
Web Service Migration using

the Analytic Hierarchy Process

M. Mohanned Kazzaz

Department of Information Systems

Faculty of Information Technology

Brno University of Technology

Brno, Czech Republic

Email: ikazzaz@fit.vutbr.cz

Marek Rychlý

Department of Information Systems

Faculty of Information Technology

Brno University of Technology

Brno, Czech Republic

Email: rychly@fit.vutbr.cz

Abstract—In this paper, we present a framework for Web
service migration in Service-oriented Architecture (SOA). The
framework utilizes service migration between devices acting as
Web service providers to increase the adaptability of SOA in
a mobile environment. It allows an automatic discovery of new
providers and their services joining a system and extraction of
their context, preferences, and rules for a Web service migration
ontology. If the preferences and the rules, which specify require-
ments of each provider to its hosted services and requirements
of the services to be hosted by a provider, do not meet the cur-
rent status and context of providers or services, the framework
initiates a Web service migration. In this case, the ontology is
added to a core domain model and reasoned together by Jena
reasoners to retrieve a set of alternate migration decisions. These
are processed by Analytic Hierarchy Process (AHP) decision-
making method to find the best possible Web service migrations
which modify the status and context of providers and services
to better meet their preferences and rules. By the Web service
migration, the framework extends significantly the adaptability
of SOA systems and helps to keep a required quality of their
services (QOS).

Keywords-service-oriented architecture; Web service; service
migration; devices profile for Web services; Web service discovery

I. INTRODUCTION

Software mobility [1], which is the ability of moving soft-

ware across the nodes of a network, is a very interesting

approach addressing many issues of distributed systems such

as interoperability, self-adaptability, fault-tolerance, or load

balancing. In Service-oriented Architectures (SOA), software

mobility can be comprehended as service migration, which is

the ability of services to be moved across the service providers

at runtime. As services in SOA should be designed with respect

to SOA principles [2], such as re-usability and statelessness,

software mobility, that is service migration, in the case of

SOA is much easier than in the case of non-SOA distributed

systems.

In our previous work [3], we proposed an ontology-based

framework for Web service migration in SOA. We defined an

ontology-based semantic context model of migratable Web ser-

vices and their providers. The context model allows to describe

in the OWL/RDF format status properties of migratable Web

services, properties of their providers, and also preferences and

rules which specify requirements of each provider to its hosted

services and requirements of the services to be hosted by a

provider. We also proposed utilization of the context model

with Apache Jena reasoners and rule engines for RDFS and

OWL inference to make migration decisions, that is (1) to

detect a situation when the current status or context of the

providers or the services does not meet their requirements

and some of the services need to be migrated and (2) to find

services which should be migrated and where they should be

migrated.

The situation above can arise from two reasons: a migratable

service with particular requirements on its runtime environ-

ment is currently hosted by a provider which does not meet

the requirements, or a provider with particular requirements

on hosted services is currently hosting a migratable service

which does not meet the requirements. Moreover, this situation

results into a set of migration decisions which indicate possible

services to migrate and possible destination service providers of

the migration. Unfortunately, the reasoners and rule engines for

RDFS and OWL inference produce all the feasible migration

decisions, i.e., all services which need to be migrated and all

providers which are able to host such services after the migra-

tion, and are not able to determine which migration decision

is best and will fix the most important broken requirements.

This paper deals with the problem of selection of the best

service migration decisions from a set of found migration

decisions produced by the RDFS/OWL reasoners and rule en-

gines. The selection process is based on the Analytic Hierarchy

Process (AHP, [4]) multi-criteria decision making method.

The paper is organized as follows. Section II discusses

related work on service migration in SOA. In Section III,

we describe our Web service migration framework with focus

on the migration decision process. Section IV deals with the

utilization of AHP method in the best migration selection.

An example of the migration decision making and selection

process with AHP is provided in Section V. Finally, we draw

conclusions in Section VI.

