
VGEN: Fast Vertical Mining of Sequential
Generator Patterns

Philippe Fournier-Viger1, Antonio Gomariz2, Michal Šebek3, Martin Hlosta3

1 Dept. of Computer Science, University of Moncton, Canada
2 Dept. of Information and Communication Engineering, University of Murcia, Spain

3 Faculty of Information Technology, Brno University of Technology, Brno, Czech
Republic

philippe.fournier-viger@umoncton.ca, agomariz@um.es,

{isebek,ihlosta}@fit.vutbr.cz

Abstract. Sequential pattern mining is a popular data mining task with
wide applications. However, the set of all sequential patterns can be very
large. To discover fewer but more representative patterns, several com-
pact representations of sequential patterns have been studied. The set
of sequential generator patterns is one the most popular representations.
However, although mining sequential generator patterns is key to sev-
eral other data mining tasks such as sequential rule mining, it remains
very computationally expensive. To address this issue, we introduce a
novel mining algorithm named VGEN (Vertical Sequential GENerator
Pattern Miner). An experimental study on five real datasets shows that
VGEN outperforms several state-of-the-art sequential pattern mining al-
gorithms.

Keywords: sequential patterns, generators, vertical mining, candidate
pruning

1 Introduction

Mining interesting patterns in sequential data is a challenging task. Multiple
studies have been proposed for mining interesting patterns in sequence databases
[11, 5]. Sequential pattern mining is probably the most popular research topic
among them. A subsequence is called sequential pattern or frequent sequence
if it frequently appears in a sequence database, and its frequency is no less
than a user-specified minimum support threshold minsup [1]. Sequential pattern
mining plays an important role in data mining and is essential to a wide range
of applications such as the analysis of web click-streams, program executions,
medical data, biological data and e-learning data [11].

Several algorithms have been proposed for sequential pattern mining such
as PrefixSpan [12], SPAM [3] and SPADE [18]. However, a critical drawback of
these algorithms is that they may present too many sequential patterns to users.
A very large number of sequential patterns makes it difficult for users to analyze
results to gain insightful knowledge. It may also cause the algorithms to become



inefficient in terms of time and memory because the more sequential patterns
the algorithms produce, the more resources they consume. The problem becomes
worse when the database contains long sequential patterns. For example, consider
a sequence database containing a sequential pattern having 20 distinct items. A
sequential pattern mining algorithm will present the sequential pattern as well as
its 220−1 subsequences to the user. This will most likely make the algorithm fail
to terminate in reasonable time and run out of memory. For example, the well-
known PrefixSpan [12] algorithm would have to perform 220 database projection
operations to produce the results.

To reduce the computational cost of the mining task and present fewer but
more representative patterns to users, many studies focus on developing concise
representations of sequential patterns. A popular representation that has been
proposed is closed sequential patterns [15, 16, 6]. A closed sequential pattern is
a sequential pattern that is not strictly included in another pattern having the
same frequency. Another important representation is sequential generator pat-
terns. A sequential generator is a sequential pattern such that there does not
exist a smaller pattern with the same support that is included in it. Thus, gen-
erator and closed patterns are related. They are respectively the minimal and
maximal elements of equivalence classes of patterns having the same support,
partially ordered by the inclusion relation.

Mining sequential generator patterns is desirable for several reasons. First, it
was proven that the set of sequential generators is often smaller than the set of
closed sequential patterns. The reason is that each equivalence class may have
multiple generators and closed patterns4 [9]. Second, sequential generators are
more suitable according to the principles of the MDL (Minimum Description
Length) as they represent the minimal elements of equivalence classes rather the
maximal ones [9]. Third, mining sequential generators is key to other important
data mining tasks such as sequential rule mining, where rules having a minimum
antecedent and maximum consequent can be formed using sequential generators
and closed patterns [10].

