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Abstract—The business process must reflect changes in the 
environment, therefore the adaptation of the process model or 
the particular process instance is essential. The state 
compliance criterion has been introduced to check that 
dynamic process change is correct and does not lead to 
soundness problems or run-time errors. In some cases, 
however, the process instance must immediately be migrated to 
the changed model or updated itself; hence the strategy of 
coping with the non-compliant process instance must be 
chosen. This paper presents the process re-execution approach 
which effectively implements the state compliance test. The re-
execution algorithm makes it possible to defer the suitable 
activities and use them later, thus offering a flexible solution 
for treating the non-compliant process instances. Moreover, 
a custom strategy of treating can be used based on the full 
context of the activity that caused the inconsistency.

Keywords-flexibility; process change; process evolution; state 
compliance; re-execution

I. INTRODUCTION

Quick reaction to changes in the environment is one of 
the crucial abilities of every enterprise. Different business 
goals, modifications of organizational structure or legacy
changes have influence on procedures and activities within 
enterprise. Business processes which are modeling these 
procedures and capturing the way that particular goals are 
achieved must reflect these changes and adapt to them. 
As a result, process-aware information systems (PAIS) must 
offer tools for such adaptations and ensure that the dynamic 
changes are applied correctly [8].

We can distinguish different types of process change.
During long-running processes it is sometimes necessary 
to deviate from the pre-specified process model and thus 
the correct behavior of one specific process. In contrast, 
the evolution of the whole process model may be required 
in order to accommodate changes or refine the model
quality. Changes can be focused on the control logic of 
the process. For example, some of the process activities are 
added or deleted. Changes can also affect the data flow of 
the process by deleting some data edges or inserting new 
data variables. Control flow adaptation may also be
connected with data changes.

In all these cases, the challenge is to avoid errors and 
inconsistencies caused by dynamic change. Approaches
which guarantee a sound and correct process model after 

adaptation are presented in [1, 2, 3, 4, 8]. One well-known
criterion used by many approaches is state compliance [4]. If 
the process instance is non-compliant, it cannot be migrated 
to the new model (for the case of model evolution).
The ad hoc change of specific non-compliant process 
instance cannot be applied either. One possible solution for 
the evolution is to leave the non-compliant process instance 
continuing its execution on the original model. However, this 
means that the process instance cannot benefit from future 
model changes. For this reason, it is necessary to find 
strategies [3, 6] to cope with the non-compliant instances.

The goal of this paper is to present a different approach 
of process execution which efficiently implements the 
essential state compliance testing, on the one hand, and 
offers better flexibility in treating non-compliant process 
instances, on the other hand. The approach is based on the 
idea that the process instance is always re-executed from the 
beginning in order to perform the next activity pre-specified
in the model. This is useful in the situation in which the 
process model is changed because the process instance is 
executed on the adapted model, thus making it possible to
verify whether instance migration is possible. Moreover, the 
first activity causing the process instance to be non-
compliant can be found. The activity data collected by the
run of the process can be taken into account when choosing 
a strategy for treating the process instance.

The paper is organized as follows. According to 
literature, Section 2 includes the state compliance definition 
as well as an overview of strategies for dealing with non-
compliant instances. Section 3 introduces the process re-
execution approach that we have developed during our
research. The contribution of re-execution approach can be 
found in Section 4. Section 5 contains our experience with 
the re-execution approach in practice. Related work is 
described in Section 6 and Section 7 concludes with 
a summary and outlook.

II. ENSURING THE CORRECTNESS OF PROCESS CHANGE

A. State compliance

If we want to decide whether the process instance can be 
correctly relinked to the changed model, we must establish 
a correctness notion. One of the well-known criteria used in 
this context is state compliance.



In [1], state compliance is defined as follows. Let 
I = (M, δ) be a process instance running on sound model M
with execution trace δ. Assume M’ is another sound model 
and M is transformed into M’ by the change Δ. Then I is state 
compliant with M’ if δ is producible on M’. State compliance 
is based only on a process instance execution trace and 
presumes no specific process modeling language.

