
Scheduling Decisions in Stream Processing

on Heterogeneous Clusters

Marek Rychlý

Department of Information Systems

Faculty of Information Technology

Brno University of Technology

Brno, Czech Republic

Email: rychly@fit.vutbr.cz

Petr Škoda, Pavel Šmrž

Department of Computer Graphics and Multimedia

Faculty of Information Technology, Brno University of Technology

IT4Innovations Centre of Excellence

Brno, Czech Republic

Email: {iskoda,smrz}@fit.vutbr.cz

Abstract—Stream processing is a paradigm evolving in re-
sponse to well-known limitations of widely adopted MapReduce
paradigm for big data processing, a hot topic of today’s computer
world. Moreover, in the field of computation facilities, hetero-
geneity of data processing clusters, intended or unintended, is
starting to be relatively common. This paper deals with scheduling
problems and decisions in stream processing on heterogeneous
clusters. It brings an overview of current state of the art of stream
processing on heterogeneous clusters with focus on resource allo-
cation and scheduling. Basic scheduling decisions are discussed
and demonstrated on naive scheduling of a sample application.
The paper presents a proposal of a novel scheduler for stream
processing frameworks on heterogeneous clusters, which employs
design-time knowledge as well as benchmarking techniques to
achieve optimal resource-aware deployment of applications over
the clusters and eventually better overall utilization of the cluster.

Keywords—scheduling; resource-awareness; benchmarking;
heterogeneous clusters; stream processing; Apache Storm.

I. INTRODUCTION

As the Internet grows bigger, the amount of data that can be
gathered, stored, and processed constantly increases. Traditional
approaches to processing of big data, e.g., the data of crawled
documents, web request logs, etc., involves mainly batch pro-
cessing techniques on very large shared clusters running in
parallel across hundreds of commodity hardware nodes. For the
static nature of such datasets, the batch processing appears to be
a suitable technique, both in terms of data distribution and task
scheduling, and distributed batch processing frameworks, e.g.,
the frameworks that implement the MapReduce programming
paradigm [1], have proved to be very popular.

However, the traditional approaches developed for the pro-
cessing of static datasets cannot provide low latency responses
needed for continuous and real-time stream processing when
new data is constantly arriving even as the old data is being
processed. In the data stream model, some or all of the input
data that are to be processed are not available in a static dataset,
but rather arrive as one or more continuous data streams [2].
Traditional distributed processing frameworks like MapReduce
are not well suited to process data streams due to their batch-
orientation. The response times of those systems are typically
greater than 30 seconds while real-time processing requires
response times in the (sub)seconds range [3].

To address distributed stream processing, several platforms
for data or event stream processing systems have been proposed,

e.g., S4 and Storm [4], [5]. In this paper, we build upon one of
these distributed stream processing platforms, namely Storm.
Storm defines distributed processing in terms of streams of
data messages flowing from data sources (referred to as spouts)
through a directed acyclic graph (referred to as a topology) of
interconnected data processors (referred to as bolts). A single
Storm topology consists of spouts that inject streams of data
into the topology and bolts that process and modify the data.

Contrary to the distributed batch processing approach, re-
source allocation and scheduling in distributed stream process-
ing is much more difficult due to dynamic nature of input data
streams. In both cases, the resource allocation deals mainly
with a problem of gathering and assigning resources to the
different requesters while scheduling cares about which tasks
and when to place on which previously obtained resources [6].

In the case of distributed batch processing, both resources
allocation and tasks scheduling can be done prior to the process-
ing of a batch of jobs based on knowledge of data and tasks for
processing and of a distributed environment. Moreover, during
batch processing, required resources are often simply allocated
statically from the beginning to the end of the processing.

In the case of distributed stream processing, which is
typically continuous, dynamic nature of input data and unlimited
processing time require dynamic allocation of shared resources
and real-time scheduling of tasks based on actual intensity of
input data flow, actual quality of the data, and actual workload
of a distributed environment. For example, resource allocation
and task scheduling in Storm involves real-time decision making
considering how to replicate bolts and spread them across nodes
of a cluster to achieve required scalability and fault tolerance.

