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Abstract

Forensic analysis of intercepted network traffic focuses on
finding and extracting communication evidence, such as in-
stant messaging, email, VoIP calls, localization information,
documents, images. Due to the amount of data captured, this
process is time-consuming and complicated. Most commonly
used forensic network analysis tools have limited capabilities
for large data processing. In this paper, we are introducing
a new tool that achieves better data processing performance
using available computing resources through distributed
processing. Thanks to the technology used, this tool can
be used on commodity hardware in a local area network,
in a dedicated computing cluster or cloud environment.

CCS Concepts « Applied computing — Network foren-
sics; « Networks — Network monitoring; Network protocols;
Transport protocols; Application layer protocols; « Social
and professional topics — Computer crime.
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1 Introduction

Network administrators, cyber-security analysts, and digital
forensic investigators capture and analyze network com-
munication to reveal the attack patterns or recover digital
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evidence. The traditional tools used to process captured com-
munication have limited scalability. For instance, Wireshark
is an excellent tool for troubleshooting and security analysis.
However, performing analysis of captured files of several
gigabytes is cumbersome. Current computing platforms of-
fer tremendous computation power. It is mainly because
of its multi-core architecture. The number of cores available
per CPU constantly grows!, contrary to the CPU frequency
that is essential for single threaded applications.

However, modifying commonly used single-threaded net-
work forensic tools, e.g., PyFlag, NetworkMiner, to utilize
the full potential of modern processors is a complex task
which would require extensive modification of their code
base. Therefore, new tools for network forensic analysis are
in high demand [9, 14].

Even more computing power can be obtained by distribut-
ing the workload among a cluster of machines. Availability
of industrial strength technology for distributed data process-
ing and scalable storage led to the emergence of distributed
network security analysis systems, e.g., Moloch?, Apache
Spot3, or Apache Metron®*. Academic research also yields
to implementations of scalable network security monitoring
systems [26].

Regardless of the technology used, these systems aim
to provide a high performance distributed computing envi-
ronment for network security monitoring (NSM). These tools
are especially useful for real-time data processing and com-
plement other systems to defend against cyber threats such
as IDS, firewalls, or SIEM. While these tools are also useful
for network forensic analysis, forensic investigation favors
the depth, accuracy, and reliability of processing over the fast
response time. When investigating, it is necessary to reliably
analyze any artifact that can be extracted, even though the
source data may be corrupted and may not be complete.

1.1 Contribution

This paper discusses the design, performance, and proper-
ties of a new Network Forensic and Analysis Tool (NFAT) —

!Example of the state-of-the-art CPU available on the market — AMD
EPYC Rome 64 cores 128 threads, 2.35 GHz; Intel® Xeon Phi"™ 7290F, 72 cores,
1.5 GHz; Intel® Xeon® Platinum 8180M 28 cores, 56 threads, 2.5 GHz
Zhttps://molo.ch/ (last accessed 2019-07-03).
3http://spot.incubator.apache.org/ (last accessed 2019-07-03).
*http://metron.apache.org/ (last accessed 2019-07-03).
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Network Traffic Processing & Analysis Cluster NTPAC) —
that utilizes distributed computing architecture to improve
the performance of network traffic analysis while being
less demanding on hardware requirements than related sys-
tems. To extract the evidence from network packets, we need
to thoroughly analyze them which means to perform several
consecutive operations such as packet dissecting, flow iden-
tification, network stream composition, application protocol
identification, and message parsing and artifact extraction
(see Section 3). Contrary to the other NFAT tools (see Sec-
tion 2.4), NTPAC is able to correctly process captured traffic
that is malformed without yielding misleading evidence (see
Section 4.2). NTPAC performs forensic network traffic analy-
sis at high-speed networks. The system design uses a scalable
approach that enables to run the tool on a single machine
as well as on a computing cluster. in comparison with other
NFATs tools, NTPAC is an order of magnitude faster and
scales (see Section 3).

