
On Parallel Versions of Jumping Finite Automata
Radim Kocman

Department of Information Systems
Faculty of Information Technology

Brno University of Technology
Božetěchova 2, Brno Czech Republic

ikocman@fit.vutbr.cz

Alexander Meduna
Department of Information Systems
Faculty of Information Technology

Brno University of Technology
Božetěchova 2, Brno Czech Republic

meduna@fit.vutbr.cz

Abstract—The present paper proposes a new investigation area
in automata theory — n-parallel jumping finite automata. These
automata further extend recently presented jumping finite au-
tomata that are focused on discontinuous reading. The proposed
modification uses multiple reading heads that work in parallel
and can discontinuously read from the input in several places at
once. We also define the more restricted version of these automata
which only allows jumping to the right. This restricted version
is then further studied, compared with n-parallel right linear
grammars, and several of its properties are derived.

Index Terms—Jumping finite automata, n-parallel right linear
grammars, discontinuous tape reading, parallel tape reading.

I. INTRODUCTION

In the previous century, most formal models were designed
for continuous information processing. This, however, does
not often reflects the requirements of modern information
methods. Therefore, there is currently active research around
formal models that process information in a discontinuous
way. Most notably, there are newly invented jumping finite au-
tomata (see [1]) that are completely focused on discontinuous
reading. These automata go so far that they cannot even define
some quite simple languages (e.g. a∗b∗) because they cannot
guarantee any specific reading order between their jumps.

The present paper proposes the modification of these au-
tomata — n-parallel jumping finite automata. This modifi-
cation presents a concept where the input is divided into
several arbitrary parts and these parts are then separately
processed with distinct synchronized heads. A quite similar
concept was thoroughly studied in terms of formal grammars,
where several nonterminals are being synchronously rewritten
at once; for example, simple matrix grammars (see [2]) and
n-parallel grammars (see [3], [4], [5], [6], [7]). However, to
the best of our knowledge, no such research was done in
terms of automata, where several heads synchronously read
from distinct parts on the single tape. When this concept is
combined with the mechanics of jumping finite automata, each
part can be read discontinuously, but the overall order between
parts is preserved; such automaton then can handle additional
languages (e.g. a∗b∗). Therefore, this modification represents
the combined model of discontinuous and continuous reading.

The unrestricted version of jumping finite automata handles
a quite unique language family, which has not yet been suf-
ficiently studied and which had no counterparts in grammars;

until jumping grammars were introduced (see [8]). Therefore,
we decided to base our initial research on the restricted version
of these automata, which use only right jumps. Such restricted
jumping finite automata define the same language family as
classical finite automata. When these restricted automata are
combined with the previously described concept, we get a
model which is very similar to n-parallel grammars. Such
automata utilize jumping only during the initialization, when
heads jump to their start positions. After that, all heads read
their parts of the input continuously in a left-to-right way.
The paper compares these automata with n-parallel right linear
grammars and shows that these models actually represent the
same language families. Consequently, several properties of
these automata are derived from the previous results.

II. PRELIMINARIES

This paper assumes that the reader is familiar with the
theory of automata and formal languages (see [9], [10]). Let
N denote the set of all positive integers. For a set Q, card(Q)
denotes the cardinality of Q. For an alphabet (finite nonempty
set) V , V ∗ represents the free monoid generated by V under
the operation of concatenation. The unit of V ∗ is denoted by
ε. For x ∈ V ∗, |x| denotes the length of x, and alph(x)
denotes the set of all symbols occurring in x; for instance,
alph(0010) = {0, 1}. For a ∈ V , |x|a denotes the number of
occurrences of a in x. Let x = a1a2 . . . an, where ai ∈ V for
all i = 1, . . . , n, for some n ≥ 0 (x = ε if and only if n = 0).

A general jumping finite automaton (see [1]), a GJFA for
short, is a quintuple M = (Q,Σ, R, s, F), where Q is a finite
set of states, Σ is an input alphabet, Q∩Σ = ∅, R ⊆ Q×Σ∗×Q
is finite, s ∈ Q is the start state, and F is a set of final states.
Members of R are referred to as rules of M and instead of
(p, y, q) ∈ R, we write py → q ∈ R. A configuration of M is
any string in Σ∗QΣ∗. The binary jumping relation, symboli-
cally denoted by y, over Σ∗QΣ∗, is defined as follows. Let
x, z, x′, z′ ∈ Σ∗ such that xz = x′z′ and py → q ∈ R; then,
M makes a jump from xpyz to x′qz′, symbolically written as
xpyz y x′qz′. In the standard manner, we extend y to ym,
where m ≥ 0. Let y+ and y∗ denote the transitive closure
of y and the transitive-reflexive closure of y, respectively.
The language accepted by M , denoted by L(M), is defined as
L(M) = {uv | u, v ∈ Σ∗, usv y∗ f, f ∈ F}. We also define
the special case of the jumping relation. Let w, x, y, z ∈ Σ∗,