Although mining sequential generators is desirable and useful in many ap-
plications, it remains a computationally expensive data mining task and few
algorithms have been proposed for this task. Most algorithms such as GenMiner
[9], FEAT [8] and FSGP [17] employs a pattern-growth algorithms by extending
the PrefixSpan algorithm [12]. These algorithms only differ by how patterns are
stored and whether generators are identified on-the-fly or by post-processing. Be-
cause these algorithms all adopts a pattern-growth approach, they have compa-
rable performance to other pattern-growth algorithms. For example, GenMiner
was shown to have approximately the same performance as other pattern-growth
algorithms CloSpan [16] and BIDE [15], and FEAT was shown to outperforms
PrefixSpan by about an order of magnitude, which is thus also comparable to
CloSpan and BIDE. Because these algorithms use a pattern-growth approach,
they also suffer from its main limitation which is to repeatedly perform database

4 This is different from frequent itemset mining where each equivalence class has only
one closed pattern.



projections to grow patterns, which is an extremely costly operation (in the worst
case, a pattern-growth algorithm will perform a database projection for each item
of each frequent pattern). More recently, the MGSP algorithm and has similar
performance to FSGP [13].

Given the limitation of these previous works, we present a novel algorithm
for mining sequential generator patterns that we name VGEN (Vertical Sequen-
tial GENerator Miner ). VGEN rely on a depth-first exploration of the search
space using a vertical representation of the database. The algorithm incorpo-
rates three efficient strategies named ENG (Efficient filtering of Non-Generator
patterns), BEC (Backward Extension checking) and CPC (Candidate Pruning
by Co-occurrence map) to effectively identify generator patterns and prune the
search space.

VGEN can capture the complete set of sequential generators by performing
a single database scan (to build the vertical structure). We performed an exper-
imental study with five real-life datasets to compare the performance of VGEN
with state-of-the-art sequential pattern mining algorithms. Results show that
VGEN outperforms those algorithms by up to two orders of magnitude.

The rest of the paper is organized as follows. Section 2 formally defines the
problem of sequential generator pattern mining and its relationship to sequential
pattern mining. Section 3 describes the VGEN algorithm. Section 4 presents the
experimental study. Finally, Section 5 presents the conclusion and future works.

2 Problem Definition

Definition 1 (sequence database). Let I = {i1, i2, ..., il} be a set of items
(symbols). An itemset Ix = {i1, i2, ..., im} ⊆ I is an unordered set of distinct
items. The lexicographical order �lex is defined as any total order on I. Without
loss of generality, we assume that all itemsets are ordered according to �lex. A
sequence is an ordered list of itemsets s = 〈I1, I2, ..., In 〉 such that Ik ⊆ I (1 ≤
k ≤ n). A sequence database SDB is a list of sequences SDB = 〈s1, s2, ..., sp〉
having sequence identifiers (SIDs) 1, 2...p. Example. A sequence database is
shown in Fig. 1 (left). It contains four sequences having the SIDs 1, 2, 3 and 4.
Each single letter represents an item. Items between curly brackets represent an
itemset. The first sequence 〈{a, b}, {c}, {f, g}, {g}, {e}〉 contains five itemsets. It
indicates that items a and b occurred at the same time, were followed by c, then
f and g at the same time, followed by g and lastly e.

Definition 2 (sequence containment). A sequence sa = 〈A1, A2, ..., An〉 is
said to be contained in a sequence sb = 〈B1, B2, ..., Bm〉 iff there exist integers
1 ≤ i1 < i2 < ... < in ≤ m such that A1 ⊆ Bi1, A2 ⊆ Bi2, ..., An ⊆ Bin (denoted
as sa v sb). Example. Sequence 4 in Fig. 1 (left) is contained in Sequence 1.

Definition 3 (prefix). A sequence sa = 〈A1, A2, ..., An〉 is a prefix of a se-
quence sb = 〈B1, B2, ..., Bm〉, ∀n < m, iff A1 = B1, A2 = B2, ..., An−1 = Bn−1
and the first |An| items of Bn according to �lex are equal to An.



 
SID Sequences  Pattern Sup. Pattern Sup. 