1.2 Paper Structure

Initially, background and related work are discussed pre-
senting an overview of current network forensic and secu-
rity monitoring tools. The architecture of NTPAC is intro-
duced, and the major architectural components are outlined.
The paper then provides a preliminary evaluation of the per-
formance that focuses on demonstrating the throughput
and scalability of the tool. Finally, we discuss limitations
and future work.

2 Background and Related Work

This section provides a background for the paper and lists
the related work. First, the actor model and network packet
capture analysis are presented. Then we overview existing
network forensic tools and frameworks.

2.1 Actor Model

Actor model offers to solve the problems related to parallel
and distributed computing elegantly and efficiently. The ac-
tor model was first introduced as a theoretical computation
model highly influenced by Lisp, Simula and packet switch-
ing in computer networks [7]. It defines a fundamental con-
cept called actor system that is composed of tiny building
blocks called actors that execute independently and mas-
sively in parallel. The actor is in the distributed world an
abstraction of what is an object in Object-Oriented Program-
ming; in other words, it bounds data with computation.
Actors communicate asynchronously via message passing.
Actor system guarantees at most one delivery, which means
that any message can get lost at any time but cannot be deliv-
ered twice or more. Actor’s state changes only as a reaction
on a received message. Actor’s behavior determines how
to process the incoming message by creating another actor,
sending a message to another actor, changing its state.
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The composition of actors in the actor system is hierarchi-
cal. Each actor is responsible for any other actor it creates,
i.e., the creation of a parent-child relationship. An Actor is de-
signed to be as simple as possible, typically without complex
inner integrity checks, exception handling, etc. Thus, it can
crash at any time. Parent actor is responsible for its children
and knows how to deal with children’s failures. This con-
cept greatly simplifies the computation model and allows
a programmer to focus only on the most important part that
is the core application’s functionality and frees him/her from
the need of use of synchronization tools (such as mutexes).

2.2 Packet Capture Analysis

Network traffic analysis aims to reveal traces of network
attacks and find answers to questions about the incident
investigation. Packet analysis starts with dissecting network
traffic which performs the following steps: i) loading PCAP
files, parsing the PCAP file, and extracting individual packets,
ii) dissecting packets with low-level protocol parsers, including
Ethernet, IP, IPv6, TCP or UDP, iii) collecting TCP packets
into streams, and iv) applying higher level protocol parsers
to get the required information or extract artifacts.
However, in many cases, it is not possible to obtain plain
content from communication because of encryption. Then
at least some form of valuable forensic information can
be identified, for instance, identities of users [1, 18], de-
vices [17] or applications [16] based on extracted metadata.
Depending on the goal and available tools there are nu-
merous analytic approaches to network packet analysis:

e The bottom-up approach is a prevalent method used
by Network Security Monitoring (NSM) [24] oriented
analysis that supports several tools, most notably Wire-
shark. All packets are parsed and presented to the in-
vestigator who uses filtering, querying and reassem-
bling to identify and extract required artifacts.

e The top-down approach assumes that the Network
Forensic and Analysis Tool (NFAT) [15], e.g., Network-
Miner, Xplico, PyFlag, NetfoxDetective, can extract in-
formation from packets into conversations or other
higher level artifacts. These applications visualize this
high-level information to the investigator that can then
drill down into details if necessary.

e Search based approach considers network communica-
tion being just another data format in which it is pos-
sible to search for keywords or patterns [11, 20].

2.3 Network Security Monitoring Tools

Network forensic methods were implemented in various
NSM tools, e.g., Wireshark, TCP dump, IDS systems (Snort,
Zeek), fingerprinting tools (Nmap, p0f), and tools to identify
and analyze security threats. As [15] observes, NSM tools are
primarily used by network administrators and are intended
for detailed bottom-up analysis that requires advanced skills.
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Lukashin [12] presented a scalable internet traffic analysis
system, which can process multi-terabytes libpcap dump
files. It utilizes Apache Spark for data processing to ana-
lyze captured packets. The system performs basic analy-
sis and lacks some advanced features required by network
forensics. Other approaches to the big data network security
analysis were presented by various researchers [2, 19, 30].
Currently, Apache Metron and Apache Spot projects are
the most vital. They are frameworks for security analysis
of IT threats, enabling to process also firewall and appli-
cation logs, emails, intrusion-detection reports, and so on.
Although they are primarily focusing on network security,
they can be valuable as sources of forensic data.

