Pristine

Deliverable-2.6: RINA simulator

advanced functionality incorporating
use-case specific models

Deliverable Editor: Vladimir Vesely, Faculty of Information
Technology, Brno University of Technology (FIT-BUT)

Publication date: 7-December-2015

Deliverable Nature: Software/Report

Dissemination level PU (Public)

(Confidentiality):

Project acronym: PRISTINE

Project full title: PRogrammability In RINA for European Supremacy of
virTuallsed NEtworks

Website: www.ict-pristine.eu

Keywords: RINA Simulator, OMNeT++, simulation models

Synopsis: This document describes RINASIm, your discrete event

simulation framework of native RINA networks.

The research leading to these results has received funding from the European Community's Seventh Framework
Programme for research, technological development and demonstration under Grant Agreement No. 619305.

Deliverable-2.6: RINA simulator

Copyright © 2014-2016 PRISTINE consortium, (Waterford Institute of Technology, Fundacio Privada
i2CAT - Internet i Innovacio Digital a Catalunya, Telefonica Investigacion y Desarrollo SA, L.M.
Ericsson Ltd., Nextworks s.r.l., Thales Research and Technology UK Limited, Nexedi S.A., Berlin
Institute for Software Defined Networking GmbH, ATOS Spain S.A., Juniper Networks Ireland Limited,
Universitetet i Oslo, Vysoke ucenu technicke v Brne, Institut Mines-Telecom, Center for Research and
Telecommunication Experimentation for Networked Communities, iMinds VZW.)

List of Contributors

Deliverable Editor: Vladimir Vesely, Faculty of Information Technology, Brno University
of Technology (FIT-BUT)

fit-but: Vladimir Vesely, Tomas Hykel, Marcel Marek, Ondrej Rysavy, Jerabek Kamil,
Ondrej Lichtner

i2cat: Eduard Grasa

upc: Sergio Leon Gaixas

uio: Peyman Teymoori

tssg: Micheal Crotty

Disclaimer

This document contains material, which is the copyright of certain PRISTINE consortium
parties, and may not be reproduced or copied without permission.

The commercia use of any information contained in this document may require alicense
from the proprietor of that information.

Neither the PRISTINE consortium as awhole, nor a certain party of the PRISTINE
consortium warrant that the information contained in this document is capable of use, or that
use of the information is free from risk, and accept no liability for loss or damage suffered by
any person using this information.

Deliverable-2.6: RINA simulator

Executive Summary

Simulation is widely accepted validation and verification tool to test and prove new
technologies. Simulation runs can revea design flaws, performance drawbacks and other
weak points. Simulation results are able to enhance development process of researchers and
programmers. Hence, the implementation of the Recursive Internet Architecture Simulator
(RINASIm) isanatural step to support the design and development of the RINA SDK.

RINASIim is independent full-fledged simulation framework of native RINA networks for
OMNeT++ discrete event simulator. RINASIm allows its user to inspect RINA behavior in
different deployment topologies. Moreover, RINASIm offers flexible development of new
policies, which may directly impact and ater interprocess communication. Furthermore,
RINASImM has easily extensible statistic collection system, which provides accurate results
gathering and evaluation.

Previous Deliverable 2.4 outlined RINASIm basic functionality. Since that time, RINASIm
has significantly matured in terms of both width and depth of its functionality. This document
providesdetailed RINASIim user guide together with adescription of basic RINA principlesthat
influenced RINASIm design and development.

Deliverable-2.6: RINA simulator

Table of Contents

IO 1 [o) S 11
2. BIEF TREOTY ..ttt sttt na e st sae b nae s 14
2.1. Nature of applications and application ProtoCoIScceceeererreeriereresesesesennens 14

P O o (I I = 1 0 TR 15

2.3. Connection-oriented VS. CONNECLION-1ESSccoiiierininenercee e 16

2.4. Deltart SyNChrONIZALIONcc.eeueeiiieiesiesie et 17

2.5. Separation of mechaniSm and POlICYcceereriierinereseser s 17

2.6. Naming and addrESSINGcccoererereriereneeeeee et se e saesre e 18

3. Installation and CONFIQUIBLIONc.coeiiririenieieiee e 20
3L SUPPOIT ettt b e b e r e n e ae e reeanenns 20

3.2. OMNET INSLAIELION ...veeeeeeeeiece et reeeeeneesneenne e 20
3.2.1. WINOWS INSLAll@lioncccuveeeiieeeiieseese e 20

G222 I [11y Q| = I = 1 o o O 21

3.3. RINASIM INSLAlIELIONeeveieeeiieeiiciesie et eesreenseenne s 21
3.3 L. TNE IDE WY ..ottt sttt st s s 22

3.3.2. The command [iNE WaAYcccvererererieierierie e 23

3.3 3. MBKETIIE .. e 24

3.4. OMNET HaNADOOKcceeiieeiieiesiieiieeiesieesieseesieesteeeesseesseeessneesaeeneesseessesneesseessens 24

O I = T o PP PR URTRS 24

3.4.2. SImulator and IDEccoooieieiierece e 27

3.4.3. TIPS @NA TTICKS .ueiviiieierieeieeeie ettt e e 29

4. HIigN-1EVE TESIGN ...ttt nee 31
g T o L= 31
4.2, DAF DESION ..ottt sttt st s s be sttt e et b e bbb sbeene e e 32

72 2 N T N | o= (o S 32

4.2.2. |PC RESOUICE MaANAOEScveeieeeieeniieiesiee st sre e s nne e 33

4.3. DIF DESIGN ..ttt sttt sttt b e bbbttt e e e b seenne e 33

2 I N = o = o 34

4.3.2. DEIMITING ..veivitiiieeieeiieiee et sa b e ae e 36

4.3.3. Data Transfer with Error and Flow Controlcoceoeiiienininineneneneens 36

4.3.4. Relaying and MUItIPIEXING ...cccoverieriiireeeie e e 37

VARG ST D LU = o] =" o) o S SR 38

7 G J G T o Vo 1LV N 1 o o= (o S 39

4.3.7. RESOUICE AlOCALONecveeeeeiteesieeieseese e e siee e e e ste e sae e sneesreenaesnee e 45

4.3.8. RIB D8EIMON ..c.ueiiiiiiieeiee ettt sttt s be e sse et saes b e sseeensee s 46

4.3.9. Common Distributed Application Protocolccccoceveerierienenininenenenans 46

Deliverable-2.6: RINA simulator

4.4. POIICY FrameWOrKcoeoiiiiiiiiesese et 50
T I D T o] o1 o] o TP PP PRR 50
4.4.2. Using the policy framework ... 51
4.4.3. EXAMPIE USAGEeoueeuienieiiiesie sttt ettt st sttt e e sae e 52

4.5. RESUITS ANBIYSIS ...ttt bbbt e e e 53
4.5.1. COllECHNG SLALISHCS ...coveeueeeeieriesiesieseeee et s 53
4.5.2. TTACETIIES et 55

5. COMPONENES ...ttt s et e e s esb e e e s st e s b e et e s aeesbe e seeneesbeesesanesneeneennas 57

5.1, USED TEMPIALEoveeirieeieeeeieee ettt st sa e e sne e 57

ST N\ [0 L= ST 58

5.3. DAF MOUIES ...ttt sttt sttt e b nne s 59
5.3.1. APPlICATION PrOCESSceiiiiriiiiriesieriieeeee et 60
5.3.2. APPlICATION ENLITY .ovoiviieeiiieieeese s 61
5.3.3. DAFENIOIMENL ..ot 63
5.3.4. DIF AHOCELOTceeiiiiriiiiisiesiesiesiee ettt sttt 66
5.3.5. IPC RESOUICE MANAGEToiueeiieieriie et sne e 68
5.3.6. Common Distributed Application Protocolcccecevevinennnencnenennne 70

5.4. DIF MOGUIESouiiiiieieie ettt st et nee s 72
5.4.1. DEIIMITING .eoiviieeiiieieieiesese et 73
5.4.2. ENFOIHMENT ...t 75
5.4.3. Error and Flow Control Compound modulecccvevenenenenienereienene 77
5.4.4. EFCP INSLANCEeeiiiiiiiiieeitieie st ettt s sne e s nne e 80
ST T I I PSSRSO 82
5.4.6. DTP SEAE ..oveeieieeieeeeee ettt st be e s snenae s 84
BUAT. DTCP ettt bbbt e b neenas 85
5.4.8. DTCP SEAE ..c.veveeieieieeeeeeie ettt st snenne s 87
5.4.9. FIOW AITOCEIONcoiiiriiiiiniiiiesiereeie ettt e 88
5.4.10. Relaying and MUItiplexXing Taskcccccerererenenenenieeeeeseese e 91
5.4.11. RESOUICE AlIOCELONccceieiiiriisiisie sttt 94
5.4.12. RIB D@EMON ..ottt sne s 96
5.4.13. ROULING ..eeueeeertiriestestesiesieeee e seessestessessessessee e essessessestesaessessessesnsensensessessens 99

B. POIICIES .t bbb bbbt a et n et a e 101

6.1, USE TEMPIALEoeeeirierieeieeeeee ettt see s 101

6.2. FIOW AIIOCELOr POIICIESoviiieieieiesie e e 101
6.2.1. AlIOCEAIERELTY ..ottt s naeas 101
6.2.2. MUITHEVEIQOS ...t 102
6.2.3. NEWFIOWREQUESEeoiiiiierieeseree et e 103

6.3. EFCP POLICIES ...ttt e 103

Deliverable-2.6: RINA simulator

6.3.1. DTP: Initial SequenceNUMDES ..o 106
6.3.2. DTP: RTTESHMEION ...ccveetieieeeiesieeieseesieeeesseesseeeesseesseeseseesseesesseessesnsens 107
6.3.3. DTP: RCVITIMENTNACHVITY .oveiviieeriieieeeee e e 108
6.3.4. DTP: SenderlnaCtiVity TIMENcocoviiiieienereeeeee e 108
6.3.5. DTCP: ECN ...ooiiicie ettt e ettt eae e sneenesneenne s 109
6.3.6. DTCP: ECNSIOWDOWNocveiieieeieeeeeseeeie e sie e e sneenes 109
6.3.7. DTCP: LOStCONIOIPDUccuoiieieieieeiesieee et see e 110
6.3.8. DTCP: NOOVEITIAEPERKceeeveeeeesiecieceesie e eee et 110
6.3.9. DTCP: NORSESIOWDOWNoovieeiiiieeeriecieseese e eee e sae e 111
6.3.10. DTCP: RAEREUUCTIONcecveeieeeesieesieeiesieesieeeesseeseeeeesreesseeeesseesseeneens 111
6.3.11. DTCP: RCcVFIOWCONrOIOVEITUNocveeeeieeieceesieeee e 112
6.3.12. DTCP: RCVIACK ..eecieieeeie ettt ettt s sre e 113
6.3.13. DTCP: RCVICONIOIACKoiiieieeie ettt ee e 113
6.3.14. DTCP: RCVIFIOWCONLIOc.eeeieeieseeeieeeeees e 114
6.3.15. DTCP: ReceivingFlOWCONLrolccooevirinineneneeeeee e 114
6.3.16. DTCP: ReconCilleFIOWCONTIICEcceeveeiecierece e 115
6.3.17. DTCP: RetransmissioNTiMErEXPINYcccevveveneneneneneneeeeee e 116
6.3.18. DTCP: SENUEIACK ...oceeeeeeeeeeeceese ettt e e nse e 116
6.3.19. DTCP: SENUErACKLISE ...cveeeeeeeeecte ettt 117
6.3.20. DTCP: SENUINGACK ..veeieeeeieeeieeiesreesieeeesieesee e sreeseeseesseessesseesseensesseens 117
6.3.21. DTCP: SndFlOWCONLIOIOVEITUNcocveeieeieseeesie e e e seeseeeseeeeesneeneens 118
6.3.22. DTCP: TransmissSion CONLIOlccccccereevereenesieneeseeeeseeseeseesseesseeneas 119

6.4. Resource AllOCaLOr POIICIESccccereieiierieeeseesie et e e nneas 119
6.4.1. AdAreSSCOMPAIELOLooereerierieririeeietesee st see st see e e e see e e saesre s ens 119
6.4.2. PDU FOrwarding GeNEratorcceceeierenierenesieseseseeee e see e 120
6.4.3. QUEUEAITOC ..ottt ettt sneenne e 121
6.4.4. PDU FOrwarding GeNEralorcceceeeeriererenesiesesieseeee e see s 121
6.4.5. QUEUEIDGENeeiiiieiie ettt st st re s 122

6.5, RMT POIICIES ..oeeeiecieceeeste ettt e sttt ae s sae e sneenseeneesneenneennens 122
6.5.1. MAXQUEUEeiiiiiiieetie et iee sttt sttt sbe e st e sae e s beesseesreesreeans 123
TS |V o 1 o] S 123
6.5.3. PDUFOIWAITINGcoeeiiiiriiniisesiesieeee ettt s 124
S S ol 1= o U] = USRS 124

6.6. ROULING POLICIES ..ottt 124
L Y = | 125

7. POIICY-0rVEN FEAIUIESoiiiiiieiieeieeeeee ettt s s 126
7.1. CONQESLION AVOITANCEoviiiiriieiieieie ettt 126
7.1.1. Legacy Random Early DELECIONccocevivirinenenineeeee e 126

Deliverable-2.6: RINA simulator

7.1.2. TCP-like congestion avoidanCec.ceeeeeieneneneneseseseeee e 126

7.2, SCNEAUIING ..ttt e b e e 127
T7.2.1. DEAY-10SS ...ceeeiieeeee s 127
7.2.2. ENNANCEd DEl@Y-LOSScoceiiriiriiriiririeeerie et 128

7.3, ROULING ..ttt sttt b et a et e e et e sbe b nae s 129
7.3.1. Distance VECIOr (IEJACY) ...vvvreririririeieerie et 129
7.3.2. LINK-SEAE (I€JBCY) .ververreeueeierieriesie ettt e 129
7.3.3. TSIMPIE LiNK-SLALEcoeeiiieierierieseeeeee e e 129
7.3.4. TSIMPlE DiStaNCe-VECIONocirierierierieriireeeeie et 130
7.3.5. ROULING OMEIN ..ottt 131

T4, FOrWAITING ..ottt b ettt et ne e e e 132
TAL MINITADIE e 132
7.4.2. MUIIMINITADIE .o 133

7.5. PDU Forwarding Table GENEIratorcccceeererereeiienienesie s 134
7.5.1. HOPSSINGIELENIIY ..ottt e 134
7.5.2. HOPSSINGIEMENIITESooviieeieeieeieie et 134
7.5.3. LAENCYSINGIELENIIY ..ottt 135
7.5.4. LAenCySINGIEMENIIIESccovvererierieeeeie et 135

8. DEMONSLIatiON SCENAIOS ...c.verueeuieueeieriesie et st sieee et seesee st e sbesbe st et e s e saesbesaesbesaeeneenes 137
8.1. RUNNING & SCENAIO ...veveiiiiieieeieie ettt sttt a e s nesrenae s 137
811 From the IDE ...t 137
8.1.2. From the Command LiNecccvireriiieieree e e 138

8.2. USEU TEMPIELEcvieeieseeeeeeeeee e bbbt se e 138
8.3. DEMO NEIWOIK ...ttt sttt b e nee e 138
8.3. L. MOLIVALION ...ttt a e e s 138
8.3.2. NEtWOrK Graphccoiiiiirieeiieieeeeee e 139

SRS RS BT o 1 o1 [0] o ISP 140
8.3.4. OMNELPP.INT oot bbbt 151
8.3.5. CONTIGXIMI .ot 153

8.4. Demonstration: CONGESIIONcoiirerirerieierie ettt see s sre e 157
8.4 L. MOLIVALION ...ttt sttt b et e e nas 157
8.4.2. DESCIIPLION ...ttt sttt e sb e 158
8.4.3. MBJOI BVENTS ..ottt e b ettt b e e sae b nneas 159
8.4.4. OMNELPP.INT oottt e e 161
8.4.5. CONFIGXIMI .ottt 166

8.5. DemOoNStration: ROULINGccoceveiirerinieieie ettt 174
8.5. 1. MOLIVALION ...ttt sttt seenas 174
8.5.2. DESCIIPLION ...ttt sttt e b e 174

Deliverable-2.6: RINA simulator

8.5.3. CONFIQUIBLIONSc.verviriieiieieiesie sttt 175
8.5.4. OMNELPP.INT oo e 176
8.5.5. CONFIGXIMI <.t 180
8.5.6. QOS.XIMI ..ttt e ae e re et e eraesaeeneeneenrenn 181
8.5.7. CONNECLIONS.XIMI ...eveieiieciiecee e e e 191
S I O] 101 T RSP 192
RS = (= 1107 R 195

Deliverable-2.6: RINA simulator

List of Figures

1. Application Protocol and Application Entities relationshipccoevevenerenienienenenene 14
2. DIF, DAF, DAP and IPCP IHTUSIFELiONooveeiiirieiecsieeeeseesie s st 16
3. IPCP local identifierS OVEIVIEWccceeuerueeiiieiesie et see s 18
4. IMPOIT WIZAN ..ottt bbbttt bbb sae e 22
5. PrOJECE EXPIOTEN ...ttt bbbttt st b s 23
6. OMNET MOUUIE SLIUCIUIEeoviierieiiieieeeee ettt 25
7. Parent/Children MOUUIEScc.coiiiiieeee et 25
8. Example of a Simple MOAUIEc.ooiiiii e e 25
9. Example of a compound MOAUIE ..o 26
10. Example of @ Network MOGUIEcooiiiiinine e 26
11. FOUr rOULErS TOPOIOGYeeveeereirierierierieriieeerie st st be st e et be st b ne et e e e sne e 27
12. OMNET comPONENt arChITECIUNEcceeiiirieriirie et 27
13. BaSiC OMNET H+ PAITS ...eeiuiriiriieieieniesie ettt sse e e et b b saesnesaeeneas 28
14. Event 10gging WINAOWcoceiireriririienieniesie et sse e st sbe s e e e sneseesnes 28
15. Enable parallel build through IDE ... 29
16. RINASIm official source code highlightercccceiiriiininiiee e 30
17. Example of RINA network with three levels of DIFs and different nodes.............cc....... 31
18. Distributed Application Process COMPONENLScccerereerierieriereseeseseseeee e see e seesnes 32
19. 1PC ProCess COMPONENEScocuerieeriirrisieenteeie et et se s e b e saeesneenesneenneas 34
20. Initiating process Enrollment State Diagramccocevererereneneneneeeesee e 35
21. Responding process Enroliment State Diagramccceeeverereeierenese e 35
22. Message passing between RINA COMPONENEScceeiriiriererenesieeeeee e 36
23. EFCP instance divided into DTP and DTCP Partcccceceveeneneneneneseneeeeeesee e 37
24. FIOW allOCELION PIOCESScviriieisiesiesiesiesieeeete st s et sae b et nee s et se e b sbesbesae e e e ens 40
25. FIOW AllOCELOr OPEIEHIONccviiveeiriiriieieiesie ettt bbb sre b e e e sne e 42
26. Flow Allocator Instance operation of initialing IPCP ..o 43
27. Flow Allocator Instance operation of responding |PCP before the flow was allocated ... 44
28. Flow Allocator Instance operation after the flow was allocatedcccccevevvcevveeinrnenee. 45
29. Establishment phase on initiating PrOCESSccererieriererese e 49
30. Establishment phase on responding PrOCESScooererirerenerereeee e 49
31. Data transfer phase on initiating/reSponding ProCESScocererererererieeieeneeseeseeseeseeenes 50
32. Default POIICY SEIINGSoovereeriirieriieieriieeeee ettt se et sae bt e e et e sne e 51
33. Overridden POlICY SEIEINGSoceeereeieiee e s 53
34. RESUITS BNAIYSIS ...veviiiiiiiieiesie sttt sttt b e bbb bt be et e et b e e nne e 55
35. HOSt NOdES StruCtUre EXamMPIEScocviiiiiiririereee e 58
36. Router N0des StruCture EXamPIESccuoviririrereseeee e 59
37. DAF components fOr RINASIIMooiiiiiieieeesese e 59

