
Acta Electrotechnica et Informatica, Vol. 14, No. X, 2014, 1–2, DOI: xx.xxxx/xxxxxx-xxx-xxxx-x 1

ONTOLOGY-BASED CONTEXT MODELLING AND REASONING IN
THE WEB SERVICE MIGRATION FRAMEWORK

M. Mohanned KAZZAZ and Marek RYCHLÝ
Department of Information Systems, Faculty of Information Technology, Brno University of Technology,

Božetěchova 2, 612 66 Brno, Czech Republic, Email: {ikazzaz, rychly}@fit.vutbr.cz

ABSTRACT
The advancement in ubiquitous computing requires more effort to cope with contextual changes in the environment and to adapt to

these changes in regular and efficient ways. A context model and context-awareness are proposed to provide a model of the contextual
information and to describe its impact on individual behaviour of system’s components and on rules and relationships which control their
interactions. This paper extends the Web service migration framework which provides software support for services migrating between
potential service providers in service-oriented architecture according to the contextual changes. The extension utilises ontology-based
context modelling in OWL/RDF and reasoning by means Jena reasoners and rules to make necessary migration decisions.

Keywords: Service-oriented Architecture, Service Migration

1. INTRODUCTION

Applications of ubiquitous computing in diverse envi-
ronments and needs for automatic adaptation to cope with
changing contextual information in the environments lead to
emerging context awareness in the ubiquitous systems. The
context awareness enables a system to process contextual in-
formation, to be aware of contextual changes and consequent
interactions between system components during runtime.

Context-aware computing was introduced at the first time
by [1] as the ability of a mobile user’s applications to dis-
cover and react to changes in the environment. The mobile
users uses these applications to monitor and derive infor-
mation on the surrounding environment. This information
has meaningful observations which will be used to adapt
the system according to its current status. The context term
was defined by [2] as “any information that can be used to
characterize the situation of an entity. An entity is a person,
place, or object that is considered to be relevant to the inter-
action between a user and an application, including the user
and applications themselves”.

The contextual information available to a system or its
components is modelled by a context model. In the case
of service-oriented architecture (SOA), context models de-
scribe contextual information available to individual ser-
vices, which may extend a functional description of the
services provided by usual means (e.g., their description
in Web Services Description Language (WSDL)), and the
actual state of service providers’ environment affecting their
availability (e.g., available resources or quality of network
connections). In this way, context modelling makes ser-
vices more accessible and discoverable. Moreover, sharing
context models between different environments allows to es-
tablish a common contextual base for system or component
mobility.

In our previous work [3], we proposed a concept of the
Web service migration framework. The framework utilises
semantic description of characteristics of services and ser-
vice providers in the service migration process through defin-
ing rules and conditions of the migration. The semantic de-
scription helps a migration controller to make reasoning on
the contextual data of entities in the service-oriented archi-

tecture by evaluating the rules and conditions for a particular
service migration, and finally, to make a migration decision
(i.e., to decide which services will be migrated and which
providers will be the most suitable as the migration targets).

In this paper, we propose an ontology for semantic de-
scription of the contextual information on migratable ser-
vices and relevant service providers and describe its inte-
gration and implementation into the Web service migration
framework. We describe ontology reasoning by means the
underlying Jena reasoner/rules engine to support migration
decisions.

The remainder of this paper is organized as follows:
Section 2 describes related work and give reasons for our
approach. In Section 3, we outline the previously proposed
Web service migration with focus on its architecture and a
migration decision process. Section 4 deals with the pro-
posed ontology and its representation. In Section 5, we
describe utilisation of the ontology in the migration decision
process. Section 6 gives details on the implementation of
the Web service migration framework with reasoning based
on the proposed ontology. Finally, we draw conclusions in
Section 8.

2. RELATED WORK

Service mobility have been proposed as a very promis-
ing approach to leverage the interoperability and reusability
characteristics of SOA. Multi-agent system approaches, such
as JADE [4], Mobile-C [5], and AgentScape [6], provide
middle-wares to host and migrate mobile agents in a dis-
tributed system. A mobile agent is an autonomous composi-
tion of code, state, and data, that can be transported from one
environment to perform agent’s tasks. MobiGo [7], which is
another middle-ware system for seamless mobility, provides
a mechanism to migrate services according to user’s needs
using a simple service description. The description contains
information about service name, service type, and I/O de-
vices which can be used to run that service. User can select
the desired service from the list of available services on that
particular device.

Service description is considered the main backbone
supporting the reusability and interoperability of services.

ISSN 1335-8243 (print) c© 2014 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

2 Ontology-based Context Modelling and Reasoning in the Web Service Migration Framework

Ontologies have been proposed to provide service descrip-
tion with modelling and reasoning techniques on context in
pervasive environments to make the related decision in the
system.

