
An Approach to ANFIS Performance

Stepan Dalecky and Frantisek V. Zboril

Faculty of Information Technology
Brno University of Technology

Brno, Czech republic
idalecky@fit.vutbr.cz, zboril@fit.vutbr.cz

Abstract. The paper deals with Adaptive neuro-fuzzy inference system
(ANFIS) and its performance. Firstly, ANFIS is described as a hybrid
system based on fuzzy logic/sets and artificial neural networks. Subse-
quently, modifications of ANFIS are proposed. The aim of these modi-
fications is to improve performance, accuracy or reduce computational
time. Finally, experiments are presented and findings are assessed.

Keywords: ANFIS, artificial neural network, performance, fuzzy sets,
fuzzy logic

1 Introduction

Many problems can be successfully solved using some combination of fuzzy logic
[6, 7] and artificial neural networks [6, 1, 8]. Each of these two theories has its
pros and cons. That is the reason why it is worth to develop hybrid system
which takes advantages of both. One well known example of such system is
the Adaptive neuro-fuzzy inference system (ANFIS) developed by Jang [3, 6,
4]. ANFIS has borrowed vagueness and fuzziness from fuzzy sets and learning
capability from artificial neural networks. This system has been used for solving
many problems, e.g. controlling [5], prediction [2] and classification problems.
This paper describes ANFIS and proposed modification of ANFIS that leads to
better performance, accuracy and/or less computational time.

2 ANFIS

From fuzzy sets point of view, ANFIS represents Sugeno model of the first order.
On the other hand, from artificial neural networks point of view, ANFIS repre-
sents six layer feed-forward neural network. Architecture of ANFIS is shown in
Fig. 1a.

It is obvious that ANFIS shown in this figure divides an input space as it is
shown in Fig. 1b and next four rules can be derived from it:

Parameters kij are specific constants for each rule and their settings will be
described later.

2 Dalecky, Zboril

1

2

3

4

A1

A2

B1

B2

x1

x2

y

N1

N2

N3

N4

Σ

Π1

Π2

Π3

Π4

x1 x2
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

(a) Architecture

4 2

1 3

x1

x2

B2

B1

A1 A2

(b) Division of the input
space.

Fig. 1. ANFIS

Rule 1:
IF x1 is A1

AND x2 is B1

THEN y = k10 + k11x1 + k12x2

Rule 3:
IF x1 is A2

AND x2 is B1

THEN y = k30 + k31x1 + k32x2

Rule 2:
IF x1 is A2

AND x2 is B2

THEN y = k20 + k21x1 + k22x2

Rule 4:
IF x1 is A1

AND x2 is B2

THEN y = k40 + k41x1 + k42x2

2.1 Description of Layers

In this subsection, functions of all layers with respect to ANFIS [3, 6] architecture
in Fig. 1a are explained into more details. Symbols x(l)ij and y(l)i denote j-th input
and output of i-th neuron in l-th layer, respectively. If i-th neuron has one input
only then this input is denoted simply as x(l)i .

Layer 1 – Input Layer The first layer only distributes input values to the
second layer using Eq. (1) as follows.

y
(1)
i = x

(1)
i (1)

Layer 2 – Fuzzification Layer The second layer accomplish fuzzification of
inputs using bell membership function Eq. (2) as follows.

y
(2)
i = bell(x

(2)
i ; ai, bi, ci) =

1

1 +

(
x
(2)
i −ai
ci

)2bi
(2)

It is obvious that parameters ai, bi, ci determine shape of the bell function:
centre, width, and slope.