II. RELATED WORK

Several works directly address or touch on the decision

making issues in migration of services in SOA. For example,

in [5], a service migration approach was proposed as a solution

2015 IEEE International Conference on Mobile Services

978-1-4673-7284-8/15 $31.00 © 2015 IEEE

DOI 10.1109/MS.2015.64

423

to maintain continuous service availability with migration deci-

sions based on Quality of Service (QOS) goals. In [6], authors

introduced a virtual machines migration framework with several

migration decision making strategies for different resource

reservations goals and schemes during migration of virtual

machines, namely: sequential migration, parallel migration and

workload-aware migration strategies. In [7], authors proposed

an algorithm for dynamic placement of services to servers

based on available server resources (such as CPU or memory)

and network performance given by SLAs.

In [8], authors described a framework for service migration

in cloud computing environments using a genetic algorithm to

search and select possible migrations. The algorithm utilized a

cost model with various service migration costs, including the

costs of consistency maintenance and communication during

migrations, a service table with information of all migrated and

replicated services, and a general computing platform registry

with information about hosted services. Another approach

to selection of migratable services in a cloud was proposed

in [9]. The selection process considered pre-defined criteria

related to QOS of the migratable services in the cloud, namely:

response time, throughput, availability, reliability, and cost, and

it utilized the Analytic Hierarchy Process (AHP, [4]) method

with comparison matrices defined by a consumer’s judgments

on the QOS criteria. Although the AHP method is utilized also

in our approach presented in this paper, the comparison matrices

are, in our case, defined by the ontology of dynamic properties

and preferences of automatically discovered providers and their

services, which supports a multi-criteria migration decision

making process.

In [10], a decentralized migration approach was introduced

based on monitoring of health of Web Services Resource

Framework (WSRF) containers [11]. The approach was trying

to minimize possible threats of service level agreements (SLA)

violations to preserve QOS of provided services by their

migration. A service priority was proposed to be used as a

weighting factor in migration decisions in addition to a health

metric of each WSRF container. However, this approach was

limited by the static health metric of WSRF containers based on

their available memory and CPU performance factors, while, in

our paper, we are addressing this limitation by dynamic service

or provider properties which enable considering property values

in different weighting factors during the migration decision

process.

III. WEB SERVICE MIGRATION FRAMEWORK

In this section, a Web service migration framework will be

introduced with focus on the migration decision process. Other

parts of the framework have been already described in more

details in [12] and [3].

A. Context Model

Migratable services and service providers which support

service migration have to publish status properties to describe

their status (e.g., the importance of a service, or available

resources of a provider) and preference rules to describe their

Fig. 1. A simplified schema of the partial model for services and providers.

preferences (e.g., preferred types of services hosted by a

provider, or resources required by a service) which should

be considered in the migration decision making process. These

properties and rules are defined in an ontology-based context

model [3], which consists of a system core model and partial

models of individual services and service providers.

The system core model provides the terminology used to

define system components of Service and ServiceProvider

classes including description of their properties, relationships,

and subclasses. The partial models define status properties

and preference rules of Service and ServiceProvider instances

representing services and their providers currently available in

a system, as it is described in Figure 1.

For a particular service or service provider, the hasProperty

element contains a list of status properties of the service or

the provider. Each property, which is formally a subclass of

the Property class in the service migration ontology, has its

data-type, value, and a set of criteria. Each property can be

mapped by to several criteria which describe its importance for

different parties in service migration and which are used later

to select the best migration by AHP method (see Section IV).

Besides the hasProperty element, the service or service

provider model defines also the rules element with a list of

preference rules written in the Jena rules language. Each rule

defines a pre-condition that has to be met by service providers

which will be hosting the service, in the case of the service

model, or by services which will be hosted by the service

provider, in the case of the service provider model. Finally, the

noPreferenceRules element just indicates that there are some

preference rules in the model (if it is set to true) or there

are not any such rules (if it is set to false). Existence of the

noPreferenceRules element, as it does bring any new informa-

tion, just improves performance (i.e., decreases complexity) of

processing of the model in Jena.

424

In the case of a service, the information according to the

model is integrated in the service’s WSDL description, i.e., a

standardized description of a Web service interface which is

managed by common tools of a SOA implementation platform

(an application server). In the case of a service provider, the

information according to the model has to be published by the

provider by getContext method of the provider’s grounding

service ProviderContextWS.

