
Bringing flexibility into dynamic process change

The process re-execution approach

Lukas Macel
Department of Information Systems

BUT, Faculty of Information Technology
Brno, Czech Republic
imacel@fit.vutbr.cz

Tomas Hruska
Department of Information Systems

BUT, Faculty of Information Technology
Brno, Czech Republic
hruska@fit.vutbr.cz

Abstract—The business process must reflect changes in the
environment, therefore the adaptation of the process model or
the particular process instance is essential. The state
compliance criterion has been introduced to check that
dynamic process change is correct and does not lead to
soundness problems or run-time errors. In some cases,
however, the process instance must immediately be migrated to
the changed model or updated itself; hence the strategy of
coping with the non-compliant process instance must be
chosen. This paper presents the process re-execution approach
which effectively implements the state compliance test. The re-
execution algorithm makes it possible to defer the suitable
activities and use them later, thus offering a flexible solution
for treating the non-compliant process instances. Moreover,
a custom strategy of treating can be used based on the full
context of the activity that caused the inconsistency.

Keywords-flexibility; process change; process evolution; state
compliance; re-execution

I. INTRODUCTION

Quick reaction to changes in the environment is one of
the crucial abilities of every enterprise. Different business
goals, modifications of organizational structure or legacy
changes have influence on procedures and activities within
enterprise. Business processes which are modeling these
procedures and capturing the way that particular goals are
achieved must reflect these changes and adapt to them.
As a result, process-aware information systems (PAIS) must
offer tools for such adaptations and ensure that the dynamic
changes are applied correctly [8].

We can distinguish different types of process change.
During long-running processes it is sometimes necessary
to deviate from the pre-specified process model and thus
the correct behavior of one specific process. In contrast,
the evolution of the whole process model may be required
in order to accommodate changes or refine the model
quality. Changes can be focused on the control logic of
the process. For example, some of the process activities are
added or deleted. Changes can also affect the data flow of
the process by deleting some data edges or inserting new
data variables. Control flow adaptation may also be
connected with data changes.

In all these cases, the challenge is to avoid errors and
inconsistencies caused by dynamic change. Approaches
which guarantee a sound and correct process model after

adaptation are presented in [1, 2, 3, 4, 8]. One well-known
criterion used by many approaches is state compliance [4]. If
the process instance is non-compliant, it cannot be migrated
to the new model (for the case of model evolution).
The ad hoc change of specific non-compliant process
instance cannot be applied either. One possible solution for
the evolution is to leave the non-compliant process instance
continuing its execution on the original model. However, this
means that the process instance cannot benefit from future
model changes. For this reason, it is necessary to find
strategies [3, 6] to cope with the non-compliant instances.

The goal of this paper is to present a different approach
of process execution which efficiently implements the
essential state compliance testing, on the one hand, and
offers better flexibility in treating non-compliant process
instances, on the other hand. The approach is based on the
idea that the process instance is always re-executed from the
beginning in order to perform the next activity pre-specified
in the model. This is useful in the situation in which the
process model is changed because the process instance is
executed on the adapted model, thus making it possible to
verify whether instance migration is possible. Moreover, the
first activity causing the process instance to be non-
compliant can be found. The activity data collected by the
run of the process can be taken into account when choosing
a strategy for treating the process instance.

The paper is organized as follows. According to
literature, Section 2 includes the state compliance definition
as well as an overview of strategies for dealing with non-
compliant instances. Section 3 introduces the process re-
execution approach that we have developed during our
research. The contribution of re-execution approach can be
found in Section 4. Section 5 contains our experience with
the re-execution approach in practice. Related work is
described in Section 6 and Section 7 concludes with
a summary and outlook.

II. ENSURING THE CORRECTNESS OF PROCESS CHANGE

A. State compliance

If we want to decide whether the process instance can be
correctly relinked to the changed model, we must establish
a correctness notion. One of the well-known criteria used in
this context is state compliance.

In [1], state compliance is defined as follows. Let
I = (M, δ) be a process instance running on sound model M
with execution trace δ. Assume M’ is another sound model
and M is transformed into M’ by the change Δ. Then I is state
compliant with M’ if δ is producible on M’. State compliance
is based only on a process instance execution trace and
presumes no specific process modeling language.