This paper deals with problems of scheduling in distributed
data stream processing on heterogeneous clusters. The paper
is organized as follows. In Section II, stream processing on
heterogeneous clusters is discussed in detail, with focus on
resource allocation and task scheduling, and related work and
existing approaches are analysed. In Section III, a use case of
distributed stream processing is presented. Section IV deals
with scheduling decisions in the use case. Based on the analysis
of the scheduling decisions, Section V proposes a concept of a
novel scheduling advisor for distributed stream processing on
heterogeneous clusters. Since this paper presents an ongoing
research, Section VI discusses future work on the scheduling
advisor. Finally, Section VII provides conclusions.

2014 Eighth International Conference on Complex, Intelligent and Software Intensive Systems

978-1-4799-4325-8/14 $31.00 © 2014 IEEE

DOI 10.1109/CISIS.2014.94

614

2014 Eighth International Conference on Complex, Intelligent and Software Intensive Systems

978-1-4799-4325-8/14 $31.00 © 2014 IEEE

DOI 10.1109/CISIS.2014.94

614



II. STREAM PROCESSING ON HETEROGENEOUS CLUSTERS

In homogeneous computing environments, all nodes have
identical performance and capacity. Resources can be allocated
evenly across all available nodes and effective task scheduling
is determined by quantity of the nodes, not by their individual
quality. Typically, resource allocation and scheduling in the
homogeneous computing environments balance of workload
across all the nodes which should have identical workload.

Contrary to the homogeneous computing environments,
there are different types of nodes in a heterogeneous cluster with
various computing performance and capacity. High-performance
nodes can complete the processing of identical data faster
than low-performance nodes. Moreover, the performance of
the nodes depends on the character of computation and on
the character of input data. For example, graphic-intensive
computations will run faster on nodes that are equipped with
powerful GPUs while memory-intensive computation will run
faster on nodes with large amount of RAM or disk space.
To balance workload in a heterogeneous cluster optimally,
a scheduler has to (1) know performance characteristics for
individual types of nodes employed in the cluster for different
types of computations and to (2) know or to be able to analyse
computation characteristics of incoming tasks and input data.

The first requirement, i.e., the performance characteristics
for individual types of employed nodes, means the awareness
of infrastructure and topology of a cluster including detailed
specification of its individual nodes. In the most cases, this
information is provided at the cluster design-time by its adminis-
trators and architects. Moreover, the performance characteristics
for individual nodes employed in a cluster can be adjusted at
the cluster’s run-time based on historical data of performance
monitoring and their statistical analysis of processing different
types of computations and data by different types of nodes.

The second requirement is the knowledge or the ability
to analyse computation characteristics of incoming tasks and
input data. In batch processing, tasks and data in a batch can
be annotated or analysed in advance, i.e., before the batch is
executed, and acquired knowledge can be utilized in optimal
allocation of resources and efficient task scheduling. In stream
processing, the second requirement is much more difficult to
meet due to continuous flow and unpredictable variability of
the input data which make thorough analysis of computation
characteristics of the input data and incoming tasks impossible,
especially with real-time limitations in their processing.

To address the above mentioned issues of stream process-
ing in heterogeneous clusters with optimal performance, user-
defined tasks processing (at least some) of the input data has
to help the scheduler. For example, an application may include
user-defined helper-tasks tagging input data at run-time by their
expected computation characteristics for better scheduling1.
Moreover, individual tasks of a stream application should be
tagged at design-time according to their required computation
resources and real-time constraints on the processing to help
with their future scheduling. Implementation of the mentioned
tagging of tasks at design-time should be part of modelling (a
meta-model) of topology and infrastructure of such applications.

1e.g., parts of variable-bit-rate video streams with temporary high bit-rate
will be tagged for processing by special nodes with powerful video decoders,
while average bit-rate parts can be processed by common nodes

With the knowledge of the performance characteristics for
individual types of nodes employed in a cluster and with the
knowledge or the ability to analyse computation characteristics
of incoming tasks and input data, a scheduler has enough
information for balancing workload of the cluster nodes and
optimizing throughput of an application. Related scheduling
decisions, e.g., rebalancing of the workload, are usually done pe-
riodically with an optimal frequency. An intensive rebalancing
of the workload across the nodes can cause high overhead while
an occasional rebalancing may not utilize all nodes optimally.

A. Related Work

Over the past decade, stream processing has been the sub-
ject of a vivid research. Existing approaches can essentially
be categorised by scalability into centralized, distributed, and
massively-parallel stream processors. In this section, we will
focus mainly on distributed and massively-parallel stream pro-
cessors but also on their successors exploiting ideas of the
MapReduce paradigm in the context of the stream processing.