Additionally, there are special appliances for network se-
curity monitoring based on custom made FPGA chips that
can perform up to 100 Gbps deep packet analysis and ex-
port NetFlow with additional information extracted from
application protocols [8].

2.4 Network Forensic Analysis Tools

The investigators of Law Enforcement Agencies deal with the
enormous number of cases. They require specialized tools
that perform top-down analysis and save valuable time [3].
The following list is a selection of notable open-source tools
that were designed to support the investigators:

PyFlag is full-fledged NFAT which is intended for disk,
memory, and network forensics. PyFlag’s design in-
corporates the concept of a Virtual File System [4].
It implements a specific loader for each supported
data source. PyFlag enables to reassemble the content
of the communication, e.g., web pages, email conver-
sation.

NetworkMiner is an open source tool that integrates packet
sniffing and higher-layer protocol analyzing capabili-
ties into a tool for passive network forensic analysis.

Xplico is a modular NFAT. It consists of the input mod-
ule handling the loading source data, decoding mod-
ule equipped with protocol dissectors for decoding
the traffic and exporting the content, and the output
module organizing decoded data and presenting them
to the user. Xplico is a client-server application that
can analyze PCAP files as large as several gigabytes.

While all these tools are very useful for investigators
as they offer a variety of advanced features, their scalability
is limited because they run on either a single computer or in
a traditional client-server architecture.

2.5 Big Data Forensics

As distributed frameworks matured, new tools for big data
security analysis and digital forensics were designed. Such
tools are usually intended for the forensic investigation con-
ducted by network administrators on corporate networks.
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They usually serve as a complement to Intrusion Detection
Systems enabling to capture and analyze hi-speed communi-
cation at scale.

Agent-based systems for digital forensics were considered
in the literature [21, 22, 29]. These models are more suit-
able for real-time network forensic analysis from multiple
sources, such as logs and captured communication. In these
systems, numerous agents perform data collection tasks.
The extracted information is then sent to the forensic server
and analyzed on this single node only [10], which makes this
node to be the bottleneck of the whole system.

The VAST system builds upon Vallentin’s previous work
— The NIDS Cluster [28] which distributes the workload
across multiple workers running Zeek to investigate online
network traffic and extract Zeek events. The VAST system
itself goes further and distributes Zeek events to workers
running in a computing cluster which allows for on-line
analysis and interactive queries. Distribution of raw packets
is also supported as a 4-tuple with payload up to the speed
of 3.1 Gb/s (the libpcap reading speed). According to Val-
lentin [27] the system does not guarantee that the storage
will be able to keep up with the incoming traffic of this speed.

3 Traffic Processing

The goal of NTPAC is to capture and analyze network com-
munication enabling to extract available information. De-
pending on the case, the forensic investigator may be inter-
ested in the content or metadata of application messages.
NTPAC handles captured packets according to the following
procedure in order to reassemble application messages:

e NTPAC organizes captured packets into separate net-
work layer conversations based on their source and
destination IP addresses, providing IP conversation.
NTPAC then splits IP conversations into TCP/UDP
conversations based on the source and destination port
numbers and the transport protocol type, as shown
in figure 2.

e NTPAC reassembles application conversations from
packets separated into individual TCP/UDP conversa-
tions. This method utilizes heuristics [13] to recognize
multiple application communication multiplexed into
a stream of packets of one TCP/UDP conversation
caused for example by port reuse.

Because application message extraction is a computation-
ally challenging task, it is a good candidate to run on a com-
puter cluster to improve overall system performance.