CONON [8] is an OWL-based ontology which provides a
formal context model and implements a Descriptional Logic
(DL) reasoning. A reasoning rules were used to reason over
a low-level (explicit) context to derive a high-level (implicit)
context based on the proposed ontology and by means of DL
and RDF reasoners. Another similar work [9] uses the Web
Ontology Language (OWL) [10] ontology and the Semantic
Web Rule Language (SWRL) [11] rules to model context in
a context-aware system using Rule-Based Inference engine.

Ejigu et al. [12] similarly proposed Context Management
Model (GCOMM) to provide reasoning and decision mak-
ing in context-aware system. They used an ontology-based
context model and defined rules on given data instances.

An OWL-based device ontology was provided by Ban-
dara et al. [13] to describe devices and their hardware and
software components. However, the proposed ontology
lacks for full service descriptions as it only provides an
initial representation for devices’ services using a relation-
ship called hasService without any detailed description of
the services’ attributes. On the other hand, in [14], an on-
tology has been used to provide a service’s description and
preferences and to allow match-making techniques on these
descriptions.

In this work, we prefer to use the ontology-based ap-
proach for service migration not only because it describes
a system semantically with a proper definitions of the rela-
tionships between its components, but also regarding to its
capability to reason with the Semantic Web. For example,
Ontology Based Language (OWL) uses DL functionalities
to reason the semantic description and helps in making the
migration decision.

3. WEB SERVICE MIGRATION FRAMEWORK

Traditional models of SOA assume that services are pro-
vided permanently by service provides which are predefined
at a system’s deploy-time or found in service registries at its
runtime [15]. This approach is sufficient for the most appli-
cations of SOA where services implement fixed functional-
ity for a given application running in a stable environment.
However, in the cases of volatile runtime environments (the
environments with variable resources, unreliable providers,
etc.), services have to be deployed and redeployed at runtime
according to environmental and contextual changes.

The service migration enables services to be transpar-
ently moved across various network nodes that act temporar-
ily as service providers according to their availability and
their resources. Through the service migration, the system
is able to cope with the inherent environmental dynamics
and to keep functionality and quality of its services (e.g.,
to employ temporarily available mobile devices as service
providers, to react to possible failures of service providers
with unreliable resources, etc.).

To support migration of Web services in SOA, we pro-
posed a concept of the Web service migration framework [3].
The framework describes an overall service-oriented archi-

tecture supporting the service migration and defines inter-
faces which can be implemented to adapt the framework
to a particular Web service implementation technology. It
also provides extension points for user-defined migration
decision strategies, i.e., the strategies deciding when the mi-
gration of a particular service is needed and how it will be
performed.

In the framework, service migration is controlled by a
migration controller component. The controller checks sta-
tuses of migratable services and their actual and potential
service providers and evaluate them in cooperation with
migration decision strategy component to decide which ser-
vices will be migrated and which providers will be the most
suitable as the migration targets. Basically, the framework
itself does not take the migration decisions, it relies on a
particular migration decision strategy component provided
by a user utilising the framework, while the framework just
defines an interface and a protocol, i.e. service specifica-
tion and orchestration, to plug-in and to use the component,
respectively.

However, to simplify the utilisation of the framework,
we decided to integrate the migration decision component
into the framework’s core. The framework, not its user,
should implement a migration decision algorithm, yet it
should be able to provide the user with control over the
migration decisions based on current properties of services,
actual and potential service providers, and their environment.
The migration decision should be controlled by the user in
declarative way, e.g., by addressing the context required
by the service and provided by the service providers, with-
out bothering about implementation details of the migration
decision algorithm (i.e., about the implementation of the
migration decision component).

The above mentioned goals can be reached by using se-
mantic description (ontologies) of migratable services and
their providers (supplied by a user) and by employing on-
tology reasoning in migration decisions (ensured by the
framework).

The framework’s core components, their interfaces, and
interfaces which have to be provided or utilised by user com-
ponents (e.g., by migratable services and service providers)
are described in Figure 1. The framework implements the mi-
gration decision algorithm in ReasoningMigrationController
and OntologyBasedMigrationDecisionStrategy components.
Both components use MigrationOntology describing the
domain of service-oriented architecture with migrating ser-
vices and their providers. The services and providers are
linked to the framework’s components via required inter-
faces MigratableService and MigrationProvider (a provider
can provide “zero to many” services, which is indicated
by the association of theses interfaces). To provide seman-
tic description of migratable services and their actual or
potential providers, the services have to implement Service-
Status and ServiceSemanticDescription interfaces and the
providers have to implement Providerstatus interface, with
respect to MigrationOntology. Then, ReasoningMigration-
Controller can get the semantic descriptions and utilise -
SemanticReasoner and OntologyBasedMigrationDecision-
Strategy to make migration decisions.