B. Service Provider Discovery and Service Migration

When a new service provider emerges into a network of

a system which is utilizing the framework and the emerging

service provider is able to participate in service migration in

the system, that means both to pass its migratable services to

other available providers and to accept migratable services from

other providers if needed, the provider should be automatically

discovered and considered in future migration decisions. To

enable the automatic discovery of emerging service providers,

the Devices Profile for Web Services1 (DPWS) standard has

been utilized by integration of WS4D.org Java Multi Edition

DPWS Stack2 (WS4D-JMEDS).

DPWS specifies a minimal set of built-in services which

needs to be implemented in order to: enable discovery of ser-

vice providers; support the meta-data exchange for publishing

services provided by individual, previously discovered, service

providers; and enable publish/subscribe communication model

for producing and consuming asynchronous event messages

by the services. WS4D-JMEDS is a light-weight DPWS

stack that implements DPWS build-in services mentioned

above on Java-based and Android platforms. By means of

DPWS/WS4D-JMEDS, our framework is able to discover

emerging service providers represented by mobile devices (e.g.,

tablets or cell phones) and their migratable services, and to

retrieve information about the service providers and services

needed to build the context model as it was described in

Section III-A and as it will be utilized later during the migration

decision making process described in this section.

The architecture of the Web service migration framework

is depicted in Figure 2. The emerging service providers are

discovered by searchForDevices() method of Controller class

provided by our framework. In this method, a new instance

of JMED DefaultDevice class is created for each discovered

service provider and a new instance of JMED DefaultService

class is created for each mobile or immobile service hosted by

the provider. Then, the instances of both classes DefaultDevice

and DefaultService are added into the ontology-based context

model by calling addDevicesToModel and addServicesToModel

methods, respectively.

Later, the ontology-based context model is processed by Jena

reasoners. The resulting inferred model contains information

on possibleProvidedService for each service provider, which

lists all known services which can be provided in future by

a particular service provider, and possibleDestinationProvider

1http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01
2http://ws4d.e-technik.uni-rostock.de/jmeds/

Controller

+ searchForDevices()

+ addDevicesToModel()

+ addServicesToModel()

JMEDS Framework

Provider Model Core Model

Found migrations

Selected

migration

Migration Unit

AHP

JENA + SPARQL

+ setServiceId(serviceId)

WSDL + Model

Migratable Service

IP Network

+ getContext(deviceName)

ProviderContextWS

Provider

+ setFriendlyName(name)
+ addService(service)
+ start()

+ getServiceDeploymentPackage(url)

+ switchServiceToDestination(url)

+ deployServiceFromPackage(pkg)

+ undeployService(url)

FrameworkService

Context Model

Fig. 2. Architecture and modules of the Web service migration framework.

for each service, which lists all known service providers which

can provide a particular service in future. Finally, a SPARQL

query is used on the inferred model to find such services

and providers which satisfy both possibleProvidedService and

possibleDestinationProvider, i.e., to find providers which can

host given services and also can server in potential service

migrations as destinations for the migrating services. In other

words, by this query, we find a set of all possible migrations.

To find the best migrations in the set of all possible mi-

grations, we choose to implement the Analytic Hierarchy

Process (AHP, [4]) decision-making method. Application of

this method is described later in Section IV. The results of

this method, i.e., the best migrations, are processed and their

services are migrated to corresponding destination providers.

The migration of a migratable service from a source provider to

a destination provider is performed in class FrameworkService

by calling its methods getServiceDeploymentPackage on the

source provider, switchServiceToDestination on the service,

deployServiceFromPackage on the destination provider, and un-

deployService on the source provider. These methods are called

sequentially to manage packaging the service (i.e., storing its

implementation and internal status in a package), moving it to

the destination provider (moving the package over network),

deploying the service on the destination provider (deploying

from the package and restoring the last-known internal state of

the service), and removing the original instance of the service

from the source provider.

425

IV. AHP IN THE MIGRATION DECISION PROCESS

In the migration decision process, the Analytic Hierarchy

Process (AHP, [4]) method is utilized to select the best migra-

tions in the set of all possible migrations previously found by

ontology reasoning on the context model. The best migrations

are those migrations which address (and fix by the service

migration) violations of services or service providers preference

rules with the highest priority, i.e., such rules that are based on

the most critical properties of the services or service providers,

respectively.