1 

2 
3 

4 

〈{a, b},{c},{f, g},{g},{e}〉 
〈{a, d},{c},{b},{a, b, e, f}〉 
〈{a},{b},{f, g},{e}〉 
〈{b},{f, g}〉 

 〈{a}〉 
〈{a},{g}〉 
〈{a},{g},{e}〉 
〈{a},{f}〉 
〈{a},{f},{e}〉 
〈{a},{c}〉 
〈{a},{c},{f}〉 
〈{a},{c},{e}〉 
〈{a},{b}〉 
〈{a},{b},{f}〉 
〈{a},{b},{e}〉 
〈{a},{e}〉 
〈{a, b}〉 
〈{b}〉 
〈{b},{g}〉 

3   CG 

2      G 
2     C 

3     C 

2     C 
2 

2     C 

2     C 
2     G 

2 C  

2 C 
3     C 

2     CG 

4 
3 C  

〈{b},{g},{e}〉 
〈{b},{f}〉 
〈{b},{f, g}〉 
〈{b},{f},{e}〉 
〈{b},{e}〉 
〈{c}〉 
〈{c},{f}〉 
〈{c},{e}〉 
〈{e}〉 
〈{f}〉 
〈{f, g}〉 
〈{f},{e}〉 
〈{g}〉 
〈{g},{e}〉 
〈〉 
 

2  C 

4  C  
2  C 

2  C 

3  C 
2  G 

2 

2 
3 G 

4 

2  G 

2  G 

3  G 

2  G 

4 G  

 

               C =  Closed     G = Generator 

  
Fig. 1. A sequence database (left) and (all/closed/generator) sequential patterns found
(right)

Definition 4 (support). The support of a sequence sa in a sequence database
SDB is defined as the number of sequences s ∈ SDB such that sa v s and is
denoted by supSDB(sa).

Definition 5 (sequential pattern mining). Let minsup be a threshold set
by the user and SDB be a sequence database. A sequence s is a sequential
pattern and is deemed frequent iff supSDB(s) ≥ minsup. The problem of mining
sequential patterns is to discover all sequential patterns [1]. Example. Fig. 1
(right) shows the 30 sequential patterns found in the database of Fig. 1 (left)
for minsup = 2, and their support. For instance, the patterns 〈{a}〉, 〈{a}, {g}〉
and 〈〉 (the empty sequence) are frequent and have respectively a support of 3,
2 and 4 sequences.

Definition 6 (closed/generator sequential pattern mining). A sequen-
tial pattern sa is said to be closed if there is no other sequential pattern sb, such
that sb is a superpattern of sa, sa v sb, and their supports are equal. A sequen-
tial pattern sa is said to be a generator if there is no other sequential pattern
sb, such that sa is a superpattern of sb, sb v sa, and their supports are equal.
The problem of mining closed (generator) sequential patterns is to discover the
set of closed (generator) sequential patterns. Example. Consider the database
of Fig. 1 and minsup = 2. There are 30 sequential patterns (shown in the right
side of Fig. 1), such that 15 are closed (identified by the letter C) and only 11
are generators (identified by the letter G). It can be observed that in this case,
the number of generators is less than the number of closed patterns.

We next present an important pruning property for sequential pattern gener-
ators, which is used by previous algorithms for sequential generator mining [9].



Definition 7 (database projection). The projection of a sequence database
SDB by a sequence sa is denoted as SDBsa and defined as the projection
of all sequences from SDB by sa. Let be two sequences sa = 〈A1, A2, ..., An〉
and sb = 〈B1, B2, ..., Bm〉. If sa @ sb, the projection of sb by sa is defined as
〈Bk1, Bk2...Bkm〉 for the smallest integers 0 < k1 < k2 < ...km ≤ m such that
A1 ⊆ Bk1, A2 ⊆ Bk2, .... A2 ⊆ Bkm. Otherwise, the projection is undefined.

Property 1. (non-generator pruning property). Given a sequence database
SDB, let sa and sb be two sequential patterns. If sb @ sa and the projection of
the database SDB by sa and sb results in the same sequence database, then sa
and any extensions of sa at not generators [9].

Definition 8 (horizontal database format). A sequence database in hori-
zontal format is a database where each entry is a sequence. Example. Figure 1
(left) shows an horizontal sequence database.

Definition 9 (vertical database format). A sequence database in vertical
format is a database where each entry represents an item and indicates the list
of sequences where the item appears and the position(s) where it appears [3].
Example. Fig. 2 shows the vertical representation of the database of Fig. 1
(left).

Fig. 2. The vertical representation of the database shown in Fig. 1(left).