In distributed stream processors, related work is mainly
based on Aurora* [7], which has been introduced for scalable
distributed processing of data streams. An Aurora* system is
a set of Aurora* nodes that cooperate via an overlay network
within the same administrative domain. The nodes can freely
relocate load by decentralized, pairwise exchange of the Aurora
stream operators. Sites running Aurora* systems from different
administrative domains can by integrated into a single federated
system by Medusa [7]. Borealis [8] has introduced a refined
QoS optimization model for Aurora*/Medusa where the effects
of load shedding on QoS can be computed at every point in
the data flow, which enables better strategies for load shedding.

Massively-parallel data processing systems, in contrast to
the distributed (and also centralised) stream processors, have
been designed to run on and efficiently transfer large data
volumes between hundreds or even thousands of nodes. Tradi-
tionally, those systems have been used to process finite blocks of
data stored on distributed file systems. However, newer systems
such as Dryad [9], Hyracks [10], CIEL [11], DAGuE [12], or
Nephele framework [13] allow to assemble complex parallel
data flow graphs and to construct pipelines between individual
parts of the flow. Therefore, these parallel data flow systems
in general are also suitable for the streaming applications.

The latest related work is based mainly on the MapReduce
paradigm or its concepts in the context of stream processing.
At first, Hadoop Online [14] extended the original Hadoop
by ability to stream intermediate results from map to reduce
tasks as well as the possibility to pipeline data across different
MapReduce jobs. To facilitate these new features, the semantics
of the classic reduce function has been extended by time-
based sliding windows. Li et al. [15] picked up this idea and
further improved the suitability of Hadoop-based systems for
continuous streams by replacing the sort-merge implementation
for partitioning by a new hash-based technique. The Muppet
system [16], on the other hand, replaced the reduce function
of MapReduce by a more generic and flexible update function.

S4 [4] and Apache Storm [5], which is used in this paper,
can also be classified as massively-parallel data processing sys-
tems with a clear emphasis on low latency. They are not based
on MapReduce but allows developers to assemble arbitrarily a

615615



complex directed acyclic graph (DAG) of processing tasks. For
example, Storm does not use intermediate queues to pass data
items between tasks. Instead, data items are passed directly
between the tasks using batch messages on the network level
to achieve a good balance between latency and throughput.

The distributed and massively-parallel stream processors
mentioned above usually do not explicitly solve adaptive re-
source allocation and task scheduling in heterogeneous en-
vironments. For example, in [17], authors demonstrate how
Aurora*/Medusa handles time-varying load spikes and pro-
vides high availability in the face of network partitions. They
concluded that Medusa with the Borealis extension does not
distribute load optimally but it guarantees acceptable allocations;
i.e., either no participant operates above its capacity, or, if
the system as a whole is overloaded, then all participants
operate at or above capacity. The similar conclusions can be
done also in the case of the previously mentioned massively-
parallel data processing systems. For example, DAGuE does not
target heterogeneous clusters which utilize commodity hardware
nodes but can handle intra-node heterogeneity of clusters of
supercomputers where a runtime DAGuE scheduler decides at
runtime which tasks to run on which resources [12].

Another already mentioned massively-parallel stream pro-
cessing system, Dryad [9], is equipped with a robust scheduler
which takes care of nodes liveness and rescheduling of failed
jobs and tracks execution speed of different instances of each
processor. When one of these instances underperforms the oth-
ers, a new instance is scheduled in order to prevent slowdowns
of the computation. Dryad scheduler works in greedy mode, it
does not consider sharing of cluster among multiple systems.

Finally, in the case of approaches based on the MapReduce
paradigm or its concepts, resource allocation and scheduling
of stream processing on heterogeneous clusters is necessary
due to utilization of commodity hardware nodes. In stream
processing, data placement and distribution are given by a user-
defined topology (e.g., by pipelines in Hadoop Online [14],
or by a DAG of interconnected spouts and bolts in Apache
Storm [5]). Therefore, approaches to the adaptive resource
allocation and scheduling have to discuss initial distribution
and periodic rebalancing of workload (i.e., tasks, not data)
across nodes according to different processing performance and
specialisation of individual nodes in a heterogeneous cluster.