To introduce the priorities of the preference rules of services

and service providers based on the criticality of their properties,

the ontology-based context model described in Section III-A

has been further extended by decision making criteria, which

are defined in the system core model and referred from indi-

vidual properties in partial models of the services and service

providers (we can say that the properties are controlled by

referred criteria; see element criteria in Figure 1). Formally,

the criteria are instances of CriteriaProperty class with the

following attributes: name, owner, valueWithHighestWeight,

valueWithLowestWeight, and criteriaPriority.

For each criterion, the name attribute contains a name of the

criterion (which is utilized in the references from properties

in the partial models). Attribute owner can be one of values

“origin”, “destination”, and “service”, and limits possible owners

of the properties which are referring to a particular criteria (for

example, a criterion with the owner value set to “service” can

be referred only from service context models properties, i.e.,

it can be applied only on services, not on service providers).

Attributes valueWithHighestWeight and valueWithLowestWeight

indicate which values of properties referring a particular criteria

are considered to be the most important and the least important,

respectively, while attribute criteriaPriority indicates a general

importance of a particular criteria by integer values between

1 and 10. These last three attributes then control the overall

importance of properties referring the particular criteria and

determine the priority of related preference rules.

To select the best migrations, possible migrations previously

found are processed by AHP in the Controller module (see

Figure 2) that extends each input migration by its weight

which is calculated based on the priorities of the preference

rules of services and service providers participating in the

migration. Controller then selects the migrations with the

highest weight. The AHP starts with creating comparison

criteria matrix A, which is an m×m matrix of real numbers

where m is the number of considered criteria. In the matrix,

aij is the importance of the ith criterion over the jth one

(diagonal entries aii are set to 1). If the ith criterion has the

same importance as the jth one, aij entry is set to 1, otherwise

values of aij entry range over 3, 5, 7, or 9, which indicate that

the ith criterion is slightly more important, more important,

strongly more important, or absolutely more important, than

the jth criterion, respectively.

Usually, in existing applications of the AHP method, entries

of the matrix above are set directly through a user’s judg-

Require: 〈p1, p2, . . . , pm〉 as values of CriteriaPriority of

criteria 〈c1, c2, . . . , cm〉
Ensure: A is a pair-wise criteria comparison matrix for given

criteria 〈c1, c2, . . . , cm〉
1: for i← 1 to m do

2: aii ← 1
3: for j ← i+1 to m do

4: difference ← |pi − pj |
5: if difference ≥ 8 then

6: judgment ← 9
7: else

8: judgment ← 2�difference2 �+ 1
9: end if

10: if pi > pj then

11: aij ← judgment

12: else

13: aij ← judgment−1

14: end if

15: aji ← a−1
ij

16: end for

17: end for

18: return A

Fig. 3. The InitializeCriteriaMatrix algorithm to compute a pair-wise criteria
comparison matrix for AHP based on CriteriaPriorities of individual criteria.

ment. In our case, we can automate this process by utilization

of decision making criteria (and the related properties and

preference rules published by services and service providers)

to compute individual aij entries of the matrix. We use the

InitializeCriteriaMatrix algorithm (see Figure 3) to calculate

the aij entries in the upper-right triangular part of matrix A
by comparing criteria priorities and in the lower-left triangular

part of matrix A as reciprocal values of the symmetric entries

in the upper-right triangular part. The algorithm guarantees the

consistency of judgments between the criteria and satisfies a

consistency ratio condition of comparison matrix A to be less

than 10% as required for AHP.