Vertical mining algorithms associate a structure named IdList [18, 3] to each
pattern. IdLists allow calculating the support of a pattern quickly by making
join operations with IdLists of smaller patterns. To discover sequential patterns,
vertical mining algorithms perform a single database scan to create IdLists of
patterns containing single items. Then, larger patterns are obtained by perform-
ing the join operation of IdLists of smaller patterns (cf. [18] for details). Several
works proposed alternative representations for IdLists to save time in join oper-
ations, being the bitset representation the most efficient one [3].



3 The VGEN Algorithm

We present VGEN, our novel algorithm for sequential generator mining. It adopts
the IdList structure [3, 6, 18]. We first describe the general search procedure used
by VGEN to explore the search space of sequential patterns. Then, we describe
how it is adapted to discover sequential generators efficiently.

3.1 The search procedure

The pseudocode of the search procedure is shown in Fig. 3. The procedure takes
as input a sequence database SDB and the minsup threshold. The procedure
first scans the input database SDB once to construct the vertical representation
of the database V (SDB) and the set of frequent items F1. For each frequent
item s ∈ F1, the procedure calls the SEARCH procedure with 〈s〉, F1, {e ∈
F1|e �lex s}, and minsup.

The SEARCH procedure outputs the pattern 〈{s}〉 and recursively explores
candidate patterns starting with the prefix 〈{s}〉. The SEARCH procedure takes
as parameters a sequential pattern pat and two sets of items to be appended to
pat to generate candidates. The first set Sn represents items to be appended to
pat by s-extension. The second set Si represents items to be appended to pat by
i-extension. For each candidate pat′ generated by an extension, the procedure
calculate the support to determine if it is frequent. This is done by the IdList join
operation (see [3, 18] for details) and counting the number of sequences where
the pattern appears. If the pattern pat′ is frequent, it is then used in a recursive
call to SEARCH to generate patterns starting with the prefix pat′.

It can be easily seen that the above procedure is correct and complete to
explore the search space of sequential patterns since it starts with frequent pat-
terns containing single items and then extend them one item at a time while only
pruning infrequent extensions of patterns using the anti-monotonicity property
(any infrequent sequential pattern cannot be extended to form a frequent pat-
tern)[1].

3.2 Discovering sequential generator patterns

We now describe how the search procedure is adapted to discover only gener-
ator patterns. This is done by integrating three strategies to efficiently filter
non-generator patterns and prune the search space. The result is the VGEN
algorithm, which outputs the set of generator patterns.

Strategy 1. Efficient filtering of Non-Generator patterns (ENG). The
first strategy identifies generator patterns among patterns generated by the
search procedure. This is performed using a novel structure named Z that stores
the set of generator patterns found until now. The structure Z is initialized as
a set containing the empty sequence 〈〉 with its support equal to |SDB|. Then,
during the search for patterns, every time that a pattern sa, is generated by the
search procedure, two operations are performed to update Z.



5 

 

building a top-k algorithm based on this procedure would result in an efficient algo-

rithm. 

 

 

PATTERN-ENUMERATION(SDB, minsup) 

1. Scan SDB to create V(SDB) and identify Sinit, the list of frequent items. 

2. FOR each item s ∈ Sinit, 

3.  SEARCH(〈s〉, Sinit, the set of items from Sinit that are lexically larger than s, minsup). 

 

SEARCH(pat, Sn, In, minsup) 

1. Output pattern pat. 

2. Stemp := Itemp :=   

3. FOR each item j ∈ Sn, 

4.   IF the s-extension of pat is frequent THEN Stemp := Stemp ∪{i}. 

5. FOR each item j∈ Stemp,  

6.   SEARCH(the s-extension of pat with j, Stemp , elements in Stemp greater than j, min-

sup). 

7. FOR each item j ∈ In, 

8.   IF the i-extension of pat is frequent THEN Itemp := Itemp ∪{i}. 

9. FOR each item j ∈ Itemp,  

10.   SEARCH(i-extension of pat with j, Stemp , all elements in Itemp greater than j, minsup). 

Fig. 3. The candidate generation procedure 

3.2 The TKS Algorithm 

We now present our novel top-k sequential pattern mining algorithm named TKS. It 

takes as parameters a sequence database SDB and k. It outputs the set of top-k sequen-

tial patterns contained in SDB.  

