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Abstract—This paper is related to event-driven embedded
systems whose function can be divided into the real-time (RT)
and non-RT parts. Such a system must be designed so that all
predetermined timing constraints are met at runtime, even in
adverse conditions such as an excessive rate of events caused
by interrupts. In other words, the RT part is expected not
to fail because of its criticality. In the paper, the interrupt
overload problem (IOV) is introduced, then typical generally
applicable solutions to the predictability part of the problem
are presented along with our adaptive hardware/software
mechanism for preventing the RT part from the same type of
the problem; finally, the solutions are compared to summarize
their attributes from the RT point of view.
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I. INTRODUCTION

This article is devoted to embedded, event-driven real-
time (RT) systems, main characteristics of which can be
summarized as follows:

• they have very limited computational resources (e.g.,
comparing to personal computers), but are able to
comply criteria such as low power consumption, low
weight, small size etc.,

• occurence of their input stimuli is signaled by events,
• they must react to events both correctly and on-time,

according to their specification [1].

In the paper, it is supposed that RT properties are guar-
anteed by an RT operating system (RTOS) constructed to
facilitate the design of RT applications [2], [3]. Hence, an RT
application is supposed not to fail because of its criticality.
If a failure of the system is not acceptable then (at least)
fault hypothesis (utilized to specify assumptions about types
and frequency of faults the system must be resilient to) and
load hypothesis (for specifying assumptions about the peak
load induced by the environment) must be specified [4].

This paper abstracts from the latter hypothesis (not reduc-
ing its weight nohow) and focuses just on problems related
to the first-mentioned hypothesis and its typical solutions in
the area of embedded, event-driven RT systems.

A. Formulation of the IOV Problem

Basically, two approaches to an event detection are pos-
sible in event-driven systems:

1) polling-loop based detection for which it is typical that
a special, event-related flag is continuously tested by a
CPU in order to detect whether an event has occured
or not,

2) interrupt (INT) based detection main advantage of
which is that no CPU time is consumed w.r.t. an event
until an event-related INT is triggered.

In relation to 2) it should be noted that each (en-
abled/unmasked) INT means that an extra CPU time and
a memory space are required to store the CPU context
(typically consisting of registers such as program counter,
status word etc.) of unfinished work being executed by
the CPU (and being interrupted) due to the occurence of
the INT; after the context is stored, the corresponding INT
service routine (ISR) starts to be executed by the CPU. After
the ISR is completed (and if there are no pending INTs at the
moment), the context is restored back in order to resume the
CPU execution being interrupted due to the INT triggering.

Since the CPU executes the code of an ISR prior to the
main program loop, occurence of each enabled INT delays
the loop for a certain time (let it be denoted by tINTover)
needed to process the CPU context and service the INT. If
it holds tINT ≤ tINTover, where tINT is the time between
successive occurrences of INTs then no CPU time remains to
execute the main program loop because of the excessive INT
interarrival rate (fINT = t−1

INT ). It should be emphasized
there that – excluding an ISR code – any code such as
user/RT tasks/functions and/or RTOS kernel code is executed
within the main program loop. Consequently, due to the
principle of the INT-based event detection mechanism, a
system may stop working correctly or collapse suddenly as
fINT increases. This is typically denoted as the interrupt
overload (IOV) problem, seriousness of which grows with
the criticality of the main program loop. Since such failures
of the system are undesirable, a critical system must be
designed so it may never give up to operate correctly.



II. SOLUTIONS TO THE IOV PROBLEM

Mechanisms for softening impacts implying from the IOV
problem can be classified according to the sub-problem they
solve, i.e., the timing disturbance problem implying mainly
from the disturbance due to soft RT tasks and the priority
inversion phenomena [8], [9], [10] and the predictability
problem originating from system’s inability to predict when
a new INT is going to be triggered [11], [12], [13].

Since impacts of the timing disturbance problem can be
minimized using special instruments such as common (joint)
ISR/task priority space [14] or resource access protocols [2],
effects of the predictability problem cannot be minimized
in such an easy way due to its aperiodical nature/origin.
Thus, the paper is devoted just to the solutions of the latter
(predictability) problem.

A. State of the art

Solutions to the predictability problem such as [8], [11],
[12], [13], [15] are typically designed to bound tINT (or,
fINT ). In [11] so-called interrupt limiters (ILs) are designed
to prevent RT systems from the problem – they are divided
into the two types: software (SW) limiters (SILs) and hard-
ware (HW) limiters (HILs). Typical parameters w.r.t. SILs
are summarized in the Tab. I. SILs can be classified [11] to
the polling, strict and bursty sub-types (for their overheads,
see Fig. 1), principles of which are outlined in the next.