Extraction of the artifacts from application messages as-
sumes that we correctly identified the application protocols.
Methods based on known port numbers, characteristics pat-
terns in the payload of packets, using statistical methods
or machine learning [16] approach can be applied.
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However, in many cases, application information cannot
be extracted because the content is encrypted. In fact, ap-
proximately 76 % of HTTP traffic (at the time of writing
this paper) is transmitted by SSL/TLS °. In this situation,
we cannot extract application messages, but it is possible
to get metadata from the SSL/TLS protocol itself, for exam-
ple, cryptographic information, certificate data, etc. The only
exception is two possible situations in which we can decrypt
encrypted application data [5]:

1. We have access to the server’s private key used in the ini-
tialization of an SSL/TLS session, we want to decrypt,

and cipher-suites not supporting forward secrecy is used.

2. We can perform a Man-In-The-Middle attack with an
SSL/TLS proxy [23] and store session keys.

Most agencies cannot use these techniques because of legal
restrictions. For this reason, we did not consider implement-
ing SSL/TLS encryption techniques in our tool.

4 System architecture

The architecture consists of multiple modules that form the
processing pipeline (see Figurel). At the highest level, the
NTPAC workflow can be divided into two main phases:

Data pre-processing reconstructs application layer con-
versations (L7 conversation). Each of these conversa-
tions is made up of source and destination endpoints,
timestamps, and other information that is needed for
subsequent processing.

Data analysis identifies application protocols in recon-
structed conversations and uses an appropriate ap-
plication protocol decoder to reconstruct application
events from given conversations, such as visited web
pages, sent emails, queried domains, etc. The output
of this phase is a set of forensic artifacts.

These phases correspond to low-level analysis and high-
level analysis. The separation of data pre-processing from the
data analysis enables to use the actor-based computational
model and offer the ability to distribute the computation.
In the rest of the section, details will be given for each module
of the processing pipeline.

4.1 Load balancing

The job of the Load Balancer nodes is to split the input packet
stream, i.e., PCAP file or live traffic, into sub-streams that are
then delivered to the reassembling nodes. To avoid the prob-
lem of sending packets from the same conversation to dif-
ferent reassemble nodes, the Load Balancer calculates the
key used to select the destination node from the appropriate
protocol fields.

The Eq. 1 calculates the routing key based on communica-
tion endpoints (EP_A and EP_B) and the transport protocol
used. Value n represents the number of active Reassembler

Shttps://letsencrypt.org/stats/
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nodes.
Hash(EP4 - EPg - Protocol) mod n (1)

Since all packets from the same conversation (i.e. in both
directions of the conversation) should produce the same rout-
ing key, we defined an ordering relation < for the endpoints®
and ensured that EP4 < EPp by swapping them if necessary.

While the Load Balancers process each packet individu-
ally, the data is delivered to Reassemblers in batches. This
technique helps to decrease network and processing cost of
the data distribution.

Back pressure mechanism is used to control the data flow
between the nodes. To increase throughput, a Load Balancer
can submit multiple batches in parallel to the target Reassem-
blers.

IPv4 fragmentation is a challenge for Load Balancers. Frag-
mentation splits one IP packet into multiple IP packets so
that the encapsulated transport layer segment header only
occurs in the first IP fragment. The Load Balancer must,
therefore, rebuild the IP fragments to identify the routing
key for all fragments of a segment, before it can send them
to an appropriate Reassembler.

4.2 Conversation Reassembling

Reassembler reconstructs conversations, i.e., two-way traffic
layer flows, in batches of packets received from Load Bal-
ancers. The reassembly process is designed to reconstruct
incomplete and corrupted data, using various heuristic tech-
niques [13]. Reassembling is done in several steps until
two corresponding flows are assembled, which is illustrated
in Figure 2. The entire processing is mapped to actors per-
forming individual steps. Individual L3 and L4 conversations
are represented by corresponding actors, which form an ac-
tor hierarchy as shown in figure 3. L3 Conversation actors
are managed by Capture actors, which stands for a source
capture being analyzed. To enable an analysis of multiple
captures at the same time, multiple Capture actors can be ini-
tiated. The Captures Controller actor manages all capture
actors.