Assume, for example, process model M which defines
a sequence of two activities A and B. We change this model
into model M’ by inserting activity X between activity A and
B. Further, we have two process instances I1 and I2 based on
model M. In instance I1 activity A is running, thus I1 is state
compliant with model M’ because its execution has not
entered the changed region yet. In contrast, in instance I2

activity B is running. However, model M’ pre-specified that
new activity X must run before B, hence the execution trace
of I2 cannot be produced on M’.

According to the research in [3], traditional state
compliance is too restrictive in connection with loop
structures, thus relaxed state compliance is established in
order to increase the number of process instances which can
be migrated to a changed model. The approach is based on
the idea that we logically hide information about activities
from previous loop iteration and the modified loop-purged
trace of process instance is then used to check state
compliance. The approach is also applicable to nested loops
[3].

We also need to ensure the correctness of data flow after
model adaptation. Compliance conditions for data flow
change are defined in [9].

B. Strategies for non-compliant process instances

The state compliance check can uncover process
instances which have already progressed too far and their
relinking to the changed model must be prohibited because
of possible soundness violations or data flow errors. In some
cases immediate on-fly migration may be requested,
therefore a solution for the non-compliant process instance
must be found. Consider, for example, legacy changes or
unexpected situations while treating a patient.

There are three widespread strategies described in [1].
1) The partial rollback: This strategy is based on the

idea that necessary activities are undone and the process
instance is reset into the compliant state. This strategy is
closely connected with the execution of compensation
activities [4]. Consider, for example, that activity book
a trip to the sea was completed. The travel agency,
however, decided to cancel the trip due to lack of interest.
As a consequence, the compensation activity in order to
cancel the respective booking is performed.

2) Delayed migration: This strategy assumes that the
non-compliant process instance becomes compliant again
after a certain time. Consider the changes related to a loop
body. Although the current iterration of a loop progresses
too far, the next iteration fulfills the state compliance.
Hence, the migration will finally be successful.

3) Adjusting change operations: The idea of this
strategy is to adjust the intended change itself instead of
reseting the process instance state. Consider the insertion of
activity A. If we adjust the position of A without violating
the data flow correctness or the other semantic constraints
defined by the process model, the number of migratable
instances is increased.

III. PROCESS RE-EXECUTION APROACH

A. Process re-exectuion algorithm

First, we define an abstract machine which simulates the
execution of particular process instance I running on the
given process model M and then we describe the way that the
process re-execution is performed.

Let A be a set of unique activity labels. Further, let F
denote a set of unique activity flow labels which are used to
model a situation in which the execution is split into more
parallel branches. The flow can be also described as a token
in the terminology of Petri nets. Let V be a set of data
variable names and D denote a set of possible values of these
data variables.

Next, the machine has a memory tape on which data
about already performed activities are stored. This tape
represents the partial execution trace of simulated process
instance I. The tape has one head which can be used both for
reading and writing and the current position of the head
denotes the data of performed activity which can be used to
support re-execution. We define the tape as the sequence
δI = <pa1, pa2, …, pak > where the performed activity is
defined as pai = (f, a, DI, DO), f � F, a � A, DI ⊆ V×D,
DO⊆ V×D and i = 1, …, k, k � Ν. DI stands for data inputs
and DO denotes data outputs of the performed activity.

The established abstract machine works in two modes of
execution. The real mode is defined as follows. The machine
reads the activity that is pre-specified in process model M
and creates a respective work item. A source is chosen and
then the activity is performed. The data about current flow,
activity label, data inputs and outputs are stored on the
machine tape at the position where the head is situated.

The silent mode, in contrast, is used during the re-
execution of the process instance. The abstract machine
reads the activity label from model M, although no work
item is created. Instead of this, a subsequent test is
performed. Assume that the machine is executing activity a,
the current flow label is f and we have a set of current data
input variables di. If the machine head reads quadruple (f, a,
di, do) from the tape, the activity data output do is used as
a result of the activity being executed. This is why we say
that activity has been performed “silently”.

Finally, we can define the process re-execution
algorithm, which is illustrated in Fig. 1. At the beginning of
process instance execution, the abstract machine is in real
mode and has an empty tape. Firstly, the machine reads
activity A according to process model M. Once A is
completed, the machine stores the appropriate data on the
end of the tape. The next step of process execution, however,
does not focus on the following pre-specified activity B.

Instead, the process instance re-execution is started. The
abstract machine switches into the silent mode, the tape is
rewound and the execution starts from the beginning again.