For instance, S4 [4] uses Apache ZooKeeper to coordinate
all operations and for communication between nodes. Initially,
a user defines in ZooKeeper which nodes should be used for
particular tasks of a computation. Then, S4 employs some nodes
as backups for possible node failure and for load balancing.

Adaptive scheduling in Apache Storm has been addressed
in [18] by two generic schedulers that adapt their behaviour
according to a topology and a run-time communication pattern
of an application. Experiments shown improvement in latency
of event processing in comparison with the default Storm
scheduler, however, the schedulers do not take into account the
requirements discussed in the beginning of Section II, i.e., the
explicit knowledge of performance characteristics for individual
types of nodes employed in a cluster for different types of com-
putations and the ability to analyse computation characteristics
of incoming tasks and input data. By implementation of these
requirements, efficiency of the scheduling can be improved.

III. USE CASE

To demonstrate the scheduling problems anticipated in the
current state of the art of stream processing on heterogeneous
clusters, an sample application is presented in this section.
The application “Popular Stories” implements a use case of
processing of continuous stream of web-pages from thousands
of RSS feeds. It analyses the web-pages in order to find texts
and photos identifying the most popular connections between
persons and related keywords and pictures. The result is a list
of triples (a person’s name, a list of keywords, and a set of
photos) with meaning: a person recently frequently mentioned
in context of the keywords (e.g., events, objects, persons, etc.)
and the photos. The application holds a list of triples with
the most often seen persons, keywords, and pictures for some
period of time. This way, current trends of persons related to
keywords with relevant photos can be obtained2.

The application utilizes Java libraries and components from
various research projects and Apache Storm as a stream pro-
cessing framework including its partial integration into Apache
Hadoop as a data distribution platform. Figure 1 depicts spouts
and bolts components of the application and its topology, as
known from Apache Storm. The components can be scaled
into multiple instances and deployed on different cluster nodes.

The stream processing starts by the URL generator spout
which extracts URLs of web-pages from RSS feeds. After that,
Downloader gets the (X)HTML source, styles, and pictures
of each web-page and encapsulates them into a stand-alone
message. The message is passed to the Analyzer bolt, which
searches the web-page for person names and for keywords and
pictures in context of the names found. The resulting pairs of
name-keyword are stored in tops lists in In-memory store NK
which is updated each time a new pair arrives and excessively
old pairs are removed from computation of the list. In other
words, the window of a time period is held for the tops list. All
changes in the tops list are passed to In-memory store NKP.

Moreover, pairs of name-picture emitted by Analyzer are
processed in Image feature extractor to get indexable features
of each image which allows later to detect different instances of
the same pictures (e.g., the same photo in different resolution
or with different cropping). The image features are sent to
In-memory store NP where the tops list of the most popular
persons and related unique images pairs is held. The memory
stores employ search engine Apache Lucene3 with distributed
Hadoop-based storage Katta4 for Lucene indexes to detect
different instances of the same pictures as mentioned above.
All modifications in the tops list of In-memory store NP are
emitted to In-memory store NKP which maintains a consolidated
tops list of persons with related keywords and pictures. This
tops list is persistent and available for further querying.

Individual components of the application described above,
both spouts and bolts, utilize various types of resources to
perform various types of processing. More specifically, URL

2The application has been developed for demonstration purposes only,
particularly to evaluate the scheduling advisor described in the paper. However,
it may be used also in practice, e.g., for visualisation of popular news on
persons (with related keywords and photos) from news feeds on the Internet.

3https://lucene.apache.org/
4http://katta.sourceforge.net/

616616



Figure 1. A Storm topology of the sample application (“S”-nodes are Storm stouts generating data and “B”-odes are Storm bolts processing the data).

generator and Downloader have low CPU requirements, Ana-
lyzer requires fast CPU, Image feature extractor can use GPU
using OpenCL, and In-memory stores require large amount of
memory. Therefore, the application should utilize a heteroge-
neous cluster with adaptive resource allocation and scheduling.

IV. SCHEDULING DECISIONS IN THE STREAM PROCESSING

Schedulers make their decisions on a particular level of
abstraction. They do not try to schedule all live tasks to all
possible cluster nodes but just deal with units of equal or scal-
able size. For example, the YARN scheduler uses Containers
with various amounts of cores and memory and Apache Storm
uses Slots of equal size (one slot per CPU core) where, in each
slot, multiple spouts or blots of the same topology may run.

