
alesced. Otherwise, addition memory operations are executed.
The local memory is organized into banks. Access to same
banks from warp causes serialization. The serialization of local
memory operations and uncoalesced global memory access can
cause a performance degradation.

In [9] and [10], Ch. Tenllado et al. adapted the discrete
wavelet transform on pixel (fragment) shaders of GPU. They
used the Cg programming language and mapped the input im-
age into textures. The authors compared convolution-based and

lifting scheme implementations of CDF 9/7 discrete wavelet
transform. The pixel processors support SIMD operations (4-
element wide in this case). Using the convolution, the authors
used a rearrangement step in order to allow to filter two
image rows/columns in parallel. The results of this comparison
speaks slightly in favor of convolution scheme. Moreover,
the authors compared these results with corresponding CPU
implementation using the CDF 9/7 wavelet. Ignoring CPU-
GPU data transfer times, the GPU version significantly out-
performs the CPU counterpart. Finally, the authors state that
the data transfers between the CPU and the GPU are the
major bottleneck. However, these works are now obsolete as
an instruction set of the modern GPUs does not contain the
real SIMD instructions.

The other authors attempted to take advantage of the GPU
using the CUDA programming model in [11], [12] or [13]. In
[11], the convolution scheme is applied on each row. Then, the
image matrix is transposed and the convolutions are applied
on each column. Finally, the image is transposed back. The
authors point out that important reductions of execution time
are obtained for the CUDA version even when they take into
account the time needed to copy data and results to and from
the GPU memory. However, their CPU implementation seems
to be naive compared to the state of the art methods, e.g.
[8]. The latter two papers are focused on CDF wavelets and
the lifting scheme. Their implementations splits the image
into small tiles and performs several independent transforms
on each of them. Moreover, in [13], another implementation
performs the horizontal transform on the whole image. The
horizontal transform is followed by transposition and by verti-
cal filtering. The authors proposed omission of mutual thread
synchronization at the cost of loading of more input pixels
per each thread. Furthermore, the author of [12] consider
the coalesced memory accesses to be crucial for a transform
performance.

In [14] and [15], V. Galiano et al. compared several CUDA
implementations of DWT. They used the CDF 9/7 wavelet and
convolution-based algorithm on entire rows/columns. Their
fastest implementation uses the coalesced memory access.

In [16], W. J. Laan et al. accelerated the Dirac video
codec using the CUDA platform. Their DWT implementation
is based on the lifting scheme. The authors highlight the
coalesced memory access. In the vertical filtering, they divided
the image into vertical strips and used a sliding window
technique within each strip. However, this paper does not
discuss the implementation of DWT in detail. In [17], W. J.
Laan et al. provided a detailed analysis of the DWT imple-
mentation using the lifting scheme on the CUDA platform.
They focused on several wavelets (including CDF 9/7) and
used a sliding window approach within strips. Their design
is a hybrid method between the row-column and block-based
methods. Moreover, they implemented the methods for 2-D
and 3-D data and compared to optimized CPU counterparts.
Also here, the authors point out the importance of coalesced
memory accesses.

As it can be seen, the problem of efficient 2-D discrete
wavelet transform implementation on GPU was widely studied.
Despite this fact, we see a gap in existing implementations. In
the section below, we propose several improvements that lead
to additional speedups.



III. PROPOSED APPROACH

In this section, several existing algorithms for the discrete
wavelet transform computation are analysed. Initially, algo-
rithms for horizontal pass of the transform are presented. For
further experiments, the best performing algorithm for this pass
is adopted. Furthermore, a vertical pass of the transform is
discussed. Here, we have proposed several improvements over
the state-of-the-art algorithm yielding to an additional speed-
up.

In all of the algorithms below, two separated passes needed
to compute the 2-D transform are considered. These are
referred here to as a horizontal and a vertical pass. In general,
both of these passes can share intermediate results between
threads that access adjacent data. However, this sharing in-
troduces some requirements for their mutual synchronization.
Another approach might be to not share the intermediate results
at all for the price that some calculations become redundant.
In all cases, the coalesced memory access was used wherever
it was possible.

A. Horizontal Pass

At the beginning, we have focused on an algorithm for
computation of the horizontal pass. We have implemented and
compared plenty of existing algorithms. The most prominent of
these algorithms are presented below. All of the implemented
algorithms use up to 256 threads for each work group.

Considering the horizontal pass, it can generally consist of
the following steps. Firstly, transfer a data row from the global
memory to the local memory. Secondly, perform the horizontal
transform using data in the shared memory. Thirdly, transfer
the computed row of result from the shared memory to the
global one. Note that the local memory is shared for the group
of threads. An access to this local memory is much faster, but
it is limited by relatively small size and it is shared just along
one single work group.