and py → q ∈ R; then, M makes a right jump from wpyxz to
wxqz, written as wpyxz ry wxqz. We extend ry to rym,
r y∗, and r y+, where m ≥ 0, by analogy with extending
the corresponding notations for y. The language accepted by
M using only right jumps, denoted by rL(M), is defined as
rL(M) = {uv | u, v ∈ Σ∗, usv ry∗ f, f ∈ F}. Let w ∈ Σ∗.
We say that M accepts w if and only if w ∈ L(M). M rejects
w if and only if w ∈ Σ∗−L(M). Two GJFAs M and M ′ are
said to be equal if and only if L(M) = L(M ′).

Let n ∈ N. An n-parallel right linear grammar (see [3], [4],
[5], [6], [7]), an n-PRLG for short, is an (n + 3)-tuple G =
(N1, . . . , Nn, T, S, P), where Ni, 1 ≤ i ≤ n, are mutually
disjoint nonterminal alphabets, T is a terminal alphabet, S is
the sentence symbol, S not in N1 ∪ · · · ∪ Nn ∪ T , and P is
a finite set of pairs. Members of P are referred as rules of
G and instead of (X,x) ∈ P , we write X → x ∈ P . Each
rule in P has one of the following forms: (1) S → X1 . . . Xn,
Xi ∈ Ni, 1 ≤ i ≤ n, (2) Xi → aiYi, Xi, Yi ∈ Ni, ai ∈ T ∗,
1 ≤ i ≤ n, (3) Xi → ai, Xi ∈ Ni, ai ∈ T ∗, 1 ≤ i ≤ n. The
binary yield operation, symbolically denoted by⇒, is defined
as follows. Let x, y ∈ (N1∪· · ·∪Nn∪{S}∪T)∗ then x⇒ y
iff either x = S and S → y ∈ P or x = a1X1 . . . anXn,
y = a1x1 . . . anxn and ai ∈ T ∗, Xi ∈ Ni, Xi → xi ∈ P ,
1 ≤ i ≤ n. In the standard manner, we extend ⇒ to ⇒m,
where m ≥ 0. Let ⇒+ and ⇒∗ denote the transitive closure
of ⇒ and the transitive-reflexive closure of ⇒, respectively.
The language generated by G, denoted by L(G), is defined as
L(G) = {x | S ⇒∗ x, x ∈ T ∗}.

III. DEFINITIONS AND EXAMPLES

In this section, we define the modification of jumping finite
automata — n-parallel jumping finite automata — which read
input words discontinuously with multiple synchronized heads.
Consequently, we also define the more restricted version of
these autamata which uses only right jumps.

Definition 1. Let n ∈ N. An n-parallel general jumping finite
automaton, an n-PGJFA for short, is a quintuple

M = (Q,Σ, R, S, F),

where Q is a finite set of states, Σ is an input alphabet, Q ∩
Σ = ∅, R ⊆ Q × Σ∗ × Q is finite, S ⊆ Qn is a set of start
state strings, and F is a set of final states. Members of R are
referred to as rules of M and instead of (p, y, q) ∈ R, we
write py → q ∈ R.

A configuration of M is any string in Σ∗QΣ∗. Let X denote
the set of all configurations over M . The binary jumping
relation, symbolically denoted by y, over X , is defined as
follows. Let x, z, x′, z′ ∈ Σ∗ such that xz = x′z′ and
py → q ∈ R; then, M makes a jump from xpyz to x′qz′,
symbolically written as

xpyz y x′qz′.

Let $ be a special symbol, $ 6∈ Q ∪ Σ. An n-configuration
of M is any string in (X{$})n. Let nX denote the set of
all n-configurations over M . The binary n-jumping relation,

symbolically denoted by ny, over nX , is defined as follows.
Let ζ1$. . . ζn$, ϑ1$. . . ϑn$ ∈ nX , so ζi, ϑi ∈ X , 1 ≤ i ≤ n;
then, M makes an n-jump from ζ1$. . . ζn$ to ϑ1$. . . ϑn$,
symbolically written as

ζ1$. . . ζn$ ny ϑ1$. . . ϑn$

iff ζi y ϑi for all 1 ≤ i ≤ n. In the standard manner we
extend ny to nym, where m ≥ 0. Let ny+ and ny∗
denote the transitive closure of ny and transitive-reflexive
closure of ny, respectively.