ISSN 1335-8243 (print) c© 2014 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 14, No. X, 2014 3

0..*

< < com ponent> >
ReasoningM igrat ionCont roller

M igrat ionOnt ology< < com ponent> >
Ont ologyBasedM igrat ionDecisionSt rat egy

M igrat ionCont roller

ServiceSt at us

ProviderSt at us

ServiceSem ant icDescript ion

Sem ant icReasoner M igrat ionProvider

M igrat ionDecisionSt rat egy M igrat ableService

Fig. 1 Components of the Web service migration framework,
their interfaces, and interfaces which have to be provided or
utilised by user components, e.g., by migratable services and

service providers.

4. ONTOLOGY REPRESENTATION IN SADL

Many ontology languages, such as OWL, SWRL, or Re-
source Description Framework (RDF) [16], were developed
to provide formal semantics for Web domains and to ap-
ply rules on these semantics to derive new meaningful data.
In these languages, a user has to define the semantics of
system components in XML or RDF triples which may be-
come more complicated and not suitable for demonstration
purposes, especially in the cases of systems with complex
ontologies.

In this paper, we use the Semantic Application Design
Language (SADL, [17]) to describe presented ontologies.
SADL provides an English-like language for building se-
mantic models and authoring rules. It enables us to describe
the relationships between a domain’s defined concepts and
also to define conditional statements as rules on the concepts.
SADL is provided as a plug-in in the Eclipse environment
which automatically converts a defined SADL model into a
set of OWL schemas and Jena rules. Then, OWL and Jena
reasoners can be used to deduce new facts and implicit con-
text through querying and inferencing on OWL and RDF
data.

The basic element in SADL model is a class. Each class
can have properties. A property of a class can have a single
or many values of one of SADL data types (it is a data-
type property) or previously declared classes (it is an object
property, which describes a relationship between classes).

The core of our ontology, illustrated in Figure 2, consists
of Service and ServiceProvider classes. Service, which is
based on Web Service OWL-S model, is specialised to a
ProvidedService and FrameworkService. A ProvidedService
is considered as a MigratableService iff it is presentedBy
a MigratableServiceProfile. A ServiceProvider, which is
usually hosted by a Device (also described in the ontology),
is identified by hostname and protocol properties. The rela-
tionship between ServiceProvider and its ProvidedService
is called provides.

Device is a top-level class.
/* a provided service is an OWL-S service provided by a service provider */

ProvidedService (alias "provided service") is a type of
OWLS_Service:Service.
/* a migratable service and its specification by an OWL-S profile */

MigratableService is a type of ProvidedService.
MigratableServiceProfile is a type of OWLS_Profile:Profile.
relationship of MigratableService to MigratableServiceProfile is
OWLS_Service:presentedBy.
CandidateForMigrationService is a type of MigratableService.
/* a service provider */

ServiceProvider (alias "service provider") is a top-level class
described by hostname with a single value of type string
described by protocol with a single value of type string.
protocol of ServiceProvider always has value "SOAP".
relationship of ServiceProvider to Device is hostedBy.
/* types of ServiceProvider participating in migration decision process */

CandidateOriginServiceProvider is a type of ServiceProvider.
CandidateDestinationServiceProvider is a type of ServiceProvider.
/* attributes indicating empty preference rules set */

noPreferenceRules describes { MigratableService or
CandidateDestinationServiceProvider } with a single value of type
boolean.
/* a migration decision, a mapping of services which will/can be migrated to
other providers */

MigrationDecision is a top-level class
described by migratedService with a single value of type
CandidateForMigrationService
described by destinationProvider with a single value of type
CandidateDestinationServiceProvider.

Fig. 2 A fragment of the Web service migration ontology in
SADL, defined classes, properties and relationships.

Both of MigratableServices and ServiceProviders may
have operating preferences, which is indicated by false value
of their noPreferenceRules property. Each preference is
described as a simplified Jena rule expressing the operat-
ing conditions that satisfy service or provider needs. These
rules are evaluated by Jena reasoner to check whether each
service can be a possibleProvidedService by some Servi-
ceProvider or not. Based on this reasoning, each Migrata-
bleService which cannot be possibleProvidedService by its
current provider is marked as a CandidateForMigrationSer-
vice and its provider as a CandidateOriginServiceProvider.
The same reasoning is used later, to find a suitable Candi-
dateDestinationServiceProvider for each CandidateForMi-
grationService and in case it is found a MigrationDecision
will be taken (the service can be migrated).

A set of auxiliary services were implemented to sup-
port the migration process. The services are instances of
FrameworkService and operate either on origin or destination
providers to collect informations about CandidateForMigra-
tionService, CandidateOriginServiceProvider, and Candi-
dateDestinationServiceProvider, and to help in performing
the migration process.

