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Multienzyme processes represent an important area of bioca-
talysis. Their efficiency can be enhanced by optimization of the
stoichiometry of the biocatalysts. Here we present a workflow
for maximizing the efficiency of a three-enzyme system catalyz-
ing a five-step chemical conversion. Kinetic models of path-
ways with wild-type or engineered enzymes were built, and
the enzyme stoichiometry of each pathway was optimized.
Mathematical modeling and one-pot multienzyme experiments
provided detailed insights into pathway dynamics, enabled the
selection of a suitable engineered enzyme, and afforded high
efficiency while minimizing biocatalyst loadings. Optimizing
the stoichiometry in a pathway with an engineered enzyme
reduced the total biocatalyst load by an impressive 56 %. Our
new workflow represents a broadly applicable strategy for op-
timizing multienzyme processes.

In vitro multienzyme processes have great potential for the
biosynthesis of fine and bulk chemicals, for bioremediation
and biosensing.[1] Studies on two-enzyme systems dominate
the literature, but systems of three,[2] four,[3] and even twelve[4]

or thirteen[5] enzymes are known. Multienzyme systems are
superior to single-enzyme biocatalysis in that they can catalyze
more-complex synthetic schemes. In vitro multienzyme net-
works enable simpler process control than analogous in vivo
systems and suffer less from reactant toxicity.[6] However, in
both system types reaction bottlenecks often arise from imbal-
anced enzyme properties.

Protein engineering is often used to improve the catalytic
properties and stability of enzymes.[7] Many engineered en-
zymes can be used in multienzyme processes, but methods for

predicting their impact on productivity are lacking. Kinetic
modeling is essential for analyzing enzymatic reactions and
can enable their rational optimization.[1c, 8] However, there are
only few accurate kinetic models of in vitro multienzyme sys-
tems.[2, 3, 5, 9] Available models rarely have experimental support,
and their use in optimizing processes with engineered en-
zymes has not been adequately explored.

The aim of this study was to develop a workflow for optimiz-
ing multienzyme processes by using kinetic modeling to
predict the effects of varying enzyme stoichiometry and em-
ploying available engineered enzymes. Our model system
(Scheme 1) was a synthetic metabolic pathway for the five-
step biotransformation of toxic industrial waste product 1,2,3-
trichloropropane (TCP) into glycerol (GLY).[10] This pathway has
been previously assembled inside living cells[11] and is based
on haloalkane dehalogenase DhaA from Rhodococcus rhodo-
chrous NCIMB 13064,[12] haloalcohol dehalogenase HheC from
Agrobacterium radiobacter AD1,[13] and epoxide hydrolase EchA
from Agrobacterium radiobacter AD1.[14] Herein, three DhaA var-
iants were assessed: 1) wild-type DhaA, and the previously
constructed mutants 2) DhaA31 (improved activity)[15] and
3) DhaA90R (increased enantioselectivity).[16] Kinetic models
were built for pathways with each variant, and the enzyme
stoichiometry was optimized under defined constraints.

We initially prepared soluble enzymes with purities of
�95 % for DhaA and EchA and �85 % for HheC (Supporting
Information). To validate the one-pot multienzyme biotransfor-
mation of TCP into GLY, 1 mg each of purified DhaA, HheC,
and EchA were mixed in 10 mL of Tris-SO4 buffer (pH 8.5) and
incubated with 2 mm TCP at 37 8C for 300 min. The enzymes
have similar molecular weights (34.1, 29.3, and 36.5 kDa,
respectively), so mass ratio roughly equals molar ratio. A GC
method for detecting and quantifying TCP and all pathway
intermediates in a single analysis was developed and used to
monitor the five-step process (see the Experimental Section
and Figure S1 in the Supporting Information). The time course
for the conversion confirmed pathway viability and revealed
two major bottlenecks: 1) conversion of TCP into 2,3-dichloro-
propan-1-ol (DCP), and 2) mismatched selectivity of DhaA and
HheC, thus causing accumulation of (S)-DCP (Scheme 1 and
Figure S2). Similar bottlenecks have been identified in vivo.[11]