The machine acts according to silent mode definition.
The result of the simulated activity is taken from the current
field on the tape and then the head is shifted forward. The
machine continues with the next pre-specified activity B. We
have, however, an empty field under the head; therefore the
silent mode is toggled to the real mode. The change of the
execution mode means that we re-executed the first
performed activity and are now proceeding with the “real”
execution. After the completion of activity B, the re-
execution is repeated. It is important to highlight that the
state of the process instance is not held throughout the
execution. Instead of this, it is always reconstructed after
finishing each individual activity.

B. Process re-exectuion on a changed process model

We will now investigate the process re-execution
approach in the context of a changed model. Assume that
process model M is transformed into model M’ and instance
I, which ran on M, is now relinked to changed model M’.
Our abstract machine enters silent mode and begins to
simulate the activities of I according to data stored on the
tape. The machine detects a difference between the pre-
specified activity and its inputs, on the one hand, and the
performed activity on the current position of tape, on the
other hand. We have already detected that process instance is
not compliant with modified model M’. To flexibly cope
with this inconsistency, the abstract machine interrupts
execution and triggers the event which can be handled in
order to treat process instance I.

We can divide the tape into three segments as depicted in
Fig. 2. The first segment of the tape contains performed
activities which are correct in the context of modified model
M’. The second segment includes activity X which caused
the inconsistency; the third segment comprises the rest of the
performed activities that have not been simulated but may be
potentially reused in sequel. The state machine removes the

second and third segments from the tape and attaches them
to the interruption event. If there is no treatment specified,
the machine can choose a default strategy, or the event is
sent to the system administrator to warn that the process
migration has failed. Due to the triggered event, we get the
full context of the inconsistency and, together with the
knowledge about the semantics of the performed model
change, are able to flexibly solve this situation.

In some cases, it is helpful to defer suitable activities
from the third segment of the tape and use them later,
because we can reduce unnecessary loss of work. For this
reason, we designed the Store of Deferred Activities
(SoDA). The SoDA can be used for these purposes:

 We can search deferred activity and use it during
custom-process instance treatment.

 The machine itself may match suitable deferred
activity and fill the current empty field on the tape in
order to continue in silent mode execution. In other
words, the deferred activity may be automatically
used later.

 To dynamically modify the result of the activity that
has already been completed to perform dynamic data
flow change.

Further, we define the SoDA formally. Let PAI be a set of
activities that have already been performed. UAI denotes
a set of performed activities whose outputs have been
adjusted by the process participant and DAI stands for a set
of deferred activities and DAI ⊆ PAI � UAI. Then the SoDA
can be defined as triple SI = (DAI , <, m) where < is the
partial order relation on DAI and m is a matching function.
The matching criteria must be unique, thus the activity label,
flow label and also data inputs of performed activity are
taken into account when matching function m is scanning the
SoDA. If deferred activity ad is found, the predecessor test is
performed. If and only if there is no deferred activity ad’ <
ad, then ad is matched and returned from function m.

We actually need to change the re-execution algorithm in
order to integrate the established SoDA as follows. At first,
the abstract machine looks into the SoDA and with the help
of matching function m tries to find suitable deferred
activity. If no such deferred activity exists, the machine acts
according to the silent mode definition. If matching function
m succeeds and the current tape value is empty, the deferred
activity is moved from SoDA to a current position on the
tape and the silent mode proceeds normally. Finally,
if matching function m is successful and the head of our
machine reads the data that vary from the matched deferred
activity in output data only, then the machine triggers the
interruption event and the detected data change can thus be
handled properly. Moreover, if no handler is provided, the
default handler is chosen which moves the found activity

Figure 1. A scheme of the process re-execution

Figure 2. The tape content during interrupted execution

Correctly simulated
activities on M’

X Not simulated
activities on M’

δ1: A

A B C

δ0:

A B C

δ2: A

A B C

δ3: A

A B C

B

δ4: A

A B C

B

δ5: A

A B C

B

δ6: A

A B C

B C

Pre-specified activity

Silent mode

Real mode

from the SoDA to the current field of the tape and the silent
mode continues.

TABLE I. THE ABSTRACT MACHINE STATES

The abstract machine

Meaning Tape SoDA Event
Performed

action

Real mode Empty Not found No Do activity

Silent mode (A,i,o) Not found No Use o

Activity
reuse

Empty (A, i, o) No Use o

Data change (A, i, o) (A, i, x) Yes
Custom
Use x

Data
change
consequence

(A, x, o) Not found Yes
Custom
Search A
Do ANewly

added/deleted
activity

Not found Not found Yes

Tab. 1 clearly shows the possible states of the abstract
machine, the meaning of these states and the corresponding
action that can be performed. Note that the flow label is
omitted because of the place.