After initializing A matrix, AHP computes matrix Ā by

normalizing A entries to make the sum of each column entries

equals to 1 through equation

āij =
aij∑m

k=1 akj
(1)

Then, AHP computes weight vector w of criteria by com-

puting the average value of each row of normalized matrix Ā
through equation

wi =

∑m

k=1 āik
m

(2)

Finally, the InitializeMigrationMatrices algorithm (see Fig-

ure 4) is executed for each considered criterion ck, where

k = 1, . . . ,m, of criteria set C = {c1, c2, . . . , cm}. The mul-

tiple executions of the InitializeMigrationMatrices algorithm

are used to create n×m matrix V = [V (1), V (2), . . . , V (m)],
where n is the number of possible migrations found before. In

426

Require: criterion k and its attributes valueWithHighest-

Weight(k) and valueWithLowestWeight(k); 〈p1, p2, . . . , pn〉
as values of services or service providers properties that

consider k as their criterion

Ensure: n× n matrix S(k) as a migration comparison matrix

based on criterion k
1: for i← 1 to n do

2: sii ← 1
3: for j ← i+ 1 to n do

4: range ← valueWithHighestWeight (k) −
valueWithLowestWeight (k)

5: diffValue ← pi − pj
6: fifthOfDiff ← range/5
7: if diffValue > 4 ∗ fifthOfDiff then

8: sij ← 9
9: else if diffValue ≤ 4 ∗ fifthOfDiff ∧ diffValue >

3 ∗ fifthOfDiff then

10: sij ← 7
11: else if diffValue ≤ 3 ∗ fifthOfDiff ∧ diffValue >

2 ∗ fifthOfDiff then

12: sij ← 5
13: else if diffValue ≤ 2 ∗ fifthOfDiff ∧ diffValue >

fifthOfDiff then

14: sij ← 3
15: else if diffValue ≤ fifthOfDiff then sij ← 1
16: end if

17: if range ∗ diffValue < 0 then

18: sij ← s−1
ij

19: else if range ∗ diffValue = 0 then

20: sij ← 1
21: end if

22: sji ← s−1
ij

23: end for

24: end for

25: return S

Fig. 4. The InitializeMigrationMatrices algorithm to compute a migration
comparison matrix based on a given criterion.

the matrix V , each V (k) is a transpose of the weight vector

of matrix S(k) obtained by an individual execution of the

InitializeMigrationMatrices algorithm.

The result of the InitializeMigrationMatrices algorithm,

which is matrix S(k), is an n×n matrix where each s
(k)
ij entry

represents a judgment value between the ith migration and the

jth one based on the criterion k. The algorithm use valueWith-

HighestWeight and valueWithLowestWeight criterion attributes

to map the judgment into one of values of set {1, 3, 5, 7, 9} or

their reciprocals, which are accepted by AHP.

By applying the InitializeMigrationMatrices algorithm for

all m considered criteria we get m weight vectors of possible

migrations, where each vector is related to one criterion. Finally,

AHP computes the composite weight vector p of all possible

n migrations through equation

p = V · w (3)

TABLE I
VALUES OF THE STATUS PROPERTIES PUBLISHED IN PARTIAL MODELS OF

THE SERVICE PROVIDERS.

Provider noPreference-
Rules

Free-
Memory

Permanent-
StorageSize

Battery-
LifeTime

XProvider True 512 MB 512 MB 1 hour

YProvider False 2048 MB 2048 MB 2 hours

ZProvider True 2048 MB 2048 MB 3 hours

Fig. 5. The partial model for service provider YProvider with information
on the provider’s status properties and preference rules. Preference rule
YProviderPreference written in the Jena rules language allows the provider
to host only services with ServiceType set to value “major” (other providers
XProvider and ZProvider do not have this restriction).

where V is the n×m matrix obtained by multiple executions of

the InitializeMigrationMatrices algorithm as described before

(one execution for each each criterion) and w is the weight

vector of criteria from Equation 2.

The migration with the highest composite weight entry of

the vector p is considered to be the best migration and it is

selected to be executed as it is described in Section III-B.

V. AN EXAMPLE

In this section we provide an illustrative example to evaluate

the proposed approach. The example presents a system of

service providers hosting services which cooperate to achieve

a particular business logic. Web service migration allows to

migrate services from one provider to another in cases of unex-

pected violations of services or service providers preferences.

The migration guarantees better availability of the services

and increases fault-tolerance of the system. Let us suppose

the system consists of the following three service providers:

XProvider, YProvider, ZProvider. The status properties of these

providers, which are published in their partial context model

together with their preference rules (see Section III-A), are

listed in Table I. For example, the information published by

YProvider service provider, that is its status properties and

preference rules, is listed in Figure 5.