Considering the first relevant algorithm, each thread in the
work group computes a pair of the output coefficients by
the convolution scheme. Each thread loads nine coefficients
from the local memory and computes a corresponding pair
of resulting coefficients (responses to the FIR filters). The
implementation was earlier described in detail in [14], [15].
We refer to as Horiz-Galiano2011 in this paper.

The second algorithm uses lifting scheme instead of con-
volution. In this case, every thread loads nine coefficients from
local memory and computes all the required computation by
itself. No intermediate results are shared between threads. This
implementation was described in [13]. We will further denote
it as Horiz-Blazewicz2012-1. The data-flow graph for a single
thread is shown in Fig. 1.

The other algorithm computes 4 pairs of the output coeffi-
cients instead of one by each thread. This algorithm employs
the lifting scheme which was described in [13]. It is further
denoted as Horiz-Blazewicz2012-4. The algorithm does not
share the intermediate results between threads and does not
require synchronization barriers. The implementation requires
to load 15 coefficients from the local memory. A group of
threads loads and process a single row of the input image.

α

β

γ

δ

Fig. 1. Lifting scheme of CDF 9/7 wavelet showing the calculation performed
by a single thread (dotted and dashed). No intermediate results are shared
between threads. No synchronization is required.

α

β

γ

δ

Fig. 2. Lifting scheme of CDF 9/7 wavelet showing the calculation performed
by a single thread (dotted and dashed). Intermediate results are shared between
neighbouring threads. Synchronization is required.

The last of the implemented algorithms uses the lifting
scheme. The algorithm was described in [16], [17] and it is
referred to as Horiz-Laan2009 here. There is no redundant
computation considering different threads. However, this im-
plementation requires additional synchronizations in the lifting
steps. The algorithm works in the following way. Each of the
threads loads three input coefficients from the local memory
and performs elementary lifting step. Then, neighbouring
threads exchange the intermediate results. These two steps are
repeated further. The data-flow graph for a single thread is
shown in Fig. 2.

The previously described algorithms are limited to a certain
resolution of the input image. One can compute the transform
of the input image up to 512 pixels wide if the maximum
number of threads in the work group is 256 and if two output
coefficients are computed by a single thread. To overcome this
limitation, the algorithms are extended in the following way.
A group of threads processes the left-most coefficients in a
row from the global memory, computes horizontal transform
and then saves results into the global memory. The same group
processes a following block of coefficients, where previously
loaded and processed coefficients are reused. This approach
reduces a global memory access and some of the redundancy.

We have implemented and evaluated all of the algorithms
described above. The results of the comparison are plotted in
Fig. 3 and 4. Several measurements are listed in the TABLE I
and II. The Blazewicz2012-4 algorithm proved to be the fastest
one across a whole range of image sizes. This result is caused
mainly by maximizing a number of arithmetic operations by
using each thread as pointed in [13].



10.0ps

100.0ps

1.0ns

10.0k 100.0k 1.0M 10.0M 100.0M

ti
m

e
 /

 p
ix

e
l

pixels

Horiz-Galiano2011
Horiz-Laan2009

Horiz-Blazewicz2012-1
Horiz-Blazewicz2012-4

Fig. 3. GeForce GTX 580. Horizontal pass algorithms.

100.0ps

1.0ns

10.0ns

10.0k 100.0k 1.0M 10.0M 100.0M

ti
m

e
 /

 p
ix

e
l

pixels

Horiz-Galiano2011
Horiz-Laan2009

Horiz-Blazewicz2012-1
Horiz-Blazewicz2012-4

Fig. 4. NVS 4200M. Horizontal pass algorithms.

B. Vertical Pass

In this part, we focus on the vertical pass of the transform.
The simplest approach is to use same algorithms that are
used in the horizontal pass but transform columns instead of
rows. However, such an approach does not consider coalescent
access to the global memory that consequently causes a
performance degradation. W. J. Laan et al. [17] states that
this approach is 10× slower than more complex solution, that
will be described later.

A more complex approach was presented in [13]. Initially,
this approach transposes input data. After that, the unchanged
horizontal pass algorithm is performed. Finally, the resulting
data are transposed again. We have implemented this algorithm
in the following way. The horizontal pass Blazewicz2012-4
algorithm is used in the heart of the algorithm. We refer
this approach to as Vert-Blazewicz2012. This process uses
fast coalescent access to the global memory and creates lot
of working groups that help to utilize computing resources.
On the other hand, every transposition requires a separate
kernel run. This causes access to global memory for 6−3×
for reading and 3× for writing per every element of the data.