As we can see, the first four rows of the table were
previously described. The data change consequence (the fifth
row) is characterized by the partial compliance on the
activity label. However, the values of input data variables
differ; therefore, the interruption event is triggered and we
can handle it in three different ways:

 It is possible to define a custom handler.
 We can try to find the suitable deferred activity

in the SoDA.
 We may allow the activity to perform in the real

mode.
The last row of the table describes the abstract machine

state in the situation where the newly added or deleted
activity is detected. Note that to identify whether it is
insertion or deletion of the activity, we must know the
semantics of the change, because we are only able to find out
that there is an inconsistency.

Now we demonstrate the re-execution approach by
means of an example. Assume process model M2 as depicted
in Fig. 3 and process instance I, which is currently running
on M2. Activities A, B and C successfully finished.

Further, we will change model M2 to M2’ by inserting
two activities, X and Y, and one data binding between them.
The abstract machine starts re-execution on adapted model
M2’ and according to the re-execution algorithm switches
into silent mode. Activity A is found on the tape and that
appropriate stored output data are used. Then we shift
to the next newly added activity X. The SoDA is empty and
the abstract machine detects inconsistency. According to
the model, activity X should be performed. However,
the machine head reads activity B. As a result, the abstract
machine triggers the interruption event to allow the handling
of the unexpected situation.

The re-execution algorithm has actually performed a state
compliance check and has detected that process instance I is

not compliant with adapted model M2’. Moreover, we have
the full context of this situation. The performed activities
from the past are on the machine tape. The event contains
activity X which caused interruption as well as the rest of the
activities which have been performed and can potentially be
used to treat non-compliant process instance I.

Assume that we have no special strategy to cope with this
situation and put the list of already performed activities into
the SoDA. Then we let activity X perform in the real mode.
The respective data are stored on the tape. Then the abstract
machine toggles back to silent mode because the current field
on the tape is empty. In the next step, activity B is matched
in the SoDA, therefore the current content on the tape is
filled by a deferred activity item and output data of this
activity are used. Activities C and D are executed in the same
way. Then the abstract machine reads activity Y. Activity X,
which writes the necessary data for Y, has been performed as
a result of the instance re-execution on the updated model
M2’. Activity Y is thus performed successfully and we can
proceed to the next activity. Instance I can be migrated to
adapted model M2’. In [1], the same example is discussed
with the result that I cannot be migrated due to the possible
deadlock or run-time errors.

The situation described above is an example of the
change, including the modification of both control and data
flow. Now we will focus on pure data change. Consider
process model M3 (Fig. 4). Process instance I has already
finished activity C which is data-dependent on activity A.
However, the data output of activity A has to be changed (the
value of data variable d is 3 instead of 2). This requirement is
simulated by inserting a new user activity item into the
SoDA which includes the updated value of output variable d.
This can be practically accomplished by offering form with
current data of activity to process participant. After
submitting a new value, the corresponding content is added
to the SoDA.

Further, the re-execution starts and matching function m
finds an item for activity A in the SoDA. The machine head
also reads performed activity A, but with different output
data, therefore the interruption event is triggered. Consider
that no custom handler is specified; hence the default handler
to cope with this situation is used. The current content of the
tape is replaced with the item found in the SoDA.

Figure 3. The adaptation of model M2

M2:

M2’:

A

D

C

E

A

D

E

C

X

Y

d

B

B

As a consequence, the output of activity A is changed.
The next activity B is simulated without a problem.
However, activity C has different input (variable d now has a
value of 3); thus the abstract machine triggers the
interruption event. A custom strategy to solve this situation
takes place. We have the result of the last performance of C
and under certain situations it may be possible to accept the
result of C, or we can perform a rollback of this activity and
then repeat C. It is important to say that we do not needlessly
roll back activity B.

IV. THE CONTRIBUTION OF THE PROCESS RE-EXECUTION

APPROACH

The main goal of the re-execution approach is to bring
more flexibility into process change. The essential
requirement is to effectively implement a state compliance
test in order to avoid run-time errors [8]. We presume state
compliance as a basic corrections notion. The re-execution
algorithm satisfied this requirement because re-execution
itself always checks whether or not the changed process
model or data modifications are correct and the process
instance may proceed further. State compliance is also
correctly checked regardless of whether there are arbitrary
loop constructs in the model. Moreover, the first activity
which may cause possible violation is automatically
detected.