Deliverable-2.6: RINA simulator

38. APPIICALION PrOCESSccveiuiriieiieiesiesie sttt ettt sttt be s e et s et sae b b snesne e s 60
39. APPHICALION ENLITY ...oviiiiisieitieierieeeeee ettt s sre s se b e sne e 61
LD Y o] 0]y 0 | SR 63
72 D 1 A | oo o S 66
42. |PC RESOUICE MEBNAGESeoiueeiereiiieentieiesieesteesresieesse e b sseesreessesseesseesnesanesaeessesnesneennesanas 68
R T O 7 10700 U = S 70
44. I1PCP s DIF components for RINASIMooiiiiieeee e 73
2L T o = 75
46. EFCP module with dynamically created Delimiting and EFCP instance modules 78
O O | 4 = (o =SOSR 80
48. Data Transfer ProtoCOl MOCUIEcccuvveeieeiiceese e 82
T D B I S = 0700 U] = S 84
50. Data Transfer Control Protocol MOCUIEcccoeierieieniirese e 85
51. DTCP Sta€ MOUUIEoevueeiieiieieesieeie e seeeee e e e see e ste e s e e e sseesreesesseesseensesneesneensenns 87
oY o o 1LV N 1 o o= (o S 88
G T {1V SRS S 91
54, RESOUICE ATTOCELONocueeiieeieiieseeiteeie sttt et e st te e e s eseesreestesneesneeseeneenneenees 94
55, RIB DBEIMONooiiiiiiiitie ettt sttt ettt et e s e s be e e s be e e sbe e e sabe e e saneeesnreeennneeens 96
56. ROULING ...veveterteeieeieeeeie sttt sttt ettt et s be s st ae et e b et e s b e besbeebeebesaeene e e e nteseesbeneeenas 99
57. DEMO NEIWOTK GIraph ..ottt bbbt n e e sne e 139
58. Visualization RA’s available QOS-CUDESccceevieeieiiereeecee e 141
59. Visualization of DireCtory MapPiNgSccceererererereresieeseereessessessessessesesseessessessessens 142
60. Content of BottomLayerA’s NFlowTables of Border Router A and InteriorRouter 145

61. Data transfer phase iHTUSITatioN ... 150
62. Content of TopLayer ipcProcessl NFlowTables for HostA and HOsSEBccueueee... 151
63. NEWOIK tOPOIOGY ..uveverieieerieriieieie ettt b e e et e b e enis 158
64. The corresponding RINA SEACKcocoiiiiiiiine e 159
65. The coNgeStioN WINAOW SIZEccooiiiiireniieeeie ettt st s 160
66. The RMT qUEUE TENGEN ... 160
67. NEWOIK tOPOIOGY ..uvevereeruerieeiieieiesie sttt e et e b e enis 175

10

Deliverable-2.6: RINA simulator

1. Introduction

This deliverable provides the specification, design and implementation details of RINASIm
- Simulator of RINA implemented in OMNeT++ tool. The aim of this report is to provide
comprehensive information on RINASIm helping researchers and practitioners to understand
the underlying concepts and to utilize the simulator in their experiments.

RINA presents a new approach to network architecture and as such the extra information and
supporting tools should be provided to understand fully various concepts included. Chapter 2
denotes a fundamental theory behind RINA, which served as the cornerstone for RINASIm
development. The presentation starts with a discussion on the character of applications in
RINA environment. RINA applicationsrun as processesthat utilize network through application
entities (AE). Each AE employs communication protocol to govern data transfer and controls
necessary internetworking tasks, which stands for the interprocess communication (IPC).
Processes that can establish IPC are organized in a Distributed IPC Facility (DIF), which
represents alayer in RINA. Next, the following core principles of RINA are discussed:

» differences between the connection-oriented or connectionless style of communication and
their impact on data transport in RINA,

 therole of Delta-T protocol on the design of communication patternsin RINA, mainly the
importance of Delta-T for design protocols with soft-state,

* identification of mechanisms and policies, where former stands for fixed functionality of
IPCS, while latter specifies additional features, and

* the naming and addressing model introduced with RINA.

RINASIim isasimulator developed in OMNEeT tools, which is one of the most used networking
simulators today. To efficiently use RINASIm one needs to know the basics of OMNeT at
least. While RINASIm consists of predefined simulation modules for many of RINA concepts
and policies, to fully exploit the simulation environment C programming skills are necessary
too. Chapter 3 contains information on the installation of OMNEeT, acquiring RINASIim from
public GitHub repository and installing itin OMNeT++. Also, thereader will get information on
running the smulation of RINA models provided together with the RINASIm. The information
presented in Chapter 3 should be sufficient for RINASIm novice to start with the simulator as
atool for learning RINA or doing research in networking, respectively.

Chapter 4 provides a high-level concept overview of RINA DIF and DAF parts and their
interaction. This overview serves to identify the key concepts that are delivered in the form
of simulation components and models in RINASIm. The presentation follows a top-down
approach, discussing RINA nodes first, then moving focus to DAF and DIF design. In DIF

11

Deliverable-2.6: RINA simulator

design, all important mechanisms are described. They consist of enrollment that takes places
when IPCP joins the existing DIF. Then, data transfer that covers data delimiting, error and
flow control, their relaying and multiplexing is presented. The functions of flow allocator and
resource allocator are specified. These two components are important for setting necessary
resourcesto establish aflow between two endpoints. I nformation on respective end points of the
flow istaken from RIB served by RIB daemon. Finally, an overview of the important properties
of Common Distributed Application Protocol (CDAP) is given. The presented information
serves as a foundation for the design of RINASim components presented in next.

Chapter 5 thoroughly describes all the implementation specifics of available RINASIm
simulation modules. The design of RINASim architecture was driven by the requirement for the
tight correspondence between the structure of the RINA specification and proposed simulation
model. While the tight correspondence may not lead to an efficient implementation of RINA
stack, for simulation model this does not represent an issue. Contrary, the correspondence
between the specification structure and the simulation model makes the understading easier
for the users. The specification was transformed to simulation model following the well-
defined design template, which provides necessary information to anyone who wish to extend
the RINASIm with new mechanisms or policies. Thus, Chapter 5 is the ultimate source of
information for RINASim contributors.

RINA introduces policies as a way to specified additional features or optional functionality.
Chapter 6 briefly describes currently implemented policies in RINASIm that are related
to Flow Allocation, EFCP, Resource Allocation, Relay and Multiplexing functionality and
Routing. Provided information documents each policy by describing its purpose, specifying and
explaining parameters and localizing the policy implementation in the source code.

One of the purposes of RINASimisto support research on various RINA policies. Theroleof the
simulator ismainly in the evaluation phase. Chapter 7 providesinformation about policy-driven
advanced behavior. In this chapter, models implementing congestion avoidance and control,
scheduling, routing and forwarding policies are documented.

Theother intention of RINASimisto provide atool for carrying out experiments using simulator
scenarios. Chapter 8 contains Demo scenario together with three experimental setups. Each
setup is defined in terms of network topology definition, description of network functions and
behavior accompanied by simulation configuration files. Possible users of RINASIm may find
the information presented in this chapter interesting. The demo scenario is a comprehensive
guideline on the usage of RINASIim simulator.

RINASIm evolved from a simple simulator to a complex simulation environment that
implements many of RINA mechanisms and policies. It isavailable from the GitHub repository
and run in the current OMNeT++ environment. It can be used for research of RINA Policies

12

Deliverable-2.6: RINA simulator

as well as for evaluation of various network scenarios. This deliverable contains information
on design and implementation of RINASIm. Next it provides the guideline for installation and
deploying RINASIm. Finally, the present deliverable demonstrates the utilization of RINASIm
on three network scenarios.

13

Deliverable-2.6: RINA simulator

2. Brief Theory

The purpose of this chapter is to provide future RINASIm user with a short introduction to
RINA concepts. These concepts and ideas formulated the design and development of the whole
RINASIim. Others may consider this chapter as a useful source of condensed information about
RINA.

2.1. Nature of applications and application protocols

Is application a part of IPC environment or not? The set of Internet applications was rather
simplistic before WWW —one application with asingleinstance using only one protocol. Hence,
there is nearly no distinction between an application and its networking part. However, the web
completely changed this situation — one application protocol may be used by more than one
application and also one application may have many application protocols.

Following terms are recognized in the frame of RINA, and their relationship is depicted in
below:

» Application Process (AP) — Program instantiation to accomplish some purposs;

» Application Entity (AE) — AE isthe part of AP, which represents application protocol and
application aspects concerned with communication.

Application Process
(AP)

Qutside network

Inside network

T
Appiication entities

Figure 1. Application Protocol and Application Entitiesrelationship

There may be multiple instances of the Application Process in the same system. AP may have
multiple AEs, each one may process different application protocol. There also may be more
than one instance of each AE type within asingle AP.

All application protocols are stateless; the state is and should be maintained in the application.
Thus, al application protocols modify shared state external to the protocol itself on various
objects (e.g. data, file, HW peripherals). Because of that, there is only one application protocol

14

Deliverable-2.6: RINA simulator

that containstrivial operations (e.g., read/write, start/stop). Datatransfer protocols modify state
internal to the protocol, the only external effect isthe delivery of SDUs.

2.2. Core Terms

The data transport and internetworking tasks together (generally known as networking)
constitute inter-process communication (1PC). IPC between two APs on the same operating
system needs to locate processes, evaluate permission, pass data, schedule tasks and manage
memory. |PC between two APs on different systems works similarly plus adding functionality
to overcome the lack of shared memory.

In traditional networking stack, the layer provides a service to the layer immediately above
it. As RINA name suggests, recursion and repeating of patterns is the main feature of the
whole architecture. Layer recursion became more popular even in TCP/IP with technologies
like Virtual Private Networks (VPNSs) or overlay networks (e.g., OTV). Recursion is a natural
thing whenever we need to affect the scope of communicating parties. However, so far it was
just recursion of repeating functionsin existing layers. RINA is based on following core ideas:

— “Networking is interprocess communication...and IPC only!” [rina-intro]

— “Application Processes communicate via a service provided by a distributed
application that provides IPC. The application processes that make up this
Distributed |PC Facility provide a protocol that implements an IPC mechanism,
and a protocol for managing distributed IPC (routing, security and other
management tasks).” [networking-is-ipc]

In 1SO/OSI or TCP/IP, there is a set of layers each with completely different functions. RINA
on the other hand yieldsidea of the single generic layer with fixed mechanisms but configurable
policies. This layer isin RINA called Distributed | PC Facility (DIF) — a set of cooperating
APsproviding IPC. Thereisnot afixed number of DIFsin RINA; we can stack them according
to application or network needs. From the DIF point of view actual stack depth is irrelevant,
DIF must know only (N+1)-layer above and (N-1)-layer below. DIF stacking partitions network
into smaller, thus, more manageable parts.

The concept of RINA layer could be further generalized to Distributed Application Facility
(DAF) — a set of cooperating APs in one or more computing systems, which exchange
information using IPC and maintain shared state. A DIF is a DAF that does only IPC.
Distributed Application Process (DAP) is a member of a DAF. IPC Process (IPCP) is
special AP within DIF delivering inter-process communication. IPCP is an instantiation of DIF
membership; computing system can perform IPC with other DIF members viaits |PC process

15

Deliverable-2.6: RINA simulator

withinthisDIF. An IPCPis specialized DAP. The relationship between all newly defined terms
is depicted in figure below:

System 1 System 3
/ 1 s Bl ooz
S g0 DAFY ge| ' |Oge
) Ag System 2 Ag || "b:’l.
\ ==
|
L_.I: '/ IHCP A1 Djl . IPCP A2 IACP A% Dl ;
S A %o o %@
& 3 O O
\
K :"‘.rEpE_F "“;CFBE‘: Irmc;cz____{;p:;,g__:
S SRIERESIRESE
2 (1|98 8] @8 @
=t s o I S,] o e
| | L J

DiFg DIFC
Figure 2. DIF, DAF, DAP and IPCP illustration

DIF limits and encloses cooperating processes in the one scope. However, its functionality is
moregeneral and versatile apart fromrigid TCP/IPlayerswith dedicated functionality (i.e., data-
link layer for adjacent node communication, atransport layer for reliable datatransfer between
applications). DIF provides IPC to either another DIF or to DAF. Therefore, DIF uses asingle
application protocol with generic primitive operations to support inter-DIF communication.

2.3. Connection-oriented vs. connection-less

The clash between connection-oriented and connectionless approaches (that also corrupted
ISO/OSI tendencies) is from RINA perspective quite easy to settle. Connection-oriented and
connectionless communication are both just functions of the layer that should not be visible
to applications. Both approaches are equal, and it depends on application requirements which
one to use. On the one hand, connectionless is characterized by the maximal dissemination of
the state information and dynamic resource allocation. On the other hand, connection-oriented
limits the dissemination and tendstoward static resource alocation. Thefirst oneisgood for low
volume stochastic traffic. The second oneisuseful for scenarioswith deterministic traffic flows.

If the applications request the alocation of communication resources, then layer determines
what mechanisms and policies to use. Allocation is accompanied with access rights and

16

Deliverable-2.6: RINA simulator

description of QoS demands (e.g., what minimum bandwidth or delay is needed for correct
operation of application).

2.4. Delta-t synchronization

All properly designed data transfer protocols are soft-state. There is no need for explicit state
synchronization (hard-state) and tools like SY Ns and FINs are unnecessary.

Initial synchronization of communicating parties is done with the help of Delta-t protocol
(see [delta-t-spec] and [delta-t-features]). Delta-t was developed by Richard Watson, who
proposed time-based synchronization technique. He proved that conditions for distributed
synchronization were met if the following three timers are realized: a) Maximum Packet
Lifetime(MPL); b) Maximum timeto attempt r etransmission a.k.a. maximum period during
sender is holding PDU for retransmission while waiting for a positive acknowledgment (a.k.a.
R-timer); ¢) Maximum time befor e Acknowledgement (a.k.a. A-timer).

Delta-t assumes that all connections exist al the time. Synchronization state is maintained
only during the activity, but after 2-3 MPL periods without any traffic it may be discarded
which effectively resets the connection. Because of that, there are no hard-state (with explicit
synchronization) protocols only soft-state ones. Delta-t postulates that port allocation and
synchronization are distinct.

2.5. Separation of mechanism and policy

We understand term mechanism as the fixed part and policy as the flexible part of 1PC. Just to
remind the reader that mechanism is fixed, the policy is flexible part of any IPC.

If we clearly separate them, we discover that there are two types of mechanisms:

* tightly-bound that must be associated with every PDU, which handle fundamental aspects
of datatransfers;

* loosely-bound that may be associated with some data transfer PDUs, which provide
additional features (namely reliability and flow control).

Both groups are coupled through state-vector maintained separately per flow; every active flow
has its state-vector holding state information. For instance, the behavior of retransmission and
flow control can be heavily influenced by chosen policies and they can be used independently
on each other.

This implies that only single generic data transfer protocol based on Delta-t is needed, which
may be governed by different transfer control policies. Thisdatatransfer protocol modifies state
internal to its PM, where application protocol (carried inside) modifies state external to PM.

17

Deliverable-2.6: RINA simulator

2.6. Naming and addressing

Application Process communicates in order to share state. We mentioned that AP consists
of AEs. We need to differentiate between different APs and also different AEs within the
same AP. Thus, RINA is using Application Process Name (APN) as globally unambiguous,
location-independent, system-dependent name. Application Process|nstancel dentifier (API-
id) differentiates between multiple instances of the same AP in the system. Application Entity
Instance Identifier (AEI-id), which is unambiguous for a single AP, helps us to identify
different AE instances of same Application Entity Name (AEN) within AP. Application
Naming Information (ANI) references a complete set of identifiers to name particular
application; it consists of four-tuple APN, API-id, AEN, and AEI-id. The only required part of
ANI isAPN; othersareoptional. Distributed A pplication Name (DAN) isglobally unambiguous
name for a set of system-independent APs.

IPCP A.1 N\
Fort allocation ‘E
s Structured ?-;-E
/ IFCP address | &
____________ v
S IPCP B.2 \
Forts with
portids | Connection-id :;_:“‘
. o
EFCPIs with =
CEP-ids
\ —_—
=
e
=
T
State synchronization /

Figure 3. IPCP local identifiers overview

IPC Processhas APN to identify it among other DIF members. An RINA addr essisasynonym
for IPCP's APN with a scope limited to the layer and structured to facilitate forwarding.
APN is useful for management purposes but not for forwarding. Address structure may be
topologically dependent (indicating the nearness of IPCPs). APN and address are simply two
different meansto locate an object in different context. There aretwo local identifiersimportant
for IPCP functionality — port-id and connection-endpoint-id. Port-id binds this (N)-1PCP and
(N+1)-1PCP/AP; both of them use the same port-id when passing messages. Port-id is returned

18

Deliverable-2.6: RINA simulator

as a handle to the communication allocator and is unambiguous within a computing system.
Connection-endpoint-id (CEP-id) identifies a shared state of one communication endpoint.
Sincethere may be morethan oneflow between the same|PCP pair, it isnecessary to distinguish
them. For this purpose, Connection-id is formed by combining source and destination CEP-
ids with QoS requirements descriptor. CEP-id is unambiguous within IPCP and Connection-
id is unambiguous between a given pair of IPCPs. Figure below depicts all relevant identifiers
between two IPCPs.

Watson's delta-t implies port-id and CEP-id in order to help separate port allocation and
synchronization. RINA’s connection is a shared state between N-PMs — ends identified by
CEP-ids. RINA’s flow is when connection ends are bound to ports identified by port-ids. The
lifetimes of flow and its connection(s) are independent of each other.

The relationship between node and PoA is relative — node address is (N)-address, and its PoA
is (N-1)-address. Routes are sequences of (N)-addresses, where (N)-layer routes based on this
addresses (not according to (N-1)-addresses). Hence, the layer itself should assign addresses
because it understands address structure.

19

Deliverable-2.6: RINA simulator

3. Installation and configuration

The section explains how to install, configure and deploy the RINASIm environment.

RINASIm installation is a straightforward process with two phases. 1) obtain the project;
2) compile the project, which creates one static library (| i bri nasi ncore containing
simulation core) and one dynamic library (1 i bri nasi m also containing various policies
linked together with core). Nevertheless, thistutorial will diveinto detailsregarding installation
and setup process.