 

Strategy 1. Raising Support Threshold. The basic idea of TKS is to modify the 

main procedure of the SPAM algorithm to transform it in a top-k algorithm. This is 

done as follows. To find the top-k sequential patterns, TKS first sets an internal min-

sup variable to 0. Then, TKS starts searching for sequential patterns by applying the 

candidate generation procedure. As soon as a pattern is found, it is added to a list of 

patterns L ordered by the support. This list is used to maintain the top-k patterns found 

until now. Once k valid patterns are found, the internal minsup variable is raised to the 

support of the pattern with the lowest support in L. Raising the minsup value is used 

to prune the search space when searching for more patterns. Thereafter, each time a 

frequent pattern is found, the pattern is inserted in L, the patterns in L not respecting 

minsup anymore are removed from L, and minsup is raised to the value of the least 

interesting pattern in L. TKS continues searching for more patterns until no pattern 

can be generated, which means that it has found the top-k sequential patterns. It can 

be easily seen that this algorithm is correct and complete given that the candidate 

generation procedure of SPAM is. However, in our test, an algorithm simply incorpo-

rating Strategy 1 does not have good performance.  

 

Fig. 3. The search procedure

– Sub-pattern checking. During this operation, sa is compared with each pat-
tern sb ∈ Z to determine if there exists a pattern sb such that sb @ sa and
sup(sa) = sup(sb). If yes, then sa is not a generator (by Definition 6) and
thus, sa is not inserted into Z. Otherwise, sa is a generator with respect to
all patterns found until now and it is thus inserted into Z.

– Super-pattern checking. If sa is determined to be a generator according to
super-pattern checking, we need to perform this second operation. The pat-
tern sa is compared with each pattern sb ∈ Z. If there exists a pattern sb
such that sa v sb and sup(sa) = sup(sb), then sb is not a generator (by
Definition 6) and sb is removed from Z.

By using the above strategy, it is obvious that when the search procedure
terminates, Z contains the set of sequential generator patterns. However, to make
this strategy efficient, we need to reduce the number of pattern comparisons and
containment checks (v). We propose five optimizations.

1. Size check optimization. Let n be the number of items in the largest pattern
found until now. The structure Z is implemented as a list of maps Z =
{M1,M2, ...Mn}, where Mx contains all generator patterns found until now
having x items (1 ≤ x ≤ n). To perform sub-pattern checking (super-pattern
checking) for a pattern s containing w items, an optimization is to only
compare s with patterns in M1,M2...Mw−1 (in Mw+1,Mw+2...Mn) because
a pattern can only contain (be contained) in smaller (larger) patterns.

2. SID count optimization. To verify the pruning property 1, it is required to
compare pairs of patterns sa and sb to see if their projected databases are
identical, which will be presented in the BEC strategy. A necessary condition
to have identical projected databases is that the sum of SIDs (Sequence IDs)
containing sa and sb is the same. To check this condition efficiently, the sum



of SIDs is computed for each pattern and each map Mk contains mappings
of the form (l, Sk where Sk is the set of all patterns in Z having l as sum of
SIDS (Sequence IDs).

3. Sum of items optimization. In our implementation, each item is represented
by an integer. For each pattern s, the sum of the items appearing in the pat-
tern is computed, denoted as sum(s). This allows the following optimization.
Consider super-pattern checking for pattern sa and sb. If sum(sa) < sum(sb)
for a pattern sb, then we don’t need to check sa v sb. A similar optimization
is done for sub-pattern checking. Consider sub-pattern checking for a pattern
sa and a pattern sb. If sum(sb) < sum(sa) for a pattern sb, then we don’t
need to check sb v sa.

4. Support check optimization. This optimization uses the support to avoid
containment checks (v). If the support of a pattern sa is less than the support
of another pattern sb (greater), then we skip checking sa v sb (sb v sa).

5. Lastly, another optimizations is to compare the sum of even and odd items
instead of the sum of items.

Strategy 2. Backward Extension checking (BEC). The second strategy
aims at avoiding sub-pattern checks. The search procedure discovers patterns
by growing a pattern by appending one item at a time by s-extension or i-
extension. Consider a pattern x′ that is generated by extension of a pattern
x. An optimization is to not perform sub-pattern checking if x′ has the same
support as x (because this pattern would have x has prefix, thus indicating that
x is not a generator).