An Approach to ANFIS Performance 3

Layer 3 – Rule Layer The third layer corresponds to the rules. Each neuron
in this layer represents one rule. Inputs of this layer are membership degrees
(outputs of the previous layer), outputs are strength of the rules computed using
Eq. (3) as products of all inputs. C (i) symbol denotes the set of neurons of the
second layer which are connected to i-th neuron in the third layer.

y
(3)
i =

∏
j∈C(i)

x
(3)
j = µi (3)

Layer 4 – Normalization Layer The fourth layer is used for normalization
of rule strength. Inputs of all neurons are corresponding outputs of n neurons
of the previous layer. Normalized strengths of corresponding rules are computed
using Eq. (4).

y
(4)
i =

x
(4)
i

n∑
j=1

x
(4)
j

=
µi
n∑
j=1

µj

= µ̄i (4)

Layer 5 – Defuzzification Layer The fifth layer uses Eq. (5) to compute
consequent (THEN part) strengths of the rule according to the first order Sugeno
model [6, 4]. Inputs of this layer are outputs of the previous layer and input
variables x1 and x2.

y
(5)
i = x

(5)
i [ki0 + ki1x1 + ki2x2] = µ̄i [ki0 + ki1x1 + ki2x2] (5)

Layer 6 – Sum Layer The sixth layer computes output of whole network as
sum of layer inputs using Eq. (6) as follows.

y = y(6) =

n∑
i=1

x
(6)
i =

n∑
i=1

µ̄i [ki0 + ki1x1 + ki2x2] (6)

2.2 Parameters and Learning

Good performance of proposed model considerably depends on values of param-
eters ai, bi, ci in the second layer and kij in the fifth layer. It is impossible
to determine optimal value of these parameters directly so we have to estimate
them and then tune them to get better performance.

Process of tuning parameters is called learning of ANFIS. Parameters that
have to be tuned are divided into two groups:

– parameters that are linear from the output point of view (parameters kij),
– parameters that are non-linear from the output point of view (parameters
ai, bi, ci).

Each group of parameters is tuned separately. One learning step consists of
forward pass and backward pass.

4 Dalecky, Zboril

Forward Pass Vector k of parameters kij is tuned during this pass. Suppose
m inputs of ANFIS and n neurons in the third layer (number of rules) now,
instead 2 inputs and 4 rules shown in Fig. 1a. Then vector k is n(1 +m) vector
of parameters of the fifth layer.

k =
[
k10 k11 k12 . . . k1m k20 k21 k22 . . . k2m . . . kn0 kn1 kn2 . . . knm

]T
Let P be number of training vectors. Then outputs of network create vector

y of P elements - each row of y is response of ANFIS to the one input vector.
We can write

y = Ak (7)
where A is P ×n(1 +m) dimensional matrix which holds network state after

the computation of the fourth layer output.

A =

µ̄1(1) µ̄1(1)x1(1) · · · µ̄1(1)xm(1) · · · µ̄n(1) µ̄n(1)x1(1) · · · µ̄n(1)xm(1)
µ̄1(2) µ̄1(2)x1(2) · · · µ̄1(2)xm(2) · · · µ̄n(2) µ̄n(2)x1(2) · · · µ̄n(2)xm(2)

...
... · · ·

... · · ·
...

... · · ·
...

µ̄1(p) µ̄1(p)x1(p) · · · µ̄1(p)xm(p) · · · µ̄n(p) µ̄n(p)x1(p) · · · µ̄n(p)xm(p)
...

... · · ·
... · · ·

...
... · · ·

...
µ̄1(P) µ̄1(P)x1(P) · · · µ̄1(P)xm(P) · · · µ̄n(P) µ̄n(P)x1(P) · · · µ̄n(P)xm(P)

Equation Eq. (7) is a matrix notation of Eq. (6) and Eq. (5) for set of training

vectors.
Let yd be P × 1 vector of desired outputs.

yd =
[
yd(1) yd(2) . . . yd(p) . . . yd(P)

]T
Then error vector e of the network can be defined as follows

e = yd − y (8)

Goal of the learning is to find such vector k, respectively its estimate k∗, for
which mean square error defined by Eq. (9) is minimal (zero).