3.1. Support
FIT-BUT provides support for the current devel oper master branch version. Users can:

1. contact developers via mail (comment headers of source code should contain the author’s
email);

2. try to post problems as a new tickets via [ops-rinasimtickets] webpage;

3. join shared developers Skype group chat and send
him/her message (Just past the following text into
Skype skype: ?chat &l ob=ucdWrg4wJEl LgDahhn®t TuUxGBYr 3F2UJTH-
n6l E8qVZf QIKdVUREJ4YyTh91l KEZ3J0oOgS9bi FO03e) ;

4. use official RINASIm mailing list and join ri nasim@fit.vutbr.cz®;

3.2. OMNEeT Installation

RINASIimisdeveloped in OMNEeT 4.6, but its source codes are fully backward compatible with
older (i.e., 4.5) and aso newer (i.e., 5.0) OMNEeT versionsthat support C++11 language standard
and GCC 4.9.2 compiler. All source codes (including master and other thematic branches) are
publicly available on the project’s GitHub repository [github-kvetak]. Apart from this official
channel, RINASIim stable release snapshots are periodically published on Open Source Project
repository [ops-rinasim.

3.2.1. Windows Installation

1. Download source codesfrom the official web pages[omnetpp-dwnld]. Bewarethat inacase
of 64-bit platform, thesimulator, and itslibrariesare still compiled for a32-bitsarchitecture.

1 mailto:rinasim@fit.vutbr.cz

20

mailto:rinasim@fit.vutbr.cz
mailto:rinasim@fit.vutbr.cz

Deliverable-2.6: RINA simulator

2. Unpack the source code archive. Preferably to afolder residing on the hard disk root (like
C:\omnetpp-45).

3. Executethe m ngwenv. cnd program.

4. In an open MinGW prompt, type ./ confi gur e . Check whether you have all the
prerequisites.

5. Execute make , then wait until the whole project successfully builds itself.

6. Run OMNeT++ IDE from MinGW prompt by typing ommet pp, or use shortcut in
<install-dir>\ide\omnetpp.exe

7. 1f you plan to run outside IDE simulations, then you have to add <install-dir>\bin\ to the
PATH.

3.2.2. Linux installation

1. Among prerequisities are the following packages: bui | d-essential gcc g+
+ bison flex perl tcl-dev tk-dev |ibxm 2-dev zliblg-dev
default-jre doxygen graphviz |ibwebkitgtk-1.0-0 opennpi-bin
| i bopennpi -dev | i bpcap-dev

2. Download source codes from the official webpages [omnetpp-dwnid].
3. Unpack the source code archivewith t ar xvfz ommet pp-4. 6-src.tgz.
4. Type . setenv toadd thedirectory to PATH.

5. Execute . / confi gure && make ,thenwait until the whole project successfully builds
itself.

6. Optionally create shortcuts by running nake install-nmenu-item and nake
i nstal |l -desktop-icon

7. Runthe OMNEeT IDE by typing ormet pp or using shortcut.

3.3. RINASIm Installation

The reader is advised to clone one of the following repositories containing RINASIm:
» Latest official stable release on OpenSourceProjects repository:

git cl one htt ps:// opensour ceprojects.eu/git/p/pristinel
rinasinmulator/rinasimrinasim

21

https://opensourceprojects.eu/git/p/pristine/rinasimulator/rinasim
https://opensourceprojects.eu/git/p/pristine/rinasimulator/rinasim

Deliverable-2.6: RINA simulator

» Current developers master branch, which should always contain runnable code:

git clone https://github.conf kvetak/ RINA. git rinasim

Once you have any version of RINASIm source codes then you can start with RINASIm
installation:

3.3.1. The IDE way
1) Open the OMNeT IDE and start project import, menu item File _ Import....
2) Choose General and option Existing Projects into workspace.

3) Depending on the form of your source codes, choose either Select root directory or Select
archivefile.

Import Projects
Select a directory to search for existing Eclipse projects, /4

(@ Select rat directory | 20UsersWladiminD ocurnentsh GitHUBWRIMA, v| | Browse... ‘

() Select archive file: Browse,..

Projects:

rina (CAUsersiWladimirt\Documents\GitHubYRIMNA) Select &1

Deselect All

Refresh

Options

[[] Search for nested projects

[Copy projects into workspace
Working sets

[Cadd project to warking sets

Wiorking sets: Select..

Einish

Figure4. Import Wizard

22

https://github.com/kvetak/RINA.git

Deliverable-2.6: RINA simulator

4) Conclude import via the Finish button. Now RINASIm should be available in the Project
Explorer under folder ri na

[Praject Explarer &3 = O

1.7 aloha

LT cgn

L] dyna

LT ernbedding
L] ermbedding?
LT fifo

LT google-earth
LT histograms
LT hypercube
1.7 inet

1.7 nedderno
T queueinglib
LT queueinglibext
LT queuenet

s [;_% tina [FIMNA master]

| FOLITING
1.7 sockets

1.7 tictoc
17 wizards

Figure5. Project Explorer
5) Buildthe ri na project by Project _ Build project.
3.3.2. The command line way
1) Prepare the console environment:

» on Windows: Executethe m ngwenv. cnd batch file inside the OMNeT ++ folder.

e On UN*X platforms. Open a console, navigate to the OMNeT++ folder and run . ./
setenv.

2) Enter the root directory of RINASIm.

23

Deliverable-2.6: RINA simulator

3) Build RINASIm by invoking make .

3.3.3. Makefile

RINASIim source code is split between policies (folder with the same name) and simulator
core (folder src). We have removed a circular dependency between these folders. This
allowed RINASIm source codes to compile based on two automatically created Makefiles
(in policies and src) and one master Makefil e (in the root). Thanks to that,
developers should not experience random rebuilds of the whole project now. Currently,
compiling src folder creates static library | i bri nasi ncore. a, which contains only
RINASIm core without policies. Subsequently, pol i ci es folder is compiled into dynamic
library I'i bri nasi m so/ dl | which contains both RINASIm core and policies and alows
to run smulations.

3.4. OMNeT Handbook

OMNET is a discrete event ssimulator that is freely available for academic purposes. A page
dedicated to the simulator and its community is [omnetpp-main]. It is a general simulator that
iseasily extensible because of its modular nature. Additional frameworks include:

INET and ANSAINET - wired computer networks [omnetpp-inet] and [omnetpp-ansal

INETMANET and MIXIM - wireless and mobile computer networks [omnetpp-mixim]

OverSim - peer-to-peer computer networks [omnetpp-oversim|

Veins - traffic and mass transportation networks [omnetpp-veing|

Castalia - wireless sensor networks [omnetpp-castalial

A comprehensive OMNeT manual covering simulation core is available at [omnetpp-manual]
or for peoplefamiliar with simulationismore suitabl eits quick-reference variant [omnetpp-ide].

3.4.1. Basics

OMNEeT is using a hierarchical structure of simulation modules. Top level system modules
consist of submodules or so-called compound modules that could be either further divided
according to a child-parent scheme, or that are undividable and thus named simple modules.

24

Deliverable-2.6: RINA simulator

system module .
simple modules

compound moduy /
P /

Figure 6. OMNeT module structure

OMNET is the object-oriented simulator that leverages two languages: 1) NED for network
topology description and modules interconnections; 2) C++ for simulation modules behavior.
M odules communi cate with each other by sending messages (either in theform of PDUsor timer
notifications). Messages could be received either from neighbor modules or the same module
(self-messages). A module may contain input (for receiving) and output (for sending) gates.
Connections are created between gates. The connection can exist between sibling modules or
modules with the parent-child relationship.

parent module parent module

s1 [;]—['Ij 52]—LJIZI s1 s2 q]—[]

Figure 7. Parent/children modules

1

3.4.1.1. Simple modules

The NED language describes module’s structure (file with *.ned extension) and C++
implements its functionality (files with *.cc and *.h extensions).

simple TestModul
{
parameters:
@display (“i=block/queue”) ;
gates:
input in;
output out;

Figure 8. Example of a simple module

Keyword simple defines module’s name TestModule where expected implementation should
bein TestModule.cc and TestM odule.h. The modul e contains two subsections - parameters and
gates - where both are optional. In parameters section, different properties and variables (int,
string, double, xml, etc.) are set. Parameters could be set on fixed value here, or dynamically in
omnetpp.ini file that accompanies every simulation. Section gates consist of gates definitions
(in the demo there are two gates, one input gate called in, and one output gate called out).

25

Deliverable-2.6: RINA simulator

3.4.1.2. Compound modules

Compound modul es aggregate multiple modules into alarger comprehensive unit.

module Router

{

parameter:

@display (“i=block/router”);
gates:

inout SeriallInterface[];

inout EthInterfacel[]:
submodules:

tcp: TCP;

ip: IP;

layerl: physicallayer;
connections:

tcp.ipIn <-- ip.tcpoOut;

tcp.ipOut --> ip.tcpln;

layerl.ipIn <-- ip.l1l1In;

layerl.ipOut --> ip.110ut;

Figure 9. Example of a compound module

The name of a compound module follows after the keyword "module” (in the example it is
Router). Section parameters and gates have the same semantics as in the case of any smple
module. Section submodul es define references together with the name of imported submodules.
Section connections define how input and output gates are bound together (for instance the IP
layer gate named tcpOut is connected with TCP' s ipln). The output gate is marked as #-, the

input as-_ and bidirectional connectionsas _ |

3.4.1.3. Network modules

The highest level of abstraction is provided by network modules that describe the whole
topology of a different compound and simple modules. Once again it is outlined in the NED

language but with the different starting keyword "network".

network SimpleCircle
{
submodules:
routerl: Router;
router2: Router;
router3: Router;
routerd: Router;
connections:
routerl.interface++ <--> EthLink <--> router2.interface++;
router2.interface++ <--> EthLink <--> routerd.interface++;
router3.interface++ <--> EthLink <--> routerl.interface++;
routerd.interface++ <--> EthLink <--> router3.interface++;
}
Figure 10. Example of a network module

26

Deliverable-2.6: RINA simulator

The previous snippet is an example of a simulation network with four routers interconnected
in aring topology.

routerl router3

Figure 11. Four routerstopology

3.4.2. Simulator and IDE

OMNeEeT uses the following component architecture:

CMDENV
Executing SIM ENVIR i
Model main() 1= TKOE,W
1 e
Model
Component
Library

Figure 12. OMNeT component ar chitecture

¢ Sim - Discrete event simulator core;

» Envir - Libraries shared by any user code consisting of event scheduler and dispatcher.
Catches and handles exceptions;

e Cmdenv/Tkenv - Libraries for graphical or command line user interface. Allow interactive
execution of simulations with step-by-step debugging and logging;

* Model Component Library - User implemented simulation modules;

» Executing Model - Compiled model of agiven simulation scenario.

The OMNeT IDE is using Eclipse since version 4. A basic IDE introduction is available at
[omnetpp-demo]. The most relevant keyboard shortcuts consist of:

o Ctrl + B = build (compile) simulation modules inside project;

e Ctrl + F11 = run target ssmulation (either NED file or omnetpp.ini);

27

Deliverable-2.6: RINA simulator

e Ctrl + Tab = switching between NED description and associated C++ source codes,
» Alt + Left/Right Arrow = switching between tabs;
o Ctrl + Space = Intelligent helper.

The following picture describes basic OMNeT++ IDE parts:

Changer of different
Toolbar Text editar / NED Canvas INE wiews
|II ////
= e
Fie Ee louree m lepeh Premet Ben Widew m

Fooe i d cflemaras.
T T) /:-...-1—«».-.- B hegind 5 Pt 5
G 5
B porkge et onss ppbcmeenspeg &
[y Sesneter
-

(== T | .

@ Typer

L. &/ F O s
e - OpE.”?Bd ﬁ.‘IE.S' tabs

U s st

S it L s)

Rl et Lt G)

= o PirtametL s Gt eraemgies ano sl o
[R mw

ARy Tt

Source code
flie navigator ~

e Module

o || Dagn o '
- O B, = - - —— drowing
- | Moo, 1 o 8.
or— - — el palette
e

Module et tewstrtr vsestinn
il i v
) I
properties and = g v N
© el
B e~ e

source code @ ansurcotgose DesteCopae

[et e Bty e -

outfine

Console cutput / Compile logger

Figure 13. Basic OMNeT ++ parts

Tcl/Tk environment starts after a simulation is successfully compiled and executed. The first
window is for simulation visualization, and the second windows are for event logging:

Global info Timeline

Executron toolbar

Z”_léﬁlr;nT"Je' W‘/ —

Sfmul'atfon speed slider e .\th 7 L-m]

[HeaPTes) apTest fde1) (01045200,
= 21
T 4
[t *THt7 tles " Hes Hea Jotor Wm A W o Mime|
B[apTest IARPTO!IJ]H-;I tbroadoast, tkipping ARF. . [
i Evert #115. T=1.0004344 [1.00:) Module #73 aipT est.nl ppei0]. queue’
j B B scheduedevents [cM Event #116. T-1.0004344 (I.Ulﬂa]. Moduls #30 apT estnet pocil] pop”
praw ALK lor
chrk o Staitrg Uaramission of (PEFFiamalSYHeACK,
= Event #117 T+1.0004351 [1.00s) Modkle 930 ‘T est net ppol0] peg’
s 1P nodes Transresszion frshed.
1 ~Event 112 T-1.0004361 [1.00s) Module 435 “amT estrouter ool por’
heatl Q *Evend B119. To1 000436 (100s) Modbie 330 aip el reuer retmerkLoyetip
i e corfiguator ~Event 4120, T-1 um:-s\ (1,00} Modte #30 apT estcater retwicLapatp
hosi2 Houlrn dategiam ‘S\“N-N:ld wath deste100U0.1: cutput intenface is ethl, nesthop
T - addrest Cunapecy =
. o ol | =
T

4 f
|

interactive visualization Event console

Figure 14. Event logging window

28

Deliverable-2.6: RINA simulator

3.4.3. Tips and Tricks

This subsection contains few tricks that may come handy for any developer using RINASIm.

3.4.3.1. Parallel build

Parallel build significantly increasesthetime of project compilation. OMNeT supportsaparallel
building of source codes since version 4.6 for any environment (including Windows platform).
It is advised to check whether parallel build is enabled using _Project -> Properties windows
and section _C/C Build_ tab Behaviour (see figure below)

| Properties for rina = B
type filter text CfC++ Build =T o o
> Resource
Builders
4| C/C++ Build Configuration: |gec-debug [Active | ¥ | Manage Configurations..,

Build Wariables
Enwironment

Logging E] Builder Settings | @ Behaviour | & Refresh Palicy
Settings
Tool Chain Editar Build settings
. CAC++ General Stop on first build error I [[1Enable parallel build
Git
s OMNeT++ Use parallel jobs: | 8 =
Project References Use unlimited jobs

Run/Debug Settings Wiarkbench Build Behawvior

Warkbench build type: Make build target:
[]Build on resource save (Suto build) 3l “ariables...

Muote: See Workbench automatic build preference

Build {Incrermental build) all Wariables..,
Clean clean Wariables..,
Restore Defaults Lpply
7‘\
®

Figure 15. Enable parallel build through IDE
3.4.3.2. Visual aid

We created RINASIm own code highlighter to get visual help during source navigation. It can
be downloaded from this link [omnetpp-highlight]. Integration into IDE is straight-forward
process. Just copy content of the file into \samples\.metadata\.plugins\org.eclipse.core.runtime
\.settings\ inside your OMNeT++ installation directory. Illustration of highlighting is in the
figure below.

29

Deliverable-2.6: RINA simulator

Apart from that is recommended to use EditBox section highlighter, which is freely available
(see [omnetpp-editbox]) Eclipse IDE plugin. It can be installed into OMNeT++ IDE using
official Eclipse plugin manager, go to Help # Install New Software.

49 extern const char* PAR FORCEORDER;

56 iextern const char® PAR MAXALLOWGAF;

51 ‘extern const char* PAR_DELAY;

52 iextern const char* PAR JITTER;

53 Eextern const char* PAR COSTTIME;

54 iextern const char* PAR COSTBITS;

55 lextern const char® PAR ATIME;

56

5? AN NN AN A NN AR N NN A R R E AR R N A A RS R R AR AR NA RN A RE EE AN A N A EA NN AR AR NN A RARE NS REAEA R ERESESRSATann,

58 enum CDAPConnectionState {NIL, . . .

59 | {FLOW PENDING, CONNECTION PENDING,

60 | AUTHENTICATING, ESTABLISHED, RELEASINGY};

61

2= |[class AEBase : public cSimpleModule

A
64 | public:

55 | | ‘bool hasFlow(const Flow* flow);

66 | |

67 | | const APNamingInfol getApni() const;
B&

59% | | bool operator== (const AEBase& other) {[]

73 . iconst int getAuthType();

74 E Ecﬂnst std::string& getAuthName() const;

75 . iconst std::string® getAuthPassword() const;
76 E Ecﬂnst std::string& getAuthOther() const; :
77 . ‘woid changeConStatus(CDAPConnectionState conState); |
78 . {CDAPConnectionState getConStatus(); H
79 ¢ Flow* getFlowObject() const;

8¢ | | _void setFlowObject(Flow* flowObject); . &
El ..
82 | iprotected:

83 : i//Flows flows;

84 . [Flow* FlowDbject;

85 . APNamingInfo apni; |

Figure 16. RINASim official sour ce code highlighter

30

Deliverable-2.6: RINA simulator

4. High-level design

To understand RINA architecture means to know each of its elements. This chapter starts with

adescription of high-level RINA network nodes and then goes deeper and outlines various |PC
Management and |PCP components.

4.1. Nodes

There are only three basic kinds of nodes in RINA network (illustrated in the figure below).
Each type represents computing system running RINA:

» Hosts—end-devicesfor IPC containing AESin the top layer; they employ two or more DIF
levels,

e Interior routers — interim devices, which are interconnecting (N)-DIF neighbors via
multiple (N-1)-DIFs; they employ two or more DIF levels;

» Border routers—interim devices, which are interconnecting (N)-DIF neighbors via (N-1)-

DIFs, where some of (N-1)-DIFs are reachable only through (N-2)-DIFs; they employ three
or more DIF levels.

K — ==t s KN

Host Border Interior Border

Host
Router Router Router
—_ - S N . _ A . _ I} I A—
Syaten 1 Hyslem 5
oo o0
‘e o]
Eystam 2 Gystom 4

" ;T Forar | T T T roes [T T[T eeeas 1 T PoP Al _:
3 | ! %% 5 N Relaying AT 5 gj% ol|
- I |
é |‘-\ : g D \'.. System 3 Q Q :

TR [Then: a1l || e] | | [Fra ICE=| | [e

|' | — I - I
by I I
= | %‘O ol o O ol|l &ro %0 |

e ® Y= Pr- =1i-1= @

/ e [PcP o ~Fores FCF EA
by
g.J ? o o o % o
& L (=) o B

3 —]
Physicat medium Mulipfescing RMTs \Physica.f medium /

Figure 17. Example of RINA network with threelevels of DIFsand different nodes

31

Deliverable-2.6: RINA simulator

As seen in Figure above, the main difference between node kinds is in an overall number of
DIF levels present in acomputing system. Due to the limited number of network interface cards
(NIC), Hosts usually have a single 0-DIF (connected to the physical medium) and a few 1-
DIFs leveraging on this lowest level DIF. Interior routers have potentially alot of 0-DIFs (for
each interface) but only afew relaying 1-DIFs. Border routers also perform relaying but serve
as gateways between those (N-1)-1PCs, which are not connected directly. Thus, (N-2)-DIF is
needed to reach physical medium.