We then investigated two DhaA mutants with properties
tuned to address these bottlenecks. DhaA31 was previously
constructed in our laboratory by using computer-aided direct-
ed evolution of protein tunnels.[15] Its catalytic rate towards
TCP is 32 times that of wild-type DhaA. Mutant DhaA90R was
obtained by van Leeuwen and co-workers (“DhaAr5-90R”) by
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focused directed evolution of DhaA31. It has the same activity
as wild-type DhaA but seven times higher specificity for the
(R)-DCP configuration.[16] Time courses for the three-enzyme
conversion of TCP with purified DhaA31 or DhaA90R were
recorded, as for the wild type. The differences between the
resulting conversion profiles were consistent with the kinetic
properties of DhaA, DhaA31, and DhaA90R (Figure S2 and Ta-
bles S2–S4).

Sixteen steady-state kinetic parameters were determined for
the purified enzymes to establish a kinetic model of the path-
way (Table 1 and the Supporting Information). All the studied
reactions exhibited Michaelis–Menten kinetics. The conversion
of glycidol (GDL) into GLY was described by a Michaelis–
Menten equation, with two inhibition constants defining the

inhibitory effects of GLY (product inhibition constant Ki =

1.00 mm) and TCP (shared equilibrium inhibition constant Kc =

0.21 mm ; Supporting Information). These effects together with
the substrate preference of EchA for epichlorohydrin (ECH)
caused GDL accumulation (Figure S2).

The kinetic model was validated against experimental data
for the three-enzyme conversion of 2 mm TCP (Figure S2). The
two datasets were in good agreement: with 1:1:1 mixtures of
the three enzymes (total 3 mg), the predicted (and measured)
productivities of the DhaA, DhaA31, and DhaA90R pathways
were 72 % (62 %), 85 % (85 %) and 45 % (42 %), respectively. No
enzyme inactivation occurred, but the model could be extend-
ed to include inactivation constants if necessary.

The model was then used to predict the DhaA, HheC, and
EchA loadings needed to achieve 95 % conversion of TCP into
GLY under the chosen conditions by simulating stepwise in-
creases in enzyme loading within the reaction system until the
productivity goal was reached (see the Experimental Section
and the Supporting Information). At a DhaA/HheC/EchA mass
ratio of 1:1:1, the wild-type haloalkane dehalogenase pathway
reached the productivity goal with 2.4 mg of each enzyme
(total 7.2 mg; Figure 1). The DhaA31 and DhaA90R pathways
required 1.8 mg and 4 mg of each enzyme, respectively, (i.e. ,
total enzyme loads of 5.4 and 12 mg) to reach the goal. The
differences in the modeled time courses and quantities of
enzyme required to achieve 95 % conversion for the three
pathway variants demonstrate the profound effects of intro-
ducing engineered DhaA variants (Figure 1). Despite pro-
nounced accumulation of DCP and GDL during the initial
25 min, the DhaA31 pathway was around 25 % more efficient
than the wild-type version. DhaA31 significantly accelerated
the conversion of TCP and thus accelerated the consumption
of accumulated GDL by suppressing TCP’s inhibitory effect. In
contrast, DhaA90R reduced system efficiency despite effective-
ly minimizing DCP accumulation. This selective but catalytically
inefficient mutant was thus not beneficial.

Scheme 1. Synthetic pathway for the three-enzyme biotransformation of
1,2,3-trichloropropane. Five consecutive steps are catalyzed by the haloal-
kane dehalogenase DhaA, from Rhodococcus rhodochrous NCIMB 13064, hal-
oalcohol dehalogenase HheC from Agrobacterium radiobacter AD1, and ep-
oxide hydrolase EchA from Agrobacterium radiobacter AD1. 1,2,3-trichloro-
propane (TCP) is converted via (R)- (S)-2,3-dichloropropane-1-ol (DCP), epi-
chlorohydrin (ECH), 3-chloropropane-1,2-diol (CPD), and glycidol (GDL) to
glycerol (GLY). Key bottlenecks are indicated by bold arrows.