Assume, for example, process model M which defines 
a sequence of two activities A and B. We change this model 
into model M’ by inserting activity X between activity A and 
B. Further, we have two process instances I1 and I2 based on 
model M. In instance I1 activity A is running, thus I1 is state 
compliant with model M’ because its execution has not
entered the changed region yet. In contrast, in instance I2

activity B is running. However, model M’ pre-specified that 
new activity X must run before B, hence the execution trace 
of I2 cannot be produced on M’. 

According to the research in [3], traditional state 
compliance is too restrictive in connection with loop 
structures, thus relaxed state compliance is established in 
order to increase the number of process instances which can 
be migrated to a changed model. The approach is based on 
the idea that we logically hide information about activities 
from previous loop iteration and the modified loop-purged 
trace of process instance is then used to check state 
compliance. The approach is also applicable to nested loops 
[3].

We also need to ensure the correctness of data flow after 
model adaptation. Compliance conditions for data flow 
change are defined in [9].

B. Strategies for non-compliant process instances

The state compliance check can uncover process 
instances which have already progressed too far and their 
relinking to the changed model must be prohibited because 
of possible soundness violations or data flow errors. In some 
cases immediate on-fly migration may be requested,
therefore a solution for the non-compliant process instance 
must be found. Consider, for example, legacy changes or 
unexpected situations while treating a patient.

There are three widespread strategies described in [1].
1) The partial rollback: This strategy is based on the 

idea that necessary activities are undone and the process 
instance is reset into the compliant state. This strategy is 
closely connected with the execution of compensation 
activities [4]. Consider, for example, that activity book 
a trip to the sea was completed. The travel agency, 
however, decided to cancel the trip due to lack of interest. 
As a consequence, the compensation activity in order to
cancel the respective booking is performed.

2) Delayed migration: This strategy assumes that the 
non-compliant process instance becomes compliant again 
after a certain time. Consider the changes related to a loop 
body. Although the current iterration of a loop progresses
too far, the next iteration fulfills the state compliance.
Hence, the migration will finally be successful.

3) Adjusting change operations: The idea of this 
strategy is to adjust the intended change itself instead of 
reseting the process instance state. Consider the insertion of 
activity A. If we adjust the position of A without violating 
the data flow correctness or the other semantic constraints
defined by the process model, the number of migratable 
instances is increased.

III. PROCESS RE-EXECUTION APROACH

A. Process re-exectuion algorithm

First, we define an abstract machine which simulates the 
execution of particular process instance I running on the 
given process model M and then we describe the way that the 
process re-execution is performed. 

Let A be a set of unique activity labels. Further, let F
denote a set of unique activity flow labels which are used to 
model a situation in which the execution is split into more 
parallel branches. The flow can be also described as a token 
in the terminology of Petri nets. Let V be a set of data 
variable names and D denote a set of possible values of these 
data variables. 

Next, the machine has a memory tape on which data 
about already performed activities are stored. This tape 
represents the partial execution trace of simulated process 
instance I. The tape has one head which can be used both for 
reading and writing and the current position of the head
denotes the data of performed activity which can be used to 
support re-execution. We define the tape as the sequence 
δI = <pa1, pa2, …, pak > where the performed activity is 
defined as pai = (f, a, DI, DO), f � F, a � A, DI ⊆ V×D, 
DO⊆ V×D and i = 1, …, k, k � Ν. DI stands for data inputs 
and DO denotes data outputs of the performed activity.

The established abstract machine works in two modes of 
execution. The real mode is defined as follows. The machine 
reads the activity that is pre-specified in process model M
and creates a respective work item. A source is chosen and 
then the activity is performed. The data about current flow, 
activity label, data inputs and outputs are stored on the 
machine tape at the position where the head is situated.