‖e‖2 = ‖yd − y‖
2

= ‖yd −Ak‖2 (9)

Vector k can be computed using Eq. (10) as follows (with respect to Eq. (7)).

k = (ATA)−1ATyd (10)

However inverse matrix (ATA)
−1 can be calculated if and only if the matrix

(ATA) is regular. Unfortunately there is no guarantee of this and that is why we
have to compute estimate of vector k, denoted k∗, using pseudoinverse matrix
Eq. (11).

k∗ = A+yd (11)
Symbol A+ denotes pseudoinverse of matrix A. Finally, vector k∗ is vector

of estimated parameters of the fifth layer.

An Approach to ANFIS Performance 5

Backward Pass During this pass, parameters ai and ci are tuned (bi remains
constant). Method is similar to well-known backpropagation method - it uses
backward propagation of errors. Error is computed using Eq. (12), where yd and
y denote desired and real output of the network, respectively.

E =
1

2
(yd − y)

2 (12)

Goal of learning is to minimize error E by changing values of parameters in
the second layer. Assume that αm denotes general parameter of the m-th neuron
in the second layer. Then minimization is done according to Eq. (13) by tuning
αm. E should decreases if partial derivative of E with respect to αm is negative.
Symbol κ denotes a learning rate.

∆αm = −κ ∂E

∂αm
(13)

Using the chain rule and Eq. (13) we can derive Eq. (14), where n(5) is number
of neurons in the fifth layer (number of rules), C−1(m) is a set of neurons of the
third layer which are connected with m-th neuron in the second layer and ∂y(2)m

∂αm

is partial derivative of bell membership function with respect to αm.

∆αm = κyd−y
(6)

y
(2)
m

(∑
j∈C−1(m)

(
y
(5)
j

)
−
∑n(5)

j=1

(
y
(5)
j

y
(3)
j

y
(4)
j

)∑
l∈C−1(m)

(
y
(3)
l

))
∂y(2)m

∂αm
(14)

Partial derivative of bell membership function with respect to ai and ci are
computed using Eq. (15) and Eq. (16).

∂y
(2)
i

∂ai
= y

(2)
i

2bi
ci

(
y
(1)
i − ai
ci

)2bi−1

(15)

∂y
(2)
i

∂ci
=

2bi

(
y
(1)
i −ai
ci

)2bi

ci

((
y
(1)
i −ai
ci

)2bi

+ 1

)2 (16)

Finally, values of ∆ai and ∆ci are computed by substitution Eq. (15) and
Eq. (16) into Eq. (14).

3 Proposed Modifications of ANFIS

This section describes proposed modifications of ANFIS. After each modification
is presented their impact on performance or accuracy is discussed.

6 Dalecky, Zboril

3.1 Different Number of Fuzzy Sets for Each Input

Original ANFIS uses the same number of fuzzy sets for each input variable
regardless of variable properties. For example if one variable does not change
much (e.g. affects output only linearly or similarly) there is no need to has as
much fuzzy sets as must have a variable which changes a lot (affects outputs
non-linear, high frequency etc.). We can distribute the same amount of fuzzy
sets more precisely and put it where they improve accuracy and performance
with the same or even less computational time.

This modification brings performance and/or accuracy in comparison with
the original ANFIS, depending on the use. The worst case that should happened
is that all inputs have the same number of fuzzy sets and it can be easily reached
even with this modification.

3.2 Data Normalization

Great method for improve ANFIS performance is data pre-processing. Z-score
normalization Eq. (17) is used for this purpose.

z =
x− µ
σ

(17)

Symbol x denotes input/output variable, µ denotes mean and σ is standard
deviation. Such normalization can be used for every input/output variable but
we have to save mean and standard deviation values for each variable to be able
to normalize training vectors, testing vectors etc. in the same way and also for
reconstructing original value of variable.

Benefit of this modification heavily depends on data properties and it will be
discussed in the experiment section.

3.3 Fuzzy Sets Initialization

Parameters ai, bi and ci have to be properly initialized. Good approach is to
analyse training data and estimate these parameters. After the z-score normal-
ization, minimum and maximum of each input variable is computed, desired
fuzzy count for variable is divided uniformly from minimum to maximum. Pa-
rameter bi is a constant (e.g. bi = 2 for reasonable membership function shape),
parameters ai and ci are computed using Eq. (18).

step = max−min
n ai = min+ step

2 + i · step ci = step
2

(18)

Symbols min and max denote minimum and maximum of input values re-
spectively, n is desired number of fuzzy sets.