Table 1. Experimental steady-state kinetic parameters in the kinetic
model.

DhaA HheC
Km,TCP [mm] 1.01�0.08 Km,(R)-DCP [mm] 2.49�0.16
kcat,TCP,(R)-DCP [s�1] 0.04[a] Km,(S)-DCP [mm] 3.33�0.51
kcat,TCP,(S)-DCP [s�1] 0.03[a] Km,CPD [mm] 0.86�0.07
DhaA31 kcat,(R)-DCP [s�1] 1.81�0.05
Km,TCP [mm] 1.79�0.09 kcat,(S)-DCP [s�1] 0.08�0.00
kcat,TCP,(R)-DCP [s�1] 0.58[b] kcat,CPD [s�1] 2.38�0.06
kcat,TCP,(S)-DCP [s�1] 0.47[b] EchA
DhaA90R Km,ECH [mm] 0.09�0.08
Km,TCP [mm] 12.56�2.99 Km,GDL [mm] 3.54�0.09
kcat,TCP,(R)-DCP [s�1] 0.19[c] kcat,ECH [s�1] 14.37�0.52
kcat,TCP,(S)-DCP [s�1] 0.02[c] kcat,GDL [s�1] 3.96�0.08

[a] Determined from the ratio of (R)- and (S)-DCP production as 56 and
44 % of 0.07�0.00 s�1 for kcat,TCP,(R)-DCP and kcat,TCP,(S)-DCP, respectively (Sup-
porting Information, Experimental Section). [b] Determined as 55 and
45 % of 1.05�0.02 s�1 for kcat,TCP,(R)-DCP and kcat,TCP,(S)-DCP, respectively. [c] De-
termined as 90 and 10 % of 0.21�0.03 s�1 for kcat,TCP,(R)-DCP and kcat,TCP,(S)-DCP,
respectively.
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We then evaluated the effects of enzyme stoichiometry on
efficiency. An algorithm was used to minimize the total
enzyme load without sacrificing productivity (Experimental
Section and Animation S1 in the Supporting Information). Opti-
mal enzyme mass ratios were calculated for each pathway. The
modeled time courses for individual reactions were similar in
each case, but the optimized ratios and total enzyme loadings
differed significantly between pathways (Figure 1). Enzyme
stoichiometry optimization increased efficiency in the DhaA,
DhaA31, and DhaA90R pathways and reduced the total
enzyme loading required for >95 % conversion, by 21, 41, and
38 %, respectively.

All optimization simulations were validated by testing the
enzyme mass ratios in vitro. The resulting data agreed very

closely with the predictions
(Figure 1). The optimized
DhaA90R pathway was around
10 % less productive than pre-
dicted, possibly because the Km

of DhaA90R for TCP was under-
estimated due to the limited
water solubility of TCP (~
10 mm). In all other cases, the
optimized systems achieved pro-
ductivities of 94–98 % (Ta-
bles S2–S4). Because the experi-
mental time courses only reflect
optimal cases based on prede-
fined constraints, we used the
simulated data to create 3D iso-
productivity charts to show the
effects of varying the loadings of
DhaA variant, HheC, and EchA
(Figure 2). These show the limit-
ing components for each path-
way and can be used to identify
solutions with similar productivi-
ties.

Our results demonstrate that
both modifying enzyme kinetic
parameters and optimizing
enzyme stoichiometry improved
the efficiency of the studied
multienzyme system. However,
the far simpler process of stoi-
chiometry optimization had a
greater impact than introducing
engineered enzymes. The opti-
mized pathway using wild-type
DhaA required a similar total
enzyme load to the non-opti-
mized pathway using the engi-
neered DhaA31 (5.7 vs. 5.4 mg),
thus showing that kinetic model-
ing alone can provide excellent
solutions in certain cases. Natu-
rally, the best result was ach-

ieved with an optimized pathway using engineered DhaA31:
additive effects in this case reduced the catalyst load required
for 95 % productivity by 56 % relative to the unoptimized wild-
type pathway (Figure 1). This would be very economically ben-
eficial in a large-scale industrial process.