The silent mode, in contrast, is used during the re-
execution of the process instance. The abstract machine 
reads the activity label from model M, although no work 
item is created. Instead of this, a subsequent test is 
performed. Assume that the machine is executing activity a,
the current flow label is f and we have a set of current data 
input variables di. If the machine head reads quadruple (f, a, 
di, do) from the tape, the activity data output do is used as 
a result of the activity being executed. This is why we say 
that activity has been performed “silently”.

Finally, we can define the process re-execution 
algorithm, which is illustrated in Fig. 1. At the beginning of 
process instance execution, the abstract machine is in real 
mode and has an empty tape. Firstly, the machine reads 
activity A according to process model M. Once A is 
completed, the machine stores the appropriate data on the 
end of the tape. The next step of process execution, however, 
does not focus on the following pre-specified activity B. 



Instead, the process instance re-execution is started. The 
abstract machine switches into the silent mode, the tape is 
rewound and the execution starts from the beginning again.

The machine acts according to silent mode definition.
The result of the simulated activity is taken from the current 
field on the tape and then the head is shifted forward. The 
machine continues with the next pre-specified activity B. We
have, however, an empty field under the head; therefore the
silent mode is toggled to the real mode. The change of the 
execution mode means that we re-executed the first 
performed activity and are now proceeding with the “real” 
execution. After the completion of activity B, the re-
execution is repeated. It is important to highlight that the 
state of the process instance is not held throughout the 
execution. Instead of this, it is always reconstructed after 
finishing each individual activity.

B. Process re-exectuion on a changed process model

We will now investigate the process re-execution 
approach in the context of a changed model. Assume that 
process model M is transformed into model M’ and instance 
I, which ran on M, is now relinked to changed model M’. 
Our abstract machine enters silent mode and begins to 
simulate the activities of I according to data stored on the 
tape. The machine detects a difference between the pre-
specified activity and its inputs, on the one hand, and the 
performed activity on the current position of tape, on the 
other hand. We have already detected that process instance is 
not compliant with modified model M’. To flexibly cope 
with this inconsistency, the abstract machine interrupts 
execution and triggers the event which can be handled in 
order to treat process instance I.

We can divide the tape into three segments as depicted in 
Fig. 2. The first segment of the tape contains performed 
activities which are correct in the context of modified model 
M’. The second segment includes activity X which caused 
the inconsistency; the third segment comprises the rest of the 
performed activities that have not been simulated but may be 
potentially reused in sequel. The state machine removes the 

second and third segments from the tape and attaches them 
to the interruption event. If there is no treatment specified,
the machine can choose a default strategy, or the event is 
sent to the system administrator to warn that the process 
migration has failed. Due to the triggered event, we get the 
full context of the inconsistency and, together with the 
knowledge about the semantics of the performed model 
change, are able to flexibly solve this situation.

In some cases, it is helpful to defer suitable activities 
from the third segment of the tape and use them later,
because we can reduce unnecessary loss of work. For this 
reason, we designed the Store of Deferred Activities 
(SoDA). The SoDA can be used for these purposes:

 We can search deferred activity and use it during
custom-process instance treatment.

 The machine itself may match suitable deferred 
activity and fill the current empty field on the tape in 
order to continue in silent mode execution. In other 
words, the deferred activity may be automatically 
used later.

 To dynamically modify the result of the activity that 
has already been completed to perform dynamic data 
flow change.

Further, we define the SoDA formally. Let PAI be a set of 
activities that have already been performed. UAI denotes 
a set of performed activities whose outputs have been 
adjusted by the process participant and DAI stands for a set 
of deferred activities and DAI ⊆ PAI � UAI. Then the SoDA 
can be defined as triple SI = (DAI , <, m) where < is the 
partial order relation on DAI and m is a matching function. 
The matching criteria must be unique, thus the activity label, 
flow label and also data inputs of performed activity are 
taken into account when matching function m is scanning the 
SoDA. If deferred activity ad is found, the predecessor test is 
performed. If and only if there is no deferred activity ad’ < 
ad, then ad is matched and returned from function m.