The packet blocks are first received by the Captures Con-
troller actor, which passes them to the appropriate Capture
actor. The Capture actor identifies affiliation of packets to L3
conversations by extracting the IP addresses of the packets
and forwards them to appropriate L3 Conversation actors
which, after identifying affiliation of packets to L4 conver-
sation by extracting the transport protocol and port num-
bers, forwards the packets to appropriate L4 Conversation
actors. At these actors, the process of reassembling depends
on the transport protocol of the conversation and is per-
formed by either UDP Conversation Tracker or TCP Conver-
sation Tracker.

®The endpoint is a pair of IP address and port number. We consider that
there is a suitable lexicographic ordering on a set of endpoints.
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L4 Load Balancer

L4 Load Balancer
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Figure 1. NTPAC’s logical architecture
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Figure 2. Separation of packets into distinct L3 conversations, L4 conversations and finally L7 conversations. L7 conversations
consist of Upflow and Downflow, which contain a sequence of reconstructed L7 PDUs.
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Controller

Figure 3. Reassembler’s actor hierarchy

UDP Protocol Reassembling

UDP is transferring application data as they are, without
the use of any additional control packets which implement
mechanisms such as flow control or reliable data delivery.
UDP Conversation Tracker, therefore, treats every transmit-
ted datagram inside given L4 conversation as an individ-
ual L7 PDU (Protocol Data Unit). Another important aspect
of the UDP protocol is that it is connection-less — it does
not establish connections between communicating parties.
To distinguish individual L7 Conversations (composed of a pair
of Upflow and Downflow) inside single L4 conversation, UDP
Conversation Tracker uses a simple heuristic based on a time
delay between individual L7 PDUs. L7 PDUs in a given di-
rection are considered to be part of a single flow if the time
difference between their transmission and last recorded ac-
tivity (timestamp of the last L7 PDU) of a given flow is less

than a defined value. Experimentally we set this value to 10
minutes, but we are planning to further study UDP behavior
of multiple protocols and define this threshold on application
protocol bases.

TCP Protocol Reassembling

Processing of TCP protocol is different from handling UDP
flows because we can use control information carried along
with the data. TCP Conversation Tracker is capable of iden-
tifying connection initialization and its termination, han-
dling data retransmission and reordering. In the same way
as a UDP Conversation Tracker, TCP Conversation Tracker also
processes segments (TCP PDUs) in separate flows, which
are later paired to form L7 conversations. To create this
flows, it first stores segments in the so-called reassembling
collection, in which segments are stored and ordered by their
TCP sequence number. Both directions of communication
have designated their reassembling collection. Before a seg-
ment is stored in reassembling collection, its sequence number
is normalized by incrementing it by a count of detected se-
quence number overflows x 2% (space of TCP sequence num-
bers). Sequence number overflows can be caused by a natural
overflow of a 32-bit integer sequence number or by estab-
lishing a new TCP connection, with ISN (Initial Sequence
Number) lower as that of a previous connection. By storing
segments in reassembling collection and ordering them by
their normalized sequence numbers, we achieve that:
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1. individual segments inside L7 conversation are or-
dered;

2. we detect data retransmissions by comparing payloads
of segments of which normalized sequence numbers
are overlapping;

3. individual L7 conversations inside L4 conversation are
ordered by the time they were transmitted.

Algorithm tcp_flow_reassembling()
forall segment in reassembling_collection do
if SYN flag is set then
close_flow()
flow < create new flow
else if FIN flag is set then
| close_flow()
else if flow is nil then
flow « create new flow
add_segment_to_pdu()
else
| add_segment_to_pdu()

end
return flows
Procedure close_flow()
if flow is nil then
‘ return
if pdu is not nil then
| add_pdu_to_flow()
flows.insert(flow)
flow « nil
return
Procedure add_segment_to_pdu()
if segment is retransmission then
‘ return
if pdu is nil then
| pdu « create new pdu
pdu.segments.insert(segment)
if PSH flag is set then
| add_pdu_to_flow()
return
Procedure add_pdu_to_flow()
flow.pdus.insert(pdu)
pdu <« nil
return
Algorithm 1: TCP flow reassembling.