In summary, we present experimentally validated in silico op-
timization of a multienzyme process by biocatalyst stoichiome-
try tuning. Our workflow entails 1) experimental verification of
process viability, 2) determination of enzyme kinetics, 3) iden-
tification of pathway bottlenecks and selection of suitable en-
gineered enzymes, 4) development of a robust and accurate ki-
netic model, 5) experimental model validation, and 6) process
optimization by in silico enzyme stoichiometry modeling.
Recent progress in efficient enzyme stabilization[17] and ex vivo

Figure 1. Optimization of three-enzyme conversion of 1,2,3-trichloropropane by kinetic modeling and employ-
ment of engineered enzyme variants. Calculated and measured results are indicated by solid lines and symbols,
respectively. The following parameters were constrained: reaction volume (10 mL), initial TCP concentration
(2 mm), and reaction duration (300 min). The initial optimization goal was 95 % conversion of TCP into GLY within
300 min by a 1:1:1 ratio (wild-type enzyme). The calculated and experimentally verified total enzyme loading (S)
required to achieve this was 7.2 mg. The wild-type DhaA enzyme was then replaced with mutants DhaA3123 or
DhaA90R24 to study the effect of their kinetics on the pathway (white arrows). Further optimization was achieved
by tuning the enzyme ratios (gray arrows). Reductions in total enzyme loading achieved by employment of mu-
tants or stoichiometry optimization alone and in combination are shown in circles and squares, respectively. Ex-
perimental concentrations of TCP, DCP, ECH, CPD, and GDL were determined by GC. Concentrations of GLY were
determined spectrophotometrically. Data points represent mean values from three independent experiments.
(Error bars are omitted for clarity; standard deviations are provided in the Supporting Information; Tables S2–S4).
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cofactor regeneration[18] together with the development of
integrated analytical techniques,[19] increases in computational
power, and the growing availability of kinetic data, will enable
the refinement of many useful biotransformations. We believe
that the workflow described herein and implemented in the
provided computer code (Supporting Information) represents
a widely applicable strategy for rapid optimization of multi-
enzyme processes.

Experimental Section

Computational optimization of the multienzyme conversion of
TCP: The initial constraints in modeling multienzyme conversion of
TCP (to verify the developed kinetic model) were as follows: TCP
starting concentration 2 mm (initial experimental concentration as
close to 2 mm as possible; Tables S2–S4); the multienzyme reaction
was allowed to proceed for 300 min; the concentration of each
enzyme (DhaA variant, HheC, and EchA) was 0.1 mg mL�1 (total
enzyme loading in 10 mL, 3 mg). Dynamic simulations of the multi-
enzyme system based on a series of Michaelis–Menten equations
(Supporting Information) were performed by using code written in

Python 2.7 (Software S1 in the
Supporting Information). The
equations were expressed in differ-
ential form and integrated by
using Euler’s method (step size,
0.18 s). The effects of using differ-
ent DhaA variants on the per-
formance of the multienzyme pro-
cess were evaluated with the fol-
lowing constraints: at least 95 %
conversion of TCP into GLY was to
be achieved within 300 min when
using DhaA variant, HheC, and
EchA in an unoptimized mass ratio
(1:1:1) at a total enzyme loading of
3.0 mg. The optimization algorithm
increased the total enzyme loading
in a stepwise fashion, by using
increments of around 0.1 mg (i.e. ,
increasing the loading of each in-
dividual enzyme by 0.066 mg in
each step) until 95 % conversion
was surpassed. The enzyme stoi-
chiometry in each of three path-
ways was then optimized to identi-
fy the DhaA variant/HheC/EchA
ratio that would yield 95 % conver-
sion of 2 mm TCP into GLY within
300 min while minimizing the
combined loading of the three en-
zymes. The algorithm searched for
the most efficient ratio of three en-
zymes in the system starting with
a total enzyme loading of 3 mg.
The total enzyme loading within
the system was increased in
0.1 mg increments until the most
efficient ratio surpassed 95 % con-
version. For each total enzyme
loading, 496 enzyme ratios were
evaluated with step of 3 % of a
given total amount.