4.2. DAF Design

IPC Management is an integral part of any DAP responsible for managing supporting DIFs
and providing their services to participating APs. IPC Management consists of following
components depicted in Figure below:

Application Process :
with : :

Applicafion Enfities | a — G'—— DIF Allocator |
Intedace :

< 8DU Protection — - — .'\\ :
Q IPC Resource '
Manager :

/ \

Relaying & Multiplexng RIB Gﬂn‘n‘lﬂr} Digtnbuted
Task Daemon Application Protocol

Figure 18. Distributed Application Process components

Only IPC Resource Manager and DIF Allocator interface are exclusive to IPC Management,
other components are also present in IPC Process and described later.

4.2.1. DIF Allocator

The primary task of DIF Allocator (DA) isto return alist of DIFswhere destination application
may be found given ANI and access control information. Additional and more complex DA
description is available in [RINA-layer-discovery]. DA contains and works with multiple
mapping tables to provide its services:

» Naming information table — provides association between APN and its synonyms,

32

Deliverable-2.6: RINA simulator

* Sear ch table— provides mapping between requested APN and the list of DAswhereto find
it next;

» Neighbor table—maintains alist of adjacent peers when trying to reach other DAS;

 Directory —containsrecords mapping APNswith accessrightsto thelist of supporting DIFs
including DIF s name, access control information and provided QoS.

4.2.2. IPC Resource Manager

I PC Resour ceM anager (IRM) (see specification [|RM-spec]) asits name suggests, it manages
DAF resources. Thisinvolves multiple different tasks:

* |RM processes allocate calls by delegating them to appropriatelocal IPCPsinrelevant DIFs;

* |RM manages DA queries and acts upon their responses. When the DA response contains
more than one DIF, IRM chooses which DIF to use;

* |RM manages the use of flows between AEs and DIFs. IRM may choose to multiplex a
single or multiple AE flows into a single/multiple flows to a set of DIFs;

* |IRM initiatesjoining or creating DAF and/or DIF. IRM actsupon the DAF, or DIF lost (e.g.,
sending notifications or perform subsequent actions).

4.3. DIF Design

IPC Process is instance within DIF, which allows the computing system to do IPC with
other DIF members. Each IPC process performs (secure/reliable) data transport, (authenticated)
enrollment, (de)allocation of resources, routing, management and more. Functions could be
categorized under one of following categories. a) data transfer; b) data transfer control; and
¢) IPC management. Each category with different processing timescale and complexity — a) is
simplest and performed the most often, c) theleast often but the functionality is rather complex.

33

Deliverable-2.6: RINA simulator

Error Control
State Vedor - Flow Control
\ \ Y,

\ \FC Pro;fess

Delimiting
/ .
Data Transfer / y. —— Flow Allocator
50U Protedion IH\ 1
\ " Resource Allocator

\
Relaying & I"u"l.llhplexmg Common Distributed
Task ; Daermn Application Protocol

1 — Enroliment

QQQ

a) Data Transfer Eb} DT Control : ¢} Management

Figure 19. | PC Process components

IPC provides API to a DIF/DAF above, which requested its service. Basic IPC API offers
four operations:. allocate (allocates communication resources); deallocate (releases previously
allocated resources); send (passes SDU to IPC) and receive (retrieves SDU from IPC). Calls
may be further subdifferentiated as allocate request, allocate response, deallocate submit and
deallocate deliver.

Graphical representation of 1PC Process and its most important components is depicted in
Figure above. A brief description of each component and their functionality is provided below
figure. Some components outlined below also contain policy descriptions. Those policies are
mentioned because they are relevant to our contribution.

4.3.1. Enrollment

Enrollment takes place whenever IPCP joins existing DIF. IPCP newcomer creates a
connection with other IPCP (which is aready a member) alocating (N-1)-flow. Enrollment
occurs after successful connection establishment. Enrollment procedure of a new member
should be dependent on a connection use-case. For instance, there may be a different exchange
of messages for: @) the new member joining DIF for the first time; b) the IPCP that had been
already a member of DIF and right now is rejoining. The new member either tells or gets its
address to/from a DIF. Enrollment procedureis codified in [Enroll-spec].

Detail description of Enrollment operationisprovided in Figuresbelow. Transitions are denoted
with “input / action” labels. There are two different FSMs. The first figure describes initiating
process right after finished CACE Phase. The second figure shows responding process after

Deliverable-2.6: RINA simulator

CACE Phase. Only correct transitions are shown. Either Initiating or Responding process can

invoke deallocate in any state.

Initiating process
receive M_START_R (Enroliment) receive M_CREATE
O\We(\\\ : . I send appropriate M_CREATE_R
ST (ET - WaitStartEnrollmentResponse | ~_ T
gV~ 7
e ‘ WaitStopEnroliment }—* /
/ numToRead == readed |
S - .
. o receive M_STOP send M_READ
Established Immediate == true (Enroliment) I receive M_READ_R
/ send M_STOP_R (Enroliment) N
{ WaitReadResponse hkf
send M_READ /
/e | receive M_READ R b "numToRead == readed
/o g o &&
38/7(74/”{\9];4 \ e \ﬁ g Immediate == false
245 T — o e / send M_STOP_R (Enrollment)
74 ey, ——— — WaitStartOperation
) /O 800/7
ﬂ@re 7Y
Yoy
Figure 20. I nitiating process Enrollment State Diagram
Responding process
- ned Tecejy,
: estab\\she / SendeM\START
nection . . M—\STA (Ehro//
con®*_— % WaitStartEnrollment ‘f—— RT—R(E Ment)
ﬁro//mem B send M_CREATE
~_ M "7~ [receive M_CREATE_R
(\ Y)
~ ‘ CreatingObjects %
Null T
numObjToSend |
Immediate == true
receive M_START_R (Enroliment) objSended
/ send M_STOP (Enrollment) |

— receive M_READ_R
\ / send M_READ

| WaitStopEnrollment /X

[‘ .
‘\\Operatlon receive M_READ_R
/ send M_READ
h — { WaitRead }»z;}”""""/// B Immediate == false
receive M_START_R (Enroliment)

Figure 21. Responding process Enrollment State Diagram

Both processes are using CDAP messages for communication.

35

Deliverable-2.6: RINA simulator

4.3.2. Delimiting

SDU in RINA isacontiguous chunk of data. |PC might fragment SDU (when passing it down) or
combine user-data (when passing it up). Hence, the operation performed by Delimiting module
(for specification see [Deliml] and [Delim2]) is to delimit SDU into/from PDU’s user-data
preserving its identity. Employed mechanism indicates the beginning and/or the end of SDUs.
Either internal (special pattern) or external (SDU length in PCI) delimiting could be used.

Encapsul ation/Decapsul ation of data messages happensin RINA components lying in the data
path. The figure below depicts this process DIF/DAF together with messages nomenclature.

AF with AE —@
E }._ [ﬂAFnﬁgage { |f.:u|:i1-d& evoald| L.
SDU Protection —
IR Mcontrolled RMT ——
- 00 |S0U=mer=| U
l (Z— sou { gt fas | numbe dits
(N)-IPCP
Delimiting _¢
(B userdata field { P e
EFCA ——-I:,‘:
£—— Pou
SDOU Protection —
RMI —
| B—— sou
(N-11IPCP
Lo L ol .
Dl imiting ——C::] = =
@-— userdata fizld
EFCH —*I:::l o wersion | 5 -3 P E-[;E'-
— O
SDU Protection — g Ll e
RMI —
\ E— sou

Figure 22. M essage passing between RINA components

4.3.3. Data Transfer with Error and Flow Control

Error and Flow Control Protocol (EFCP) is split into two independent PMs coupled
and coordinated through a state vector. As EFCP name suggests, EFCP guarantees data
transfer and data control. Full EFCP functionality is described in [EFCP-spec]. However, these
specifications are currently being revisited.

36

Deliverable-2.6: RINA simulator

Data Transfer Protocol (DTP) implements mechanisms tightly coupled with transported
SDUs, eg., reassembly, sequencing. DTP PM operates on a data PDU’s PCl with fields
requiring minimal processing — source/destination addresses, QoS requirements, Connection-
id, optionally sequence number or checksum. DTP carries user-data.

Data Transfer Control Protocol (DTCP) implements mechanisms that are loosely coupled
with transported SDUSs, e.g., (re)transmission control using various acknowledgment schemes
and flow control with data-rate limiting. DTCP functionality is based on Watson’s Delta-t and
DTCP PM processes control PDUs. DTCP provides error and flow control over user-data.

There is EFCP instance (EFCPI) module per every active flow. EFCPI consists of DTP
and DTCP submodules. DTCP policies are driven by the quality of service demands. DTCP
submoduleis unnecessary for flowsthat do not need it, i.e., flows without any requirements for
reliability or flow control. The relationship between DTP and DTCP isillustrated in the figure
below. Depicted are also data transfer and data control transfer paths. Control traffic stays out
of the main data transfer.

EFCP instance

Al
| |
data traffic | ; I BA control raffic
L s
il : ; N
Tighthy-bound State Vedor Loosely-bound
DTP OTCP

Figure 23. EFCP instance divided into DTP and DTCP part
4.3.4. Relaying and Multiplexing

Relaying and Multiplexing Task (RMT) modules have two main responsibilities — relaying
and multiplexing as characterized in [RMT-spec]. The goal of multiplexing is to pass PDUs
from EFCPIsand RIB Daemon to appropriate (N-1)-flows and reverse of that. Relaying handles
incoming PDUs from (N-1)-ports that are not directed to its IPCP and forwards them to other
(N-1)-ports using the information provided by its forwarding policy.

RMT instances in hosts and bottom layers of routers usually perform just the multiplexing
task, while RMTs in top layers of interior/border routers do both multiplexing and relaying. In
addition to that, RMTs in top layers of border routers perform flow aggregation.

Each (N-1)-port handled by RMT hasits set of input and output buffers. The number of buffers,
their monitoring, their scheduling discipline and classification of traffic into distinct buffers are
all matter of policies.

37

Deliverable-2.6: RINA simulator

RMT is a straightforward high-speed component. As such, most of its management (state
configuration, forwarding policy input, buffer allocation, and datarate regulation) ishandled by
the Resource Allocator, which makesthe decisions based on observed | PC process performance.

Each IPC process has to solve the forwarding problem: given a set of EFCP PDUs and (N-1)-
flows leading to various destinations, to which flow should be each PDU forwarded? In RINA,
thedecisionishandled by theRMT and its PDUForwar dingPolicy. The PDUForwardingPolicy
may consist of looking up the PDU’s destination in its forwarding table (resembling the
forwarding mechanism in traditional TCP/IP routers), but it is not a requirement; other
experimental forwarding paradigms (such as forwarding based on topological addressing) may
not require a forwarding table at al. When in need of deciding for an output (N-1)-port for a
PDU, the PDUForwardingPolicy is given the PDU’s PCI and then it returns a set of (N-1)-
ports to which the PDU has to be sent. This provides enough granularity to implement multiple
communication schemes apart from unicast (such as multicast or load-balancing) because the
decision is |eft to the PDUForwardingPolicy. E.g., a simple forwarding policy would return a
single (N-1)-port based on PDU’s destination address and QoS-id, whereas in case of a load-
spreading policy and multiple (N-1)-ports|eading to the same destination, the policy could split
traffic by PDUS flow-ids and always return a single (N-1)-port from the set.

4.3.5. SDU Protection

SDU Protection isthelast part of the |PC Process data path, before an SDU ishanded over to an
underlying DIF. It isresponsible for protecting SDUs from untrusted (N-1)-DIFs by providing
mechanisms for lifetime limiting, error checking, dataintegrity protection and data encryption.
It also provides mechanisms for data compression or other two-way manipulations that depend
on the (N-1)-flow used and can increase the effectiveness of other SDU Protection mechanisms.

All the mechanisms provided by the SDU Protection module are encapsulated in two primary
functions: protect_sdu and unprotect_sdu. Thesefunctionsare called by theRMT, connecting
the SDU Protection module to the rest of the IPC Process components. The protect_sdu
function is called after the RMT decides which (N-1)-port will the SDU be passed to whereas
the unprotect_sdu function isthe first function called after receiving data from an (N-1)-port.

Due to different levels of trust an (N)-DIF can have towards different (N-1)-DIFs, SDU
Protection handles each (N-1)-flow on it’s own. This gives us the ability to skip some SDU
Protection mechanismsin favor of performance for trusted networks while still being protected
from untrusted networks. Thisis controlled by using different policies that could look like the
following:

* Null SDU Protection policy that performs no transformations

38

Deliverable-2.6: RINA simulator

» Basic SDU Protection which applies lifetime limiting (TTL) and error checking (CRC)

» Cryptographic SDU Protection which extends the Basic policy by adding cryptographic
encryption of data and an integrity check using a cryptographic hash of the content

4.3.6. Flow Allocator

Flow Allocator (FA) processesallocate/deallocate |PC API callsand further management of all
IPCP sflows. FA instantiates a Flow Allocator Instance to manage each flow; FA iscontroller/
container for al Flow Allocator Instances.

Flow Allocator Instance (FAI) is created upon allocate request call, and it manages a given
flow for itswhole lifetime. FAI handles creating/deleting EFCPI(s) while maintaining asingle
flow’s connection. FAI returns port-id to the allocation requestor upon satisfactory allocation
asareferencing handle. FAI participates only on port allocation, not on synchronization, which
isthe responsibility of EFCPI. The FAI maintains a mapping between flow’slocal port-id and
connection’s local CEP-id.

FA contains Namespace Management (NSM) interface for assigning and resolving names
(including synonyms) within DIF. This activity involves maintaining the table with entries that
map requested ANI to IPCP' s address.

Flow object contains al information necessary to manage any given flow between
communicating parties. It is carried inside create/delete flow request/response messages
controlling FA and FAI operation. Flow object contains. source and destination ANI, source
and destination port-ids, connection-id, source and destination address, QoS requirements, a set
of policies, access control information, hop-count, current and maximal retries of create flow
requests.

Flow allocation processes for (N)-DIF between two APs on different systemsis depicted in the
Figure below. It assumes that relevant (N-1)-flows have been already allocated using the same
principle as the one being described but on different DIF s rank.

39

Deliverable-2.6: RINA simulator

& = &

Host Interior Host
Router
— —_— . I —
System 1 Syatem 3
T
3 ge ge
. System 2 .
IPEP‘RJ IPCP A2
L.
S 0 5%@
E : i} =Y
= % sl ®| T8 ®
() Zh(a)

Figure 24. Flow allocation process

AP1 issues allocate request that is delivered to IPCP A.1. If it is valid and well-formed,
then it spawns FAI to manage requested flow. FAI resolves AP3's APN to one of DIF A
addresses (A.3). It instantiates EFCPI (with CEP-id) and creates bindings between EFCPI
and RMT. Create flow request is sent as the last step;

Create flow request arrives at “ System 2”. IPCP A.2's FA processes the request and discuss
NMS. It discoversthat request is not intended for any local AP. FA looks up the destination
discovering that A.3 should be a next-hop. FA forwards the request to “System 3”;

The request arrives at IPCP A.3. Over there, FA determines by querying NMS that
create flow request destination address is its address. Thus, destination AP resides on this
system. FAI is spawned and determine whether the request can be accommodated. If not
then negative create flow response is sent back to the requestor. Otherwise, FAI notifies
destination AP with allocate request;

If destination AP accepts or rejects the request then either positive, or negative alocate
response is returned to FAI. Based on the response, FAI binds port-id, instantiates EFCPI,
creates bindings. Flow object is updated (with local port-id and CEP-id) and sent back as
positive/negative create flow response. Responseisjust relayed (not processed) on interior
routers (IPCP A.2);

Deliverable-2.6: RINA simulator

» Originating A.1's FAI receives create flow response and updates relevant flow object. If
the response is positive, then, FAI notifies source AP with positive allocate response and
APsmay commence datatransfer. If the response is negative, then FAI invokes retry policy
to correct flow creation or deal appropriately with failure (i.e., passing negative allocate

response).

Original specification [FA-spec] were refined as the subject of this thesis contribution. Detail
description of flow allocation and deallocation is provided in Figures below. Transitions are
denoted with “input / action” labels. FA and FAI maintain state for any given flow and refuse
inappropriate transitions (e.g., initiating deall ocation before the allocation is successful). These
transitions are omitted for clarity. There are four different FSMs. The first figure depicts FA
operation reacting upon notification from RIBd. Second and third figures show flow allocation
procedure for initiating and responding FAIs. The last figure illustrates flow’s lifecycle after
successful alocation, and it is mutual for both initiating and responding FAIs.

NewFlowRequstPalicy is invoked after FAI's instantiation. Policy subtasks involve both 1)
evaluation of access control rights; and 2) translation of QoS requirements specified in allocate
request to appropriate RA’s QoS-cubes. AllocateRetryPolicy occurs whenever initiating FAI
receives negative create flow response. This policy allows FAI to reformulate the request and/
or to recover properly from failure. AllocateNotifyPolicy controlsaproper time when source AP
isgoing to be notified of the result of allocation by initiating FAI. It may be either when EFCPI
is created, or when allocation is confirmed by destination or any other notification strategy may
be employed. SeqRollOverPolicy is invoked simultaneously by both initiating and responding
FAls whenever PDU’ s sequence number threshold is reached. The policy usually spawns new
EFCPIs and changes bindings.

41

Deliverable-2.6: RINA simulator

Flow Allocator

Allocate Request

M_CREATE[flow)

Deallocate Request

Figure 25. Flow Allocator operation

42

Deliverable-2.6: RINA simulator

Initiating Flow Allocator Instance

[og 2 e W e

CXTY TR Tt g YR AT T

z F
- mialicy s o pampuaied z
)
dlog =i :.:::::=>©
—{= Floe Allocated
ol =vion fdled D<®
Flow Al ocation Failed

Figure 26. Flow Allocator Instance operation of initiating |PCP

Deliverable-2.6: RINA simulator

Responding Flow Allacator Instance

M_CREAT E{fiow)

oevoden) o ope o Bupes

equg Loh R

[P R RS 0N e

O

Flore All pcabed

Figure 27. Flow Allocator Instance operation of responding | PCP before the flow was allocated

Deliverable-2.6: RINA simulator

Initiating and/or Responding Flow Allocator Instance

¥_DELETEfioe)

P Delete iindngs

Deinstanfiated

Figure 28. Flow Allocator I nstance operation after the flow was allocated

4.3.7. Resource Allocator

If aDIF hasto support different qualities of service, then various flowswill have to be allocated
todifferent policiesand traffic for them treated differently. Resour ce Allocator (RA) delineated
in[RA-notes] isacomponent accomplishing thisgoal by handling management of various|PCP
resources, namely it:

 controls creating/deleting and enlarging/shrinking of RMT queues;

modifies EFCPI’s DTCP policy parameters;

controlscreating/del eting of (N-1)-flowsand their assignment to appropriate RM T queue(s);

manages QoS classes and their assignment to RMT queue(s);

maintains routing information affecting RM T’ s relaying or initiates congestion control.