The language accepted by M , denoted by L(M,n), is
defined as L(M,n) = {u1v1 . . . unvn | s1 . . . sn ∈ S, ui, vi ∈
Σ∗, u1s1v1$. . . unsnvn$ ny∗f1$. . . fn$, fi ∈ F, 1 ≤ i ≤
n}. Let w ∈ Σ∗. We say that M accepts w if and only if
w ∈ L(M,n). M rejects w if and only if w ∈ Σ∗−L(M,n).

Definition 2. Let M = (Q,Σ, R, S, F) be an n-PGJFA,
and let X denote the set of all configurations over M . The
binary right jumping relation, symbolically denoted by r y,
over X , is defined as follows. Let w, x, y, z ∈ Σ∗, and
py → q ∈ R; then, M makes a right jump from wpyxz to
wxqz, symbolically written as

wpyxz ry wxqz.

Let nX denote the set of all n-configurations over
M . The binary right n-jumping relation, symbolically de-
noted by n−ry, over nX , is defined as follows. Let
ζ1$. . . ζn$, ϑ1$. . . ϑn$ ∈ nX , so ζi, ϑi ∈ X , 1 ≤ i ≤ n;
then, M makes a right n-jump from ζ1$. . . ζn$ to ϑ1$. . . ϑn$,
symbolically written as

ζ1$. . . ζn$ n−ry ϑ1$. . . ϑn$

iff ζi ry ϑi for all 1 ≤ i ≤ n.
Extend n−ry to n−rym, n−ry+, and n−ry∗, where

m ≥ 0, by analogy with extending the corresponding notations
for ny. Let L(M,n−r) denote the language accepted by M
using only right n-jumps.

Next, we illustrate the previous definitions by two examples.

Example 3. Consider the 2-PGJFA

M = ({s, r, p, q},Σ, R, {sr}, {s, r}),

where Σ = {a, b, c, d} and R consists of the rules

sa→ p, pb→ s, rc→ q, qd→ r.

Starting from sr, M has to read some a, and some b with
the first head and some c, and some d with the second
head, entering again the start (and also the final) states sr.
Therefore, the accepted language is

L(M, 2) = {uv | u ∈ {a, b}∗, v ∈ {c, d}∗,
|u|a = |u|b = |v|c = |v|d}.

It can be easily shown that such a language cannot be
defined by any original jumping finite automaton.

Example 4. Consider the 2-PGJFA

M = ({s, r, t},Σ, R, {ss}, {s}),

where Σ = {a, b, c} and R consists of the rules

sa→ r, rb→ t, tc→ s.

Starting from ss, M has to read some a, some b, and some c
with both heads. If we work with unbound jumps, each head
can read a, b, and c in an arbitrary order. However, if we work
only with right jumps, each head must read input symbols in
the original order; or the automaton will eventually get stuck.
Therefore, the accepted languages are

L(M, 2) = {uv | u, v ∈ {a, b, c}∗,
|u|a = |u|b = |u|c = |v|a = |v|b = |v|c},

L(M, 2−r) = {uu | u ∈ {abc}∗}.

Denotation of language families

Throughout the rest of this paper, the language families
under discussion are denoted in the following way. REG,
CF, and CS denote the families of regular languages, context-
free languages, and context-sensitive languages, respectively.
rGJFA, rn-PGJFA, and n-PRLG denote the families of
languages accepted or generated by GJFAs using only right
jumps, n-PGJFAs using only right n-jumps, and n-PRLGs,
respectively.

IV. CONVERSIONS

In this section, we prove that n-PGJFAs with right n-jumps
and n-PRLGs define the same language families.

Theorem 5. For every n-PRLG G = (N1, . . . , Nn, T, S1, P),
there is an n-PGJFA using only right n-jumps M =
(Q,Σ, R, S2, F), such that L(M,n−r) = L(G).