One of the important and commonly adopted scheduler
decisions is data locality. For instance, the main idea of
MapReduce is to perform computations by the nodes where
the required data are saved to prevent intensive data loading to
and removing from a cluster. Data locality decisions from the
stream processing perspective are different because processors
usually does not operate on data already stored in a processing
cluster but rather on streams coming from remote sources. Thus,
in stream processing, we consider the data locality to be an
approach to minimal communication costs which results, for
example, in scheduling of the most communicating processor
instances together to the same node or the same rack.

The optimal placement of tasks across cluster nodes may,
moreover, depend on other requirements beyond the communi-
cation costs mentioned above. Typically, we are talking about
CPU performance or overall node performance that makes the
processing faster. For example, the performance optimization
may lie in detection of tasks which are exceedingly slow in
comparison to the others with the same signature. More sophis-
ticated approaches are based on various kinds of benchmarks
performed on each node in a cluster while the placement of a
task is decided with respect to its detected performance on a

particular node or a class of nodes. Furthermore, the presence
of resources, e.g., GPU or FPGA, can be taken into account.

There are two essential kinds of scheduling decisions: offline
decisions and online decisions. The former is based on the
knowledge the scheduler has before any task is placed and run-
ning. In context of stream processing, this knowledge is mostly
the topology and the offline decisions can, for example, consider
communication channels between nodes. Online decisions are
made with information gathered during the actual execution of
an application, i.e., after or during initial placement of its tasks
over a cluster nodes. So the counterpart for the offline topology
based communication decision is decision derived from real
bandwidths required between running processor instances [18].
In effect, the most of scheduling decisions in stream processing
are made online or based on historical online data.

A. Storm Default Scheduler

The Storm default scheduler uses a simple round-robin strat-
egy. It deploys bolts and spouts (collectively called processors)
so that each node in a topology has almost equal number of
processors running in each slot even for multiple topologies
running in the same cluster. When tasks are scheduled, the
round-robin scheduler simply counts all available slots on each
node and puts processor instances to be scheduled one at the
time to each node while keeping the order of nodes constant.

In a shared heterogeneous Storm cluster running multiple
topologies of different stream processing applications, the round-
robin strategy may, for the sample application described in
Section III, result in the scenario depicted in Figure 2. The
depicted cluster consists of four nodes with different hardware
configurations, i.e., fast CPU, slow CPU, lots of memory, and
GPU equipped (see Figure 2), so the number of slots available
at each node differs but the same portion of each node is utilized
as the consequence of round-robin scheduling. Moreover, the
default scheduler did not respect different requirements of
processors. The Analyzers requiring the CPU performance were

617617



Figure 2. Possible results of the Storm default round-robin scheduler.

placed to the node with lots of memory while the memory
greedy In-memory stores were scheduled to the nodes with
powerful GPU and slow CPU which led to the need of higher
level of parallelism of “MS NP”. The fast CPU node then
runs the undemanding Downloaders and the URL generator.
Finally, the Image extractors were placed to the slow CPU
node and the high memory node. Therefore, it is obvious that
the scheduling decision was relatively wrong and it results into
inefficient utilization of the cluster.

V. PROPOSING SCHEDULING ADVISOR

The proposed scheduling advisor targets to offline decisions
derived from results of performance test sets of each resource
type in combination with particular component (processor).
Therefore, every application should be benchmarked on a
particular cluster prior to its run in production.

The benchmarking will run the application with production-
like data and after initial random or round-robin placement of
processors over nodes, it will reschedule processors so that each
processor is benchmarked on each class of hardware nodes.
The performance of processors will be measured based on the
number of tuples processed in time period. Finally, with data
from benchmarks, scheduling in the production will minimize
the overall counted loss of performance in deployment on
particular resources in comparison to performance in the ideal
deployment, i.e., the one where each processor runs on the node
with top performance measured in the benchmarking phase.

Later, the scheduler can utilize also performance data cap-
tured during the production run. These data will be taken
into consideration as the reflection of possible changes of
processed data, and new scheduling decisions will prefer them
over the performance information from the benchmarking phase.
Moreover, with employment of production performance data,
an application can be deployed initially using the round-robin
and then gradually rescheduled in reasonable intervals. Few first
reschedules have to be random to gather initial differences in
performance per processor and node class. Then, the scheduler
can deploy some of processors to currently best known nodes
and others processors to nodes with yet unknown performance.