5. ONTOLOGY REASONING AND MIGRATION
DECISIONS

Migration decisions are justified by a set of rules. A
rule can represent a service or provider preferences, or a mi-
gration decision making condition. In case of a preference
rule, specific details about service or provider requirements
are identified to ensure an ideal operation circumstances for
them. For example, the rule can specify a limit of the free
memory or battery level that must be available during system
operation. These rules are checked by the controller whether
these preferences are satisfied or violated. As a result of
rules’ reasoning, new contextual facts are concluded describ-
ing which provider can provide which service. In other word,

ISSN 1335-8243 (print) c© 2014 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

4 Ontology-based Context Modelling and Reasoning in the Web Service Migration Framework

which provider is considered possibleDestinationProvider
for some MigratableService.

The controller periodically investigates about any pos-
sible migration in a system through the following rules
presented in Figure 3: First, LookForCandidateForMigra-
tionServiceDueToProvidersPreferences and LookForCan-
didateForMigrationServiceDueToServicesPreferences are
used to find CandidateOriginServiceProvider and Candi-
dateForMigrationService suitable for migration based on
contextual facts derived by the aforementioned preference
rules. Then, LookForMigrationDestinationsForEachMigrat-
ingService provides all possible MigrationDecision sugges-
tions of migratedService and destinationProvider (represent-
ing “what” and “where” will be migrated).

/* 1st step of migration decision making */
Rule LookForCandidateForMigrationServiceDueToServicesPreferences
 given service is a MigratableService
 origin is a CandidateOriginServiceProvider
 if origin provides service
 origin is a CandidateDestinationServiceProvider
 service has possibleDestinationProvider not origin
 then service is CandidateForMigrationService.
Rule LookForCandidateForMigrationServiceDueToProvidersPreferences
 given service is a MigratableService
 origin is a CandidateOriginServiceProvider
 if origin provides service
 origin is a CandidateDestinationServiceProvider
 origin has possibleProvidedService not service
 then service is CandidateForMigrationService.
/* 2nd step of migration decision making */
Rule LookForMigrationDestinationsForEachMigratingService
 given service is a CandidateForMigrationService
 origin is a CandidateOriginServiceProvider
 destination is a CandidateDestinationServiceProvider
 if origin provides service
 origin is not destination
 service has possibleDestinationProvider destination
 destination has possibleProvidedService service
 then a MigrationDecision
 with migratedService service
 with destinationProvider destination.

Fig. 3 The migration decision rules defined in SADL.

6. IMPLEMENTATION DETAILS

As it was mentioned before, migration decisions taken
by the migration controller in the Web service migration
framework are based on semantic description of services
and providers, on their status, and on their contextual in-
formation. The decisions are based on reasoning with the
ontology described in the Section 4 and the domain rules
described in Section 5.

For the reasoning with the ontology and the rules, we use
tools from the Apache Jena project1, a Java-based framework
for building Semantic Web applications. More specifically,
Apache Jena is utilised for the following purposes:

1. to model the services and providers, their status and
contextual information – by describing the ontology
with classes, object and data-type properties, and their
restrictions in the OWL 2 Web Ontology Language
(OWL 2) with OWL 2 RDF-Based Semantics [18],

2. to explicitly describe facts about the services and
providers, their status and contextual information in

accordance with the model – by building graphs in
Resource Description Framework (RDF, [16]) de-
scribing migratable services and providers (as RDF
resources), their relationships (as RDF object proper-
ties interconnecting the resources) and status (as RDF
literals assigned to data properties of the resources),

3. to derive unstated facts about the services and
providers, their status and contextual information
from the explicitly described facts together with the
model – by utilising Jena’s OWL reasoner [19] to
derive additional information, which may not be ex-
plicitly contained in the RDF graphs and which can
be consequences of the knowledge in the ontology in
the OWL/Lite subset of the OWL/Full language [20],

4. to derive additional facts about the services and
providers, their status and contextual information
from the all known facts and given axioms and rules
– by defining Jena hybrid rules (combinations of for-
ward and backward rules, [19]) with premises and
conclusions containing the previously defined facts
and built-in primitives and by utilising Jena’s general
purpose rule engine in a hybrid execution model.

The OWL 2/RDF model (purpose (1) in the list above)
of migratable services and service providers, their status and
contextual information, is static, i.e., it does not depend on
a particular application of the framework, and it is given
by the ontology (see Section 4). Contrary to the model, the
facts (2) about the services and providers, their status and
contextual information, are dynamic and have to be obtained
on demand at runtime of a service-oriented system utilising
the framework. These facts describe actual configuration of
the system’s service-oriented architecture and status of its
components/services.