Proof. Let G = (N1, . . . , Nn, T, S1, P) be an n-PRLG.
Without a loss of generality, assume that f 6∈ N1∪· · ·∪Nn∪T .
Keep the same n and define the n-PGJFA with right n-jumps

M = ({f} ∪N1 ∪ · · · ∪Nn, T,R, S2, {f}),

where R and S2 are constructed in the following way:
(1) For each rule in the form S1 → X1 . . . Xn, Xi ∈

Ni, 1 ≤ i ≤ n, add the start state string X1 . . . Xn

to S2.
(2) For each rule in the form Xi → aiYi, Xi, Yi ∈ Ni, ai ∈

T ∗, 1 ≤ i ≤ n, add the rule Xiai → Yi to R.
(3) For each rule in the form Xi → ai, Xi ∈ Ni, ai ∈

T ∗, 1 ≤ i ≤ n, add the rule Xiai → f to R.
The constructed n-PGJFA with right n-jumps M simulates

the n-PRLG G in such a way that its heads read symbols in
the same fashion as the nonterminals of G generate them.

Any sentence w ∈ L(G) can be divided into w = u1 . . . un,
where ui represents the part of the sentence which can be
generated from the nonterminal Xi of a rule S1→ X1 . . . Xn,
Xi ∈ Ni, 1 ≤ i ≤ n. In the same way, M can start from an n-
configuration X1u1$. . . Xnun$, where all its heads with the

states Xi need to read ui. Therefore part (1), where we convert
the rules S1 → X1 . . . Xn into the start state strings. The
selection of a start state string thus covers the first derivation
step of the grammar.

Any consecutive non-ending derivation step of the grammar
then rewrites all n nonterminals in the sentential form with
the rules Xi → aiYi, Xi, Yi ∈ Ni, ai ∈ T ∗, 1 ≤ i ≤ n.
Therefore part (2), where we convert the grammar rules Xi →
aiYi into the automaton rules Xiai → Yi. The automaton M
always works with all its heads simultaneously and thus the
equivalent effect of these steps should be obvious.

In the last derivation step of the grammar, every nonterminal
is rewritten with a rule Xi → ai, Xi ∈ Ni, ai ∈ T ∗, 1 ≤ i ≤
n. We can simulate the same behavior in the automaton if we
end up in a final state for which there are no ongoing rules.
Therefore part (3), where we convert the grammar rules Xi →
ai into the automaton rules Xiai → f , where f is the sole final
state. All heads of the automaton must also simultaneously end
up in the final state or the automaton will get stuck; there are
no ongoing rules from f and all heads must make a move
during every step.

The automaton M can also start from an n-configuration
where the input is divided into such parts that they cannot
be generated from the nonterminals Xi of the rules S1 →
X1 . . . Xn, Xi ∈ Ni, 1 ≤ i ≤ n. However, such an attempt
will eventually get the automaton stuck because the automaton
simulates only derivation steps of the grammar.

Theorem 6. For every n-PGJFA using only right n-
jumps M = (Q,Σ, R, S2, F), there is an n-PRLG G =
(N1, . . . , Nn, T, S1, P), such that L(G) = L(M,n−r).

Proof. Let M = (Q,Σ, R, S2, F) be an n-PGJFA with right
n-jumps. Keep the same n and define the n-PRLG

G = (N1, . . . , Nn,Σ, S1, P),

where N1, . . . , Nn, and P are constructed in the following
way:

(1) For each state p ∈ Q, add the nonterminal pi to Ni for
all 1 ≤ i ≤ n.

(2) For each start state string p1 . . . pn ∈ S2, pi ∈ Q, 1 ≤
i ≤ n, add the start rule S1→ p11 . . . pnn

to P .
(3) For each rule py → q, p, q ∈ Q, y ∈ Σ∗, add the rule

pi → yqi to P for all 1 ≤ i ≤ n.
(4) For each state p ∈ F , add the rule pi → ε to P for all

1 ≤ i ≤ n.
The constructed n-PRLG G simulates the n-PGJFA with

right n-jumps M in such a way that its nonterminals generate
terminals in the same fashion as the heads of M read them.

The definition of n-PRLGs requires that N1, . . . , Nn are
mutually disjoint nonterminal alphabets. However, the states
of n-PGJFAs do not have such a restriction. Therefore, we
use a new index in each converted occurrence of a state, this
creates a separate item for every nonterminal position. The
index is represented by i and is used in all conversion steps.

Any sentence w ∈ L(M,n−r) can be divided into w =
u1 . . . un, where ui represents the part of the sentence which

can be accepted by the head of M with a start state pi from a
start n-configuration p1u1$. . . pnun$, where p1 . . . pn ∈ S2,
1 ≤ i ≤ n. In the grammar, we can simulate the start n-
configurations with the start rules S1 → p11 . . . pnn

, where
the nonterminals pii must be able to generate ui. Therefore
part (2), where we convert the start state strings into the rules.

