
Overview of Security on Mobile Devices

Lukáš Aron, Petr Hanáček
Faculty of Information Technology, Department of Intelligent Systems

Brno University of Technology

Abstract

This paper contains depth description of
security models of modern mobile operat-
ing system like Android, iOS and Win-
dows Phone. These security models are
cornerstones of security on current plat-
forms. Despite of different approaches of
security they have a lot of in common.
This paper also contains the most dis-
cussed security problem of nowadays, Mal-
ware. Descirption of malicious software
is from Appliation-based view. However,
modern operating system has strong pro-
tection against viruses and other types of
infection through its security model, the
weakes point of mobile devices are still
users. These useres usually install addi-
tional software into their devices. This
paper focuses on Android malware infec-
tion and provides a few protection methods
against this type security threat.

Introduction

Mobile devices development has been enor-
mous over past 20 years and its results are
all around us. It has been a long time since
mobile phones were used only for making a
call or writing short text messages. Tech-
nologically advanced societies are trying to
speed up and simplify any process that can
be automated and to provide user an easy

access to it. These processes may be imple-
mented as applications on mobile devices
and are aimed on helping people to finish
daily tasks easily or more quickly. Such mo-
bile devices could be smart phones, tablets,
notebooks or similar devices which man
can easily carry along with him. Recent
years have witnessed an explosive growth
in smartphone sales and adoption.

The software on these mobile devices
consists of an operating system and ap-
plications that are installed on the device.
The most widespread operating system is
Android [1, 12] from Google, which will
be the model example for the further ex-
planation, mainly because of its popularity
and open source properties, but the princi-
ples can be applied to every other platform
being used. The paper is going to intro-
duce and explain the principles of mobile
threats appearing through all platforms of
mobile operating systems. The introduc-
tion into security on mobile devices begins
with security models of mobile platforms
Android, iOS and Windows Phone, which
are explained in the first part of this paper.

The next section of this paper is
being aimed on the basic information
about application-based mobile threats,
and types of these threats in detail. Mo-
bile threats are endangering the safety of
individuals, companies, and if measures are
not taken, than the cybercrime can have

Proc. Of The 2nd IEEE World Symposium on Web Applications and Networking 

DOI: 05. WSWAN.2015.1.4

N&N Global Technology 2015©



an impact on the security of the whole so-
ciety. First, we have to ask the question:
Why do threats and attacks on mobile de-
vices exist? The answer is simple since the
motivation could be the same as for the at-
tacks on desktop machines. Primary target
of these attacks could be the secret infor-
mation, whose gain could lead to stealing
user’s money, but attacker could be able to
get an access to the computational power
of the device, which should be also used for
committing more cybercrime. The reason
for emphasizing the security of mobile de-
vices has its roots in this: while only expe-
rienced users were working with these de-
vices 20 years ago, nowadays users that do
not have any IT education and even small
children are using modern technologies.

The simplest type of attack is to steal
the device. The owner of the mobile device
is generally the only user and that is the
reason why there is not great emphasis on
the physical security. This could be danger-
ous if the stolen device is the workstation
of the user and the security threat to the
whole company if the device is connected
into corporate network.

Security Models

In this part of the paper are descriptions of
security models or architectures of Android
[6], iOS operating system[5] and Windows
Phone [10]. Such security models or archi-
tectures are unique for each mobile plat-
form, but they have a lot in common. For
example all platforms enable creating ap-
plications by the third party developers.
The differences are discussed in the follow-
ing text.

Android Security Model

Android is an application execution plat-
form for mobile devices comprised out of
an operating system, core libraries, devel-
opment framework and basic applications.
Android operating system is built on top
of a Linux kernel. The Linux kernel is re-
sponsible for executing core system services
such as: memory access, process manage-
ment, access to physical devices through
drivers, network management and security.
Atop the Linux kernel is the Dalvik vir-
tual machine [9] or new one Art virtual
machine along with basic system libraries.
The Dalvik/Art VM is a register based ex-
ecution engine used to run Android appli-
cations.