The second advantage of the re-execution approach is the
fact that the process state is always properly reconstructed.
Assume, for example, a non-compliant process instance
which includes more activities that must be compensated.
Additionally, these activities are in a loop body and we need
to revert the process state into the second iteration, for
example. Performing such partial rollback may be difficult
because it is essential to revert all the necessary data
variables to their correct values, including the loop control
variables. The re-execution algorithm, however, helps us
with this complicated situation because the execution is
always performed from the beginning. Hence, all data
variables (including the loop control variables) are evaluated
again and have the correct values.

Partial rollback is not always possible; therefore we need
to choose a different strategy in order to cope with a non-
compliant process instance. Some of the previously
described strategies can be used. However, in some cases
a custom solution according to the semantics of change is
necessary. The re-execution approach brings all the essential
information for implementing such a custom strategy,
because we have the full context of activity which caused
inconsistency during execution. The data on the machine
tape as well as the content of SoDA can be taken into

account to flexibly treat a non-compliant process instance.
Due to the store of deferred activities, we can reuse activities
that have already been performed to prevent unnecessary
loss of work during treating such an instance.

V. THE RE-EXECUTION APPROACH IN PRACTICE

During our research, we developed a prototype of the
workflow engine which is based on the re-execution
algorithm presented in this paper and successfully interpreted
several processes from the area of human resources
(Emergence of a new employee, Correction of bonus
distribution, Traveling command). We focused on different
kinds of changes related to the process model, such as the
insertion, deletion or movement of activity, as well as
activity data output modifications. This tested our ability to
cope with process instances which had progressed too far.
The result of this test confirmed our expectation that the re-
execution approach significantly increases the flexibility of
treating such instances. This is because if we know
a semantic of the change and use the information from the
re-execution algorithm, we can create really customized
strategy, thus increasing the probability that the process
instance will be successfully relinked to the adapted model.

The limitations of the presented approach lie in the
expectation that none of the data inputs and outputs of
activities are affected from the outside environment.
Reference to an outside data structure or data which are
taken directly from a foreign database may be potentially
changed during execution, thus possibly causing
inconsistency leading to unexpected results. Hence, we
assume that the activity acts as a pure function which
transforms its inputs to outputs without any side-effects and
that the usage of external data must be always encapsulated
by the activities.

Our research also focused on the memory complexity of
the re-execution approach. We need to store all relevant
activity inputs and outputs, which leads to higher memory
consumption. However, it is important to note that we need
this data in order to present process instance execution to
workflow participants as well as to support administrator
intervention, if necessary. Moreover, the content of the tape
can be used for further analysis and process mining [10]. In
comparison with the approach in [9], we do not need to store
the complete state of the process instance, because many
supporting data variables and conditions are automatically
evaluated during re-execution. For large data structure
changes, an approach based on saving the differences can be
used.

The time complexity of the re-execution algorithm is
quadratic per process instance, because if there are
n activities pre-specified in the process model, then every
activity will be performed n-times during re-execution.
Although this may be a potential drawback, we should
consider that the overall time spent doing particular
asynchronous activities is significantly longer than the total
time it takes the re-execution algorithm itself. For example,
a manager must read the complete report and other related
documents to authorize a decision. As such, the time needed
to perform the respective activity in the process can take

Figure 4. Model M3 including the data dependency

A CB

d = 2
M

3
:

A CB

d = 3

hours or maybe days. A forward evaluation of process
instance is in some cases less time-consuming than
a complicated rewind of the process state in order to perform
a partial rollback.

We also discovered that the idea of process re-execution
enables us to use a common high level programming
language. If we create a process model as a program which is
capturing the way that the process is executed, then we must
solve the problem with the simulation of long-running
processes, because the code of the program finishes
immediately. The re-execution approach, however,
successfully solves this problem. We can simulate step-by-
step the instructions of the program which represent the
activities of the process model, therefore also the
asynchronous activities can be executed properly.

The usage of universal high level programming language
instead of specialized process modeling language has many
advantages. We can easily reuse and extend existing process
models and modeling tools. The concepts of object-oriented
programming, including encapsulation, inheritance and
exceptions, may be applied. We can also use the standard
development environment for process modeling, debugging
and testing, thus improving the maintenance and flexibility
of the created process models.