Figure 3. The advanced scheduling in a heterogeneous cluster (High memory
and Fast CPU nodes are mutually swapped in comparison with Figure 2).

However, when omitting the benchmarking phase, a new ap-
plication without historical performance data may temporarily
underperform and more instances of their processors may be
needed to increase parallelism. On the other hand, without
the benchmarking phase, the new application can be deployed
without delay and utilize even nodes that have not yet been
benchmarked (e.g., new nodes or nodes occupied by other
applications during the benchmark phase on a shared cluster).

A. Scheduling of the Example Use Case Application

The proposed scheduler is trying to deploy processors to
available slots that are running on nodes with the most suitable
resource profile. Therefore, the scheduler will deploy fewer
instance of the processors than the Storm default scheduler in
the same cluster and probably even with higher throughput.
In the case of the sample application, the deployment by
the proposed scheduler may be as depicted in Figure 3. In-
memory stores were deployed on the node with high amount
of memory and Image feature extractors were deployed on the
node with two GPUs so it was be possible to reduce parallelism.
Undemanding Downloaders were placed on the Slow CPU
node and Analyzers utilize the Fast CPU node. Possibly even
more effective scheduling may be achieved by combination
of pre-production and production benchmarking discussed in
Section V. Then, the scheduling decisions can be based on
actual bandwidths between processors with consideration of
trade-offs between bandwidth availability on particular nodes
shared among multiple applications and availability of more
suitable nodes in perspective of performance.

VI. DISCUSSION AND FUTURE WORK

Since this paper presents ongoing work, in this section, we
discuss preliminary results and outline possible further improve-
ments. Ongoing work mainly deals with three topics: imple-
mentation of the scheduling advisor and the sample application,
evaluation of the proposed approach, and its improvement based
on results of the evaluation.

At the time of writing this paper, the implementation of
the application described in the paper was in progress and the

618618



scheduling advisor was in the phase of design. The scheduling
advisor will be realised as a Storm scheduler implementing
the IScheduler interface provided by Storm API. Besides the
functionality available via Storm API, the scheduler will utilize
the Apache Ambari project to monitor the Hadoop platform
where a Storm cluster and other services will be running (e.g.,
Zookeeper coordinating various daemons within the Storm
cluster, YARN managing resources of the cluster, or Hive
distributed storage of large datasets generated by performance,
workload, and configuration monitoring of the cluster). Apache
Ambari can provide the scheduler with information on status
of host systems and of individual services that run on them,
including status of individual jobs running on those services.

After prototype implementation of the application and the
scheduling advisor, we plan to perform thorough evaluation, to
determine performance boost and workload distribution statis-
tics and to compare these values for the scheduling advisor, the
default Storm scheduler, and for generic schedulers proposed in
[18]. The evaluation will also include performance monitoring
and analysis of the overhead introduced by the schedulers (e.g.,
by monitoring and by reallocation of resources or rescheduling
of processors), both per node and for the whole Storm cluster.

Finally, there are several possible improvements and open
issues which we have yet to be addressed. These are rang-
ing from improvement of scheduling algorithm performance,
which is important for real-time processing (e.g., by using a
hidden Markov chain based prediction algorithm for predicting
input stream intensity and characteristics), through problems
connected with automatic scaling of components (elasticity),
to the issue of total decentralisation of the scheduler and all its
components, which will be “a single point of failure” otherwise.

VII. CONCLUSION

This paper described problems of adaptive scheduling of
stream processing applications on heterogeneous clusters and
presented ongoing research towards the novel scheduling ad-
visor. In the paper, we outlined general requirements to the
scheduling in stream processing on heterogeneous clusters
and analysed the state-of-the-art approaches introduced in the
related works. We also described the sample application of
stream processing in heterogeneous clusters, analysed schedul-
ing decisions, and proposed the novel scheduler for the Apache
Storm distributed stream processing platform based on the
knowledge acquired in the previous phases.

The sample application and the proposed scheduler are still
work-in-progress. We are currently implementing the applica-
tion and a first prototype of the scheduler to be able to perform
an evaluation of the proposed approach in practice. Our future
work mainly aims at possible improvements of the scheduler
performance, which is important for real-time processing, at
addressing the problems connected with automatic scaling of
processing components (i.e., their elasticity), and at addressing
the issues related to eventual decentralisation of the scheduler
implementation.