We actually need to change the re-execution algorithm in 
order to integrate the established SoDA as follows. At first,
the abstract machine looks into the SoDA and with the help 
of matching function m tries to find suitable deferred 
activity. If no such deferred activity exists, the machine acts 
according to the silent mode definition. If matching function 
m succeeds and the current tape value is empty, the deferred 
activity is moved from SoDA to a current position on the 
tape and the silent mode proceeds normally. Finally, 
if matching function m is successful and the head of our 
machine reads the data that vary from the matched deferred 
activity in output data only, then the machine triggers the
interruption event and the detected data change can thus be 
handled properly. Moreover, if no handler is provided, the 
default handler is chosen which moves the found activity 

Figure 1.   A scheme of the process re-execution

Figure 2.  The tape content during interrupted execution
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from the SoDA to the current field of the tape and the silent 
mode continues.

TABLE I. THE ABSTRACT MACHINE STATES

The abstract machine

Meaning Tape SoDA Event
Performed 

action

Real mode Empty Not found No Do activity

Silent mode (A,i,o) Not found No Use o

Activity
reuse

Empty (A, i, o) No Use o

Data change (A, i, o) (A, i, x) Yes
Custom
Use x

Data 
change 
consequence

(A, x, o) Not found Yes
Custom
Search A
Do ANewly

added/deleted
activity

Not found Not found Yes

Tab. 1 clearly shows the possible states of the abstract 
machine, the meaning of these states and the corresponding
action that can be performed. Note that the flow label is 
omitted because of the place.

As we can see, the first four rows of the table were 
previously described. The data change consequence (the fifth 
row) is characterized by the partial compliance on the 
activity label. However, the values of input data variables 
differ; therefore, the interruption event is triggered and we 
can handle it in three different ways:

 It is possible to define a custom handler.
 We can try to find the suitable deferred activity 

in the SoDA.
 We may allow the activity to perform in the real 

mode.
The last row of the table describes the abstract machine 

state in the situation where the newly added or deleted 
activity is detected. Note that to identify whether it is 
insertion or deletion of the activity, we must know the 
semantics of the change, because we are only able to find out
that there is an inconsistency.

Now we demonstrate the re-execution approach by 
means of an example. Assume process model M2 as depicted 
in Fig. 3 and process instance I, which is currently running 
on M2. Activities A, B and C successfully finished.

Further, we will change model M2 to M2’ by inserting
two activities, X and Y, and one data binding between them.
The abstract machine starts re-execution on adapted model 
M2’ and according to the re-execution algorithm switches 
into silent mode. Activity A is found on the tape and that
appropriate stored output data are used. Then we shift 
to the next newly added activity X. The SoDA is empty and 
the abstract machine detects inconsistency. According to 
the model, activity X should be performed. However, 
the machine head reads activity B. As a result, the abstract 
machine triggers the interruption event to allow the handling
of the unexpected situation.

The re-execution algorithm has actually performed a state 
compliance check and has detected that process instance I is 

not compliant with adapted model M2’. Moreover, we have 
the full context of this situation. The performed activities 
from the past are on the machine tape. The event contains 
activity X which caused interruption as well as the rest of the 
activities which have been performed and can potentially be
used to treat non-compliant process instance I. 

Assume that we have no special strategy to cope with this 
situation and put the list of already performed activities into 
the SoDA. Then we let activity X perform in the real mode.
The respective data are stored on the tape. Then the abstract 
machine toggles back to silent mode because the current field 
on the tape is empty. In the next step, activity B is matched 
in the SoDA, therefore the current content on the tape is 
filled by a deferred activity item and output data of this 
activity are used. Activities C and D are executed in the same 
way. Then the abstract machine reads activity Y. Activity X,
which writes the necessary data for Y, has been performed as 
a result of the instance re-execution on the updated model 
M2’. Activity Y is thus performed successfully and we can 
proceed to the next activity. Instance I can be migrated to 
adapted model M2’. In [1], the same example is discussed 
with the result that I cannot be migrated due to the possible 
deadlock or run-time errors.