The Art virtual machine has been intro-
duced in 2014 as successor of Dalvik. It
is still in beta mode. Main differences be-
tween these implementation is that Dalvik
is just-in-time compilation technique. The
code is interpreted on demand as the ap-
plication require. In contrast the Art vir-
tual machine is working in ahead-of-time-
compilation technique. That means, after
downloading application the code is com-
piled into native code of the device. More
information can be found in [9].

In order to access lower level system ser-
vices, the Android provides an API through
afore mentioned C/C++ system libraries.
In addition to the basic system libraries,
the development framework provides ac-
cess the top level services, like content
providers, location manager or telephony
manager. This means that it is possible
to develop applications which use the same
system resources as the basic set of appli-
cations, like built-in web browser or mail
client. However, such a rich development
framework presents security issues since it
is necessary to prevent applications from



stealing private data, maliciously disrupt-
ing other applications or the operating sys-
tem itself. In order to address the security
issues, the Android platform implements a
permission based security model.

The model is based on application isola-
tion in a sandbox environment. This means
that each application executes in its own
environment and is unable to influence or
modify execution of any other application.
Application sandboxing is performed at the
Linux kernel level. In order to achieve iso-
lation, Android utilizes standard Linux ac-
cess control mechanisms. Each Android ap-
plication package (.apk) is on installation
assigned a unique Linux user ID. This ap-
proach allows the Android to enforce stan-
dard Linux file access rights. Since each
file is associated with its owner’s user ID,
applications cannot access files that belong
to other applications without being granted
appropriate permissions. Each file can be
assigned read, write and execute access per-
mission. Since the root user owns system
files, applications are not able to act ma-
liciously by accessing or modifying critical
system components.

On the other hand, to achieve memory
isolation, each application is running in its
own process, i.e. each application has its
own memory space assigned. Additional se-
curity is achieved by utilizing memory man-
agement unit (MMU), a hardware compo-
nent used to translate between virtual and
physical address spaces. This way an appli-
cation cannot compromise system security
by running native code in privileged mode,
i.e. the application is unable to modify the
memory segment assigned to the operating
system.

The presented isolation model provides
a secure environment for application exe-
cution. However, restrictions enforced by

the model also reduce the overall appli-
cation functionality. For example, useful
functionalities could be achieved by access-
ing critical systems like: access to network
services, camera or location services. Fur-
thermore, exchange of data and function-
alities between applications enhanced the
capabilities of the development framework.
The shared user ID and permissions are two
mechanisms, introduced by the Android,
which can be used to lift the restrictions
enforced by the isolation model.

The mechanism must provide sufficient
flexibility to the application developers but
also preserve the overall system security.
Two applications can share data and appli-
cation components, i.e. activities, content
providers, services and broadcast receivers.
For example, an application could run and
activity belonging to other application or
access its files.

The shared user ID allows applications
to share data and application components.
In order to be assigned a shared user ID
the two applications must be signed with
the same digital certificate. In effect, the
developers can bypass the isolation model
restrictions by signing applications with the
same private key. However, since there is
not a central certification authority, the de-
velopers are responsible to keep their pri-
vate keys secure. By sharing the user ID,
applications gain the ability to run in the
same process. The alternative to the shared
user ID approach is to use the Android
permissions. In addition to sharing data
and components, the permissions are used
to gain access to critical system modules.
Each android application can request and
define a set of permissions. This means
that each application can expose a subset
of its functionalities to other applications
if they have been granted the correspond-



ing permissions. In addition, each applica-
tion can request a set of permissions to ac-
cess other applications or system libraries.
Permissions are granted by the operat-
ing system at installation and cannot be
changed afterwards. There are four types
of permissions: normal, dangerous, signa-
ture and signature-or-system. Normal per-
missions give access to isolated application-
level functionalities. These functionalities
have little impact on system or user secu-
rity and are therefore granted without an
explicit user’s approval.