The facts (2), such as existing services and providers, are
constructed by the framework at runtime according to dis-
covered migratable services and available service providers
(the providers can emerge and/or leave the system during its
runtime). Moreover, we extended Apache Jena with custom
procedural build-in primitives, which will be used particu-
larly by the Jena’s general purpose rule engine in Jena rules
(4). The implementations of the custom build-in primitives
are based on class com.hp.hpl.jena.reasoner.rulesys.builtins-
.BaseBuiltin.

Namely, we implemented classes for the primitives:
checkServiceStatus(in URI, out status), checkProviderStatus-
(in URI, out status), and getStatusProperty(in status,-
in propertyName, out propertyValue). The first two build-in
primitives access a Web service with a given URI which
reports status of a migratable service or a service provider,
respectively. The interface of the accessed Web service is
standardised across the framework, which defines the ab-
stract section of the Web service’s description in WSDL,
i.e., a list of its provided operations, their arguments, data
types, and a message format. The last build-in primitive is
able to extract a value of a property by its name from given
status and it has to be used together with one of the first two

1https://jena.apache.org/

ISSN 1335-8243 (print) c© 2014 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

https://jena.apache.org/

Acta Electrotechnica et Informatica, Vol. 14, No. X, 2014 5

build-in primitives (a service’s or a provider’s status has to
be checked before its properties can be extracted).

Finally, additional facts, especially the facts representing
migration decisions (e.g., the decision whether a migration
of a particular service is needed), will be derived according
to Jena rules (4). These rules consist of preference rules and
migration decision rules. The preference rules describe pref-
erences of migratable services and service providers, such as
which providers suit a particular migrating service as its pos-
sible migration destination or which services are suitable to
be provided by a particular provider (for example, a service
can specify minimal requirements for potential providers
to be able to provide the service). The framework can get
these rules in a simplified format at runtime, by a standard-
ised Web service interface which has to be implemented by
each provided migratable service and each service provider.
Then, the preference rules are used together with migration
decision rules, which represent the framework’s migration
decision strategy, to reason towards migration decisions (see
Section 5).

6.1. Reasoning Migration Controller

The reasoning migration controller is the framework’s
core component. It monitors a system’s service-oriented
architecture and evaluates status and contextual information
provided by individual services and service providers in or-
der to make migration decisions (e.g., that migration of a
particular service is needed and how it can be performed).
The controller also orchestrates services and providers partic-
ipating in the migration (it migrates services to target service
providers, guarantees delivery of incoming messages during
and after the migration, etc.; for details of the orchestration,
see [3]).

During its life-cycle, the migration controller can be in
the three modes, which are described in this section, namely:
under initialisation, monitoring, and performing migration.
The initialisation is performed only once, early after the
execution of a system utilising the framework. The next
two stages are performed repeatedly, i.e., the controller is
monitoring and evaluate information, and performing the
migration if needed.

The initialisation of the controller includes the loading
and preparing the appropriate resources. In our case, the
reasoning migration controller loads a schema with the mi-
gration ontology (the ontology described in Section 4) into
an object implementing com.hp.hpl.jena.rdf.model.Model in-
terface. It also creates an instance of Jena’s default OWL rea-
soner, with the pre-built standard configuration, specialised
to the previously loaded schema by methods Reasoner-
Registry.getOWLReasoner().bindSchema(schema). Finally,
the controller starts a WS-Discovery server which will probe
for predefined Web services required by the controller in
the next stages and provided by emerging service providers
and their service (the Web services reporting status and pref-
erence rules of migratable services and service providers).
The server is utilised by the framework in the next stages
to discover available service providers and their migratable
services by means of Web Services Dynamic Discovery

(WS-Discovery, [21]). For the server, we adopted Java li-
braries from the java-ws-discovery project2.

In the second stage, the controller monitors available
service providers and their migratable services by means
of the WS-Discovery server. For each service provider and
for each migratable service, the controller creates an RDF
resource representing the provider or the service. It also sets
RDF properties of the resource to their values or related
objects (e.g., an URI of a service, or a relationship to its
service provider) by createResource, createProperty, and
createTypedLiteral methods of an instance implementing
com.hp.hpl.jena.rdf.model.Model interface. The resulting
set of RDF resources, properties, and literals forms an RDF
model describing facts about the current configuration and
status of a system’s service-oriented architecture. The model
is kept up to date with new information provided continually
by the WS-Discovery server.