This modification has main impact on performance. Proper fuzzy sets initial-
ization can significantly decrease learning time on the other hand bad fuzzy sets
initialization increases learning time because learning process start from point
far from the solution. Accuracy is affected negligibly because it should converges
to the almost same solution as well but it takes more time.

An Approach to ANFIS Performance 7

3.4 Changing Learning Rate κ

We borrowed this modification from article [3]. Idea is to modify learning rate
in order to improve performance. Symbol κ in Eq. (14) is computed using Eq.
(19).

κ =
η√(

∂E
∂ai

)2
+
(
∂E
∂ci

)2 (19)

Symbol κ denotes new learning rate, η is old learning rate. η is usually initial-
ized from interval 0.001 to 0.1. Main advantage is that new learning rate doesn’t
depend on input data as much as original κ. This modification also brings pos-
sibility to tune η depending on success of error minimization. If network error
decreases then learning rate increases, on the other hand if error oscillates learn-
ing rate decreases, finally if error increases there is no change of learning rate. η
is increased by 5 % after 4 consecutive iterations which decrease error. If error
oscillates (up, down, up, down) during 4 consecutive iterations η is decreased by
10 %.

Described modification may slightly decrease accuracy in favour to significant
performance improvement.

4 Experiments

Two problems has been chosen to demonstrate how proposed system works -
function approximation and controlling of a system.

At the first, some metrics to measure performance and accuracy are de-
scribed.

Performance can be divided into two aspects:

– number of learning iterations (forward and backward pass),
– time that ANFIS needs to converge (to stop learning).

Accuracy is measured as difference between ANFIS output y(p) and desired
output yd(p) for training vector p ∈ P using E or EA from Eq. (20).

E (P) =

∑
p∈P

(y(p)−yd(p))2

|P | EA (P) =

∑
p∈P
|y(p)−yd(p)|

|P |
(20)

4.1 Function Approximation

Two non-linear functions and their modifications have been chosen to demon-
strate performance and accuracy of proposed ANFIS. Both functions are uni-
formly sampled in each axis in interval < −5, 5 > with 0.1 steps.

The first function is two variables sinc function Eq. (21). This function is
symmetric in terms of input variable so it is appropriate to have same number of

8 Dalecky, Zboril

fuzzy sets for each input. In this experiment 3 fuzzy sets are used. To demonstrate
efficiency of different number of fuzzy sets for each input, function sincm Eq.
(21) is chosen and 4 fuzzy sets are used for input variable x, only 3 fuzzy sets
are used for y.

sinc (x, y) = sin x
x + sin y

y sincm (x, y) = sin 2x
x + sin y

y (21)

To verify and confirm results another function f and its modified version fm
have been chosen Eq. (22). In case of f , 3 fuzzy sets are used for x and y while
in case of fm, 4 fuzzy sets are used for x and 3 for y only.

f (x, y) = sin2x · cos y fm (x, y) = sin2x · cos y2 (22)

0

1

-1 0 1
x

sinc

-1 0 1
y

sinc

-1 0 1
x

f

-1 0 1
y

f

0

1

-1 0 1
x

sincm

-1 0 1
y

sincm

-1 0 1
x

fm

-1 0 1
y

fm

Fig. 2. Membership function after initialization and after learning.

Fuzzy sets after initialization are shown1 in Fig. 2 by dashed line and solid
line is used to represent fuzzy sets after learning. Corresponding sets have same
colours (shade of black). It can be seen that there are noticeable differences
between fuzzy sets of original (sinc, f) and modified (sincm, fm) functions.