The situation described above is an example of the 
change, including the modification of both control and data 
flow. Now we will focus on pure data change. Consider 
process model M3 (Fig. 4). Process instance I has already 
finished activity C which is data-dependent on activity A. 
However, the data output of activity A has to be changed (the 
value of data variable d is 3 instead of 2). This requirement is 
simulated by inserting a new user activity item into the 
SoDA which includes the updated value of output variable d.
This can be practically accomplished by offering form with 
current data of activity to process participant. After 
submitting a new value, the corresponding content is added 
to the SoDA. 

Further, the re-execution starts and matching function m
finds an item for activity A in the SoDA. The machine head 
also reads performed activity A, but with different output 
data, therefore the interruption event is triggered. Consider 
that no custom handler is specified; hence the default handler
to cope with this situation is used. The current content of the 
tape is replaced with the item found in the SoDA. 

Figure 3.  The adaptation of model M2
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As a consequence, the output of activity A is changed. 
The next activity B is simulated without a problem. 
However, activity C has different input (variable d now has a
value of 3); thus the abstract machine triggers the 
interruption event. A custom strategy to solve this situation 
takes place. We have the result of the last performance of C
and under certain situations it may be possible to accept the 
result of C, or we can perform a rollback of this activity and 
then repeat C. It is important to say that we do not needlessly
roll back activity B.

IV. THE CONTRIBUTION OF THE PROCESS RE-EXECUTION

APPROACH

The main goal of the re-execution approach is to bring 
more flexibility into process change. The essential 
requirement is to effectively implement a state compliance 
test in order to avoid run-time errors [8]. We presume state 
compliance as a basic corrections notion. The re-execution 
algorithm satisfied this requirement because re-execution 
itself always checks whether or not the changed process 
model or data modifications are correct and the process 
instance may proceed further. State compliance is also 
correctly checked regardless of whether there are arbitrary 
loop constructs in the model. Moreover, the first activity 
which may cause possible violation is automatically 
detected.

The second advantage of the re-execution approach is the 
fact that the process state is always properly reconstructed. 
Assume, for example, a non-compliant process instance 
which includes more activities that must be compensated. 
Additionally, these activities are in a loop body and we need 
to revert the process state into the second iteration, for 
example.  Performing such partial rollback may be difficult 
because it is essential to revert all the necessary data 
variables to their correct values, including the loop control 
variables. The re-execution algorithm, however, helps us 
with this complicated situation because the execution is 
always performed from the beginning. Hence, all data 
variables (including the loop control variables) are evaluated 
again and have the correct values.

Partial rollback is not always possible; therefore we need 
to choose a different strategy in order to cope with a non-
compliant process instance. Some of the previously 
described strategies can be used. However, in some cases
a custom solution according to the semantics of change is 
necessary. The re-execution approach brings all the essential 
information for implementing such a custom strategy,
because we have the full context of activity which caused 
inconsistency during execution. The data on the machine
tape as well as the content of SoDA can be taken into 

account to flexibly treat a non-compliant process instance.
Due to the store of deferred activities, we can reuse activities 
that have already been performed to prevent unnecessary 
loss of work during treating such an instance.

V. THE RE-EXECUTION APPROACH IN PRACTICE

During our research, we developed a prototype of the 
workflow engine which is based on the re-execution 
algorithm presented in this paper and successfully interpreted 
several processes from the area of human resources
(Emergence of a new employee, Correction of bonus
distribution, Traveling command). We focused on different 
kinds of changes related to the process model, such as the
insertion, deletion or movement of activity, as well as 
activity data output modifications. This tested our ability to 
cope with process instances which had progressed too far. 
The result of this test confirmed our expectation that the re-
execution approach significantly increases the flexibility of 
treating such instances. This is because if we know 
a semantic of the change and use the information from the 
re-execution algorithm, we can create really customized
strategy, thus increasing the probability that the process 
instance will be successfully relinked to the adapted model.