For simplicity reasons, let us suppose that there are only two

migratable services, namely service Service1 currently provid-

ed/hosted by service provider XProvider and service Service2

currently provided/hosted by service provider YProvider. A

427

TABLE II
VALUES OF THE STATUS PROPERTIES PUBLISHED IN PARTIAL MODELS OF

THE SERVICES.

Service noPreferenceRules ServicePriority ServiceType

Service1 False 50% major

Service2 True 20% minor

partial context model of each of these two services is available

as a part of their WSDL description published by their service

providers. The status properties published in the context models

of these services are listed in Table II. Moreover, in the context

model, Service1 declares its two preferences described as Jena

rules called Service1Preference1 and Service1Preference2 that,

respectively, limit its migration to providers with FreeMemory

≥ 2048 MB and PermanentStorageSize ≥ 2048 MB only (in

terms of the decision making process described in Section III-B,

only providers with status property values meeting the lim-

its above can be considered, in the ontology reasoning, as

possibleDestinationProvider-s for service Service1).

According to the properties published by the individual

service providers (see Table I and Figure 5), OriginBatteryLife-

TimeCriterion and DestinationBatteryLifeTimeCriterion are

considered as criteria to be included in the decision mak-

ing process dealing with BatteryLifeTime properties of the

providers. Similarly, the services publish their ServicePriority

properties as related to criterion ServicePriorityCriterion to

make it considered in the decision making process dealing with

the properties.

When the service providers are discovered by module

Controller utilizing WS4D-JMEDS stack (see Section III-B),

status properties and preference rules of individual service

providers are obtained by calling the ProviderContextWS

grounding service of each provider. Moreover, for all

migratable services hosted by the service providers, status

properties and preference rules of the services are extracted

from their WSDL descriptions. The resulting status properties

and preference rules of both service providers and their

migratable services are added into the ontology-base context

model for future reasoning based on the information.

Later, when the systems starts to look for possible migrations,

it detects two violations, i.e., two cases when the current values

of status properties of service providers or services do not meet

their preference rules. In the first case, Service1Preference1

and Service1Preference2 preference rules of service Service1

are violated. These preference rules, which permit to host the

service only by providers with FreeMemory ≥ 2048 MB and

PermanentStorageSize ≥ 2048 MB, are violated by service

provider XProvider which is currently hosting the service and

has its both status properties FreeMemory and PermanentStor-

ageSize set to value 512 MB (see Table I). In the second

case, preference rule YProviderPreference of service provider

YProvider is violated. This preference rule, which permits the

provider to host only services with ServiceType set to value

“major” (see Figure 5), is violated by service Service2 which

TABLE III
THE MIGRATIONS FOUND TO FIX THE VIOLATED PREFERENCE RULE.

Migration Service Origin Destination

mig1 Service1 XProvider YProvider

mig2 Service1 XProvider ZProvider

mig3 Service2 YProvider XProvider

mig4 Service2 YProvider ZProvider

TABLE IV
THE UTILIZED CRITERIA AND VALUES OF THEIR ATTRIBUTES.

Criteria-
Priority

owner
valueWith-
Highest-
Weight

valueWith-
Lowest-
Weight

ServicePriority-
Criterion

7 service 100 0

OriginBattery-
LifeTimeCriterion

9 origin 1 5

DestinationBattery-
LifeTimeCriterion

3 destination 5 1

is currently hosted by the provider and has status property

ServiceType set to value “minor” (see Table II).

By ontology reasoning with Jena reasoners, four possible

migration decisions are found to fix the violations above when

performed in the system. These migrations, which are listed

in Table III, are mig1, mig2, mig3 and mig4. Migration mig1

suggests to migrate Service1 from XProvider to YProvider;

migration mig2 suggests to migrate Service1 from XProvider

to ZProvider, and so on (see Table III). First two migrations

are addressing the first violation (of Service1Preference1 and

Service1Preference2 preference rules of service Service1), while

the other two migrations are addressing the second violation

(of preference rule YProviderPreference of service provider

YProvider).

The list of all possible migrations needs to be processed by

AHP to find the best migration to be performed in the system.