Performance and accuracy of this experiments are shown in Tab. 1. To avoid
impact of initial learning rate several η are chosen {η1 = 5 · 10−4, η2 = 1 ·
10−3, η3 = 5 · 10−3, η4 = 1 · 10−2, η5 = 3 · 10−2, η6 = 5 · 10−2}. Table is organized

1 Values on both axes are normalized by z-score. So they don’t directly correspond to
the values of sinc.

An Approach to ANFIS Performance 9

as follows: Each experiment is on two rows. The first one contains used ANFIS
configuration2 and number of iterations for each η while the second row contains
accuracy3 and time in seconds4.

It can be seen in Tab. 1 that modified ANFIS works well. Function sinc Tab.
2a is learned in about 76.1% less iterations and 76.8% less time with error below
10−3 in average, about 50% of iterations and time are saved with error below
10−4. With sincm Tab. 2c modified ANFIS uses only about 6.7% less iterations
but time is reduced about 50.3% with the same accuracy 2 · 10−4. Function f
Tab. 2b, ANFIS used in about 60.4% less iterations and 62.6% less time with
same accuracy. Finally, using fm iterations are about 11.6% more but time is
reduced about 21.0%. So proposed modifications save time and iterations from
7% to nearly 80%.

Table 1. Number of learning iterations and consumed time

η1 η2 η3 η4 η5 η6 Σ
Orig33 210 159 65 39 16 11 500
10−3 4.72 3.43 1.47 0.90 0.42 0.41 11.34
Mod33 134 92 29 17 7 5 284
10−3 3.03 2.06 0.65 0.38 0.17 0.12 6.42
Orig33 266 212 103 66 37 41 725
10−4 6.48 4.59 2.28 1.46 0.86 1.04 16.71
Mod33 184 135 51 38 50 28 486
10−4 4.11 2.96 1.14 0.86 1.12 0.62 10.79

(a) sinc

η1 η2 η3 η4 η5 η6 Σ
Orig33 292 237 122 82 38 26 797
4 · 10−3 6.98 5.51 2.85 1.88 0.94 0.84 19.00
Mod33 208 158 64 39 17 11 497
4 · 10−3 4.94 3.65 1.50 0.92 0.41 0.26 11.68

(b) f

η1 η2 η3 η4 η5 η6 Σ
Orig33 177 129 47 28 11 7 399
5 · 10−2 4.09 2.81 1.15 0.67 0.32 0.25 9.30
Orig44 254 201 103 81 63 65 767
2 · 10−4 12.64 9.36 4.74 3.69 2.87 2.99 36.29
Mod43 192 143 83 87 99 115 719
2 · 10−4 6.51 4.79 2.76 2.87 3.32 3.89 24.15

(c) sincm

η1 η2 η3 η4 η5 η6 Σ
Orig33 251 198 91 58 25 16 639
5 · 10−2 5.79 4.24 2.02 1.38 0.61 0.53 14.58
Mod34 168 121 43 25 10 7 374
2 · 10−4 5.49 3.95 1.42 0.86 0.36 0.26 12.33
Orig44 203 153 61 37 15 10 479
2 · 10−4 9.83 6.88 2.75 1.67 0.71 0.48 22.31
Mod43 221 169 72 45 21 14 542
2 · 10−4 7.20 6.25 2.37 1.46 0.69 0.48 18.45

(d) fm

4.2 Controlling Discrete System

The second experiment is controlling discrete system Eq. (23) which has been
presented in literature [4]. This system has one state variable y and one input u.

y (k + 1) =
y (k) · u (k)

1 + y (k)
2 − tan (u (k)) (23)

2 OrigAB is used for original ANFIS with A fuzzy sets for x and B for y while ModAB
means our modified ANFIS with A fuzzy sets for x and B for y.

3 Accuracy means maximal error computed using E from Eq. (20).
4 Time is measured on our testing machine with Intel Core i5-2540M.