However, the user can review which per-
missions are requested prior to application
installation. An example of a normal level
permission is access to the phone’s vibra-
tion hardware. Since it is an isolated func-
tionality, i.e. user’s privacy or other appli-
cations cannot be compromised, it is not
considered a major security risk. On the
other hand, dangerous permissions proved
access to private data and critical systems.
For example, by obtaining a dangerous per-
mission, an application can use telephony
services, network access, location informa-
tion or gain other private user data. Since
dangerous permissions present a high secu-
rity risk, the user is promoted to confirm
them before installation.

iOS Security Model

Unlike the Android security architecture,
iOS security model [5] provides different
philosophy for achieving mobile devices se-
curity and user’s protection. The iOS ap-
plication platform empowers developers to
create new applications and to contribute
to the application store. However, each ap-
plication submitted by a third party devel-
oper is sent to the revision process. During
the revision process the application code
is analyzed by professional developers who

make sure that the application is safe be-
fore it is released to the application store.
However, such an application, when in-
stalled, gets all the permissions on a mo-
bile device. Application might access lo-
cal camera, 3G/4G, Wi-Fi or GPS module
without user’s knowledge. While Android
lets each user handle its own security on
their own responsibility, the iOS platform
makes developers to write safe code using
iOS secure API and prevents malicious ap-
plications from getting into the app store.

The iOS security APIs [4] are located in
the Core Services layer of the operating sys-
tem and are based on services in the Core
OS – kernel layer of the operating system.
Application that needs to execute a net-
work task, may use secure networking func-
tions through the CFNetwork API, which
is also located in the Core Services layer.

The iOS security implementation in-
cludes a daemon called the Security Server
that implements several security protocols,
such as access to keychain items and root
certificate trust management. The secu-
rity Server has no public API. Instead, ap-
plications use the Keychain Services API
and the Certificate, Key, and Trust services
API, which in turn communicate with the
Security Server. Keychain Services API is
used to store passwords, keys, certificates,
and other secret data. Its implementation
therefore requires both cryptographic func-
tions (to encrypt and decrypt secrets) and
data storage functions (to store the secrets
and related data in files). To achieve these
aims, Keychain Services uses the Common
Crypto dynamic library. CFNetwork is a
high-level API that can be used by appli-
cations to create and maintain secure data
streams and to add authentication infor-
mation to a message. CFNetwork calls
underlying security services to set up a



secure connection. The Certificate, Key,
and Trust Services API include functions
to create, manage, and read certificates,
add certificates to a keychain, create en-
cryption keys, encrypt and decrypt data,
sign data and verify signatures and man-
age trust policies.

To carry out all these services, the API
calls the Common Crypto dynamic library
and other Core OS-level services. Ran-
domization Services provides cryptograph-
ically secure pseudorandom numbers. Such
pseudorandom numbers are generated by a
computer algorithm (and are therefore not
truly random), but the algorithm is not
discernible from the sequence. To gener-
ate these numbers, Randomization Services
calls a random number generator in the
Core OS layer. In case that the developers
use the presented API properly and do not
integrate malicious activities into the ap-
plication, the application will be accepted
into the App store.

Windows Phone Security Model

The Windows Phone security model [10]
is the foundation for protecting the confi-
dentiality, integrity, and availability of data
and communications. This section provides
details about the innovative security archi-
tecture of Windows Phone.