RA maintains a catalog of meters and dials by monitoring various management resources. Each
catalog item can be manipulated and shared with other |PC processes within DIF.

Generating information necessary for PDUForwardingPolicy is one of the tasks of RA, namely
its subcomponent called PDU Forwarding Table Generator . For this purpose, RA uses pieces
of information provided by other sources, most notably the RoutingPolicy.

The RoutingPolicy exchanges information with other IPCPs in the DIF in order to generate
a next-hop table for each PDU (usualy based on the destination address and the id of the

45

Deliverable-2.6: RINA simulator

QoS class the PDU belongs to). The next-hop table is then converted into a PDU Forwar ding
Tablewith input from the PDU Forwarding Table Generator, by selecting an N-1 flow for each
"next-hop". RoutingPolicy may resemble distance vector and link-state routing protocols used
intoday’ sInternet, but the current research isalso aimed at other paradigms such astopol ogical/
hierarchical routing, greedy routing or MANET-like routing.

4.3.8. RIB Daemon

All information maintained by |PC tasks such as FA, RA, and others is available and updated
through RI1B Daemon (RIBd) described in [mobj-spec] and [RIB-notes]. Information exchange
IS necessary to coordinate the distributed IPC. Different update strategies for various types of
information may be used to synchronize state between different DIF member subsets.

Resour ce Information Base (RIB) is a logical database of information accessible via RIB
Daemon. By logical database, we mean that some of RIB information may be stored in the
dedicated database and the rest of IPCP components. Periodic or solicited events can cause RIB
to be queried/updated by |PCP peers via management CDAP messages. RIBd provides an API
to perform an operation on both local and remote RIB.

4.3.9. Common Distributed Application Protocol

RINA principles postulate that there is only a single application protocol required and thisis
the Common Distributed Application Protocol (CDAP). DIFs use CDAP for all non-data
communication (i.e., IPC management such as maintaining RIB, controlling flow allocation,
joining a DIF). DAFs may not use CDAP for backward compatibility. However, CDAP
expressiveness should allow the transition of legacy protocols. CDAP isbased and patterned on
two existing protocols — ACSE (see [isoiec-15953] and [isoiec-10035-1]) for the establishment
phase, CMIP [isoiec-9596-1] for the data transfer phase.

CDAP subpart for datatransfer isobject-oriented (with built-in scopeand filter support) protocol
offering six primitive operations: create; delete; read (i.e., get value); write) (i.e., put or set
value); start (i.e., execute action) and stop (i.e., suspend action). The collection of objects is
dependent on used AE, which provides access rights to them.

CDAP has modular structure composed of three submodules to provide flexibility:

» The common application connection establishment (CACE) submodule;

» The authentication (Auth) submodule provides authentication of the communication
endpoints. A range of submodules will be available to support different kinds (e.g., none
authentication, shared password, certificates) of authentication policies employing various
cryptographictools(e.g., a/symmetric ciphersfor confidentiality, MAC codesfor integrity);

46

Deliverable-2.6: RINA simulator

* The CDAP submodule.

CDAP offers following eighteen message types summarized in Table below [CDAP:

Opcode

Description

M_CONNECT

M_CONNECT R

Initiate a connection from a source
application to a destination application

Response to M_CONNECT carries
connection information or an error indication

M_RELEASE Orderly close of aconnection

M_RELEASE R Responseto M_RELEASE carries final
resolution of close operation

M_CREATE Create an application object

M_CREATE_R Responseto M_CREATE carries result of
creating request, including identification of
the created object

M_DELETE Delete a specified application object

M _DELETE R Responseto M_DELETE, carries result of
deletion attempt

M_READ Read the value of a specified application
object

M_READ R Responseto M_READ carries part or all of

object value or error indication

M_CANCELREAD

M_CANCELREAD R

Cancel aprior read issued using M_READ
for which a value has not been compl etely
returned

Responseto M_CANCELREAD indicates
outcome of cancelation

M_WRITE Write a specified value to a specified
application object

M _WRITE R Responseto M_WRITE carries result of
write operation

M_START Start the operation of a specified application

object, used when the object has operational
and non-operational states

47

Deliverable-2.6: RINA simulator

Opcode Description

M_START R Responseto M_START indicates the result
of the operation

M_STOP Stop the operation of a specified application
object, used when the object has operational
and non-operational states

M_STOP R Response to M_STORP indicates the result of
the operation

Connection management between two applications is divided into two traditional phases —
establishment and data transfer. An AP issues allocate request to underlying DIF s IPCPC
specifying the destination APN and QoS requirements. If the alocation is successful, IPCP
returns port-id to be used as a handle for all communication leveraging this flow. When the
previous phase is completed, CACE sends a M_CONNECT message to start authentication
using Auth submodule. Additional message exchange might follow in order to support different
authentication mechanisms. If it is successful then the connection is established and CDAP
transits to data transfer phase.

Another contributionisfurther refinement of CA CE specifications[CACEP]. Detail description
of CDAP operation is provided in Figures below. Once again transitions are denoted with
“input / action” labels. There are three different FSMs. The first figure depicts establishment
phase oninitiating the process. The second figure shows the same but from the perspective of the
responding process. Thethird figure outlines datatransfer phase for both initiator and responder
once they successfully reach “ Established". For the sake of readability, only correct transitions
are shown. Incorrect transitions upon receiving unexpected CDAP message terminate from
any state in “Error” marked as “wrong input”. Both initiator and responder might “indicate
deallocation”, thus entering “ Deallocating” state at any given moment.

Deliverable-2.6: RINA simulator

Initiating process
ConnectPending :E-““E_-'f%?:_-e: cafion
entry st mer ; o
PeE WE DOSANE S

2P0CINON raspors 2

numlfConnects
<= . .
FIquendirg MaxTonn=ctlet ries .ALlﬂ'IeﬂtICﬂ'.ﬂﬂ
ConnectRetry
o FECEN & Redaine adve
& dlooaion response = -
R il int numOfConnecta+t+
@
o
-

nmOf Connects
keepFlow

x>
Deallocating

MaxConnectRetries

entry:
Mull

bool keepElow
! keepl low

O

Established
sllocstion Wwrong input

Figure 29. Establishment phase on initiating process

Responding process

ConnectPending

eniny

irt nmOfConnects++

receive vaid M_CONNECT

numlfConnec ts
SlFDC 30N SUCCEeded

arEfCs
>
MaxConnectRetries

oo

tion succesded
Il timzr 2@ied

keepflow

Deallocating

entry-

bool keepPlow

i

naicE S JealoCaton

Establizhed

Figure 30. Establishment phase on responding process

49

Deliverable-2.6: RINA simulator

Initializing and Responding processes

Release

f__,ﬂ antry
oeive M_RELEA EE/ bool requireRe=pon=e Error

ction

AN

+ “-v cepFlow
Deallocating /F\L}@\I‘

sriry W
bool keepflaw [-/éiull

Releaszing —

enry Eset imer | timer =xpied

Figure 31. Data transfer phase on initiating/responding process

Depending on whether (N-1)-flow should be preserved or not, the transition from
“Deadllocating” (based on keepFlow boolean) may delete any state associated with connection
and transit to the “Null” state.

4.4. Policy Framework

RINA specifications present the proposed network architecture as a generic framework where
mechanisms are intended to perform basic common functionality and policies are defined to
select the most appropriate implementation of variablefunctionality. Thus, itisdesired to design
RINASIm in away that allows for the definition of policies and their smooth integration in the
simulation models.

Hence, RINASIm provides support for user-modifiable policies specifying the behavior of
miscellaneous parts of RINA stack functionality. The separation of mechanism and policy
is achieved by splitting the policy procedures into their separate modules—i.e. each policy
invocation is done by calling an appropriate method of the proper policy’s module.

An overview of available policies and policy implementation can be found in Sections6 & 7.

4.4.1. Description

To minimize the need for modifying existing C++/NED source codes, the RINASIm policy
framework is based on OMNeT++ NED module interfaces. Each policy inside the DAF &
DIF architectures is represented by a placeholder interface and the type of desired policy
implementation is then determined at the simulation setup phase by a parameter placed in an

50

Deliverable-2.6: RINA simulator

INI config file. Thisallowsfor virtually unlimited amount of user policy implementationsto be
defined and easily switchable viathe configuration files.

In the default setting, each policy of each submodule uses its default policy implementation
specified in the encompassing submodule’s NED file (this default policy is usually a no-op
placeholder). E.g., the default policies used by the Relaying and Multiplexing task are visible
in /src/DIF/RMT/RelayAndMux.ned:

string schedPol i cyName
string ghMonitorPolicyName
string nmaxQPol i cyNane

defaul t ("Longest QFirst");
defaul t (" Si npl eMoni tor");
defaul t ("Tail Drop");

Default policies loaded by the simulation:

SimpleRglay.interiorRouter.relaylpc.relayAndMux

LongestQFirst SimpleMonitor TailDrop

%

rmtModuleallocator

Figure 32. Default policy settings

4.4.2. Using the policy framework

Each policy consists of a NED module interface (e.g. "policiesDIF/RA/QueueAlloc/
IntQueueAlloc.ned") and a C++ implementation interface (e.g. "policies’'DIF/RA/QueueAlloc/
QueueAllocBase{cc,h}").

In case of creating anew policy implementation, the policy writer hasto

 create anew simple NED module implementing the policy’ s interface, and
* implement this module by creating a new C++ classinheriting from the base C++ class and

redefining desirable methods.

A new policy implementation can be loaded by setting a proper
parameter of the encompassing module in the configuration file (eg.

51

Deliverable-2.6: RINA simulator

"host.ipcProcess0.resourceAllocator.queueAllocPolicyName = "QueuePerNFlow™"). The
parameter value has to match the name of the NED policy implementation module. Otherwise,
the simulation framework will issue afatal error in theinitialization phase of the smulation.

4.4.3. Example usage

4.4.3.1. Use case

A user is working with the simulation scenario SimpleRelay[PingFC] which presents an
example of two hosts communicating through an interior router that is prone to congestion due
to queuing delay.

<pic>

The user wishes to modify the simulation scenario configuration so that the top 1PC process of
the interior router uses RED queuing discipline, by which some of the PDUs get dropped early
to prevent congestion.

4.4.3.2. Solution

The first step consists of implementing the policy. In this case, the policy implementations
needed for ssmulating the RED algorithm are already available in RINASIm:

 REDMonitor (/policiessDIF/RMT/Monitor/REDMonitor), an implementation of
QMonitorPolicy

e REDDropper (/policiesDIF/RMT/MaxQueue/REDDropper), an implementation of
MaxQPolicy

When the policy implementations are ready, we need to reconfigure the default settings in
omnetpp.ini so the simulation uses them instead of the default ones.

** interiorRouter.relaylpc.rel ayAndMux. maxQPol i cyNanme = " REDDr opper"”
** interiorRouter.relaylpc.rel ayAndMux. ghoni t or Pol i cyNanme = "REDMoni t or"

Note: The OMNeT++ IDE makes the parameter specification easier thanks to its auto-assist
feature (Ctrl + Space lists al available policy implementations).

Now, when the reconfigured simulation is run, it uses the specified RED policies:

52

Deliverable-2.6: RINA simulator

SimpleRglay.interiorRouter.relaylpc.relayAndMux

REDMonitor REDDropper

icy queueMoenitorPolicy maxQueuePolicy

=

rmtModuleAllocator

Figure 33. Overridden policy settings

4.5. Results Analysis

RINASIm can record a detailed log about your message exchanges and collect various
parameters values during the simulation run. This section outlines two features that are actually
being implemented and used inside RINASim to gather data for research.

4.5.1. Collecting Statistics

OMNeT++ inherently supports signal-based statistic collection, see [omnetpp-stats] on which
this subsection is |loosely-based.

Signalsare used to expose variablesfor result collection without telling where, how, and whether
to record them. With this approach, modules only publish the variables, and the actual result
recording takes place in listeners. Listeners may be added by the simulation framework (based
on the configuration), or by other modules (for example by dedicated result collection modules).

The general guideline when creating a new placeholder for statistic analysisis:

1. Add @tatistic properties to the smple module’'s NED file. A @tatistic
property defines the name of the statistic, which signal(s) are used asinput, what processing
steps are to be applied to them (e.g. smoothing, filtering, summing, differential quotient),
and what properties are to be recorded (minimum, maximum, average, etc.) and in
which form (vector, scalar, histogram). Accompany statistic declaration with source signal
definition, but beware that statistic signal MUST NOT contain hyphen character in their
name.

2. Later runthesimulation and generatefileswith results (*.sca, * .vci, * .vec and * .anf). Inspect
these results double-clicking on *.anf file, which will open OMNeT++ build in results
analyzer.

53

Deliverable-2.6: RINA simulator

General OMNeT++ statistic definition examples:

@ignal[glen](type=int); // optiona
@t ati stic[queueLengt h] (source=ql en; record=nmax,ti nmeavg, vect or?);

@tatistic[dropCount] (source=count (drop); record=last,vector?);

@tatistic[droppedBytes] (source=sun{(8*packet Bi t s(pkdrop));
record=l ast, vector?);

RINASIm statistic definition example based on /src/DAF/IRM/IRM.ned file:

@i gnal [| RM PassUp] (t ype=bool);

@i gnal [| RM_PassDown] (t ype=bool) ;

@tatistic[irmup](title="nsg passed up"; source=count (I RM PassUp);
record=l ast);

@tatistic[irmdow](title="nmsg passed down"; source=count (| RM PassDown);
record=l ast);

Deliverable-2.6: RINA simulator

-

= = - - . =
7 Proje &3 - Navig) | [RM.ned (@ AEBasze.h (@ Flow.h (m omnetpp.ini (ﬁ Ping.anf &3 Pea 8
= || Inputs
a [y UseCasel ~
4 (= results Input files
I Ping-0.sca Add or drag & drop result files (*.sca or *.vec) that should be used in this analysis. Wildcards (%,7) can also be used
Ping-O.vei to specify multiple files,
fr Ping-Divec I file /rina/examples/_DublinBackup/UseCaseS/results/Ping-*vec
5 configxml I file /rina/examples/_DublinBackup/UseCase5/results/Ping-*.sca
Ere, omnetpp.ini
[UseCasel.ned Properties...
By UseCaseld R
lemove
I [Ey UseCase3
I [Fy UseCased
4 EE Deecaces aw
4 = results Data
i Ping-0.sca Here you can browse the result files and their contents.
Ping-O.vei Physical: by file and run | Physical: by run and file | Logical: by experiment, measurement, replication
fa] Ping-O.vec
E‘ﬂ config.xml
Ere, omnetpp.ini
3 ,
< >
=
1 Prope | B= Outlin 53 = B
—
4 [= Inputs Inputs | Browse Data Datasets|
I file /rina/examples/_DublinB — - = -
[file rina/examples/_Dublingai L2 Pro [Mod Y% NED 52\ s NED | B Con | 5 Pro | e Call | 47 Sear| & Hist | s Typ | =
= Datasets :{::9 =~
[= Chart Sheets Mo MED element ar INI file entry selected.

Figure 34. Resultsanalysis

4.5.2. Tracefiles

RINASIM's implementation of RMT can generate a trace file that contains a list of actions
undertaken on every PDU during the simulation.

4.5.2.1. Usage

Trace file generation is enabled by the pduTr aci ng parameter of the Rel ayAndMix
compound module (e.g. **. r el ayAndMux. pduTraci ng = true).

Theresulting file with a..tr extension is stored in the /results/ directory of chosen simulation.
4.5.2.2. Description

The lines are written in chronological order, and their format resembles that of ns-2 trace files:

ti me node
seq id

event
dst Addr

i pcp pduType pduSize flags flow DI F srcAddr

55

Deliverable-2.6: RINA simulator

field format

event r (receive) / s (send) / + (enqueue) / -
(dequeue) / d (drop)

time event timestamp in seconds

node node name

ipcp | PC process nhame

pduType PDU type

pduSze PDU sizein bits

flags PDU flags

flow flow-id (srcCEP + dstCEP + qosID)

DIF DIF name

srcAddr source address

dstAddr destination address

seq PDU sequence number

id packet ID (unambiguous in scope of whole
simulation)

4.5.2.3. Example output

+ 102. 000346959997 interi or Router

s 102. 000346959997 interi or Router

r 102. 000348719997

+ 102. 000348719997

27469590451 Layer01 3 1 5 1831

102. 000346959997 i nteri or Rout er

27469590451 Layer01 3 1 5 1831

27469590451 Layer01 3 1 5 1831

216369211 Layer02 2 4 6 1804

216369211 Layer02 2 4 6 1804

102. 000348719997 i nteri or Router

216369211 Layer02 2 4 6 1804

i nteriorRouter

i nteriorRouter

i pcProcess0 Dat aTransferPDU 168 00000000

i pcProcess0 Dat aTransferPDU 168 00000000

i pcProcess0 Dat aTransferPDU 168 00000000

i pcProcessl DataTransferPDU 176 00000000

i pcProcessl DataTransferPDU 176 00000000

i pcProcessl DataTransferPDU 176 00000000

56

Deliverable-2.6: RINA simulator

5. Components

This subsection provides a general overview of RINASIm components design, which includes
high-level abstract models of computing systems (like hosts and routers) and also their
low-level submodules (like IPCP). In general, a structure of RINASIim models follows the
structure proposed in the RINA specification. Thisintentional correspondence enables anyone
understanding the RINA specifications to easily orient in RINASIm too. Though this structure
does not aways stand for the most natural representation of RINA concepts in simulation
models, it provides a framework for evaluating properties of the architecture and to identify
missing or inaccurate information in the original specification. During the design of simulation
models, we were able to determine severa places where specifications should be refined
to provide complete and unambiguous information. Following lines reflect RINASIm design
relevant to the up-to-date version of RINA specifications and underlying mechanism and
policies.

It is assumed that for experimenting with RINA concepts these components will be extended
to the required policies depending on the character and goals of the target experiments. As
mentioned in previous chapters, these components also compose predefined RINA nodes used
for experimental simulation models to demonstrate properties of different RINA applications.
Thus, theinformation provided in this chapter may be interesting to anyone who participates on
RINA design and wants to perform experiments with different mechanisms and policies.