After all segments of L4 conversation have been stored
in an appropriate reassembling collection (for Up and Down
direction), TCP Conversation Tracker iterates through both
of them sequentially in order to reconstruct Upflows and Down-
flows. Simplified flow reassembling algorithm is shown in Al-
gorithm 1. For each segment containing application data,
it appends it to current L7 PDU (creates it at first, if it is not
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already created). After it encounters packet with TCP PSH
flag set, it completes current L7 PDU and adds it to the cur-
rent flow. Segments which do not contain application data,
such as packets of TCP handshake or connection termina-
tion are used to differentiate individual TCP connections by
creating appropriate flows with assigned created L7 PDUs.
Created Upflows and Downflows are paired by their ISNs (Ini-
tial Sequence Numbers) or based on their overlap on time
axis in case an ISN of a particular flow could not be deter-
mined (missing TCP handshake).

L7 Conversation storage

L7 conversations reconstructed by L4 Conversation actors are
passed to L7 Conversation Storage actor. This actor saves con-
tents (series of reconstructed L7 PDUs), as well as metadata
(timestamps, endpoints and transport protocols) of these
L7 conversations in a distributed database. Our tool uses
an abstract data access layer that eliminates any dependence
on one database technology. Currently, our solution is pri-
marily based on the use of the Cassandra database engine’,
which has the appropriate features — it has a distributed
design, configurable replication factor per keyspace and con-
sistency factor per query.

4.3 Application protocol parsing

In the second stage, a subset of reconstructed L7 conversa-
tions is retrieved from the database and further processed
to identify and extract interesting application messages:

e First, Application protocol classifier block identifies
an application protocol of the conversation. Our so-
lution currently implements a simple application pro-
tocol classifier based on the database of known ports.
However, a more advanced classifier can be used to uti-
lize pattern recognition or statistical methods [6, 16].

e Based on the recognized application protocol, the con-
versation is consumed by parsing module designed
to the processing of a single application protocol such
as HTTP, SMTP or DNS. The parsing module pro-
cesses the entire conversation by extracting individual
application protocol messages and storing them back
to the distributed database.

The current implementation includes only HTTP and DNS
parsers. Adding support for other application protocols re-
quires creating an application protocol parser. Implementing
the parser is time-consuming and error-prone. Another op-
tion is to generate a parser using a suitable parser generator.
Depending on whether the protocol is text or binary, differ-
ent types of generators can be used, for example, Spicy [25],
Kaitai Struct®, etc.

"Note that also MSSQL and ArangoDB are supported.
8https://kaitai.io/
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5 Performance evaluation

We focused our preliminary assessment on determining
the performance parameters of the created tool. During
the experiments, we considered both the data storage sce-
nario in the distributed database and the case where data
analysis uses the output from the previous step directly.
The goal is to demonstrate the scalability of the proposed so-
lution and show the available throughput in various possible
configurations. We have considered two major test scenarios:

Standalone processing tests how fast is captured traffic
processed on a single machine inside one process. This
test-case shows total throughput of our processing
algorithms (especially reassembling and application
protocol parsing) on given machine type. Because
the whole processing is running under one Common
Language Runtime (CLR), it is expected to be faster
than distributed processing with a low number of pro-
cessing nodes. This experiment provides a baseline
to which other results are compared.

Cluster Processing shows the scalability of our solution
in a computing cluster. We tested it in a distributed en-
vironment with a different number of nodes. The test
scenarios considered (i) processing with a single Load
Balancer and different numbers of Reassembler nodes
and (ii) a different number of Load Balancer and Re-
assembler nodes.

For our test purposes, we have chosen multiple different
computing environments described in Table 1. The E.1 envi-
ronment consists of 14 workstations that are all connected
to the same local network. Environment E.2 is a cluster-
integrated Google Cloud Platform consisting of 12 virtual
machines. E.3 is a mini-cluster of four server boards in a sin-
gle chassis. Finally, E.4 is a single powerful workstation.