The Windows Phone security model is
based on the principles of isolation and
least privilege, and introduces the ”cham-
ber” concept. Each chamber provides a
security boundary and, through configura-
tion, an isolation boundary within which a
process can run. Each chamber is defined
and implemented using a policy system.
The security policy of a specific chamber
defines what operating system capabilities
the processes in that chamber can access.
There are four chamber types. Three of the

chamber types have fixed permission sets,
and the fourth chamber type is capabilities-
driven. Apps that are designated to run in
the fourth chamber type have capability re-
quirements that are honored at installation
and at run-time. The four chamber types
are as follows:

• The Trusted Computing Base (TCB)
chamber has the greatest privileges. It
allows processes to have unrestricted
access to most of the Windows Phone
resources. The TCB chamber can
modify policy and enforce the secu-
rity model. The kernel and kernel-
mode drivers run in the TCB cham-
ber. Minimizing the amount of soft-
ware that runs in the TCB is essential
for minimizing the Windows Phone
attack surface. Only Microsoft can
add signed software components to the
TCB chamber

• The Elevated Rights Chamber (ERC)
can access all resources except secu-
rity policy. The ERC is intended for
services and user-mode drivers that
provide functionality intended for use
by other phone apps. The ERC is
less privileged than the TCB chamber.
Only Microsoft can add signed soft-
ware components to the ERC cham-
ber.

• The Standard Rights Chamber (SRC)
is the default chamber for pre-installed
apps. All apps that do not provide
device-wide services run in the SRC.
Microsoft Outlook Mobile 2010 is an
example of an app that runs in the
SRC.

• The Least Privileged Chamber (LPC)
is the default chamber for all non-
Microsoft apps that are available



through the Windows Phone Market-
place. LPCs are configured using ca-
pabilities as described in the following
section.

A capability is a resource for which user
privacy, security, cost, or business concerns
exist with regard to usage on Windows
Phone. Examples of capabilities include
geographical location information, camera,
microphone, networking, and sensors. The
LPC defines a minimal set of access rights
by default. However, the LPC is dynamic
and can be expanded using capabilities.
Capabilities are granted during app instal-
lation, and their privileges cannot be ele-
vated at run time. The capabilities–based
least privilege model is advantageous for
the reasons like attack surface reduction
and user consent and control. Develop-
ers use the capability detection tool that is
distributed with the Windows Phone De-
veloper Tools to create the capability list
for their app. The capability list is in-
cluded in the app manifest in the app pack-
age (WMAppManifest.xml). Every app on
Windows Phone runs in its own isolated
chamber that is defined by the declared ca-
pabilities that the app needs to function.
A basic set of permissions is granted to
all apps, including access to isolated stor-
age. There are no communication chan-
nels between apps on the phone other than
through the cloud. Apps are isolated from
each other and cannot access memory used
or data stored by other applications, in-
cluding the keyboard cache. In addition,
Windows Phone does not allow apps to run
in the background at any given time, which
prevents hidden apps or spyware apps from
preying on users. The moment a user
switches to a different app on Windows
Phone, the previously used app is put into
a dormant state and its application state

preserved. This approach ensures that an
app cannot use critical resources or commu-
nicate with Internet–based services while
the user is not using the app.Measures that
help mitigate common risks associated with
smartphones, such as exposure of confiden-
tial data to unauthorized users, build on
the robust security architecture of Win-
dows Phone. In addition, policy manage-
ment that complements these measures is
simplified by the integration of Windows
Phone with existing Microsoft infrastruc-
ture.

Application-based Mobile Threats

The typical user today downloads or buys
software and installs it without thinking
much about its functionality. A few lines
of description and some reviews might
be enough to persuade the user to try
it. Except for well-known software (writ-
ten by software companies such as Mi-
crosoft, Google or Apple) or through the
open-source community, it can be diffi-
cult to verify the authenticity of avail-
able software or vouch for its functionality.
Shareware/trial-ware/free software is avail-
able for personal computers (PCs) and is
now available for mobile devices, as well,
and only requires one click to install it.
Hundreds of software applications pop up
every day in the marketplace from seasoned
to newbie developers.