5.1. Used Template

Each atomic RINA component is described using the following set of information:

H

. Visual representation of component structure

2. Narrative description of the functionality provided by the component

3. List of the component’ s submodules

4. Relevant source files containing code of the component’ s implementation

5. NED design structure (e.g., used dynamic and static gates, registered signals, configurable
parameters and properties)

6. Available policies (alist of available user-definable policies)

7. C++implementation notes (e.g., interface, base class, children classes, notable methods and
attributes)

8. Overview of current limitations and future development plans

57

Deliverable-2.6: RINA simulator

5.2. Nodes

RINASIm offers a variety of high-level models simulating the behavior of independent
computing system. These models can be employed to set quickly up simulation experiments.
Through parameterization and extension, it is possibleto test different deploymentsand settings.
Based on the RINA specifications, we can distinguish between the following node types:

* Host nodes, which represent devices or systems that run distributed applications. These
nodes implement the full RINA stack and, also, contains an application process(es). AP
instances are configured to communicate with each other to simulate the behavior of an
arbitrary RINA application. Currently, there are several predefined host nodes depending on
anumber of APsand AEs. Thefigure below illustrates some of host nodesinternal structure.
The most of depicted hosts contain two I PCPs, which modelsusual end-system with asingle
NIC. The host may provideonly single IPCPs, which would allow IPC with only onedirectly
connected neighbor. Alternatively, host may contain more than two I1PCPs; (0)-rank IPCPs
represent multiple NICs, and (1+)-rank 1PCPs represent different DIFs host memberships;

kﬁ‘ Host1AP
_

k;‘ TestHost1AP
=

kﬁ‘ HosthNAP
-

kﬁ‘ HostMAPMNAE
o

e

applicationProcess1 difAllocator

ed
ipcResourceManager

[4]

ipcPrgcess1

[4]

ipcPrgcess0

4

applicationProcess1 difAllocator

rd

ipcResourcetManager

[

ipcPrgcess0

#

AP[nofaAP] difAllocator

Ed
ipcResourceManager

[

ipcPrgcess

(4]

ipcPrgcess0

#

lplicationProcess[num OfAPs] difAllocator

&~
ipcResourceManager

(4]

ipcPrgcess1

4]

ipcPrgcess0

Figure 35. Host nodes structur e examples

* Routers (intermediate nodes), which can be either interior or border. A router is a device
that interconnects different underlying DIFs and often does not run user applications. Just
asin RINA specification, there are either interior or border routers depending on DIF stack
depth (influenced partially also by anumber of interfaces). The figure below illustrates two
interior routers and one border router simulation models.

58

Deliverable-2.6: RINA simulator

~
g InteriorRouter2int g InteriorRouter3int BorderRouter

rd

e e

difallocator

difAllocator difAllocator
Ipc

H 0 d

ipcPrc:essO ipch:ess'l ipcPrgcess0 ipcPrdcess2 ipcPrgcessi

rela

ipcProcess1 ipcPrgcess3 ipcProcess2

Figure 36. Router nodes structure examples

Of course, there are many more possible combinations of host and router configurations than
the ones currently defined in RINASIim. However, the aim of providing predefined node models
isnot to cover al of the possible combinations but rather to offer the most used ones enabling to
set quickly up simulation scenarios. Defining new node or router with suitable structureisnot a
complicated task. Nevertheless, the present collection of available models seemsto be enough.

5.3. DAF Modules

DAF components can be divided into three submodules: @) Application Processes (containing
one or more Application Entities), which represents |PC endpoints; b) IPC Resource Manager,
which interconnects APs and available IPCPs; c) DIF Allocator, which helps during APN
discovery and management process. Components relationship and internal structure (described
below) are depicted below.

n gn
LAA £
e
@ ApplicationEntity OA;p\icalionProcEss): C » DIFAllocator
(4
=policatonProcess] difAliocstor @
—

irectory searchTable neighborT sble

applicationEntity

O IPCResourceManager

cdapSplitter cdapMsglog

@Cammanl}wslnbuled;&pa icationProtocol

Figure 37. DAF componentsfor RINASIm

59

Deliverable-2.6: RINA simulator

5.3.1. Application Process

The Applicati onProcess is a core component of DAF.Currently, this module is a
placeholder for possible RINA applications.

S
O ApplicationProcess

applicationEntity apManagement

Figure 38. Application Process
5.3.1.1. Submodules
The Appl i cati onProcess modules consists of the two submodules as follows:

« applicationEntity — same submodule as in the case of DAF components
description;;

e« apManagenent — contains Enrollment module and dynamically spawned
ManagementAEsS,

5.3.1.2. Source codes

Relevant sources for this component are located in /src/DAF.

Filename(s) Description

ApplicationProcess.ned ApplicationProcess core ssimple module

5.3.1.3. NED design

» Gates utilized by this submodule are as follows:

appl i cati onProcess. sout hl o;
applicationEntity. aelo;
apManagenent . sout hl o;

» None of ApplicationProcess has abstract data structures configurable via config.xml file.

60

Deliverable-2.6: RINA simulator

5.3.1.4. Available policies

No policies are currently associated with this module.
5.3.1.5. C++ implementation

» Thismodule has no signals that is receiving or emitting.
Limitations

* Itiscontainer only.

Future work

» This module should represent the core of an RINA application. As such it should be
programmabl e instead of representing only empty container module.

5.3.2. Application Entity

The Application Entity (AE) is created for each flow representing a connection between two
applications. The AE isresponsible for:

» enforcing access control, i.e., to evauate whether the requesting Application Process has
access to the requested Application Process,

» monitoring and managing the associated flow during its duration.

@ |App|icatiDnEntit}f

commonDistributedpplicationProtocol

Figure 39. Application Entity

5.3.2.1. Submodules

The AE consists of two submodules:

61

Deliverable-2.6: RINA simulator

* |nterface for the AE module "iag" - AE module interface,

* Common Distributed Application Protocol module
"commonDistributedApplicationProtocol”. This module sends and receives CDAP
messages on behalf of "iag".

5.3.2.2. Source codes
Component sources are located in /src/DAF/AE

It consists of following files:

Filename(s) Description

ApplicationEntity.ned Compound module holding al the AE
functionality submodules

|AE.ned OMNeT++ NED interafce definition

AEBase.h/.cc Base class for general AE functionality

intended for inheritance and extensions

AE.ned AE simple module generally with one-flow
scheduling flow (de)allocation

AE.h/.cc Implementation of AE core functionality
AEListeners.h/cc AE listeners

AEPiIng.ned AEPing simple module

AEPiIng.h/.cc AE with Ping-like application behavior

5.3.2.3. NED design

The lAE is specified before implementation starts. Default AE type is AE.ned.

par anet er s:

string aeType = defaul t ("AE");
subnodul es:

i ae: <aeType> like | AE

5.3.2.4. C++ Implementation

Registered signals that the AE module is emitting:

SI G_AE_Al | ocat eRequest
SI G_AE Deal | ocat eRequest
SI G_AE_Dat aSend

62

Deliverable-2.6: RINA simulator

S| G_AERI BD_Al | ocat eResponsePosi tive
SI G_AERI BD_Al | ocat eResponseNegati ve

Registered signals that the AE module is receiving:

SI G_AE_Enrol | ed

SI G_CDAP_Dat eRecei ve

SI G_FAI _Al | ocat eRequest

SI G _FAI _Deal | ocat eRequest

SI G_FAI _Deal | ocat eResponse

SI G FAI _All ocat eResponsePositive
SI G FAI _Al |l ocat eResponseNegati ve

5.3.2.5. Future work

1. Revisiting the interfaces would be necessary to adjust interfaces to recent development.

2. Create new streaming application capable of congesting the resources allocated for the flow

within the DIF.

5.3.3. DAFEnrollment

The DAFEnr ol | nent module controls initial communication between two IPCP's, Flow
allocation and dynamic Application Entity creation and finalization.

*II DAFEnroltlmentModule

[l &

enrollment enrollmentStateTable

Figure 40. DAF Enrollment

5.3.3.1. Submodules

The DAFENr ol | ment modules consists of two auxiliary submodules that maintain the state

information:

e enrol | ment —thismoduleimplementsthe core functionality;

e enrol |l nent St at eTabl e —this module maintains status of active flows;

63

Deliverable-2.6: RINA simulator

5.3.3.2. Source codes

Relevant sources for this component are located in /sr¢/DAF/Enrollment.

Filename(s)

EnrollmentModule.ned

Description

DAFEnrollment compound module that is
part of every node

Enrollment.ned

DAFEnrollment core smple module

DAFEnrollment.h/.cc

DAFEnrollmentBase.h/.cc

EnrollmentSateTable.ned

Implementation of DAFEnrollment core
functionality

Base class for general DAFEnNrollment
functionality intended for inheritance and
extensions

State table simple module

DAFEnrollmentSateTable.h/.cc

Implementation of state table functionality

DAFEnrollmentSateTableEntry.h/.cc

DAFEnNrollmentObj.h/.cc

Single record for state table, basically
destination APN as key and source APN,
CACE Connection status, Enrollment status

Implementation of DAFEnrollment object
maintaining information exchanged during
enrollment phase

DAFOperationObj.h/.cc

Implementation of DAFEnrollment object
maintaining information exchanged after
enrollment phase

DAFEnNrollmentListeners.h/.cc

DAFEnNrollmentNotifierBase.h/.cc

DAFEnrollmentNotifier.h/.cc

Enrollment listeners

Base class for general DAFEnNrollment
Notifier functionality intended for
inheritance and extensions

Implementation of DAFEnrollment Notifier
core functionality

DAFEnNrollmentNotifier Listeners.h/.cc

DAFEnrollment Notifier listeners

5.3.3.3. NED design

* DAFEnrollment and its submodul es do not have any gates. The module communicatesusing
signalsonly.

Deliverable-2.6: RINA simulator

» None of DAFEnrollment has abstract data structures configurable via config.xml file.

5.3.3.4. Available policies

No policies are currently associated with this module.
5.3.3.5. C++ implementation

* Registered signals that the DAFEnrollment and its submodules are emitting:

SI G_ENROLLMENT_CACEDat aSend

SI G_ENROLLMENT _Dat aSend

SI G_ENROLLMENT_St art Enr ol | nent Request
SI G_ ENROLLMENT_St art Enr ol | nent Response
SI G_ENROLLMENT_St opEnr ol | ment Request
SI G_ENROLLMENT _St opEnr ol | nent Response
SI G_ENROLLMENT_St art Oper at i onRequest
SI G_ ENROLLMENT_St art Oper at i onResponse
SI G_ENROLLMENT_Fi ni shed

SI G AEMGMT_Connect i onResponsePositive
SI G_AERI BD_Al | ocat eResponseNegati ve
SI G_AERI BD_Al | ocat eResponsePosi tive

* Registered signals that the DAFEnrollment and its submodules are receiving:

SI G FAI _Al |l ocat eResponsePositive

SI G FAI _Al | ocat eRequest

SI G_AE_Enrol | ed

SI G RIBD _Start Enrol | nent Request

SI G_RI BD_Start Enrol | ment Response

SI G_RI BD_St opEnr ol | nent Request

SI G_RI BD_St opEnr ol | ment Response

SI G RIBD St art Oper ati onRequest

SI G_RIBD_Start Operati onResponse

SI G_RI BD_Connecti onResponsePosi tive
SI G_RI BD_Connect i onResponseNegati ve
SI G_RI BD_Connecti onRequest

5.3.3.6. Limitations

» This module does not support deallocation.

» The module cannot be configured.

65

Deliverable-2.6: RINA simulator

5.3.3.7. Future work

1. Deallocation of the module should be supported.

2. An implementation that allows to send application-specific data in DAF enrollment phase
should be provided.

5.3.4. DIF Allocator

The di f Al | ocat or module handles locating a destination application based on its name.
DIF Allocator is a component of the DAP's IPC Management that takes ANI and access
control information and returns alist of DIF-names through which the requested application is
available. Moreover, the di f Al | ocat or module provides statically configured knowledge
about simulation network graph.

@ DiIFallocator

0 B &

naminglnformation directory searchTable neighborTable

Figure4l. DIF Allocator
5.3.4.1. Submodules

The di f Al l ocat or modules consists of five auxiliary submodules that maintain state
information:

» da —corefunctionality;

* nam ngl nf or mati on —mapping between APN synonyms;

e directory —mapping between APN and DIF-names,

* searchTabl e —mapping between APN and peer DA instance where to continue search;

* nei ghbor Tabl e —mapping between peer DA and neighboring DA instances.

5.3.4.2. Source codes

Relevant sources for this component are located in /src/DAF/DA.

66

Deliverable-2.6: RINA simulator

Filename(s)

Description

DIFAllocator.ned

DA.ned

DIF Allocator compound module that is part
of every node

DA core ssimple module

DA.h/.cc

Implementation of DA core functionality

Namingl nformation.ned

Naminglnformation.h/.cc

NaminglnformationEntry.h/.cc

Synonyms naming table simple module

Implementation of Synonyms naming table
functionality

Single record for naming table, basically
APN as key and list of assigned synonyms
(other APNS)

Directory.ned

Directory mapping simple module

Directory.h/.cc

DirectoryEntry.h/.cc

Implementation of Directory mapping
functionality

Single directory record, which contains APN
as primary key and list of Addresses

SearchTable.ned" Searching table simple module

SearchTable.h/.cc Implementation of Searching table
functionality

SearchTableEntry.h/.cc Implementation of Auth core functionality

Neigbor Table.ned" Neighbor table simple module

NeigborTable.h/.cc Implementation of Neighbor table
functionality

Neigbor TableEntry.h/.cc Implementation of Auth core functionality

5.3.4.3. NED design

» DIF Allocator and its submodules do not have any gates.

» DIF Allocator and its submodules abstract data structures are configurable via config.xml

file.

5.3.4.4. Available policies

No policies are currently associated with this module.

67

Deliverable-2.6: RINA simulator

5.3.4.5. C++ implementation

* DIF Allocator does not receive/emit any signals. Usage of DIF Allocator components is
done viadirect function calls.

5.3.4.6. Limitations

» SearchTable does not have any impact on current RINASim functionality.

5.3.4.7. Future work

1. Defineinterface for DIF allocator;

2. The content of NeighborTable should not be used for FA delivery. Use dynamic Routing
information instead.

5.3.5. IPC Resource Manager

The i pcResour ceManager module currently queries DA module to find suitable IPCP
and relays communication between AE and IPCP. The i pcResour ceManager consists of
two submodules:

£ package rina.DAF.IRM

OIPCResuurceManager

irm connectionTable

Figure 42. | PC Resour ce M anager

5.3.5.1. Submodules
The IPC Resource Manager consists of two submodules:

e irm - This module acts as a broker between APs and IPCs and handles AP flow
(de)alocation calls

e connectionTabl e - This module maintains the necessary state for IRM proper
functionality (the state of the N-1 flows).

68

Deliverable-2.6: RINA simulator

5.3.5.2. Source codes

Component sources are located in /src/DAF/IRM. It consists of following files:

Filename(s)

IPCResourceManager .ned

IRM.ned

Description

I PC Resource Manager compound module
that is part of Host nodes

IRM simple module

IRM.h/.cc

Implementation of IRM core functionality

IRMListeners.h/cc

ConnectionTable.ned

Listeners that catches signals, which IRM
should process

Connection Table ssimple module

ConnectionTable.h/.cc

Connection Table implementation as atable
storing state of AP communication

ConnectionTableEntry.h/.cc

Single Connection Table entry with all its
properties

5.3.5.3. NED design

* |IRM and its submodules utilizes following gates:

| PCResour ceManager . northlo
| RM ael o

| RM sout hl o_

| PCResour ceManager . sout hl o

* None of IRM submodules has abstract data structures configurable via config.xml file.

5.3.5.4. Available policies

No policies are currently associated with this module.

5.3.5.5. C++ Implementation

* Registered signals that IRM module is emitting:

| RM Al | ocat eRequest
| RVt Deal | ocat eRequest

69

Deliverable-2.6: RINA simulator

* IRM handles direct APl calls from AP, mainly the ones that are related to the flow
(de)allocation data-path.

5.3.5.6. Future work

1. Define interfaces for both IRM and Connection Table;

2. Change "IRM.ael0" gate name to something more meaningful.

5.3.6. Common Distributed Application Protocol

The commonDi stri but edAppl i cati onProtocol submodule provides a smple
obj ect-based protocol for distributed applications.

£ package rina.DAF.CDAP

o CommonDistributed&pplicationProtocol

cdapYplitter cdaphdsglog

Figure 43. CDAP module

5.3.6.1. Submodules

Currently, it isthe part of RIBd and AE. CDAP is modeled as a compound module consisting
of five main submodules:

* cace — Common Application Connection Establishment protocol instance processing
M_CONNECT and M_RELEASE requests and responses;

e auth — providing authentication services during connection initialization); cdap
(providing usual CDAP message exchange;

cdapSpl i tter —deivering messagesto appropriate upper submodules;
» cdapMsgLog —logger for an accounting of processed messages.

5.3.6.2. Source code

Relevant sources for this component are located in /sr¢/DAF/CDAP.

70

Deliverable-2.6: RINA simulator

Filename(s)

Description

CommonDistributedApplicationProtocol .ned

CDAP compound module that is part of
ApplicationEntity and RIBDaemon modules

CACE.ned CACE smple module

CACE.h/.cc Implementation of CACE core functionality

CACEListeners.h/.cc Listenersthat catch signals during
enrollment procedure

Auth.ned Auth ssmple module

Auth.h/.cc Implementation of Auth core functionality

AuthListeners.h/.cc

Listenersthat catch signals during
enrollment procedure

CDAP.ned
CDAP.h/cc

CDAP ssimple module

Implementation of CDAP core functionality

CDAPListeners.h/cc

Listenersthat catch signals, which CDAP
later processes

CDAPSplitter.ned
CDAPSplitter.h/cc

CDAP splitter module

Implementation of a CDAP splitter that
forwards them to the appropriate CDAP
modul e according to the CDAP message

type.

CDAPMsgLog.ned CDAP simple module

CDAPMsgLog.h/cc Implementation of CDAP message logger
functionality which records incoming/
outgoing messages that pass through
"cdapSplitter”.

CDAPMsgLogENtry.h/cc Single CDAP message logger entry with all
of its properties

CDAPMessage.msg OMNeT++ CDAP message definition file

CDAPMessage_m.h/.cc

C++ implementation of CDAP message
classes

5.3.6.3. NED design

* CDAP module contains seed invokationld parameter.

» Data-path of interconnected gates for messages:

71

Deliverable-2.6: RINA simulator

cdapSplitter.cacelo
cdapSplitter.authlo
cdapSplitter.cdaplo
cdapSplitter.southlo
cacelo.splitterlo
authlo.splitterlo
cdaplo.splitterlo

* None of CDAP submodules has abstract data structures configurable via config.xml file.
5.3.6.4. Available policies

No policies are currently associated with CDAP and its submodul es.

5.3.6.5. C++ implementation

* Registered signals that the CDAP and its submodul es are emitting:

SI G_CDAP_Dat eRecei ve
SI G_CACE Dat aRecei ve

* Registered signals that the CDAP and its submodul es are processing:

SI G_AE_Dat aSend
S| G_RI BD_Dat aSend
SI G_RI BD_CACESend

5.3.6.6. Limitations
1. Auth moduleis currently still placeholder.
5.3.6.7. Future work

1. Together with AE define CDAP call API.

5.4. DIF Modules

All currently implemented DIF components are enclosed to the IPCProcess container module
(instantiation of IPCP). The IPCProcess contains following submodules, and overall structure
is shown in below:

72

Deliverable-2.6: RINA simulator

mmm
4 FlowAllg r
P ScorsComparer
e z
fa nFlowTabl y
LimitedRetries
@ EnvolimentModle
commonDistributedipplicationProtocol
'%‘ allocateRetryPolicy
1ai_32230_18983 s
fai_46884_14935 [3 5
ribdSglitter
C Poll
SRy enrollment envollmentStateTable
.;’l EFCI i PCProces:
[
(X [
EE] = = Resourc
efcp efcpTable mockEFCPI ffp flowAllocator enrollment
— &) ‘m@wm Oummiaging
EIAT B nmTFlowTable
g % ribDaemon routingPolicy
StaticGenerator SinaleQueue SinalelD ExactMatch
efcpi [14935 efcpi [18983 () () () ()
£
o icy addressComparator
relayAndMu: esourceAllocaty

allocator

AtEstimatorPolicy

initialSeqNumPolicy Lnn1O_Fim Dumomtm np SimpleTabImplEIahlE :
sendeﬂnxé?izypohcy schedulingPolicy queueMenitorPolicy maxQueuePolicy ~ pduFerwardingPolicy

revrinactivityPolicy

105-id: 'QoS-id:
p|> MGMI—QnSCIIbS‘[‘ QoSCube_WithoutDTCP

RelayAndMux

Figure 44. IPCP’s DIF componentsfor RINASIm

5.4.1. Delimiting

The delimiting module handles SDUs in the form of SDUData from N+1 DIF and produces
UserDataField for EFCP module. In the opposite direction, it accepts UserDataFieldD and
produces SDUDatato N+1 DIF. Encapsulation processis done according to Delimiting process
and usesthese classes: SDUData _, Data _, PDUdata _, UserDataField

It is capable of fragmentation and concatenation of incoming SDUs. Fragmentation is based
on maxPDUsize. Concatenation takes incoming SDUs and puts them in single PDUData
until maxPDUSize is met or until Delimiting Timer expires. If SDU with the size smaller
than maxPDUSize is received or fragment is generated, the DelimitingTimer is scheduled.
DelimitingTimer specifies the maximum time the SDU can be retained in an attempt to
concatenate it with subsequent SDU. SDUs that size is bigger than maxPDUSize* 0.8 are not
held, and it is processed immediately.