Besides the continuous monitoring in the second stage,
the controller also periodically evaluates status and con-
textual information provided by available service providers
and their migratable services in order to make migration
decisions. The evaluation is done by means of Jena reason-
ers. More specifically, the controller creates an informa-
tion model as an instance implementing com.hp.hpl.jena.rdf-
.model.InfModel interface to generate additional entailments.
The entailments are generated from the actual set of RDF
data describing current configuration of the system’s SOA
by the Jena’s OWL reasoner configured in the initialisation
stage of the controller (the reasoner uses the schema repre-
senting the migration ontology). The information model is
used to get all providers (represented by RDF resources)
which currently provide (described by a RDF property)
some migratable services by method listStatements of the
information model instance. For each migratable service
and each its provider, the controller invokes a particular Web
service required by the framework (see the end of Section 6)
to obtain simplified preference rules, i.e., the rules describ-
ing the service’s or the provider’s preferences (e.g., minimal
requirements which has to meet a service provider for pro-
viding the service). These rules are translated into Jena rules
and together with additional Jena rules defined by the frame-
work’s migration decision strategy (see Section 3), they are
used to configure an instance of Jena’s generic rule reasoner
working in hybrid mode by methods GenericRuleReasoner-
Factory.theInstance().create(configuration). Finally, the re-
sulting generic rule reasoner is utilised in a new information
model (another instance implementing com.hp.hpl.jena.rdf-
.model.InfModel interface) to check if there are providers
or services which need migration (e.g., the cases when re-
quirements stated by a migratable service are not meet by
its current service provider).

If the migration is needed by a migratable service, the
controller makes another migration decision with the same
rule reasoner to get the best destination service provider for
the migration. Then, the controller enters into the third stage
and performs the migration as it has been described in [3].

2https://code.google.com/p/java-ws-discovery/

ISSN 1335-8243 (print) c© 2014 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

https://code.google.com/p/java-ws-discovery/

6 Ontology-based Context Modelling and Reasoning in the Web Service Migration Framework

7. DISCUSSION AND FUTURE WORK

In the previous sections, we proposed the modification
of the Web service migration framework replacing fully
customisable migration decision strategies with semantic
description of migratable service, service providers, and
rules which control migration decisions. The proposed ap-
proach makes the framework easy to use. Potential users
of the framework just have to equip the migratable services
and service providers with Web service interfaces providing
actual values of their custom properties (i.e., to read the
status of the services and providers) and providing a set of
simplified rules describing their preferences (i.e., minimal
requirements for potential providers to be able to provide
a service, or limitations of potential services which may
be provided by a given provider; see the end of Section 6).
However, the proposed approach does not reach the same
flexibility as the original framework with custom migration
decision strategies (e.g., it is very difficult to make a large-
scale custom migration decision based on a combination of
statuses of multiple migratable services of service providers
because their preference rules are provider individually).

Performance of the proposed migration controller, es-
pecially its intensive memory and network usage during
reasoning, is another problem which should be addressed.
To reduce complexity of the OWL reasoning, we can use an
OWLMicro implementation of Jena’s default OWL reasoner,
which achieves much higher performance then “full” OWL.
Contrary to the full implementation of Jena’s OWL reasoner,
the OWLMicro implementation omits OWL cardinality re-
strictions and equality axioms, which enables it to achieve
much higher performance [19]. In this case, the migration
ontology needs to be described in the plain RDF Schema
(RDFS) plus OWL constructs intersectionOf, unionOf, and
hasValue. In this case, OWL someValuesFrom constraint,
which is analogous to the existential quantifier of Predicate
logic, can not be used [22].

To reduce network traffic overhead, we can improve the
custom build-in primitives used in Jena rules. Build-in prim-
itives are evaluated as needed by the Jena’s general purpose
rule engine. Custom build-in getStatusProperty is “mono-
tonic” (according to Jena’s terminology), i.e., it will always
return the same output for the same inputs. In terms of logic,
the predicate will be always true or always false for the
same valuation. Therefore, all occurrences of this build-in
primitive with the same parameters can be evaluated at once.
On the contrary, the status checks in checkServiceStatus and
checkProviderStatus make these build-in primitives “non-
monotonic”; their outputs will be changing over time with
the corresponding status changes of checked services or
providers. To reduce frequency of Web service calls for
the status check, an observer approach and caching can be
considered. Calls of checkServiceStatus and checkProvider-
Status will be cached for each accessed Web service and a
corresponding checked service or provider will announce
changes of their statuses which will clear the cache.

Another weak point resulting into network traffic over-
head is monitoring of services’ and providers’ status changes.
Currently, the migration controller periodically asks avail-
able service providers and their migratable services for status
updates. Corresponding Web service invocations generate
appreciable network traffic. This problem can be solved
by switching the migration controller from the active role
(i.e., the controller asks services or providers for updates)
to passive role (i.e., the controller is notified on the status
updates by updated services or providers). This feature can
be implemented by means of Web Services Eventing (WS-
Eventing, [23]), e.g., by adopting and adapting the results of
the Open WS-Eventing project3.