Furthermore, another related optimization is to implement the pruning prop-
erty 1. For a pattern x, this is done during sub-pattern checking. If a smaller
pattern y can be found such that the projected database is identical, then any
extension of x should not be explored. Checking if projected databases are iden-
tical is simply performed by comparing the IdLists of x and y.

Strategy 3. Candidate Pruning with Co-occurrence map (CPC). The
last strategy aims at pruning the search space of patterns by exploiting item
co-occurrence information. We introduce a structure named Co-occurrence MAP
(CMAP) defined as follows: an item k is said to succeed by i-extension to an item
j in a sequence 〈I1, I2, ..., In〉 iff j, k ∈ Ix for an integer x such that 1 ≤ x ≤ n
and k �lex j. In the same way, an item k is said to succeed by s-extension to an
item j in a sequence 〈I1, I2, ..., In〉 iff j ∈ Iv and k ∈ Iw for some integers v and
w such that 1 ≤ v < w ≤ n. A CMAP is a structure mapping each item k ∈ I
to a set of items succeeding it.

We define two CMAPs named CMAPi and CMAPs. CMAPi maps each
item k to the set cmi(k) of all items j ∈ I succeeding k by i-extension in no less
than minsup sequences of SDB. CMAPs maps each item k to the set cms(k) of
all items j ∈ I succeedings k by s-extension in no less than minsup sequences of
SDB. For example, the CMAPi and CMAPs structures built for the sequence
database of Fig. 1(left) are shown in Table 1. Both tables have been created



considering a minsup of two sequences. For instance, for the item f , we can
see that it is associated with an item, cmi(f) = {g}, in CMAPi, whereas it
is associated with two items, cms(f) = {e, g}, in CMAPs. This indicates that
both items e and g succeed to f by s-extension and only item g does the same
for i-extension, being all of them in no less than minsup sequences.

VGEN uses CMAPs to prune the search space as follows:

1. s-extension(s) pruning. Let a sequential pattern pat being considered for s-
extension with an item x ∈ Sn by the SEARCH procedure (line 3). If the
last item a in pat does not have an item x ∈ cms(a), then clearly the pattern
resulting from the extension of pat with x will be infrequent and thus the
join operation of x with pat to count the support of the resulting pattern
does not need to be performed. Furthermore, the item x is not considered for
generating any pattern by s-extension having pat as prefix, by not adding
x to the variable Stemp that is passed to the recursive call to the SEARCH
procedure. Moreover, note that we only have to check the extension of pat
with x for the last item in pat, since other items have already been checked
for extension in previous steps.

2. i-extension(s) pruning. Let a sequential pattern pat being considered for i-
extension with an item x ∈ In by the SEARCH procedure. If the last item a
in pat does not have an item x ∈ cmi, then clearly the pattern resulting from
the extension of pat with x will be infrequent and thus the join operation
of x with pat to count the support of the resulting pattern does not need
to be performed. Furthermore, the item x is not considered for generating
any pattern by i-extension(s) of pat by not adding x to the variable Itemp

that is passed to the recursive call to the SEARCH procedure. As before, we
only have to check the extension of pat with x for the last item in pat, since
others have already been checked for extension in previous steps.

CMAPs are easily maintained and are built with a single database scan.
With regards to their implementation, we define each one as a hash table of
hash sets, where an hashset corresponding to an item k only contains the items
that succeed to k in at least minsup sequences.

CMAPi

item is succeeded by (i-extension)

a {b}
b ∅
c ∅
e ∅
f {g}
g ∅

CMAPs

item is succeeded by (s-extension)

a {b, c, e, f}
b {e, f, g}
c {e, f}
e ∅
f {e, g}
g ∅

Table 1. CMAPi and CMAPs for the database of Fig. 1 and minsup = 2.



Lastly, since the VGEN algorithm is a vertical mining algorithm, it relies
on IDLists. We implement IDLists as bitsets as it is done in several state-of-
the-art algorithms [3, 6]. Bitsets speed up the join operations. Algorithms using
this representation were demonstrated to be much faster than vertical mining
algorithms which do not use them.