The problem is compounded for mobile
devices, especially Android. With no rig-
orous security review (or gate) on multiple
Android marketplaces, there are many op-
portunities for malicious software to be in-
stalled on a device. The only gate seems to
be during the install process, when the user
is asked to approve requested permissions.
After that, the user’s trust in an applica-



tion is complete. Users, therefore, don’t
understand the full implications of the util-
ities and software that they install on their
devices. Given the complexity and inter-
dependencies of software installed, it can
become confusing even for seasoned profes-
sionals to figure out if a software package
is trustworthy. At these times, the need for
reverse engineering becomes crucial.

Application-based threats or malicious
applications are software codes designed to
disrupt regular operations and collect sen-
sitive and unauthorized information from
a system or a user. Malware can include
viruses, worms, Trojans, spyware, key log-
gers, adware, rootkits, and other malicious
code[7]. The following behavior can typi-
cally be classified as malware:

• Disrupting regular operations: This
type of software is typically designed
to prevent systems from being used
as desired. Behavior can include gob-
bling up all system resources (e.g., disk
space, memory, CPU cycles), placing
large amounts of traffic on the net-
work to consume the bandwidth, and
so forth.

• Collecting sensitive information with-
out consent: This type of malicious
code tries to steal valuable (sensitive)
information – for example, key log-
gers. Such a key logger tracks the
user’s keys and provides them to the
attacker. When the user inputs sensi-
tive information (e.g. SSN, credit card
numbers, and passwords), these can all
potentially be logged and sent to an
attacker.

• Performing operations on the system
without the user’s consent: This type
of software performs operations on sys-

tems applications, which it is not in-
tended to do – for example, a wall-
paper application trying to read sen-
sitive files from a banking application
or modifying files so that other appli-
cations are impacted.

Identifying Android Malware

The content of this part is to identify be-
havior that can be classified as malware
on Android devices. The question here is,
how do we detect suspicious applications on
Android and analyze them? There are a
few steps of methodology identifying mal-
ware with source code of current applica-
tion. There is a methodology called re-
verse engineering [8], but that methodology
is not legal. If the user has source code of
the application there are steps that the user
should follow for identifying the malicious
software on the mobile device:

• Source/Functionality: This is the first
step in identifying a potentially suspi-
cious application. If it is available on
a non-standard source (e.g., a website
instead of the official Android Mar-
ket), it is prudent to analyze the func-
tionality of the application. In many
cases, it might be too late if the user
already installed it on a mobile device.
In any case, it is important to note
the supposed functionality of an appli-
cation, which can be analyzed throw
next steps.

• Permissions: Now that user has an-
alyzed and user understands the ex-
pected behavior of the application, it
is time to review the permissions re-
quested by the application. They
should align with the permissions
needed to perform expected opera-
tions. If an application is asking for



more permissions that it should for
providing functionality, it is a candi-
date for further evaluation.

• Data: Based on the permissions re-
quested, it is possible to draw a ma-
trix of data elements that it can have
access to. Does it align with the ex-
pected behavior? Would the applica-
tion have access to data not needed for
its operations?

• Connectivity: The final step is analyz-
ing the application code itself. The re-
viewer needs to determine if the appli-
cation is opening sockets (and to which
servers), ascertain what type of data
is being transmitted (and if secured),
and see if it is using any advertising
libraries, and so forth.

The attackers usually do not have ac-
cess to original source code without reverse
engineering. The easiest way for modify-
ing application is to get the source code
and add some malicious behavior. This ap-
proach is widely used, but there is another
type of adding malicious behavior, which
can be done without access to source code
of the mobile application. This technique
is not generally used by a typical user or
developer. A person using the techniques
covered here is probably attempting one of
the following (which is unethical if not ille-
gal):

• To add malicious behavior: It should
be noted that doing this is illegal. Ma-
licious users can potentially download
an Android application (apk), decom-
pile it, add malicious behavior to it,
repackage the application, and put it
back on the Web on secondary An-
droid markets. Since Android applica-
tions are available from multiple mar-

kets, some users might be lured to in-
stall these modified malicious applica-
tions and thus be victimized.