PDUData class has overridden methods for encapsul ate()/decapsul ate to take/ return Dataclass.
Moreover, it is possible to encapsul ate several Data packets into one PDUData.

The SDU marked as the first fragment contain the whole SDU, and the rest of the fragments are
empty. All non-first fragments are deleted upon de-fragmentation, but the first_fragment SDU
is passed to N+1 DIF only if al fragments are present.

73

Deliverable-2.6: RINA simulator

5.4.1.1. Submodules
The delimiting modul e does not contain any submodule.
5.4.1.2. Source codes

Relevant sources for this component are located in /src/DIF/Delimiting/.

Filename(s) Description

Data.cc/h Enhanced implementation of generated Data
packet class.

Data.msg Message definition for representing SDUs
and SDU fragments.

Delimiting.cc/h Implementation of delimiting functions.

Delimiting.ned Delimiting module

DelimitingTimers.msg Timers related to delimiting

PDUData.cc/h Enhanced msg class for encapsulating
multiple messages.

PDUData.msg Message class for PDUData

UserDataField.h/.cc Implementation of User Data Field message.

UserDataField.msg Message class for UserDataField

5.4.1.3. NED design

» Delimiting unitilizes following gates: northlo; //towards FAI southlo[0]; //towards DTP

» Delimiting module does not have abstract data structures configurable via config.xml file.
5.4.1.4. Available policies

No policies are currently associated with this module.

5.4.1.5. C++ implementation

» Delimiting does not receive/emit any signals.

5.4.1.6. Limitations

« Delimiting expects that the recelved UserDataField are in order and compl ete.

» Delimiting does not control maxSDUsize on incoming data from N+1 DIF.

74

Deliverable-2.6: RINA simulator

5.4.1.7. Future work

1. To enable replaceable policies for incoming SDUs from N+1 DIF and User Data Fields
from EFCP.

5.4.2. Enrollment

The Enr ol | ment module controls initial communication (enrollment phase) between two
IPCP's. It contains functionality for | PCP address assignment.

*II EnrollmentModule
@ E’

enrollment enrollmentStateTable

Figure 45. Enrollment

5.4.2.1. Submodules

The Enrol | mrent modules consists of two submodules that provide the functionality and
maintains the state information during enrollment:

« enrol | nent —implementsthe core functionality;

e enrol |l nent St at eTabl e —maintains states of active flows;

5.4.2.2. Source codes

Relevant sources for this component are located in /src/DIF/Enrollment.

Filename(s) Description

EnrollmentModule.ned Enrollment compound module that is part of
every node

Enrollment.ned Enrollment core ssmple module

Enrollment.h/.cc Implementation of Enrollment core
functionality

75

Deliverable-2.6: RINA simulator

Filename(s) Description

EnrollmentBase.h/.cc Base class for general Enrollment
functionality intended for inheritance and
extensions

EnrollmentSateTable.ned State table simple module

EnrollmentStateTable.h/.cc Implementation of state table functionality

EnrollmentStateTableEntry.h/.cc Single record for state table, basically

destination APN as key and source APN,
CACE Connection status, Enrollment status

EnrollmentObj.h/.cc Implementation of Enrollment object
maintaining information exchanged during
enrollment phase

OperationObj.h/.cc Implementation of Enrollment object
maintaining information exchanged after
enrollment phase

EnrollmentListeners.h/.cc Enrollment listeners

EnrollmentNotifierBase.h/.cc Base class for general Enrollment Notifier
functionality intended for inheritance and
extensions

EnrollmentNotifier.h/.cc Implementation of Enrollment Notifier core

functionality

EnrollmentNotifier Listeners.h/.cc Enrollment Notifier listeners

5.4.2.3. NED design

» Enrollment and its submodules do not have any gates. They communicate using signals.

» Enrollment and its submodul es abstract data structures are configurable via config.xml file.
5.4.2.4. Available policies

No policies are currently associated with this module.
5.4.2.5. C++ implementation

* Registered signals that the Enrollment module and its submodules are emitting consist of
following:

76

Deliverable-2.6: RINA simulator

SI G_ENROLLMENT_CACEDat aSend

SI G_ENROLLMENT_Dat aSend

SI G_ENROLLMENT_St art Enr ol | nent Request
SI G_ ENROLLMENT_St art Enrol | nent Response
SI G_ENROLLMENT_St opEnr ol | ment Request

SI G_ENROLLMENT _St opEnr ol | nent Response
SI G_ENROLLMENT_St art Oper at i onRequest

SI G_ ENROLLMENT _St art Oper at i onResponse
SI G_ENROLLMENT_Fi ni shed

* Registered signals that the Enrollment and its submodules are receiving consists of
following:

SI G_FA _Mgnt FI owAl | ocat ed

SI G_RI BD_Start Enrol | ment Request

SIG RIBD Start Enrol | nrent Response

S| G_RI BD_St opEnr ol | nent Request

SI G_RI BD_St opEnr ol | nent Response

SI G_RI BD_Start Operati onRequest

SIG RIBD Start Operati onResponse

SI G_RI BD_Connect i onResponsePosi tive
SI G_RI BD_Connecti onResponseNegati ve
SI G_RI BD_Connect i onRequest

5.4.2.6. Limitations

» This module does not implemented deallocation functionality.

5.4.2.7. Future work

1. Module deallocation implementation should be provided.

2. Enrollment module does not send user specified data. For some scenarios, it would be useful
to have ability sending custom data from Enrollment module.

5.4.3. Error and Flow Control Compound module

The ef cp compound module handles data transfer and associated state vectors. It takes SDUs
from N+1 or CDAP message from RIB Daemon and creates complete PDUs.

TheError and Flow Control Protocol (EFCP) ismodel ed as one compound module. Thismodule
dynamically generates EFCP Instances. Dynamic modules consist of one Delimiting module

77

Deliverable-2.6: RINA simulator

and (possibly) multiple EFCPI modules per oneflow. The EFCPI moduleitself isacompound
module and contains static modules DTP and DTPSt at e , and if the flow (QoS requirements)
requires control, then there are DTCP and DTCPSt at e modules.

SimpleRelay.host1.ipcProcess1.efep

9 B &

efcp efcpTable mockEFCPI

=) e

delimiting_48600 efepi_ 39512

Figure 46. EFCP module with dynamically created Delimiting and EFCP instance modules

5.4.3.1. Submodules
The ef cp modules consists of three static submodules:

» ef cp —createsand deletes EFCP instances and Delimiting modules;
« ef cpTabl e —bindings between Delimiting and EFCPI (DTP and DTCP);
* nmockEFCPI —simplified EFCPI with DTP-like only capabilities;

Furthermore, it may consist of dynamically created pairs of Delimiting and EFCPI modules.

e delimting_<portld> —handlesfragmentation/concatenation

» efcpi _<cepl d> —handles datatransfer + control fuctions

5.4.3.2. Source codes

Relevant sources for this component are located in /src/DIF/EFCP.

Filename(s) Description

EFCPTable/ Implementation and .ned module definition
for EFCPTable

DTP/ All files related to DTP?

2 D26-RINASIM-DTP

78

D26-RINASim-DTP
D26-RINASim-DTP

Deliverable-2.6: RINA simulator

Filename(s) Description

DTCP/ All files related to DTCP?

EFCP_defs.h Definitions and constants related only to
EFCP.

EFCP.cc/h Implementaion of static EFCP modules
governing creation and deletion of dynamic
modules.

EFCPInstance.cc/h Couplestogether DTP and DTCP.

EFCPListeners.cc/h Implementation of EFCP s singnal listeners

EFCPPolicySet.cc/h Class defining set of EFCP policies for
QoSCube.

ManagementPDU.msg Message definition for Management PDUS.

MockEFCPI.cc/h Simplified EFCPI module for Management
PDUs.

MockEFCPI.ned Simplified EFCPI simple module.

5.4.3.3. NED design

» EFCP compound module utilizes these static gates.

ribd
nock ToRMI

Besides static gates, there are two dynamically created gates per every active flow.

northl o_<portld>
sout |l o_<cepl d>

Full data-path of interconnected gates for messages going through EFCP Compound module
then looks as follows:

northlo - towards ipc northlo
delimting_<portld> northlo_<portld>
delimting <portld>. southlo _<portld>
ef cpi _<cep>.northlo

3 D26-RINASIM-DTCP

79

D26-RINASIM-DTCP
D26-RINASIM-DTCP

Deliverable-2.6: RINA simulator

ef cpi _<cep>. sout hl o
southlo - towards RMI

» EFCP Compound module is not configurable via config.xml file.
5.4.3.4. Available policies

Policies related to EFCP are specified in DTP and DTCP subsections.
5.4.3.5. C++ implementation

* EFCP Compound module does not receive/lemit any signals. Usage of DIF Allocator
components is done via direct function calls.

5.4.3.6. Future work

1. To provide abetter visualisation of dynamically created modules.

5.4.4. EFCP Instance

An EFCP Instancelocally manages established flow. The ef cpi _<cepl d> module contains
DTP and DTPSt at e submodules. If QoSrequiresmore control ontheflow, e.g., reliabledata
delivery, thismodulealso contains DTCP and DTCPSt at e submodules. Also, any necessary
policy submodules associated with the flow are also part of this compound module.

SimpleRelay.host1.ipcProcess1.efcp.efepi_39512
@ @ @
initialSeqNumPolicy sendingAckPolicy txControlPolicy
@ @ @
ﬂ:;t:e;lN"mr 6 depState senderlnactivityPolicy lostControlPDUPolicy noRateSlowDownPolicy
rLWE:
maxSeqNumRcvd: 4 @ @ @
dtp reassemblyQ: empty rttEstimatorPolicy revrControlAckPolicy reconcileFCPolicy
droppedPDU: 0
rte:0.0191801 @ 5 @ 5 @ -
revrlnactivityPolicy senderAckPolicy @ rateReductionPolicy
_ @ @ @
:EVV:EEEJA revrFCPolicy sm‘iFd)\verrn||Pcnl$':|""r'tate rxTimerExpiryPolicy
SRWE: 14
dtep RxQ:5| revrAckPolicy revFcOverrunPolicy
rxSent: 0
closedWinQ: empty - . . .
dup Acks: 0 receivingFCPolicy noOverridePeakPolicy
southG

Figure47. EFCP Instance
5.4.4.1. Submodules

The EFCP Instance consists of the following submodules:

e dt p - Thismodule provides implementation of Data Transfer Protocol.

80

Deliverable-2.6: RINA simulator

e dtpState - Thismodule holds DTP related variables.
e dtcp - Thismodule providesimplementation of Data Transfer Control Protocol.
o dtcpState - Thismodule maintains DTCP related variables.

* <pol i cyNane>Pol i cy - Module that represents a specific policy. Currently there is
no such module.

nort hG, sout hG - Pass-through modules that serves for better link visualisation.

5.4.4.2. Source codes

The EFCP Instance module is a compound module and hence it does not have any
implementation.

Filename(s) Description

EFCPI.ned EFCPI module definition.

5.4.4.3. NED design

» Data-path of interconnected gates for messages going through EFCPI module:

ef cpi _<cepld>. northlo - towards delinmting

ef cpi _<cepld>. northG northlo

ef cpi _<cepl d>. nort hG sout hl o

ef cpi _<cepld>.dtp.northlo

ef cpi _<cepl d>. dt p. sout hl o

ef cpi _<cepl d>. southG northlo

ef cpi _<cepl d>. sout hG sout hl o

ef cpi _<cepld>. southlo - towards EFCP Conpound Mdul e southlo

e The submodules of EFCPI contains abstract data structures that are configurable via
config.xml file.

5.4.4.4. Available policies
No policies are currently associated with this module.

5.4.4.5. C++ Implementation

» EFCPI does not receive/emit any signals.

81

Deliverable-2.6: RINA simulator

5.4.5. DTP

The dt p module accepts user data content from the Delimiting module, generates PDUs, and
pass them to RMT. If necessary, it asks DTCP to perform Retransmission and Flow Control.
A-Time value can parametrize the current DTP implementation.

package rina.src.DIF.EFCP.DTP

+ +
% DTP
Figure 48. Data Transfer Protocol module
5.4.5.1. Submodules
The DTP module does not have any submodules.

5.4.5.2. Source codes

Component sources are located in /src/DIF/EFCP/DTP/. They consist of following files:

Filename(s) Description

DTP.ned DTP module

DTP.cc/h DTP functionality

DTPTimers.msg Timersrelated to DTP module

DataTransferPDU.msg Message definition for Data Transfer PDU

DataTransferPDU.cc/h Extended implementation of generated
Dat aTr ansf er PDU class

DumbGate.ned Dumb gate module

DumbGate.cc/h Implementation of a pass-through gate
module.

5.4.5.3. NED design

» Data-path of interconnected gates for messages going through EFCPI:

ef cpi _<cepl d>. northlo
northlo - towards EFCPI's northlo
southlo - towards EFCPlI's southlo

82

Deliverable-2.6: RINA simulator

ef cpi _<cepl d>. southlo

» DTP policies are configurable via config.xml file by specifying EFCP Policy Set in QoS
Cube. None of IRM submodul es has abstract data structures configurable viaconfig.xml file.

5.4.5.4. Available policies

The DTP module can be extended with the following policies:

I nitial SeqNunPol i cy - see subchapter 6.2.1%

Rcvrl nacti vityPolicy - seesubchapter 6.2.2°

Sender | nacti vi tyPol i cy - seesubchapter 6.2.3°

RTTEst i mat or Pol i cy - see subchapter 6.2.4"
5.4.5.5. C++ Implementation

* Registered signalsthat IRM module is emitting:

EFCP- St opSendi ng

EFCP- St art Sendi ng] (t ype=FI ow?) ;
DTP_RTT

DTP_CLOSED WN Q

e DTP handles direct API calls from DTPState and DTCP modules, mainly the ones that are
related to the actual sending of PDU.

5.4.5.6. Limitations

» The current implementation of DTP does not support partial delivery as this policy would
require full implementation of PDU serialization.

5.4.5.7. Future work

1. A proper place for RTTEstimator policy needs to be determined. DTP accepts this policy,
but the necessary information isin DTCP.

4 D26-RINASIm-Policies EFCP-Initial SequenceNumber
5 D26-RINASIm-Policies EFCP-RevrTimer| nactivity

6 p26-RINASI m-Policies-EFCP-SenderTimerlnactivity
7 D26-RINASIm-Policies-EFCP-RTTEstimator

83

D26-RINASim-Policies-EFCP-InitialSequenceNumber
D26-RINASim-Policies-EFCP-RcvrTimerInactivity
D26-RINASim-Policies-EFCP-SenderTimerInactivity
D26-RINASim-Policies-EFCP-RTTEstimator
D26-RINASim-Policies-EFCP-InitialSequenceNumber
D26-RINASim-Policies-EFCP-RcvrTimerInactivity
D26-RINASim-Policies-EFCP-SenderTimerInactivity
D26-RINASim-Policies-EFCP-RTTEstimator

Deliverable-2.6: RINA simulator

5.4.6. DTP State

The dt pSt at e (DTP-SV) holds properties related to the actual data transfer. In RINASIm,
the dt pSt at e module stores all necessary variables such as r cvLef t W ndowEdge and
next SegNumroSend plus queues for generated and postable PDUs and reassembly queue.

package rina.src.DIF.EFCP.DTP

='-|J DTPState

Figure 49. DTP State module

5.4.6.1. Submodules

The DTP module does not have any submodules.

5.4.6.2. Source codes

Component sources are located in /src/DIF/EFCP/DTP/. It consists of following files:

Filename(s) Description
DTPstate.ned DTP State ssmple module
DTPSate.cc/h DTP State implementation

5.4.6.3. NED design

» DTP State module does not have any gates.

» DTP State module is not configurable via config.xml file.
5.4.6.4. Available policies
The DTP State module does not have any policy.
5.4.6.5. C++ Implementation

» DTP State module does not emit any signals.

e DTP handlesdirect API callsfrom DTP, DTCP, and related policies.

Deliverable-2.6: RINA simulator

5.4.7. DTCP

The dt cp handles retransmission and flow control related tasks. From the perspective of
RINASIim, DTCPisamodulethat runspoliciesto updatethe dt cpSt at e . Policiesimplement
different reactions to a situation when error recovery and flow control is expected.

The current implementation supports retransmission, window-based flow control, allowed gap,
A-Time. Besides capabilities defined in specifications it supports following features:

» Rendezvous Mechanism - recovery mechanism for lost control information about opened
window

 ECN SlowDown - In cooperation with RA and RMT it may receive backward ECN
information from the relay node.

package rina.src.DIF.EFCP.DTCP

%J DTCP

Figure 50. Data Transfer Control Protocol module
5.4.7.1. Submodules
The DTCP module does not have any submodules.
5.4.7.2. Source codes

Component sources are located in /src/DIF/EFCP/DTCP/. It consists of following files:

Filename(s) Description

DTCP.ned DTCP module

DTCP.cc/h DTCP functionality
DTCPTimers.msg Timersrelated to DTCP module

ControlPDU.msg

Definition of Control PDUs used in Flow
Control, Retransmission, and Rendezvous
mechanism

5.4.7.3. NED design

» DTCP module does not have any gates.

85

Deliverable-2.6: RINA simulator

* DTCP moduleis not configurable via config.xml file.