Polling SIL (Fig. 1a) checks periodically (each tarrival
units, at the tpoll cost) whether an event flag – being adjusted
somehow – is set or not (for the purpose, either a special on-
chip timer able to produce an INT (ttmr, texp) is typically
utilized, but it can be replaced by a well-tuned loop); if the
flag is set then a special task corresponding to the event is
started (tw) and INTs become disabled for further tarrival
units of time.

Drawback of the (polling) principle implies directly from
its active waiting construction (this leads to an extra CPU
load – instead of switching the CPU to a sleep-mode or so,
the CPU is consumed although no event occurs); it can be
removed e.g. by the strict SIL principle (Fig. 1b) utilizing

Table I
PARAMETERS OF SW INTERRUPT LIMITERS, SILS [11]

Parameter Description
tpoll time needed to test an event flag
tictx overhead of saving/restoring the ISR context
tflip time needed to disable/enable INTs
tw ISR execution time
tadj overhead of adjusting and start a timer
texp overhead of timer expiration service
tcnt time to increment the INT counter value and test if it

is below the threshold value + overhead of clearing a
counter

ttmr time to expire a timer
tcri time to disable INTs after tINT drops below the tarrival

value; during the time, unlimited number of INTs can
occur to overload the system
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Figure 1. Overheads w.r.t. the (a) polling, (b) strict and (c) bursty SIL
principles. The light-blue (ttmr) boxes represent an action running in
parallel with the CPU, red boxes bound the tcri intervals and white boxes
represent executions performed by the CPU

the ISR prologue – being executed at the end of the context
switch w.r.t. an INT (tictx) – to disable any further INT
(except those from timers) at the tflip cost. After the INT
is serviced (tw), it configures a one-shot timer (tadj) to
expire after ttmr units (the expiration cost is texp). After the
expiration, INTs are re-enabled (tflip) to let a further INT
to be processed within the consecutive tarrival period. Main
disadvantages of the approach can be seen in the following
facts: i) INTs are practically doubled as each INT request
triggers the (further) INT utilized to signalize the expiration
and ii) INTs are disabled each time an INT is triggered,
leading to the degradation of reactivity of an RT system.

The disadvantages can be minimized using the bursty SIL
mechanism (Fig. 1c) being configured by the maximum ar-
rival rate of INTs (farrival = 1/tarrival) and the maximum
burst size (N ) parameters; the idea of the mechanism is to
disable INTs after a burst of N INT requests (where N ≥
2) rather than after each request (the strict SIL behavior) –
a special counter is needed to count (tcnt) the number of
triggered INTs (to be serviced within the tarrival interval)
until it reaches N ; then, INTs are disabled (tflip) to be re-
enabled again in the new tarrival period; for that purpose,
a timer must be configured again (tadj) to expire (ttmr) at
the cost texp and then, are INTs re-enabled (tflip). This
approach represents the actual state of industrial practice
such as AUTOSAR [15]. Although the CPU-load overhead
to the INT-throughput ratio can be well-tuned comparing to
the strict SIL, an extra CPU is (still) needed especially to
compare tcnt to N after an INT occurs as well as to service
the start/end of the tarrival period and overload of tcnt.

The main advantage of the SIL approaches can be seen in
the fact that they can be easily implemented on the platform
they are going to protect. However, since they are based
on SW instruments it may happen an extra CPU time they
need is consumed at expenses of RT tasks in such a way that
timing constraints of the tasks cannot be met. This drawback
can be removed using the latter (HIL) solution to the IOV
problem, but at the price of adding an extra hardware for that
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Figure 2. Custom Interrupts Controller (CIC) proposed in [8]

purpose. For example, in [8] it is supposed INT requests are
processed (by a special CIC hardware being implemented
for that purpose in an FPGA) before they are forwarded to
a device the critical part of an embedded application runs
on (see Fig. 2a). Herein, the HIL guarantees that at most
one INT is directed to the device within the tarrival interval
(i.e., it is a HW analogy to the strict SIL solution). For that
purpose, a simple circuitry (Fig. 2b) is utilized in the HIL;
the circuitry is designed to limit fINT to a predefined, fixed
farrival rate – as the rate is fixed, such a solution to the
IOV problem is denoted as ”static” (later in this article).
Because of its simplicity, the solution is widely utilized in
many embedded applications.

Another, more complex approach to HIL can be found e.g.
in [13], where an I/O interface is assigned its own Real-Time
Bridge (RTB) able to catch all traffic to deliver it predictably
according to both the system state and actual scheduling
policy. However, the approach is applicable just to high-
performance, PC-based systems (it was tested on the 1Ghz
Intel Q6700 quad-CPU platform) able to communicate via
the PCI(e) bus.