• To eliminate malicious behavior: The
techniques listed here can be used to
analyze suspicious applications, and, if
illegal/malicious behavior is detected,
to modify them and remove the il-
legal/malicious behavior. Analyzing
an application for malicious behav-
ior is fine and necessary for security
and forensics purposes. However, if
there is indeed such behavior detected,
users should just remove the applica-
tion and do a clean install from a reli-
able source.

• To bypass intended functionality: A
third potential use of the techniques
listed here could be to bypass the in-
tended functionality of an application.
Many applications require a registra-
tion code or serial key before being
used or they can only be used for a
specified trial period or show ads when
being used. A user of these techniques
could edit small code and bypass these
mechanisms.

Recommended Security Practices
for Mobile Devices

In the previous section were reviewed com-
mon threats to mobile devices and some of
the mitigation steps one can take. In this
section is covered in detail how to configure
(harden) an Android device to mitigate the
risks. These recommendation come from
[2, 11, 3]. Security practices for mobile de-
vices can be divided into four main cate-
gories:

• Policies and restrictions on functional-



ity: Restrict the user and applications
from accessing various hardware fea-
tures (e.g., camera, GPS), push config-
urations for wireless, Virtual Private
Network (VPN), send logs/violations
to remote server, provide a whitelist
of applications that can be used, and
prevent rooted devices from accessing
enterprise resources and networks.

• Protecting data: This includes en-
crypting local and external storage,
enabling VPN communications to ac-
cess protected resources, and using
strong cryptography for communica-
tions. This also should include a re-
mote wipe functionality in the case of
a lost or stolen device.

• Access controls: This includes authen-
tication for using the device (e.g., PIN,
SIM password) and per-application
passwords. A PIN/Passcode should be
required after the device has been idle
for few minutes (the recommendation
is 2–5 minutes).

• Applications: This includes
application-specific controls, including
approved sources/markets from which
applications can be installed, updates
to applications, allowing only trusted
applications (digitally signed from
trusted sources) to be installed, and
preventing services to backup/restore
from public cloud-based applications.

Out of the box, Android does not
come with all desired configuration settings
(from a security viewpoint). This is espe-
cially true for an enterprise environment.
Android security settings have improved
with each major release and are fairly easy
to configure. Desired configuration changes
can be applied either locally or can be

pushed to devices by Exchange ActiveSync
mail policies. Depending on the device
manufacturer, a device might have addi-
tional (manufacturer or third-party) tools
to enhance security.

Unauthorized device access

As mentioned earlier in the paper, lack of
physical control of mobile devices is one of
the main concerns for a user and for an en-
terprise. The risk arising out of this can be
mitigated to a certain extent through the
following configuration changes:

Setting up a screen lock and SIM lock

After enabling this setting, a user is re-
quired to enter either a PIN or a password
to access a device. There is an option to use
patterns, although it is not recommend it.
Recommendation for a strong password is
an 8-digit PIN. Once ”Screen Lock” is en-
abled, the automatic timeout value should
be updated as well. Turning on the ”SIM
card lock” makes it mandatory to enter
this code to access ”phone” functionality.
Without this code, one would not be able
to make calls or send SMS messages.

Remote wipe

System administrators can enable the ”Re-
mote Wipe” function through Exchange
ActiveSync mail policies. If a user is con-
nected to the corporate Exchange server,
it is critical to enable this feature in case
the device is lost or stolen. There are other
settings that can be pushed as well (e.g.,
password complexity). These are covered
later in this paper. Remote Wipe essen-
tially wipes out all data from the phone
and restores it to factory state. This in-
cludes all e-mail data, application settings,



and so forth. However, it does not delete
information on external SD storage.