In order to use AHP, we define the following criteria in the con-

text model: ServicePriorityCriterion, OriginBatteryLifeTime-

Criterion, and DestinationBatteryLifeTimeCriterion. Values of

individual attributes of the defined criteria are listed in Table IV.

By application of the InitializeCriteriaMatrix algorithm (see

Figure 3), criteria comparison matrix A is generated as shown

in Table V. In the last column of Table V, there are also

values of the weight vector for the criteria which is computed

by application of Equation 2 on the normalized comparison

matrix.

By application of the InitializeMigrationMatrices algorithm

(see Figure 4) on the results above, migration comparison

matrices S(1), S(2), and S(3) are generated for criteria Servi-

cePriorityCriterion, OriginBatteryLifeTimeCriterion, and Des-

tinationBatteryLifeTimeCriterion, respectively. These matrices

are listed in Table VI together with their weight vectors. For

k ∈ {1, 2, 3}, weight vector v(k) is computed for matrix S(k)

by application of Equation 2 on corresponding normalized

matrix S̄(k).

428

TABLE V
COMPARISON MATRIX A GENERATED BY THE InitializeCriteriaMatrix

ALGORITHM AND WEIGHT VECTOR w COMPUTED FROM THE MATRIX.

λmax = 3.0967; CR = 0.0833 < 0.1; matrix A is consistent.

Service

Priority

Criterion

Origin

Battery

LifeTime

Criterion

Destination

Battery

LifeTime

Criterion

wi

Service

Priority

Criterion

1.0 0.1428 0.2 0.0737

Origin

Battery

LifeTime

Criterion

7.0 1.0 3.0 0.6433

Destination

Battery

LifeTime

Criterion

5.0 0.3333 1.0 0.2828

TABLE VI
MIGRATION COMPARISON MATRICES S(k) GENERATED BY THE

InitializeMigrationMatrices ALGORITHM AND WEIGHT VECTORS v(k)

COMPUTED FROM THE MATRICES.

λmax = 4, CR = 0; matrix S(1) is perfectly consistent.

ServicePriority

Criterion
mig1 mig2 mig3 mig4 v(1)

mig1 1.0 1.0 3.0 3.0 0.375

mig2 1.0 1.0 3.0 3.0 0.375

mig3 0.3333 0.3333 1.0 1.0 0.1249

mig4 0.3333 0.3333 1.0 1.0 0.1249

λmax = 4, CR = 0; matrix S(2) is perfectly consistent.

OriginBattery

LifeTimeCriterion
mig1 mig2 mig3 mig4 v(1)

mig1 1.0 1.0 3.0 3.0 0.375

mig2 1.0 1.0 3.0 3.0 0.375

mig3 0.3333 0.3333 1.0 1.0 0.1249

mig4 0.3333 0.3333 1.0 1.0 0.1249

λmax = 4.0575, CR = 0.0213; matrix S(3) is consistent.

DestinationBattery

LifeTimeCriterion
mig1 mig2 mig3 mig4 v(3)

mig1 1.0 0.3333 3.0 0.3333 0.1534

mig2 3.0 1.0 5.0 1.0 0.3889

mig3 0.3333 0.2 1.0 0.2 0.0686

mig4 3.0 1.0 5.0 1.0 0.3889

Finally, after generating and computing all required matrices

and vectors, AHP computes the composite weight vector p
through Equation 3. The resulting vector is

p =

⎛
⎜⎜⎝
0.3586
0.376
0.1208
0.1444

⎞
⎟⎟⎠ (4)

where p11, p21, p31, and p41 entries represent the weights of

mig1, mig2, mig3, and mig4, respectively.

Finally, mig2 is chosen to be performed as it has the highest

priority (p21 = 0.376) and Service1 will be migrated from

service provider XProvider to service provider ZProvider which

will fix the violated preference rules of Service1, namely

Service1Preference1 and Service1Preference2, and satisfy them

with the current FreeMemory and PermanentStorageSize status

property values of ZProvider.