4 Experimental Evaluation

We performed several experiments to assess the performance of the proposed
algorithm. Experiments were performed on a computer with a third generation
Core i5 64 bit processor running Windows 7 and 5 GB of free RAM. We compared
the performance of VGEN with ........... current state-of-the-art algorithm for
sequential pattern mining. All algorithms were implemented in Java. All memory
measurements were done using the Java API. Experiments were carried on five
real-life datasets having varied characteristics and representing three different
types of data (web click stream, text from a book and protein sequences). Those
datasets are Leviathan, Snake, FIFA, BMS and Kosarak10k. Table 2 summarizes
their characteristics. The source code of all algorithms and datasets used in our
experiments can be downloaded from http://goo.gl/R32D9d.

dataset sequence count item count avg. seq. length (items) type of data

Leviathan 5834 9025 33.81 (std= 18.6) book
Snake 163 20 60 (std = 0.59) protein sequences
FIFA 20450 2990 34.74 (std = 24.08) web click stream
BMS 59601 497 2.51 (std = 4.85) web click stream
Kosarak10k 10000 10094 8.14 (std = 22) web click stream

Table 2. Dataset characteristics

Experiment 1. Influence of the minsup parameter. The first exper-
iment consisted of running all the algorithms on each dataset while decreasing
the minsup threshold until an algorithm became too long to execute, ran out
of memory or a clear winner was observed. For each dataset, we recorded the
execution time and memory usage.

In terms of execution time, results (cf. Fig. 4) show that VGEN outperforms
....... by a wide margin on all datasets.

In terms of memory consumption the maximum memory usage of VGEN.....
Experiment 2. Influence of the strategies. We next evaluated the benefit

of using strategies in VGEN. We compared VGEN with a version of VGEN with-
out strategy CPC (VGEN WC) and a version without strategy BEC (VGEN WB).
Results for the Kosarak and Leviathan datasets are shown in Fig. 5. Results for
other datasets are similar and are not shown due to space limitation. As a whole,
strategies improved execution time by up to to 8 times, CPC being the most ef-
fective strategy.



 

1

10

100

15 16 17 18 19 20 21 22 23 24 25 26 27 28

R
u

n
ti

m
e

 (
s)

 

minsup 

Kosarak 

FSGP ClaSP

CloSpan BIDE

VGEN

1

10

100

1000

37 39 41 43 45

R
u

n
ti

m
e

 (
s)

 

minsup 

BMS 

10

100

1000

70 80 90 100 110 120

R
u

n
ti

m
e

 (
s)

 

minsup 

Leviathan 

1

10

100

1000

136 141 146

R
u

n
ti

m
e

 (
s)

 

minsup 

Snake 

10

100

1000

2700 2800 2900 3000 3100 3200

R
u

n
ti

m
e

 (
s)

 

minsup 

Fifa 

Fig. 4. Execution times

We also measured the memory used by the CPC strategy to build the VGEN
data structure. We found that the required amount memory is very small. For
the BMS, Kosarak, Leviathan, Snake and FIFA datasets, the memory footprint
of CMAPs was respectively 0.5 MB, 33.1 MB, 15 MB, 64 KB and 0.4 MB.

5 Conclusion

In this paper, we presented a new sequential generator pattern mining algo-
rithm named VGEN (Vertical Sequential GENerator Pattern Miner). It is to
our knowledge the first vertical algorithm for this task. Furthermore, it includes
three novel strategies for efficiently identifying generator patterns and prun-
ing the search space (ENG, BEC and CPC). An experimental study on five
real datasets shows that VGEN is up to two orders of magnitude faster than
MaxSP, the state-of-art algorithm for maximal sequential pattern mining, and
that VGEN performs well on dense datasets. The source code of VGEN and all
compared algorithms can be downloaded from http://goo.gl/R32D9d.