B. Proposed Solution

At the moment, it can be concluded that i) the IOV
problem has not been solved yet and ii) existing solutions
to the problem are either limited to solving one of the
timing disturbance and predictability problems, they are too
complex for (limited) embedded realizations, they require
significant modifications and/or extensions of available in-
dustrial components or they inherently worsen schedulability
of RT tasks as they increase the CPU utilization factor.

We have decided i) to take an advantage of existing
[13] and joint task scheduling, e.g. [8], ideas, but ii)
to modify and extend related concepts in order to move
their applicability from the fixed, e.g. PCI(e)/PC-related,
instruments to general-purpose, platform-independent ones,
commonly present in most of recent embedded platforms.

Our modification/extension of the existing concepts as well
as contribution to solving the IOV problem can be seen in
the design of a highly-efficient, but simply to implement
load-monitoring based mechanism (with its own, generally
applicable protocol and interface) able to adapt the INT
management to the actual load of the critical part of an RT
system.

Since crucial principles and attributes of our solution to
the IOV problem have been already published e.g. in [5]
being focused to the theoretical analysis of the solution,
[6] giving a summary of its realization overheads and [7]
presenting its architectural details, this paper concentrates
maily to comparison of our solution to the others rather than
to repeat the published work. However, main principles of
our solution are summarized below to increase readability
of the paper.

To make our solution adaptive, it has been based on a
unit for signaling the load and a unit for monitoring the
load; actually, the first unit is realized by an MCU utilized
to execute a critical (SW) part of the system and to produce
the MON_PRI to MON_SLACK signals1 and the second (HW)
unit is realized by an FPGA designed to monitor the signals
to protect the MCU from consequences implying from the
IOV problem (see Fig. 3). To minimize negative impacts to
RT properties the units operate in parallel.

Key features of our concept are summarized below:
• the FPGA is able to adapt the INT service rate to the

actual SW/MCU load (as a consequence, forwarding of
INTs to the MCU is avoided if their related services are
of low-priority and SW is overloaded; moreover, idle
intervals in the SW execution can be utilized to ser-
vice significantly higher number of INTs during MCU
underload comparing to existing IOV approaches),

• the MCU running the (critical) SW is not disturbed by
INTs with low-priority services

• the minimal forwarding delay is guaranteed for the
highest-priority INT(s). From the RT point of view it
is advantageous that load-related computations are done
at the FPGA side as a low-cost function of monitoring
signals being produced by the MCU – the saved CPU
time can be utilized for useful, e.g. RT, SW executions.

1for more details to the signals, please refer to [5], [6]
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The operational principle of our concept is outlined in
Fig. 4; comments to the states (1) to (5) follow:

1) An INT can be forwarded2 to the MCU if no ISR is
being executed at the moment, which is the necessary
condition (1) for the forwarding if the ISR nesting is
disallowed at the SW level – then, it makes no sense
to forward an INT to the MCU during the execution.
If the nesting is allowed then the result of (1) is not
reflected.

2) An INT is forwarded to the MCU when the priority of
its service task is higher than the running-task priority
(2); no futher condition must be evaluated/fulfilled
before the forwarding.

3) An INT can be forwarded to the MCU if the running-
task priority is below the hard-priority level or the idle
task is running (3); the forwarding is conditioned by
(4) and/or (5).

4) An INT (INTj) can be forwarded to the MCU only if
there is enough CPU time to process it along with all
uncompleted hard-priority executions. This is possible
if the corresponding CPU-load factor (ρj) is below
100% for the uniprocessor system; the forwarding is
conditioned by (5).

5) If the maximum number of INTs serviceable along
with hard-priority executions could not be exceeded
by forwarding a new INT request to the MCU then
the forwarding is started.

III. COMPARISON OF SOLUTIONS TO THE IOV PROBLEM

Properties of our adaptive solution to the IOV problem
were compared to attributes of embedded solutions men-
tioned in II-A. The comparison was made in the form of
statistics being vizualized in the Fig. 5 to Fig. 7. Data for
the comparison were collected for the following (13) CPU-
utilization factors of the main-loop (Umain [%]) formed of
hard tasks only3 in the uniprocessor (1-CPU) environment:
0.1, 0.25, 0.5, 1, 2.5, 5, 10, 25, 50, 75, 90, 95, 98. All related
experiments were performed under the following parameters
(see Tab. I): tpoll = tflip = .8 µs, tcnt = tadj = 1.6 µs, tictx =
texp = 2.4 µs, tw = 10 µs; the ARM R© CortexTM operated at
the 125MHz bus-clock rate with caches disabled. For each
of the Umain values, an experiment has been repeated 1000

2after further conditions (2) – (5) are evaluated for making the decision
about the forwarding

3inclusion of soft tasks would have no impact to the results

times, where each repetition took 10 hyperperiods (major
cycles) of hard tasks for the corresponding Umain.