Furthermore, we have adopted a vertical transform algo-
rithm presented in [16]. This original algorithm is denoted
as Vert-Laan2009. The algorithm divides the input image to
multiple vertical strips. A width of the strip is based on the
size of the successive bytes defined by coalescent memory

algorithm 1 Mpel 10 Mpel
Horiz-Galiano2011 87.1 81.9
Horiz-Laan2009 103.0 80.6
Horiz-Blazewicz2012-1 95.4 89.3
Horiz-Blazewicz2012-4 56.0 56.7

TABLE I. GTX 580. HORIZONTAL PASS. PICOSECONDS PER PIXEL.

algorithm 1 Mpel 10 Mpel
Horiz-Galiano2011 1173.8 1020.2
Horiz-Laan2009 1389.9 1142.2
Horiz-Blazewicz2012-1 1212.2 1108.4
Horiz-Blazewicz2012-4 700.7 800.8

TABLE II. NVS 4200M. HORIZ. PASS. PICOSECONDS PER PIXEL.

access. We use width of the strip of 32 coefficients. Every
strip is processed by a single work-group of threads. Inside of
such a strip, a sliding window approach is used. The width
of the sliding window is same as the width of the strip (32
coefficients), the height of the window is 20 coefficients. The
algorithm works as follows:

1) The window is placed on the top of the strip, 17
rows are copied from the global memory to the
local one. The rows in the window are processed
by lifting scheme, where result values are in first
13 rows and 4 rows contain intermediate results.
The result values are copied into the global memory,
intermediate results stay in the local one.

2) The sliding window is moved by 16 rows down.
Missing rows (not in the local memory) are loaded
from the global memory.

3) In the window, the lifting scheme is performed .
4) The results are moved to the global memory, the rows

with intermediate results are still in the local memory.
5) This process is repeated until the window reach the

border of the strip. The last remaining section is
processed by a similar process like previous one.

The above described approach performs the lifting computation
using barriers after each lifting step. This algorithm is similar
to the horizontal pass Horiz-Laan2009 described before. On
the plus side, this approach reduces access to the global
memory just for one read and one write per each element.
On the negative side, the algorithm creates a small count of
work-groups, which can be problematic at the modern GPU
with many of multiprocessors.

Furthermore, we have experimented with a different adap-
tation of this algorithm. As a result, we have created a faster
adaptation. The core of our proposed approach is the same
as the previously described algorithm presented in [16]. As in
the previous case, we have used the sliding window method
to process entire tile by a single work-group. The Horiz-
Blazewicz2012-4 algorithm proved to be the fastest one con-
sidering the horizontal pass. Therefore, we have adapted this
approach to perform the lifting scheme in the vertical direction.
This approach requires extension of the sliding window height
to process 8 coefficients by a single thread in one particular
window position. Consequently, the approach requires the
sliding window of 71 rows height. No intermediate results are
passed between lifting steps nor different window positions.
In the first window position (on the top of strip), 64 rows are
computed. These values are computed by the same scheme as
the one used in Horiz-Blazewicz2012-4. It is required to load



67 rows from global memory to the local one (the window).
After processing and moving the results to the global memory,
the window is moved by 64 rows down to process additional
64 rows. It is required to have 71 rows in the window to
perform the transform correctly. The most bottom part of the
strip is processed by separate algorithm to process borders
correctly. This approach eliminates part of the synchronisations
at the cost of adding some redundant arithmetic operations
and increasing the local memory consumption. We refer this
adaptation such as Vert-Proposed.

10.0ps

100.0ps

1.0ns

10.0ns

10.0k 100.0k 1.0M 10.0M 100.0M

ti
m

e
 /

 p
ix

e
l

pixels

Vert-Laan2009
Vert-Blazewicz2012

Vert-Proposed

Fig. 5. GeForce GTX 580. Vertical pass algorithms.

100.0ps

1.0ns

10.0ns

10.0k 100.0k 1.0M 10.0M 100.0M

ti
m

e
 /

 p
ix

e
l

pixels

Vert-Laan2009
Vert-Blazewicz2012

Vert-Proposed

Fig. 6. NVS 4200M. Vertical pass algorithms.