Please note, that the resulting migration will fix just the

most important violations of preference rules found before

(not all of those violations), which is exactly the goal of our

approach. For example, preference rule YProviderPreference of

service provider YProvider is still violated by hosting service

Service2 (see Figure 5 and Table II) and should be fixed

by future migrations. Informally said, migration mig2 was

selected by AHP because it deals with Service1 which has

greater ServicePriority than Service2 in other migrations and

because it has destination service provider ZProvider which

has the best BatteryLifeTime in comparison with other possible

destination providers (see Tables II and I, respectively). Both

of this criteria, ServicePriority and BatteryLifeTime are listed

in Table IV.

VI. SUMMARY

In this paper, we described an extension of Web service

migration framework by the AHP method to select the best

migrations from a list of all possible migrations previously

found by ontology reasoning in a migration decision and

selection process. The migration decisions are taken based on

status properties and preference rules of service providers and

their migratable services which were previously automatically

discovered in a system. The framework has been evaluated on

an example presented in the paper with focus on the AHP

utilization.

In our ongoing work, we are studying possible applications

of the framework in the state-of-the-art Web service platforms

and trying to improve scalability and performance of the

presented solution. Future work will mainly cover integration

of advanced features into the framework from other existing

approaches to software mobility, for example, from agent-

oriented approaches or approaches dealing with mobile cloud

computing. To be more specific, we would like to utilize

the underlying implementation of the JMEDS framework for

Android mobile devices to implement a general Web service

provider for the Android devices that will be fully capable

of receiving, hosting, and passing mobile native Web services

participating in mobile cloud computing.

ACKNOWLEDGMENT

This work was supported by the research program MSM

0021630528 “Security-Oriented Research in Information Tech-

nology” and by the BUT FIT grant FIT-S-11-2.

429

REFERENCES

[1] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding code mobility,”
IEEE Transactions on Software Engineering, vol. 24, no. 5, pp. 342–361,
May 1998.

[2] T. Erl, Service-Oriented Architecture: Concepts, Technology, and Design.
Upper Saddle River, NJ, USA: Prentice Hall PTR, Aug. 2005.

[3] M. M. Kazzaz and M. Rychlý, “Ontology-based context modelling and
reasoning in the Web service migration framework,” Acta Electrotechnica

et Informatica, vol. 13, no. 4, pp. 5–12, 2013.
[4] T. Saaty, The Analytic Hierarchy Process: Planning, Priority Setting,

Resource Allocation. RWS, 1990.
[5] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and

H. Chang, “QoS-aware middleware for web services composition,” Soft-

ware Engineering, IEEE Transactions on, vol. 30, no. 5, pp. 311–327,
2004.

[6] K. Ye, X. Jiang, D. Huang, J. Chen, and B. Wang, “Live migration of
multiple virtual machines with resource reservation in cloud computing
environments,” in Cloud Computing (CLOUD), 2011 IEEE International

Conference on. IEEE, 2011, pp. 267–274.
[7] J. Famaey, T. Wauters, F. De Turck, B. Dhoedt, and P. Demeester,

“Network-aware service placement and selection algorithms on large-
scale overlay networks,” Computer Communications, vol. 34, no. 15, pp.
1777–1787, 2011.

[8] W. Hao, I.-L. Yen, and B. Thuraisingham, “Dynamic service and data
migration in the clouds,” in Computer Software and Applications Con-

ference, 2009. COMPSAC’09. 33rd Annual IEEE International, vol. 2.
IEEE, 2009, pp. 134–139.

[9] M. Sun, T. Zang, X. Xu, and R. Wang, “Consumer-centered cloud services
selection using AHP,” in Service Sciences (ICSS), 2013 International

Conference on. IEEE, 2013, pp. 1–6.
[10] C. Reich, K. Bubendorfer, M. Banholzer, and R. Buyya, “A SLA-oriented

management of containers for hosting stateful web services,” in e-Science

and Grid Computing, IEEE International Conference on. IEEE, 2007,
pp. 85–92.

[11] T. Banks, “Web services resource framework WSRF-primer v1.2,” OASIS

committee draft, 2006.
[12] M. M. Kazzaz and M. Rychlý, “A Web service migration framework,”

in ICIW’13, The Eighth International Conference on Internet and Web

Applications and Services. IARIA, Jun. 2013, pp. 58–62.

430