Conclusion

In this paper was described overall about
mobile security threats and possible vul-
nerabilities. There are modern operating
systems with strong security background
which are provided to the users. There is
nothing more important than the safety of
the user’s data. In these days there are a
lot of known vulnerabilities in these operat-
ing systems, applications, internet browsers
and specific teams and developers work-
ing on issues trying to fix known problems.
However, there is the weakest point at this
security and that point is always the user of
the current device. There is not necessary
that the attacker is a developer or technical
educated person, it could be anyone who
knows something personal and can deceive
the user. For discussed platforms exist the
additional adjustments which break the ba-
sic security model. This is usual called the
”rooting” the device. It is because the op-
eration systems are based on Linux or Unix
kernel and the administrator or superpower
user is called root. Another name for the
same unlocking device could be jail-break
(mainly for iOS platform). This adjust-
ment can bring some more power to the
user for settings or installing application
from the other sources than is usual, but
there are always the risk. The risk is al-
ways related to the security of the current
mobile device.

Acknowledgement

This article was created within the re-
search plan of the Security-Oriented Re-
search in Information (MSM0021630528).

This work was supported by the Eu-
ropean Regional Development Fund in
the IT4Innovations Centre of Excellence
project (CZ.1.05/1.1.00/02.0070) and by
the project Advanced Secured, Reliable
and Adaptive IT (FIT-S-11-1).

References

[1] Ed Burnette. Hello, Android: in-
troducing Google’s mobile development
platform. Pragmatic Bookshelf, 2009.

[2] Jesse Burns. Developing secure mobile
applications for android, 2008.

[3] Guiran Chang, Chunguang Tan,
Guanhua Li, and Chuan Zhu. De-
veloping mobile applications on the
android platform. In Mobile mul-
timedia processing, pages 264–286.
Springer, 2010.

[4] Cedric Halbronn and Jean Sigwald.
iphone security model & vulnerabil-
ities. In Proceedings of Hack in
the box sec-conference. Kuala Lumpur,
Malaysia, 2010.

[5] Andrew Hoog and Katie Strzempka.
iPhone and iOS Forensics: Investiga-
tion, Analysis and Mobile Security for
Apple iPhone, iPad and iOS Devices.
Elsevier, 2011.

[6] DING Li-ping. Analysis the security of
android. Netinfo Security, 3:011, 2012.

[7] Tongbo Luo, Hao Hao, Wenliang Du,
Yifei Wang, and Heng Yin. Attacks
on webview in the android system. In
Proceedings of the 27th Annual Com-
puter Security Applications Confer-
ence, pages 343–352. ACM, 2011.



[8] Ralf Mitsching, Carsten Weise, Stefan
Kowalewski, Alexander Michailidis,
Uwe Spieth, Bernd Hedenetz, Dominik
Franke, Stefan Kowalewski, Carsten
Weise, Daniel Merschen, et al. Infer-
ring definite counterexamples through.
In NASA Formal Methods Symposium
(NFM 2012), volume 1, pages 435–
440. Springer, 2012.

[9] Hyeong-Seok Oh, Beom-Jun Kim,
Hyung-Kyu Choi, and Soo-Mook
Moon. Evaluation of android dalvik
virtual machine. In Proceedings of the
10th International Workshop on Java
Technologies for Real-time and Em-
bedded Systems, pages 115–124. ACM,
2012.

[10] Thomas Schaefer, Hans Höfken, and
Marko Schuba. Windows phone 7 from
a digital forensics’ perspective. In Dig-
ital Forensics and Cyber Crime, pages
62–76. Springer, 2012.

[11] Jeff Six. Application Security for
the Android Platform: Processes, Per-
missions, and Other Safeguards. ”
O’Reilly Media, Inc.”, 2011.

[12] Welderufael Berhane Tesfay, Todd
Booth, and Karl Andersson. Reputa-
tion based security model for android
applications. In Trust, Security and
Privacy in Computing and Communi-
cations (TrustCom), 2012 IEEE 11th
International Conference on, pages
896–901. IEEE, 2012.