Table 1. Testing environments used for performance evalu-
ation.
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corporate network traffic over one month, consisting of
5,707,845 frames. The size of the capture file is large enough
to limit the overhead to a negligible part in the initialization
phase but allows us to run all test cases in a reasonable time.

To reduce the memory consumption of tracking of all
processed conversations by the Reassembler nodes, its actors
detect and remove inactive (timed out) conversations. Thus,
the memory allocation corresponds to the number of active
concurrent network flows within a particular time window.

Each experiment was repeated 10 times. The calculated
standard deviation was in the range of 5 — 10 %. Such a high
value is due to the inherent non-deterministic behavior of the
distributed system, including the effect of network commu-
nication, the garbage collection, and other operating system
processes.

5.1 Single-node Environments

We measured the individual processing stages in the stan-
dalone test scenario in environments E.3 and E.4. Table 2
represents the performance achieved for each phase. Pre-
liminary results show that it is possible to read and decode
packets from a file at approximately 3.8 Gbps and 1.7 Gbps
in test environments E.4 and E.3 respectively (second row of
the table). The process of extracting conversations requires
much more effort and therefore performance dropped to
972 Gbps and 380 Gbps respectively what represents about
75 % decrease compared to the previous phase. It suggests
that this resource-intensive part could be most accelerated
by distributed calculation. The last phase is the analysis
of HTTP and DNS protocols, which resulted in a decrease
in throughput of about 8 % compared to the previous phase.
For comparison, Table 3 shows the results achieved by several
commonly used network forensic tools (Wireshark, Network-
Miner) in the E.4 test environment.

Table 2. Processing speeds of individual network capture
processing phases in standalone test scenario performed
on test environments E.4 and E.3.

E.1 E.2 E3 E.4
Machine Type Desktop Google Cloud ~ Mini-cluster ~ Workstation

computers Platform () Workstation E.4 [Mbps]  Server E.3 [Mbps]
Machines count 14 12 4 1
CPU Type Intel i5- Intel XeonE5 Intel Xeon Intel PCAP file reading 5103 5719

3570K E5520 17-5930K Packet parsing 3853 1679
Physical Cores 4 2 4 6 L7 Conversation r bling 942 380
Logical Cores 4 4 8 12 Application protocols parsing 880 358
CPU Frequency 3.40 GHz 2.60 GHz 2.26 GHz 3.50 GHz

CPU Frequency 3.80GHz 2.80 GHz 3.53GHz 4.30 GHz

Turbo — 1 core

RAM 8GB 7GB 48 GB 64GB

Sequential disk  73/67MB/s  120/118 MB/s 282/265MB/s 490/430 MB/s
read/write

Network Card 1Gbps 10 Gbps 1Gbps 1Gbps

(*) n1-highcpu-4

As the source packet capture, we used 4.7 GB file from
a well known M57-Patents Scenario’. It captures real-world

“https://digitalcorpora.org/corpora/scenarios/m57-patents-scenario (last
accessed 2019-07-03).

Table 3. Processing speeds of commonly used network foren-
sic tools measured on test environment Workstation E.4.

NTPAC  Netfox Wireshark  NetworkMiner
[Mbps] [Mbps] [Mbps] [Mbps]

M57 Analysis 880 65.6 73.4 15.8
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5.2 Clustered Environments

Next, we compare the performance and scalability of our
tool in a clustered test scenario executed in the test environ-
ment E.1. We have performed a series of experiments with
the varying number of active Load Balancer and Reassembler
nodes.

Additionally, we have tested configuration in which the re-
sults were persisted in a distributed database!?, as well as the
configuration, where these results were discarded so we mea-
sured performance without the overhead associated with
database operations.

Table 4. Performance measurements of clustered processing
conducted in test environment E.1.