Finally, we have evaluated all of the vertical pass algo-
rithms described in this section. The results are plotted in Fig. 5
and 6. Several measurements are listed in the TABLE III and
IV. In all cases, medians of ten measurements are used. The
proposed Vert-Proposed algorithm has proved to be the fastest
one. This algorithm achieved an average speed-up at least 30 %
compared to the Vert-Laan2009 algorithm which is considered
to be the state-of-the-art method. The average speedup of Vert-
Proposed relative to the Vert-Laan2009 implementation are
shown in TABLE V.

algorithm 1 Mpel 10 Mpel
Vert-Laan2009 119.3 79.6
Vert-Blazewicz2012 167.0 186.5
Vert-Proposed 69.6 63.5

TABLE III. GTX 580. VERTICAL PASS. PICOSECONDS PER PIXEL.

C. Entire Transform

Finally, we decided to evaluate the full transform compu-
tation. It may generally consists of the two memory transfers

algorithm 1 Mpel 10 Mpel
Vert-Laan2009 965.3 930.2
Vert-Blazewicz2012 2139.0 2231.7
Vert-Proposed 739.4 737.9

TABLE IV. NVS 4200M. VERT. PASS. PICOSECONDS PER PIXEL.

graphics card avg. speed-up
GeForce GTX 580 50 %

NVS 4200M 31 %
TABLE V. VERTICAL PASS. AVERAGE PERCENTAGE SPEEDUPS.

(on-board memory ↔ video memory) and two transform
passes (the horizontal and the vertical one). It would not
be entirely fair to include the memory transfers in the final
comparison. For this reason, the cumulative flow diagram
is shown here separating the memory transfers and the two
transform passes. The final comparison is plotted in Fig. 7
and 8.

0.0 s

1.0ns

2.0ns

3.0ns

4.0ns

5.0ns

6.0ns

10.0k 100.0k 1.0M 10.0M 100.0M

ti
m

e
 /

 p
ix

e
l

pixels

VRAM to RAM
horizontal

vertical
RAM to VRAM

Fig. 7. GeForce GTX 580. Entire transform.

0.0 s

1.0ns

2.0ns

3.0ns

4.0ns

5.0ns

6.0ns

7.0ns

10.0k 100.0k 1.0M 10.0M 100.0M

ti
m

e
 /

 p
ix

e
l

pixels

VRAM to RAM
horizontal

vertical
RAM to VRAM

Fig. 8. NVS 4200M. Entire transform.

It would be interesting to compare the GPU implementa-
tions described in this section with a tuned CPU counterpart.
For this purpose, the state of the art CPU implementation
[18] with fused vertical and horizontal passes was used. This
implementation utilizes SIMD instructions and have 4 threads
running simultaneously. The implementation was evaluated
using mainstream PC with Intel x86 CPU. Specifically, Intel
Core2 Quad Q9000 running at 2.0 GHz was used. This CPU
has 32 kiB of level 1 data cache and 3 MiB of level 2 shared
cache (two cores share one cache unit). The comparison is
summarized in Fig. 9 and 10.



100.0ps

1.0ns

10.0ns

10.0k 100.0k 1.0M 10.0M 100.0M

ti
m

e
 /

 p
ix

e
l

pixels

CPU
GPU

GPU + transfers

Fig. 9. GeForce GTX 580. Entire transform compared to CPU.

1.0ns

10.0ns

10.0k 100.0k 1.0M 10.0M 100.0M

ti
m

e
 /

 p
ix

e
l

pixels

CPU
GPU

GPU + transfers

Fig. 10. NVS 4200M. Entire transform compared to CPU.

Note that both GPUs are equipped with an older version
(2.0) of PCI-Express ×16 bus. Due to this fact newer GPUs
with current version (3.0) of PCI-Express ×16 bus may have
2× faster VRAM to RAM and RAM to VRAM transfers.

IV. CONCLUSION

We have presented a novel approach to 2-D wavelet trans-
form using GPU reaching an average speedup at least 30 % on
tested graphics cards. This approach is focused on utilization
of parallel capabilities of modern GPUs. All the methods
compared in this paper were evaluated using GeForce GTX
580 and NVS 4200M cards. In addition, we have compared
these methods with state of the art implementation on CPU.

In more detail, the computation of single level of the trans-
form is split into horizontal and vertical passes. Initially, we
have adapted an existing algorithm to perform the horizontal
pass without synchronizations. Furthermore, we have incorpo-
rated this algorithm into other existing technique performing
the vertical pass using the sliding window. Additionally, we
have extended this sliding window height to process 8 coef-
ficients by a single thread in one particular window position.
This step helps to reduce the computing redundancy. Finally,
we have evaluated the performance of the entire transform and
also compared it with transform performed using CPU.

Further work could focus on multi-level decompositions,
improvement of the proposed vertical algorithms in order to
utilize more work-groups or an exploration of fusion of the
horizontal and vertical passes into a single one.