During every step of the automaton all heads simultane-
ously make a move. Likewise, during every non-start step of
the grammar all non-terminals are simultaneously rewritten.
Therefore part (3), where we convert the automaton rules
py → q into the grammar rules pi → yqi. The equivalent
effect of these steps should be obvious.

The automaton can successfully end if all its heads are in
the final states. We can simulate this step in the grammar if we
rewrite every nonterminal with ε. Therefore part (4), where we
create new empty rules for all final states. These rules can be
used only once during the last derivation step of the grammar;
otherwise, the grammar will get stuck.

Theorem 7. rn-PGJFA ⊂ n-PRLG.

Proof. This theorem directly follows from Theorem 6.

Theorem 8. n-PRLG ⊂ rn-PGJFA.

Proof. This theorem directly follows from Theorem 5.

Corollary 9. rn-PGJFA = n-PRLG.

V. CHARACTERIZATION

Theorem 10. For all n ∈ N, rn-PGJFA ⊂ r(n+ 1)-PGJFA.

Proof. This theorem directly follows from n-PRLG ⊂ (n+1)-
PRLG (see [3]).

Theorem 11. For all n ∈ N, rn-PGJFA is closed under union,
finite substitution, homomorphism, reflection, and intersection
with a regular set.

Proof. This theorem directly follows from the same results for
n-PRLG (see [3]).

Theorem 12. For all n > 1, rn-PGJFA is not closed under
intersection or complement.

Proof. This theorem directly follows from the same results for
n-PRLG (see [3]).

Theorem 13. r1-PGJFA = rGJFA = REG.

Proof. This theorem directly follows from 1-PRLG = REG
(see [3]), and from rGJFA = REG (see [1]).

Theorem 14. r2-PGJFA ⊂ CF.

Proof. This theorem directly follows from 2-PRLG ⊂ CF (see
[3]).

Theorem 15. rn-PGJFA ⊂ CS and there exist non-context-
free languages in rn-PGJFA for all n > 2.

Proof. This theorem directly follows from the same results for
n-PRLG (see [3]).

VI. REMARKS AND CONCLUSION

The presented results show that the concept of parallel
jumping positively affects the model of jumping finite au-
tomata. The most significant result is that every additional
head increases the power of these automata, which creates an
infinite hierarchy of language families. Furthermore, due to the
very simple conversions and the similar concepts, n-parallel
jumping finite automata using only right n-jumps can be seen
as a direct counterpart to n-parallel right linear grammars.

ACKNOWLEDGMENT

This work was supported by the European Regional
Development Fund in the IT4Innovations Centre of Ex-
cellence project (CZ.1.05/1.1.00/02.0070), the TAČR grant
TE01020415, and the BUT grant FIT-S-14-2299.

REFERENCES

[1] A. Meduna and P. Zemek, “Jumping finite automata,” International
Journal of Foundations of Computer Science, vol. 23, no. 7, pp. 1555–
1578, 2012.

[2] O. H. Ibarra, “Simple matrix languages,” Information and control,
vol. 17, pp. 359–394, 1970.

[3] R. D. Rosebrugh and D. Wood, “Restricted parallelism and right linear
grammars,” Utilitas Mathematica, vol. 7, pp. 151–186, 1975.

[4] D. Wood, “n-linear simple matrix languages and n-parallel linear lan-
guages,” Rev. Roum. de Math. Pures et Appl., pp. 408–412, 1977.

[5] ——, “Properties of n-parallel finite state languages,” Utilitas Mathe-
matica, vol. 4, pp. 103–113, 1973.

[6] R. D. Rosebrugh and D. Wood, “A characterization theorem for n-
parallel right linear languages,” Journal of Computer and System Sci-
ences, vol. 7, pp. 579–582, 1973.

[7] ——, “Image theorem for simple matrix languages and n-parallel
languages,” Mathematical Systems Theory, vol. 8, no. 2, 1974.

[8] A. Meduna and K. Zbyněk, “Jumping grammars,” International Journal
of Foundations of Computer Science, vol. 26, no. 6, pp. 709–731, 2015.

[9] A. Meduna, Automata and Languages: Theory and Applications. Lon-
don: Springer, 2000.

[10] D. Wood, Theory of Computation: A Primer. Boston: Addison-Wesley,
1987.

	Introduction
	Preliminaries
	Definitions and Examples
	Conversions
	Characterization
	Remarks and conclusion
	References