ACKNOWLEDGEMENT

This work was supported by the BUT FIT grant FIT-S-
14-2299, the European Regional Development Fund in the
project CZ.1.05/1.1.00/02.0070 “The IT4Innovations Centre of

Excellence”, and by the EU 7FP ICT project no. 318763 “Java
Platform For High Performance And Real-Time Large Scale
Data Management” (JUNIPER).

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and issues in data stream systems,” in Proceedings of the twenty-first
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems. ACM, 2002, pp. 1–16.

[3] A. Brito, A. Martin, T. Knauth, S. Creutz, D. Becker, S. Weigert,
and C. Fetzer, “Scalable and low-latency data processing with stream
mapreduce,” in 2011 IEEE Third International Conference on Cloud
Computing Technology and Science (CloudCom). IEEE, 2011, pp.
48–58.

[4] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
stream computing platform,” in 2010 IEEE International Conference on
Data Mining Workshops (ICDMW). IEEE, 2010, pp. 170–177.

[5] N. Marz, “Apache Storm,” https://git-wip-
us.apache.org/repos/asf?p=incubator-storm.git, 2014, Git repository.

[6] V. Vinothina, S. Rajagopal, and P. Ganapathi, “A survey on resource allo-
cation strategies in cloud computing,” International Journal of Advanced
Computer Science and Applications, vol. 3, no. 6, 2012.

[7] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel,
Y. Xing, and S. B. Zdonik, “Scalable distributed stream processing,” in
CIDR, vol. 3, 2003, pp. 257–268.

[8] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack,
J.-H. Hwang, W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina, N. Tatbul,
Y. Xing, , and S. Zdonik, “The design of the borealis stream processing
engine,” in CIDR, vol. 5, 2005, pp. 277–289.

[9] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: distributed
data-parallel programs from sequential building blocks,” ACM SIGOPS
Operating Systems Review, vol. 41, no. 3, pp. 59–72, 2007.

[10] V. Borkar, M. Carey, R. Grover, N. Onose, and R. Vernica, “Hyracks:
A flexible and extensible foundation for data-intensive computing,” in
2011 IEEE 27th International Conference on Data Engineering (ICDE).
IEEE, 2011, pp. 1151–1162.

[11] D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Mad-
havapeddy, and S. Hand, “CIEL: a universal execution engine for
distributed data-flow computing,” in Proceedings of the 8th USENIX Con-
ference on Networked Systems Design and Implementation. USENIX
Association, 2011.

[12] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and
J. Dongarra, “DAGuE: A generic distributed dag engine for high per-
formance computing,” Parallel Computing, vol. 38, no. 1, pp. 37–51,
2012.

[13] D. Warneke and O. Kao, “Exploiting dynamic resource allocation for
efficient parallel data processing in the cloud,” IEEE Transactions on
Parallel and Distributed Systems, vol. 22, no. 6, pp. 985–997, 2011.

[14] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and
R. Sears, “Mapreduce online,” in Proceedings of the 7th USENIX Con-
ference on Networked Systems Design and Implementation. USENIX
Association, 2010.

[15] B. Li, E. Mazur, Y. Diao, A. McGregor, and P. Shenoy, “A platform for
scalable one-pass analytics using MapReduce,” in Proceedings of the
2011 ACM SIGMOD International Conference on Management of data.
ACM, 2011, pp. 985–996.

[16] W. Lam, L. Liu, S. Prasad, A. Rajaraman, Z. Vacheri, and A. Doan,
“Muppet: MapReduce-style processing of fast data,” Proceedings of the
VLDB Endowment, vol. 5, no. 12, pp. 1814–1825, 2012.

[17] M. Balazinska, H. Balakrishnan, and M. Stonebraker, “Load management
and high availability in the Medusa distributed stream processing system,”
in Proceedings of the 2004 ACM SIGMOD international conference on
Management of data. ACM, 2004, pp. 929–930.

[18] L. Aniello, R. Baldoni, and L. Querzoni, “Adaptive online scheduling
in Storm,” in Proceedings of the 7th ACM international conference on
Distributed event-based systems. ACM, 2013, pp. 207–218.

619619