 

5

10

15

20

25

30

35

37 39 41 43 45

R
u

n
ti

m
e

 (
s)

 

minsup 

BMS 

20

30

40

50

60

70

80

90

100

2900 2950 3000 3050 3100 3150 3200

R
u

n
ti

m
e

 (
s)

 

minsup 

Fifa 

15

20

25

30

35

40

100 110 120

R
u

n
ti

m
e

 (
s)

 

minsup 

Leviathan 

1

6

11

16

21

26

18 19 20 21 22 23 24 25 26 27 28

R
u

n
ti

m
e

 (
s)

 

minsup 

Kosarak 

VGEN-WB VGEN-WC VGEN

Fig. 5. Influence of optimizations for BMS (left) and FIFA (right)

References

1. Agrawal, R., Ramakrishnan, S.: Mining sequential patterns. In: Proc. 11th Intern.
Conf. Data Engineering, pp. 3–14. IEEE (1995)

2. Aseervatham, S., Osmani, A., Viennet, E.: bitSPADE: A Lattice-based Sequential
Pattern Mining Algorithm Using Bitmap Representation. In: Proc. 6th Intern. Conf.
Data Mining, pp.792–797. IEEE (2006)

3. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a bitmap
representation. In: Proc. 8th ACM Intern. Conf. Knowl. Discov. Data Mining, pp.
429–435. ACM (2002)

4. Fournier-Viger, P., Wu, C.-W., Tseng, V.-S.: Mining Maximal Sequential Patterns
without Candidate Maintenance. In: Proc. 9th Intern. Conference on Advanced Data
Mining and Applications, Springer, LNAI 8346, pp. 169-180 (2013)

5. Fournier-Viger, P., Gomariz, A., Campos, M., Thomas, R.: Fast Vertical Sequen-
tial Pattern Mining Using Co-occurrence Information. In: Proc. 18th Pacific-Asia
Conference on Knowledge Discovery and Data Mining , Springer, LNAI, (2014)

6. Gomariz, A., Campos, M., Marin, R., Goethals, B.: ClaSP: An Efficient Algorithm
for Mining Frequent Closed Sequences. In: Proc. 17th Pacific-Asia Conf. Knowledge
Discovery and Data Mining, pp. 50–61. Springer (2013)

7. Lin, N. P., Hao, W.-H., Chen, H.-J., Chueh, H.-E., Chang, C.-I.: Fast Mining Maxi-
mal Sequential Patterns. In: Proc. of the 7th Intern. Conf. on Simulation, Modeling
and Optimization, September 15-17, Beijing, China, pp.405-408 (2007)

8. Gao, C., Wang, J., He, Y., Zhou, L.: Efficient mining of frequent sequence generators.
In: Proc. 17th Intern. Conf. World Wide Web:, pp. 1051–1052 (2008)

9. Lo, D., Khoo, S.-C., Li, J.: Mining and Ranking Generators of Sequential Patterns.
In: Proc. SIAM Intern. Conf. Data Mining 2008, pp. 553–564 (2008)

10. Lo, D., Khoo, S.-C., Wong, L.: Non-redundant sequential rulesTheory and algo-
rithm. Information Systems 34(4), 438–453 (2009)

11. Mabroukeh, N.R., Ezeife, C.I.: A taxonomy of sequential pattern mining algo-
rithms, ACM Computing Surveys 43(1), 1–41 (2010)

12. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu,
M.: Mining sequential patterns by pattern-growth: the PrefixSpan approach. IEEE
Trans. Known. Data Engin. 16(11), 1424–1440 (2004)



13. Pham, T.-T., Luo, J., Hong, T.-P., Vo, B..: MSGPs: a novel algorithm for mining
sequential generator patterns. In: Proc. 4th Intern. Conf. Computational Collective
Intelligence, pp. 393-401 (2012)

14. Szathmary, L., Valtchev, P., Napoli, A., Godin., R.: Efficient vertical mining of fre-
quent closures and generators. In: Proc. 8th Intern. Symp. Intelligent Data Analysis,
August 31 - September 2, Lyon, France, pp. 393–404 (2009)

15. Wang, J., Han, J., Li, C.: Frequent closed sequence mining without candidate
maintenance. IEEE Trans. on Knowledge Data Engineering 19(8), 1042–1056 (2007)

16. Yan, X., Han, J., Afshar, R.: CloSpan: Mining closed sequential patterns in large
datasets. In: Proc. 3rd SIAM Intern. Conf. on Data Mining, pp. 166–177 (2003)

17. Yi, S., Zhao, T., Zhang, Y., Ma, S., Che, Z.: An effective algorithm for mining
sequential generators. Procedia Engineering, 15, 3653-3657 (2011)

18. Zaki, M.J.: SPADE: An efficient algorithm for mining frequent sequences. Machine
Learning 42(1), 31–60 (2001)