Viliam Letavay, Jan Pluskal and Ondfej Rysavy

we repeated the same set of experiments in E.2 (using up to
8 Reassemblers and up to 4 Load Balancers) and E.3 (using
up to 3 Reassemblers and single Load Balancer). The results
shown in tables 5 and 6 show a similar trend in the rate of
processing per number of individual modules. Note, that we
are limited by the total number of instances that we can
create in environment E.2.

Table 5. Performance measurements of clustered processing
conducted in test environment E.2.

Reassemblers S 1 2 4 6 8
[Mbps] [Mbps] [Mbps] [Mbps] [Mbps] [Mbps]

Load Balancers Without Persistence

1 427 223 370 560 573 585
2 170 334 706 916 994
3 126 352 734 826 1016
Reassemblers S 1 2 4 6 8 10 4 104 271 580 618 920
[Mbps] [Mbps] [Mbps] [Mbps] [Mbps] [Mbps] [Mbps]
Load Balancers With Persistence
Load Balancers Without Persistence
1 248 171 255 459 497 498
1 513 380 670 768 778 797 815 P w 219 220 150 675
2 310 574 1093 1370 1508 1542 3 * 383 452 558
3 290 602 1136 1713 1945 2070 4 * * *
4 269 660 1258 1971 2252 2580
Load Balancers With Persistence
1 335 273 478 729 7 740 742 Table 6. Performance measurements of clustered processing
2 247 482 801 1009 1123 1254
3 i 501 930 1131 1326 1438 conducted in test environment E.3.
4 503 949 1135 1375 1710

Table 4 shows how the performance depends on the num-
ber of Reassembler nodes. Columns labeled 1 to 10 represent
a number of participating Reassembler nodes. For compar-
ison, the column labeled S represents system performance
in a stand-alone mode of the processing. First set of rows (la-
beled Load Balancers Without persistence) denote a varying
number of participating Load Balancer nodes without the
results being stored in a database. Similarly, the second set
of rows (labeled Load Balancers With Persistence) denote
a varying number of participating Load Balancer nodes but
with results being stored in a database.

In the test results, we see that performance increases
to the point where one Load Balancer cannot provide enough
data for available Reassembler nodes. Adding additional Load
Balancer nodes increases the throughput of the entire system
until all Reassemblers are fully saturated, and the processing
speed reaches its limit again. Increasing a number of both
Load Balancer and Reassembler nodes allows a further in-
crease in overall throughput until the available hardware
resources are exhausted. Data points marked with asterisks
(*) represent incapability to complete the test run due to the
overload of the Reassembler nodes in a given configuration
(total number of active nodes).

With the knowledge of the characteristics of the distributed
system obtained from experiments in the E.1 environment,

19The number of Cassandra nodes was equal to the number of active Re-
assembler nodes.

Reassemblers S [Mbps] 1 [Mbps] 2 [Mbps] 3 [Mbps]
1— Without Persistence 358 233 407 453
1 — With Persistence 210 158 301 388

When comparing results from different environments,
it is interesting that the highest performance was achieved
in the local network, although the Google Cloud Platform
seems to have more powerful computing nodes and a faster
network. This may be because GCP is a virtualized environ-
ment with shared hardware resources.

6 Conclusion

We have designed and implemented a system for forensic
network analysis that can be used in high-speed networks
for near real-time analysis. The distributed system is based
on an actor model that, thanks to its good scalability, can
run on a single machine as well as a computing cluster.
The proposed distributed system is comprised of different
classes of cooperating nodes capable of distributing inter-
cepted network traffic, processing identified network flows
and storing reconstructed data into a distributed database.
The resulting data consists of a description of network con-
versations and information from the extracted application
communication. At this point, DNS and HTTP are supported.
The main goal of the system is to provide a scalable plat-
form for network communication processing that is primar-
ily designed to support a digital investigation. Experiments
have demonstrated the feasibility of the proposed approach.
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Processing throughput is scalable by adding additional pro-
cessing nodes. Experiments have also shown that the pro-
posed tool running on only one node can effectively use
available resources and can offer the same or better perfor-
mance than existing tools.

The NTPAC is open source, and available at https://github.
com/nesfit/NTPAC under the MIT license.
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