In the Fig. 5, it can be seen that the IOV prevention
techniques (horizontal axis) denoted as a) – f) need more
CPU time (vertical axis) than our adaptive solution denoted
there as g) – especially, this holds for higher farrival and
fINT rates. In the extreme case, the amount of CPU time
required by a–f is greater than the CPU time being available
for the purpose (i.e., than 100 % herein) because they have
no information about the actual CPU load and consequently,
about the CPU time that remains (i.e. that is free) at the
moment. In the case of our architecture (g) the CPU load at
the MCU/SW side is monitored by our FPGA-based HIL to
prevent the CPU from the overload, so the amount of CPU
time required both to execute hard-level tasks and service
INTs forwarded to the MCU never exceeds the maximum
amount of available CPU time. let it be noted there that the
requirements changes and are limited according to the actual
CPU load, i.e., they decrease (increase) with the increasing
(decreasing) value of Umain.

In the Fig. 6, the approaches a) – g) are compared
according to the ratio of the number of INTs they were able
service and the CPU load required for the servicing.

Figure 5. Impact of farrival and fINT rates to the total CPU load
required by those IOV prevention techniques: a) polling SIL, b) strict SIL, c)
bursty SIL w. burst=2, d) bursty SIL w. burst=4, e) bursty SIL w. burst=16,
f) static HIL, g) proposed adaptive HIL



Figure 6. Impact of farrival and fINT rates to the number of serviced
INTs per total CPU load required to service the INTs by the IOV prevention
techniques.

In other words, it is illustrated there how many INTs were
serviced by the approaches per one unit (i.e., 1 %) of the
UCPU load.

For the lowest Umain values (such as 0.1 %), it can be
seen that our approach is able to adapt its farrival rate to
service more INTs per UCPU than the other approaches –
this is because it is able to detect and then consume any
idle/slack time in the SW execution to service INTs that
exceed the farrival rate being fixed for the approaches.

Next, it can be observed there that for high Umain values
(such as 98 %) our approach is able to adapt its farrival
rate again, but to service less INTs per UCPU than the other
approaches because the CPU time is almost exhausted by
hard-level executions of tasks. The approaches a) – f) are
not able to adapt their farrival rates to the situation, so
they forward the same INT traffic to the CPU as they have
forwarded for low Umain values. As the number of INTs
they forward is greater comparing to our approach, their
ratio is greater too, but at the price of overloading the system
because of the excessive INT rate (fINT ).

The last figure (Fig. 7) is utilized to vizualize that (and
how) our IOV solution is able to adapt itself to changes
of fINT and Umain. The figure is divided into 3 parts,
each dedicated to a particular fINT range (horizontal axis)

Figure 7. Impact of the INT rate (fINT ) and the main-loop CPU load
(Umain) to the number of INTs that can be serviced by the proposed IOV
solution in the system underload situation (in which timing constraints of
hard tasks are guaranteed).

because the number of serviced INTs (vertical axis) differ
a lot for the ranges. Alike in the case of Fig. 6 it can be
seen there that for high Umain values, our approach is able
to lower its farrival and INT service rates to the (minimum)
value (in the figure, it can be observed that for Umain = 98%
and fINT = 2.5kHz, . . . , 100kHz that no more than about
1600 INTs can be serviced to guarantee timeliness of hard
tasks) at which timing constraints of hard tasks can be met
and vice versa, to increase the values if there is enough CPU
time to service the INTs as well as to execute hard tasks.

Using the absolute numbers, it can be concluded that –
using various configurations/types of the realization instru-
ments mentioned in the paper – for our adaptive approach
it holds i) the maximum number of INTs it is able to
manage moves from 34 to 250, ii) its maximum throughput
is 44 × 106 INTs per second, iii) the maximum number of
supported priority levels (INTs) ranges from 4 to 256 (from
34 to 250) and iv) its maximum operating frequency is 663
MHz.

IV. CONCLUSION

Our research has resulted into the design of a general-
purpose mechanism able to prevent embedded, event-driven
RT systems from the predictability part of the IOV problem
by adapting the fINT (and consequently, INT service) rate
to an actual load of the CPU utilized to execute the RT part
of an embedded application.

Although common components such as FPGA [16] and
RT kernel [17] running on the MCU [18] were utilized to
perform a prototype of our solution, the proposed mecha-
nism is general enough to abstract from those components,
each of which can be substituted by a different one.

Further extensions of the proposed principle can be seen
e.g. in adding a cooperation with advanced scheduling poli-
cies such as sporadic servers, overload-scenario mechanisms
and/or device drivers designed to solve the aperiodic event
occurence problem at other levels of an operating system.
Also, it can be advantageous to profit from the multi-
core organization of recent MCUs and utilize it e.g. for
the enhancement and/or alternative design of the adaptive
principle proposed in this article.
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