Multienzyme conversion of TCP in batch experiments: The multi-
enzyme conversion of TCP (2 mm) was assayed in Tris-SO4 buffer
(10 mL, 50 mm, pH 8.5) in 25 mL micro-flasks sealed with Mininert
valves (Alltech, USA) at 37 8C. The reaction was initiated by adding
a defined amounts of purified DhaA variant, HheC, and EchA. Sam-
ples were periodically taken, mixed 1:1 with acetone containing
hexanol (4 mm) as an internal standard, and analyzed by GC to de-
termine the concentrations of TCP, DCP, ECH, CPD, and GDL (Sup-
porting Information). Selected samples were analyzed by GC-MS to
verify the identities of the metabolites. The concentration of GLY in
the reaction mixture was determined spectrophotometrically by
using the Free Glycerol Assay Kit (BioVision, Milpitas, CA). Details
are provided in the Supporting Information.
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[3] Z. Findrik, D. Vasić-Rački, Biotechnol. Bioeng. 2007, 98, 956.
[4] A. Itoh, Y. Ohashi, T. Soga, H. Mori, T. Nishioka, M. Tomita, Electrophoresis

2004, 25, 1996.
[5] I. Ardao, A.-P. Zeng, Chem. Eng. Sci. 2013, 87, 183.
[6] a) F. Lopez-Gallego, C. Schmidt-Dannert, Curr. Opin. Chem. Biol. 2010,

14, 174; b) A. Meyer, R. Pellaux, S. Panke, Curr. Opin. Microbiol. 2007, 10,
246; c) S. Billerbeck, J. H�rle, S. Panke, Curr. Opin. Biotechnol. 2013, 24,
1037.

[7] a) A. S. Bommarius, J. K. Blum, M. J. Abrahamson, Curr. Opin. Chem. Biol.
2011, 15, 194; b) U. T. Bornscheuer, G. W. Huisman, R. J. Kazlauskas, S.
Lutz, J. C. Moore, K. Robinson, Nature 2012, 485, 185.

[8] a) D. G. Blackmond, Angew. Chem. Int. Ed. 2005, 44, 4302; Angew. Chem.
2005, 117, 4374; b) R. Xue, J. M. Woodley, Bioresour. Technol. 2012, 115,
183.

[9] W. Van Hecke, A. Bhaqwat, R. Ludwiq, J. Dewulf, D. Haltrich, H. Van Lan-
qenhove, Biotechnol. Bioeng. 2009, 102, 1475.

[10] G. Samin, D. B. Janssen, Environ. Sci. Pollut. Res. Int. 2012, 19, 3067.
[11] a) T. Bosma, E. Kruizinga, E. J. de Bruin, G. J. Poelarends, D. B. Janssen,

Appl. Environ. Microbiol. 1999, 65, 4575; b) T. Bosma, J. Damborský, G.
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Maximizing the Efficiency of
Multienzyme Process by Stoichiometry
Optimization

Recipe for success : We propose a work-
flow for optimizing complex multien-
zyme reactions by kinetic modeling and
stoichiometry optimization. By using a
three-enzyme system catalyzing a five-
step chemical conversion we show that
selection of suitable enzymes and stoi-
chiometry optimization can greatly
reduce biocatalyst loadings. This work
highlights the potential of kinetic mod-
eling for optimizing industrial biocata-
lytic processes.
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