10 Dalecky, Zboril

Goal of controlling is to produce such input u that force state variable y (in
this case the same variable as output variable) to track desired trajectory given
by Eq. (24).

yd (k) = 0.6 sin

(
2πk

250

)
+ 0.2 sin

(
2πk

50

)
(24)

Inverse learning [4] is used to generate training data and control the system.
Size of training vector is 100 samples, initial learning rate η = 5 · 10−3. Training
environment consists of follows: y(0) = 0 and action u(k) is generated randomly
each step from range < −1, 1 > using uniform distribution. Training vectors are
[y (k) , y (k + 1) ;u (k)].

Accuracy of controlling is shown in Fig. 3. It can be seen that error of pro-
posed ANFIS is slightly lower than error of original ANFIS. Main improvement
comes from possibility to have different number of fuzzy sets and make ANFIS
to fit your needs - accuracy vs. performance. Exact results can bee seen in Tab.
2 computed using EA from Eq. (20).

-0.05

0

0.05

0 50 100 150 200 250

E
rr

or

Iterations

-0.05

0

0.05

0 50 100 150 200 250

E
rr

or

Iterations

Orig22
Orig33
Mod23
Mod32

Orig22
Orig33
Mod22
Mod33

Fig. 3. Comparison of original and proposed ANFIS.

Table 2. Average error

Orig22 Orig33 Mod22 Mod23 Mod32 Mod33
Average error 0.0161 0.0023 0.0162 0.0058 0.0097 0.0021

An Approach to ANFIS Performance 11

5 Conclusion

This paper presented modification of ANFIS. Main goal was to improve per-
formance and to get more accurate results in reasonable time and it has been
reached. Proposed modification relies on these changes: number of fuzzy sets
for each input may differ, data normalization is added and intelligent fuzzy sets
initialization is used, also changing learning rate from original Jang article [3] is
borrowed.

To verify benefits of modification two experiments were done. The first one
was function approximation and the second one was controlling of a discrete dy-
namic system. In both cases modified ANFIS had better performance and/or ac-
curacy. Accuracy improvement is not significant in all experiments but the lower
number of iterations and less computational time also have to be counted in.
Improvement of accuracy and/or performance heavily depends on solved prob-
lem and training data. These experiments verified that proposed modification
can be successfully used to improve ANFIS performance and/or accuracy.

Further research could be done in way of tuning parameters. For example
extended Kalman filter[9] can be used to speed up learning.

Acknowledgement
This work was supported by the European Regional Development Fund in the IT4Innovations
Centre of Excellence project CZ.1.05/1.1.00/02.0070, by the Reliability and Security in IT
project FIT-S-14-2486 and by the IGA BUT project FIT-S-14-2486.

References

1. R. A. Aliev and R. R. Aliev. Soft Computing and its Applications. World Scientific
Publishing Co. Pte. Ltd., 2001.

2. Melek Acar Boyacioglu and Derya Avci. An adaptive network-based fuzzy inference
system (anfis) for the prediction of stock market return: The case of the istanbul
stock exchange. Expert Systems with Applications, 37(12):7908 – 7912, 2010.

3. Jyh-Shing Roger Jang. Adaptive-network-based fuzzy inference system. [online],
1993.

4. Jyh-Shing Roger Jang, C.-T. Sun, and E. Mizutani. Neuro-Fuzzy and Soft Comput-
ing: a computational approach to learning and machine intelligence. Prentice Hall,
1997.

5. Yanmei Liu, Zhen Chen, Dingyu Xue, and Xinhe Xu. Real-time controlling of
inverted pendulum by fuzzy logic. In Automation and Logistics, 2009. ICAL ’09.
IEEE International Conference on, pages 1180–1183, Aug 2009.

6. Michael Negnevitsky. Artificial Intelligence: A Guide to Intelligent Systems.
Addison-Wesley, 2002.

7. Witold Pedrycz and Fernando Gomide. An Introduction to Fuzzy Sets: Analysis and
Design. The MIT Press, 1998.

8. Sturart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pear-
son, 2010.

9. Dan Simon. Training fuzzy systems with the extended kalman filter. Fuzzy Sets and
Systems, 2002. http://academic.csuohio.edu/simond/fuzzyopt/fss.pdf.