VI. RELATED WORK

The soundness property of business processes is
discussed in [2]. A detailed overview on the correctness
criteria can be found in [8]. The state compliance criterion is
introduced in [4]. The different classes of relaxed state
compliance are presented in [3] and how to ensure data flow
correctness can be found in [9]. In [1], the strategies for
treating the non-compliant process instance are described.
The partial rollback of the process instance as well as the
compensation activities are discussed in [5] and more
advanced strategies for process migration are introduced in
[6]. The description of existing frameworks for process
flexibility can be found in [7].

VII. CONSLUSION AND FUTURE WORK

In this paper, the process re-execution approach is
presented to support better flexibility when coping with
problems related to dynamic process change. We showed
how this approach efficiently implements the essential state
compliance test in order to uncover process instances which
cannot be relinked to the new process model. The re-
execution algorithm always ensures proper reconstruction of
the process state, thus the necessary partial rollback of some
activities can be performed safely. If there is inconsistency
both in control or data flow caused by the adaptation of the
process model, the re-execution approach brings us all the
possible information needed to implement a custom strategy
for handling a non-compliant process instance. The re-

execution approach also makes it possible to use high level
programming language to create a flexible and well
maintainable process model. We implemented the presented
approach as a prototype of the workflow engine and tested
all the described features.

In future work, we will focus on the transformation of
activity signatures in order to solve problems with different
count and types of input and output activity parameters after
the application of dynamic change. The model version will
also be taken into account during transformation. We will
further investigate the possibilities of using high level
programming language for process modeling.

ACKNOWLEDGMENT

This research was supported by the grants of MPO Czech
Republic TIP FR-TI3 039, the grant FIT-S-10-2, and the
European Regional Development Fund in the IT4Innovations
Centre of Excellence project (CZ.1.05/1.1.00/02.0070).

REFERENCES

[1] M. Reichert, B. Weber, Enabling Flexibility in Process-Aware
Information Systems: Challenges, Methods, Technologies.
Springer, 2012, 515 p. ISBN 978-3-642-30408-8.

[2] M. Weske, Business Process Management: Concepts,
Languages, Architectures. Springer, 2007, 368 p. ISBN 978-
3-540-73521-2.

[3] S. Rinderle-Ma, M. Reichert, and B. Weber, “Relaxed
compliance notions in adaptive process management
systems,” Proc. ER’08. Lecture Notes in Computer Science,
vol. 5231, Springer, 2008, pp. 232–247, doi: 10.1007/978-3-
540-87877-3_18.

[4] F. Casati, S. Ceri, B. Pernici, and G. Pozzi, “Workflow
evolution,” Data and Knowl. Engineering, vol. 24, 1998, pp.
211–238, doi: 10.1016/S0169-023X(97)00033-5.

[5] S. W. Sadiq, O. Marjanovic, and M. E. Orlowska, “Managing
Change And Time In Dynamic Workflow Processes,” Int. J.
Cooperative Inf. Syst, vol. 9, 2000, pp. 93-116.

[6] S. Rinderle-Ma, M. Reichert, “Advanced migration strategies
for adaptive process management systems,” Proc. 12th IEEE
Conference on Commerce and Enterprise Computing (CEC’
10), IEEE Press, Nov. 2010, pp. 56–63, doi:
10.1109/CEC.2010.18.

[7] N. Mulyar, M. Schonenberg, R. Mans, N. Russell, and W. van
der Aalst, “Towards a taxonomy of process flexibility,”
Technical Report BPM-07-11, BPMcenter.org, 2007.

[8] S. Rinderle, M. Reichert, and P. Dadam, “Correctness Criteria
for Dynamic Changes in Workflow Systems – A Survey,”
Data and Knowledge Eng., vol. 50, 2004, pp. 9–34, doi:
10.1016/j.datak.2004.01.002.

[9] S. Rinderle-Ma, “Data Flow Correctness in Adaptive
Workflow Systems,” EMISA Forum, vol. 29, 2009, pp. 25-
35.

[10] M. Pospíšil, T. Hruška, “Business Process Simulation for
Predictions,” BUSTECH 2012. The Second International
Conference on Business Intelligence and Technology, Nice,
IARIA, 2012, pp. 14-18, ISBN 978-1-61208-2.