The limitations of the presented approach lie in the 
expectation that none of the data inputs and outputs of 
activities are affected from the outside environment. 
Reference to an outside data structure or data which are 
taken directly from a foreign database may be potentially 
changed during execution, thus possibly causing
inconsistency leading to unexpected results. Hence, we 
assume that the activity acts as a pure function which 
transforms its inputs to outputs without any side-effects and 
that the usage of external data must be always encapsulated 
by the activities.

Our research also focused on the memory complexity of
the re-execution approach. We need to store all relevant 
activity inputs and outputs, which leads to higher memory 
consumption. However, it is important to note that we need 
this data in order to present process instance execution to 
workflow participants as well as to support administrator
intervention, if necessary. Moreover, the content of the tape 
can be used for further analysis and process mining [10]. In 
comparison with the approach in [9], we do not need to store 
the complete state of the process instance, because many 
supporting data variables and conditions are automatically 
evaluated during re-execution. For large data structure 
changes, an approach based on saving the differences can be 
used.

The time complexity of the re-execution algorithm is 
quadratic per process instance, because if there are 
n activities pre-specified in the process model, then every 
activity will be performed n-times during re-execution. 
Although this may be a potential drawback, we should
consider that the overall time spent doing particular 
asynchronous activities is significantly longer than the total
time it takes the re-execution algorithm itself. For example, 
a manager must read the complete report and other related 
documents to authorize a decision. As such, the time needed 
to perform the respective activity in the process can take 

Figure 4.  Model M3 including the data dependency
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hours or maybe days. A forward evaluation of process 
instance is in some cases less time-consuming than 
a complicated rewind of the process state in order to perform 
a partial rollback.

We also discovered that the idea of process re-execution 
enables us to use a common high level programming 
language. If we create a process model as a program which is 
capturing the way that the process is executed, then we must
solve the problem with the simulation of long-running 
processes, because the code of the program finishes 
immediately. The re-execution approach, however,
successfully solves this problem. We can simulate step-by-
step the instructions of the program which represent the 
activities of the process model, therefore also the 
asynchronous activities can be executed properly.

The usage of universal high level programming language 
instead of specialized process modeling language has many 
advantages. We can easily reuse and extend existing process 
models and modeling tools. The concepts of object-oriented
programming, including encapsulation, inheritance and
exceptions, may be applied. We can also use the standard 
development environment for process modeling, debugging 
and testing, thus improving the maintenance and flexibility 
of the created process models. 

VI. RELATED WORK

The soundness property of business processes is 
discussed in [2]. A detailed overview on the correctness 
criteria can be found in [8]. The state compliance criterion is 
introduced in [4]. The different classes of relaxed state 
compliance are presented in [3] and how to ensure data flow 
correctness can be found in [9]. In [1], the strategies for 
treating the non-compliant process instance are described. 
The partial rollback of the process instance as well as the 
compensation activities are discussed in [5] and more 
advanced strategies for process migration are introduced in 
[6]. The description of existing frameworks for process 
flexibility can be found in [7]. 

VII. CONSLUSION AND FUTURE WORK

In this paper, the process re-execution approach is
presented to support better flexibility when coping with 
problems related to dynamic process change. We showed 
how this approach efficiently implements the essential state 
compliance test in order to uncover process instances which 
cannot be relinked to the new process model. The re-
execution algorithm always ensures proper reconstruction of 
the process state, thus the necessary partial rollback of some 
activities can be performed safely. If there is inconsistency 
both in control or data flow caused by the adaptation of the 
process model, the re-execution approach brings us all the 
possible information needed to implement a custom strategy 
for handling a non-compliant process instance. The re-

execution approach also makes it possible to use high level 
programming language to create a flexible and well
maintainable process model. We implemented the presented 
approach as a prototype of the workflow engine and tested 
all the described features.

In future work, we will focus on the transformation of 
activity signatures in order to solve problems with different 
count and types of input and output activity parameters after 
the application of dynamic change. The model version will 
also be taken into account during transformation. We will 
further investigate the possibilities of using high level 
programming language for process modeling.
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