Besides working on the above-mentioned limitations and
improvements, our future work will focus mainly on a pro-
totype implementation and an evaluation of the proposed
modification of the framework to measure its usability and
performance in real-world case studies. So far, we have
implemented the first part of the framework, a controller
of a Web service migration using Java API for XML Web
Services (JAX-WS)4.

In the prototype implementation, the migration controller
receives updates about the current resources status of ser-
vices and their actual and potential providers. The controller
assesses this information and launch the migration deci-
sion process based on the defined rules and services’ and
providers’ preferences. Each provider has a system Web
service with Web methods which allow to pack a running
Web service intended to be migrated into a Web Applica-
tion Archive (WAR) file including its dependencies (i.e.,
required resources and libraries). The Web Service packing
process is done by executing the Apache Ant5 target called
wsPacking in the local build.xml file on a provider running
the migrating service. Then, the WAR file is serialized and
send to a migration target provider, deployed there through
another Ant target called wsDeploying, and published using
the Apache Tomcat server6.

8. CONCLUSION

In this paper, we proposed an extension of the Web ser-
vice migration framework by ontology-based context mod-
elling in OWL/RDF and reasoning by means of Jena rea-
soners and rules to make migration decisions. The ontology
reasoning is based on a static ontology and migration de-
cision rules defined by the framework, and on a dynamic
set of facts and preference rules obtained by the framework
from migratable service and their providers at its runtime.

The proposed approach makes the framework easy to use
for potential users, who do not need to implement individual
migration strategies, while it preserves customisability of the
migration decision process with the strength of ontological
reasoning.

3https://sourceforge.net/projects/wse/
4https://jax-ws.java.net/
5http://ant.apache.org/
6http://tomcat.apache.org/

ISSN 1335-8243 (print) c© 2014 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

https://sourceforge.net/projects/wse/
https://jax-ws.java.net/
http://ant.apache.org/
http://tomcat.apache.org/

Acta Electrotechnica et Informatica, Vol. 14, No. X, 2014 7

ACKNOWLEDGEMENT

This work was supported by the research programme
MSM 0021630528 “Security-Oriented Research in Informa-
tion Technology” and by the BUT FIT grant FIT-S-14-2299
“Research and Application of Advanced Methods in ICT”.

REFERENCES

[1] SCHILIT, B. N. and THEIMER, M. M. Disseminat-
ing active map information to mobile hosts. IEEE
Network 8 (1994), no. 5 22–32. ISSN 0890-8044.
doi:http://dx.doi.org/10.1109/65.313011.

[2] DEY, A. K. and ABOWD, G. D. Towards a better un-
derstanding of context and context-awareness. Techni-
cal Report GIT-GVU-99-22, Georgia Institute of Tech-
nology, College of Computing, June 1999.

[3] KAZZAZ, M. M. and RYCHLÝ, M. A web service
migration framework. In ICIW’13, The Eighth Inter-
national Conference on Internet and Web Applications
and Services, pages 58–62. IARIA, June 2013. ISBN
978-1-61208-280-6.

[4] BELLIFEMINE, F., CAIRE, G., POGGI, A., and RI-
MASSA, G. JADE: A white paper. EXP in search of
innovation 3 (2003), no. 3 6–19.

[5] CHEN, B., CHENG, H. H., and PALEN, J. Mobile-
C: a mobile agent platform for mobile C-C++ agents.
Software: Practice and Experience 36 (2006), no. 15
1711–1733. ISSN 0038-0644.

[6] WIJNGAARDS, N. J. E., OVEREINDER, B. J., VAN
STEEN, M., and BRAZIER, F. M. T. Supporting
internet-scale multi-agent systems. Data and Knowl-
edge Engineering 41 (2002), no. 2-3 229–245.

[7] SONG, X. and RAMACHANDRAN, U. Mobigo: A
middleware for seamless mobility. In RTCSA’07, 13th
IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications, pages 249–
256. IEEE, 2007.

[8] WANG, X. H., ZHANG, D. Q., GU, T., and PUNG,
H. K. Ontology based context modeling and reasoning
using owl. In Proceedings of the Second IEEE Annual
Conference on Pervasive Computing and Communica-
tions Workshops, pages 18–22. IEEE, 2004.

[9] LEE, K.-C., KIM, J.-H., LEE, J.-H., and LEE, K.-M.
Implementation of ontology based context-awareness
framework for ubiquitous environment. In MUE’07, In-
ternational Conference on Multimedia and Ubiquitous
Engineering, pages 278–282. IEEE, 2007.

[10] MCGUINNESS, D. L. and VAN HARMELEN, F. OWL
web ontology language overview. W3C recommenda-
tion 10 (2004), no. 2004-03 10.