Acknowledgements: This work has been supported
by the IT4Innovations Centre of Excellence (no.
CZ.1.05/1.1.00/02.0070) and the TACR project V3C (no.
TE01020415).

REFERENCES

[1] J. Fang, A. L. Varbanescu, and H. Sips, “A comprehensive performance
comparison of CUDA and OpenCL,” in Proceedings of the 2011
International Conference on Parallel Processing, ser. ICPP ’11. IEEE
Computer Society, 2011, pp. 216–225.

[2] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way. With
contributions from Gabriel Peyré., 3rd ed. Academic Press, 2009.

[3] A. Cohen, I. Daubechies, and J.-C. Feauveau, “Biorthogonal bases of
compactly supported wavelets,” Communications on Pure and Applied
Mathematics, vol. 45, no. 5, pp. 485–560, 1992.

[4] W. Sweldens, “The lifting scheme: A custom-design construction of
biorthogonal wavelets,” Applied and Computational Harmonic Analysis,
vol. 3, no. 2, pp. 186–200, 1996.

[5] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into
lifting steps,” Journal of Fourier Analysis and Applications, vol. 4, no. 3,
pp. 247–269, 1998.

[6] S. Mallat, “A theory for multiresolution signal decomposition: the
wavelet representation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 11, no. 7, pp. 674–693, 1989.

[7] S. Chatterjee and C. D. Brooks, “Cache-efficient wavelet lifting in
JPEG 2000,” in Proceedings of the IEEE International Conference on
Multimedia and Expo (ICME), vol. 1, 2002, pp. 797–800.

[8] R. Kutil, “A single-loop approach to SIMD parallelization of 2-D
wavelet lifting,” in Proceedings of the 14th Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing
(PDP), 2006, pp. 413–420.

[9] C. Tenllado, R. Lario, M. Prieto, and F. Tirado, “The 2D discrete
wavelet transform on programmable graphics hardware,” in Visualiza-
tion, Imaging and Image Processing Conference 2004, 9 2004, pp. 808–
813.

[10] C. Tenllado, J. Setoain, M. Prieto, L. Pinuel, and F. Tirado, “Parallel
implementation of the 2D discrete wavelet transform on graphics
processing units: Filter bank versus lifting,” IEEE Transactions on
Parallel and Distributed Systems, vol. 19, no. 3, pp. 299–310, 2008.

[11] J. Franco, G. Bernabe, J. Fernandez, and M. Acacio, “A parallel imple-
mentation of the 2D wavelet transform using CUDA,” in 17th Euromicro
International Conference on Parallel, Distributed and Network-based
Processing, 2 2009, pp. 111–118.

[12] J. Matela, “GPU-based DWT acceleration for JPEG2000,” in Annual
Doctoral Workshop on Mathematical and Engineering Methods in
Computer Science. NOVPRESS s.r.o., 2009, pp. 136–143.

[13] M. Błażewicz, M. Ciżnicki, P. Kopta, K. Kurowski, and P. Lichocki,
“Two-dimensional discrete wavelet transform on large images for hybrid
computing architectures: GPU and CELL,” in Euro-Par 2011: Paral-
lel Processing Workshops, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2012, vol. 7155, pp. 481–490.

[14] V. Galiano, O. López, M. Malumbres, and H. Migallón, “Improving the
discrete wavelet transform computation from multicore to GPU-based
algorithms,” in Proceedings of the 11th International Conference on
Computational and Mathematical Methods in Science and Engineering
(CMMSE), 2011, pp. 544–555.

[15] ——, “Parallel strategies for 2D discrete wavelet transform in shared
memory systems and GPUs,” The Journal of Supercomputing, vol. 64,
no. 1, pp. 4–16, 2013.

[16] W. van der Laan, J. B. T. M. Roerdink, and A. Jalba, “Accelerating
wavelet-based video coding on graphics hardware using CUDA,” in
Proceedings of 6th International Symposium on Image and Signal
Processing and Analysis, 2009. ISPA 2009, 9 2009, pp. 608–613.

[17] W. J. van der Laan, A. C. Jalba, and J. B. T. M. Roerdink, “Accelerating
wavelet lifting on graphics hardware using CUDA,” IEEE Transactions
on Parallel and Distributed Systems, vol. 22, no. 1, pp. 132–146, 2011.

[18] D. Barina and P. Zemcik, “Diagonal vectorisation of 2-D wavelet
lifting,” in IEEE International Conference on Image Processing 2014
(ICIP 2014), Paris, France, 10 2014, pp. 2978–2982, accepted.


	Introduction
	Related Work
	Proposed Approach
	Horizontal Pass
	Vertical Pass
	Entire Transform

	Conclusion
	References