[11] HORROCKS, I., PATEL-SCHNEIDER, P. F., BOLEY,
H., TABET, S., GROSOF, B., and DEAN, M. SWRL:
A semantic web rule language combining OWL and
RuleML. W3C Member submission 21 (2004) 79.

[12] EJIGU, D., SCUTURICI, M., and BRUNIE, L. An
ontology-based approach to context modeling and rea-

soning in pervasive computing. In PerCom Work-
shops’07, Fifth Annual IEEE International Conference
on Pervasive Computing and Communications Work-
shops, pages 14–19. IEEE, 2007.

[13] BANDARA, A., PAYNE, T. R., DE ROURE, D., and
CLEMO, G. An ontological framework for seman-
tic description of devices. In ISWC’04, International
Semantic Web Conference. 2004.

[14] BIANCHINI, D., ANTONELLIS, V. D., MELCHIORI,
M., and SALVI, D. Lightweight ontology-based ser-
vice discovery in mobile environments. In DEXA’06,
17th International Workshop in Database and Expert
Systems Applications, pages 359–364. 2006. ISBN
0-7695-2641-1.

[15] MICHLMAYR, A., ROSENBERG, F., PLATZER, C.,
TREIBER, M., and DUSTDAR, S. Towards recover-
ing the broken SOA triangle: a software engineering
perspective. In Proceedings of the 2nd International
Workshop on Service Oriented Software Engineering,
pages 22–28. ACM, New York, NY, USA, 2007. ISBN
978-1-59593-723-0.

[16] Resource description framework (RDF): Concepts and
abstract syntax. W3C recommendation, W3C, Febru-
ary 2004.

[17] CRAPO, A. W. Semantic Application Design Lan-
guage (SADL) (Version 2): A Detailed Look. General
Electric Company, September 2011.

[18] CARROLL, J., HERMAN, I., and PATEL-SCHNEIDER,
P. F. OWL 2 web ontology language: RDF-based se-
mantics, second edition. W3C recommendation, W3C,
December 2012.

[19] The Apache Software Foundation. Apache Jena – Rea-
soners and rule engines: Jena inference support, 2013.

[20] OWL web ontology language: Overview. W3C recom-
mendation, W3C, February 2004.

[21] NIXON, T. and REGNIER, A. Web services dynamic
discovery (WS-Discovery) version 1.1. Oasis standard,
OASIS Open, July 2009.

[22] BECHHOFER, S., VAN HARMELEN, F., HENDLER,
J., HORROCKS, I., MCGUINNESS, D. L., PATEL-
SCHNEIDER, P. F., and STEIN, L. A. OWL web ontol-
ogy language reference. W3C recommendation, W3C,
February 2004.

[23] BOX, D., CABRERA, L. F., CRITCHLEY, C.,
CURBERA, F., FERGUSON, D., GRAHAM, S., HULL,
D., KAKIVAYA, G., LEWIS, A., LOVERING, B.,
NIBLETT, P., ORCHARD, D., SAMDARSHI, S.,
SCHLIMMER, J., SEDUKHIN, I., SHEWCHUK, J.,
WEERAWARANA, S., and WORTENDYKE, D. Web
services eventing (WS-Eventing). W3C member sub-
mission, W3C, March 2006.

ISSN 1335-8243 (print) c© 2014 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

8 Ontology-based Context Modelling and Reasoning in the Web Service Migration Framework

BIOGRAPHIES

M. Mohanned Kazzaz is currently a third year Ph.D. stu-
dent in the Department of Information Systems at Brno
University of Technology, Faculty of Information Technol-
ogy (BUT FIT). He received the B.Eng. degree in Computer
Engineering from the University of Aleppo, Syria, in 2007.
His research interests are in the area of Software Engineer-
ing and more specifically in development of self-adaptive
software architectures. Kazzaz published three conference
papers related to his dissertation topic.

Marek Rychlý is an Assistant Professor in the Department
of Information Systems at Brno University of Technology,
Faculty of Information Technology (BUT FIT). Rychly’s
general research interests are in the area of software architec-

ture. His work focuses on dynamic reconfiguration and com-
ponent mobility in component-based and service-oriented
architectures, formal description of software architectures
and their evolution, functional and quality-driven automatic
Web services composition and testing, and on distributed
software systems. Rychly received his Ph.D. in Computer
Science and Engineering in 2010 from the Department of
Information Systems at BUT FIT. He also received a B.S.
degree and an M.S. degree cum laude in Informatics in
2003 and 2005, respectively, from the Masaryk University,
Faculty of Informatics, and an academic degree Rerum Natu-
ralium Doctor in Software Systems in 2011 from the Charles
University, Faculty of Mathematics and Physics. He has au-
thored over fifteen scholarly journal articles and conference
papers on varied topics related to software engineering and
software architectures.

ISSN 1335-8243 (print) c© 2014 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