5.4.7.4. Available policies

The DTCP module is associated with following policies:

* ECNPol i cy - see subchapter 6.2.5%

e ECNSI owDownPol i cy - subchapter 6.2.6°

« Lost Cont rol PDUPol i cy - see subchapter 6.2.7%°
* NoOverri dePeakPol i cy - seesubchapter 6.2.8%

* NoRat eS| owbDownPol i cy - see subchapter 6.2.9%

« Rat eReduct i onPol i cy - seesubchapter 6.2.10

* RcvFCOverrunPol i cy - seesubchapter 6.2.1114

* Rcvr AckPol i cy - seesubchapter 6.2.12%

* RcvrControl AckPol i cy - see subchapter 6.2.131°

* Rcvr FCPol i cy - seesubchapter 6.2.14%7

* Recei vi ngFCPol i cy - see subchapter 6.2.1518

 Reconci | eFCPol i cy] - seesubchapter 6.2.16%°

 RXTi mer Expi ryPol i cy] - seesubchapter 6.2.17%°
e Sender AckPol i cy] - seesubchapter 6.2.18%
e Sender AckLi st Pol i cy] - seesubchapter 6.2.19%

* Sendi ngAckPol i cy] - see subchapter 6.2.20%3

8 D26-RINASIm-Policies EFCP-ECN

9 D26-RINASIM-Policies-EFCP-ECNSlowDown

10 po6-RINASIM-Policies-EFCP-L ostControl PDU

11 po6-RINASIM-Policies- EFCP-NoOverrideDefaultPeak
12 h26-RINASIM-Policies-EFCP-NoRate-SlowDown

13 p26-RINASIM-Policies- EFCP-RateReduction

14 po6-RINASIm-Policies-EFCP-RevFlowControl Overrun
15 po6-RINASIM-Policies- EFCP-RevrAck

16 po6-RINASIM-Policies- EFCP-RevrControl Ack

17 po6-RINASIm-Policies-EFCP-RevrFlowControl

18 p26-RINASIm-Policies-EFCP-ReceivingFlowControl
19 p26-RINASIm-Policies-EFCP-ReconcileFl owConflict
20 p26-RINASIm-Policies EFCP-Retransmissi onTimerExpiry
21 p26-RINASIM-Policies EFCP-SenderAck

22 D26-RINASIM-Policies EFCP-SenderAckList

23 D26-RINASIM-Policies EFCP-SendingAck

86

D26-RINASim-Policies-EFCP-ECN
D26-RINASim-Policies-EFCP-ECNSlowDown
D26-RINASim-Policies-EFCP-LostControlPDU
D26-RINASim-Policies-EFCP-NoOverrideDefaultPeak
D26-RINASim-Policies-EFCP-NoRate-SlowDown
D26-RINASim-Policies-EFCP-RateReduction
D26-RINASim-Policies-EFCP-RcvFlowControlOverrun
D26-RINASim-Policies-EFCP-RcvrAck
D26-RINASim-Policies-EFCP-RcvrControlAck
D26-RINASim-Policies-EFCP-RcvrFlowControl
D26-RINASim-Policies-EFCP-ReceivingFlowControl
D26-RINASim-Policies-EFCP-ReconcileFlowConflict
D26-RINASim-Policies-EFCP-RetransmissionTimerExpiry
D26-RINASim-Policies-EFCP-SenderAck
D26-RINASim-Policies-EFCP-SenderAckList
D26-RINASim-Policies-EFCP-SendingAck
D26-RINASim-Policies-EFCP-ECN
D26-RINASim-Policies-EFCP-ECNSlowDown
D26-RINASim-Policies-EFCP-LostControlPDU
D26-RINASim-Policies-EFCP-NoOverrideDefaultPeak
D26-RINASim-Policies-EFCP-NoRate-SlowDown
D26-RINASim-Policies-EFCP-RateReduction
D26-RINASim-Policies-EFCP-RcvFlowControlOverrun
D26-RINASim-Policies-EFCP-RcvrAck
D26-RINASim-Policies-EFCP-RcvrControlAck
D26-RINASim-Policies-EFCP-RcvrFlowControl
D26-RINASim-Policies-EFCP-ReceivingFlowControl
D26-RINASim-Policies-EFCP-ReconcileFlowConflict
D26-RINASim-Policies-EFCP-RetransmissionTimerExpiry
D26-RINASim-Policies-EFCP-SenderAck
D26-RINASim-Policies-EFCP-SenderAckList
D26-RINASim-Policies-EFCP-SendingAck

Deliverable-2.6: RINA simulator

« SndFCOverrunPol i cy] - see subchapter 6.2.21%4

e TxControl Policy] - seesubchapter 6.2.22%°

5.4.7.5. C++ Implementation

* Registered signasthat DTCP module is emitting:
DTCP_RX_SENT

* DTCP handles direct API calls from DTCPState and DTP modules.
Future work

1. Finishing rate-based Flow Control
Back to table of contents?®
5.4.8. DTCP State

The dt cpSt at e (DTCP-SV) holds properties related to the control part of data transfer. In
RINASImM, the dt cpSt at e module stores the Retransmission queue and the Closed window
queue.

t## package rina.src.DIF.EFCP.DTCP

EJ DTCPState

Figure51. DTCP State module
5.4.8.1. Submodules
The DTCP module does not have any submodules.
5.4.8.2. Source codes
Component sources are located in /src/DIF/EFCP/DTCP/. It consists of following files:

24 b26-RINASIm-Policies-EFCP-SndFlowControl Overrun
25 D26-RINASIm-Policies-EFCP-TransmissionControl
26 D26-Table-of-Contents

87

D26-RINASim-Policies-EFCP-SndFlowControlOverrun
D26-RINASim-Policies-EFCP-TransmissionControl
D26-Table-of-Contents
D26-RINASim-Policies-EFCP-SndFlowControlOverrun
D26-RINASim-Policies-EFCP-TransmissionControl
D26-Table-of-Contents

Deliverable-2.6: RINA simulator

Filename(s) Description
DTCPstate.ned DTCP State simple module
DTCPSate.cc/h DTCP State implementation

5.4.8.3. NED design

» DTCP State module does not have any gates.

» DTCP State module is not configurable via config.xml file.
5.4.8.4. Available policies
The DTCP State module does not have any policy.

5.4.8.5. C++ Implementation

» DTCP State module does not emit any signals.
* DTCP handlesdirect API callsfrom DTCP and related policies.

5.4.9. Flow Allocator

The f1 owAl | ocat or module handles (de)allocation request and response calls from the
IRM, RIBDaemon, DAFEnrollment or AE.

[E FlowAllocator

records: 2 Scor;ﬁmpam
©
R
fa nFlowTable newFlowRequestPolicy
LimjtedRetries
E—
|

0{" allocateRetryPolicy
fai_32230_18983

fai_46884 14935

©)

qosComparerPolicy

Figure 52. Flow Allocator

5.4.9.1. Submodules

The f1 owAl | ocat or module consists of three submodules (and currently three supported
policy interfaces):

» fa —corefunctionality involving instantiation of FAIS;

88

Deliverable-2.6: RINA simulator

* nFl owTabl e —mapping between (N)-flow and bound FAI;

» fai _<portld>_<CEPi d> —managing awholeflow lifecycle.

5.4.9.2. Source codes

Component sources are located in /src/DIF/FA. It consists of following files:

Filename(s) Description

FA.h/.cc Implementation of FA core functionality

FABase.h/.cc Base class for general FA functionality
intended for inheritance and extensions

FAIl.h/.cc Connection Table implementation as atable
storing state of AP communication

FAIBase.h/.cc Base class for general FAI functionality
intended for inheritance and extensions

FAlListeners.h/cc FAI Listeners

FAListeners.h/cc FA listeners

FANotifier.h/.cc

FANotifierBase.h/.cc

NFlowTable.h/.cc

Implementation of FANGatifier core
functionality

Base class for general FANotifier
functionality intended for inheritance and
extensions

Interface for NFlowTable entries adding,
removing and lookups

NFlowTableEntry.h/.cc

Single Connection Table entry with all its
properties

FA.ned FA simple module
FAl.ned FA Instance ssmple module
FANotifier.ned FANOotifier instance for RIBd interaction

FlowAllocator.ned

NFlowTable.ned

Flow Allocator compound module holding
submodule

NFowTable ssmple module

5.4.9.3. NED design

* FAI and its submodules do not have any gates.

89

Deliverable-2.6: RINA simulator

» FAlsaredynamically created and deleted according to the flow lifecycle.

* None of FA submodules has abstract data structures configurable via config.xml file.

5.4.9.4. Available policies
Following three policies are associated with FA:

« alocateRetryPolicy - see subchapter 6.2.1%

« gosComparePolicy - see subchapter 6.2.228

» newFlowRequestPolicy - see subchapter 6.2.3%°

5.4.9.5. C++ Implementation

* Registered signals that the Flow Allocator and its submodules are emitting:

SI G_FA _Mgnt FI owAl | ocat ed

SI G FA Creat eFl owRequest Forwar d

SI G_FA Creat eFl onResponseNegati ve
SI G_FAI _Al | ocat eRequest

SI G_FAI _Deal | ocat eRequest

S| G_FAI _Deal | ocat eResponse

SI G FAI _Al |l ocat eResponsePositive
SI G FAI _All ocat eResponseNegati ve
SI G_FAI _Cr eat eFl owRequest

SI G_FAI _Del et eFl owRequest

SI G_FAI _Creat eFl owResponsePosi tive
SI G_FAI _Cr eat eFl owResponseNegati ve
SI G_FAI _Del et eFl owResponse

* Registered signals that the Flow Allocator and its submodules are receiving:

SI G FAI _All ocat eResponsePositive

SI G_RI BD_Cr eat eRequest Fl ow

SI G_ ENROLLMENT _Fi ni shed

SI G t oFAl _Al | ocat eRequest

SI G toFAl _Al | ocat eResponseNegati ve
SI G_AERI BD_Al | ocat eResponsePosi tive
SI G_RI BD_Cr eat eFl owResponsePosi tive

27 https:/iwiki ict-pristine.eu/wp2/d26/D26-RINASIm-Policies FA-AllocateRetry
28 https:/iwiki .ict-pristine.eu/wp2/d26/D26-RINASIm-Policies FA-Multilevel QoS
29 https:/iwiki ict-pristine.eu/wp2/d26/D26-RINASIm-Policies FA-NewFlowRequest

90

https://wiki.ict-pristine.eu/wp2/d26/D26-RINASim-Policies-FA-AllocateRetry
https://wiki.ict-pristine.eu/wp2/d26/D26-RINASim-Policies-FA-MultilevelQoS
https://wiki.ict-pristine.eu/wp2/d26/D26-RINASim-Policies-FA-NewFlowRequest
https://wiki.ict-pristine.eu/wp2/d26/D26-RINASim-Policies-FA-AllocateRetry
https://wiki.ict-pristine.eu/wp2/d26/D26-RINASim-Policies-FA-MultilevelQoS
https://wiki.ict-pristine.eu/wp2/d26/D26-RINASim-Policies-FA-NewFlowRequest

Deliverable-2.6: RINA simulator

SI G RI BD _Cr eat eFl owResponseNegati ve
SI G_RI BD _Del et eRequest Fl ow

SI G_RI BD Del et eResponseFl ow

SI G_RI BD_Cr eat eRequest Fl ow

5.4.9.6. Future work

1. Define interfaces for both FA, FANotifier, FAI;

5.4.10. Relaying and Multiplexing Task

The Relaying and Multiplexing Task represents a statel ess function that takes incoming PDUs
and relays them within current IPC or passes them to the outgoing port. In particular the RMT
takes PDUsfrom (N-1)-port ids, consults their address fields and performs one of the following
actions:

* If the address is not an address (or a synonym) for this IPC Process (which is determined
by RA’s AddressComparator policy), it consults the PDU Forwarding policy and postsit to
the appropriate (N-1)-port(s).

* If the address is one assigned to this IPC Process, the PDU is delivered either to the
appropriate EFCP flow or the RIB Daemon (viaamock EFCP instance).

» Outgoing PDUs from EFCP instances or the RIB Daemon are posted to the appropriate
(N-1)-port-id(s).

In RINASIm, al functionality of the RMT including a policy architecture is encompassed in a
single compound module named r el ayAndMux which is present in every 1PC process.

SimpleRelay.

T LongestQFirst DummyMonitor TailDrop. SimpleTable:SimpleTable
" @)

6]
it

ueuePolicy pduForwardingPolicy
allocator

interiorRouter.relaylpc.relayAndMux

oo : : dstApp:
1
@ 05-i @ QoS-ick 05-ic: QoS- ick
G

£
IT-QoSCube ;TL MGMT-QoSCube

Figure53. RMT
5.4.10.1. Submodules

rel ayAndMux consists of multiple simple modules of various types, some of which are
instantiated only dynamically at runtime.

Static modules;

91

Deliverable-2.6: RINA simulator

rm , the fundamental logic of Relaying And Multiplexing task that decides what should

be done with messages passing through the module.

e all ocator , a manager unit for dynamic modules that provides an APl for adding,
deleting and reconfiguring RMT ports and queues.

* schedul i ngPol i cy , the scheduler policy that isinvoked by eventsrelated to servicing

of 1/0 queues.

e queuelbni t or Pol i cy ,themonitor policy whichisinvoked by eventsrelated to queue

monitoring.

« maxQueuePol i cy , the policy used for deciding what to do when queue lengths are

overflowing their threshold lengths.

Dynamic modules:

pduFor war di ngPol i cy , the policy making the forwarding decisions

* RMTPort (encompassed in RMTPort\Wrapper), arepresentation of one endpoint of an (N-1)-

flow.

« RMTQueue, a representation of either an input or an output queue (the number of
RMTQueues per (N-1)-port is a matter of Resource Allocator policies).

5.4.10.2. Source codes

Component sources are located in /src/DIF/RMT. The folder consists of following files:

Filename(s) Description

RelayAndMux.ned RMT wrapper (compound module)
RMT.cc/h implementation of RMT

RMT.ned RMT simple module

RMTBase.cc/h abstract class for RMT implementation

RMTModuleAllocator.cc/h

implementation of RMTModuleAllocator

RMTModuleAllocator.ned

RMTModuleAllocator simple module

RMTListeners.cc/h signal listenersfor RMT

RMTPort.cc/h implementation of RM TPort

RMTPort.ned RMTPort simple module

RMTPort.ned a compound wrapper for RMTPort and its
RMTQueues

RMTQueue.cc/h implementation of RMTQueue

92

Deliverable-2.6: RINA simulator

Filename(s)

Description

RMTQueue.ned

RMTQueue simple module

5.4.10.3. NED design

Rel ayAndMux parameters:

Parameter

schedPolicyName

Description

module name of desired scheduling policy

gMonitor PolicyName

module name of desired monitor policy

maxQPolicyName

ForwardingPolicyName

module name of desired maxqueue policy

module name of desired PDU forwarding
policy

defaultMaxQLength default maximum queue size
defaultThreshQLength default threshold queue size
pduTracing aswitch for enabling PDU tracefile

generation

5.4.10.4. Available policies

The policies associated with this module are described in subchapter 6.

5.4.10.5. C++ Implementation

430,

* Registered signasthat the RMT module is emitting:

EFCP instance

RMT- NoConnl d by RMT on received PDU with CEP-id that doesn’t match any local

* RMI- QueuePDURcvd by aqueueon PDU arriva
* RMI- QueuePDUSent by aqueue on PDU departure

* RMT- Por t PDURcvd by aport on PDU arrival (coming from a queue)

* RMTI- Por t PDUSent by aport on PDU departure (leaving for an (N-1)-DIF)

* RMT- Port ReadyToSer ve by aport when it's ready to serve more PDUs

* RMT- Port ReadyFor Read by aport when it’s ready to provide more PDUs
 RMT- PassUp toindicate a PDU sent to the (N-1)-flow
* RMT- PassDown toindicate aPDU sent from the (N-1)-flow to the RMT

30 https://wiki ict-pristine.eu/wp2/d26/D26-RINASIm-Policies RMT

93

https://wiki.ict-pristine.eu/wp2/d26/D26-RINASim-Policies-RMT
https://wiki.ict-pristine.eu/wp2/d26/D26-RINASim-Policies-RMT

Deliverable-2.6: RINA simulator

5.4.11. Resource Allocator

The Resource Allocator is one of the most important components of an |PC Process. It monitors
the operation of the IPC Process and makes adjustments to its operation to keep it within
the specified operational range. Its forwarding and queueing functionality are customizable by
policies. In RINASIm, al the functionality of RA including the policies is encompassed in
a single compound module named r esour ceAl | ocat or which is present in every IPC
process.

SimpleRelay.interiorRouter.relaylpc.resourcefllocator

nmlFlowTable

StatchEnerator :StaticGenerator SmileIueue SnileID ExactMatch

pdqudGEnerator queuehllocPolicy queueldGenerator addressComparator

@aﬂ

Figure 54. Resour ce Allocator
5.4.11.1. Submodules
resour ceAl | ocat or consists of multiple simple modules of various types, namely:

* ra, the fundamental logic of Resource Allocator that manages the Relaying and
Multiplexing Task and connections to other IPC processes via (N-1)-flows.

nmlFl owTabl e, atable containing information about the active (N-1)-flows.

pduFwdGener at or (abbreviated PDUFG), a policy which, reacting to various events,
manages the RMT’s PDU Forwarding policy.

gueueAl | ocPol i cy , apolicy handling RMT queue allocation strategy.

gueuel dGener at or , apolicy generating queue I Ds from Flow information and PDUSs.

addr essConpar at or , a policy that determines whether a PDU address matches the
IPC process address.

5.4.11.2. Source codes

Component sources are located in /src/DIF/RA. The folder consists of following files:

Filename(s) Description

NM1FlowTable.cc/h implementation of (N-1)-flow table

94

Deliverable-2.6: RINA simulator

Filename(s)

Description

NM1FlowTable.ned
NM1FlowTableltem.cc/h

(N-1)-flow table ssmple module
implementation (N-1)-flow table entry

RA.cc implementation of RA

RA.ned RA simple module

RABase.cc/h abstract class for RA implementation
RAListeners.cc/h signal listenersfor RA

Resour ceAllocator.ned

RA wrapper (compound module)

5.4.11.3. NED design

ResourceAllocator parameters:

Parameter

pduftType

pdufgPolicyName

gueueAllocPolicyName

Description

module name of the desired PDU
Forwarding policy

module name of the desired PDUFG policy

module name of desired QueueAlloc policy

gueuel dGenName

module name of desired Queuel DGen policy

addr ComparatorName

module name of desired AddrComparator
policy

5.4.11.4. Available policies

The policies associated with this module are described in subchapter 6.5,

5.4.11.5. C++ Implementation

* Registered signals that the RA module is emitting:

RA- Cr eat eFl owPosi ti ve
RA- Cr eat eFl owmNegat i ve
RA- Execut eSl owdown

RA- | nvokeSI owdown

RA- Mgnt Fl owAl | ocat ed
RA- Mgmt FI owDeal | ocat ed

31 httpsi/iwiki.ict-pristine.eu/wp2/d26/D26-RINASIm-Policies RA

95

https://wiki.ict-pristine.eu/wp2/d26/D26-RINASim-Policies-RA
https://wiki.ict-pristine.eu/wp2/d26/D26-RINASim-Policies-RA

Deliverable-2.6: RINA simulator

5.4.12. RIB Daemon

The ri bDeanon is the IPCP's management heart. It receives/sends CDAP management
messages and notifies other submodules about management changes.

4 package rina.src. DIF.RIB

é RIEDaemon

faMotifier

I+ :

routingMotifier f
B =

enrollmentMotifier

commonDistributedpplicationProtocol

Figure 55. RIB Daemon
5.4.12.1. Submodules

RIBDaemon consists of three submodules:

* ribd — core functionality mainly listening to calls from other DIF components and
notifying them upon CDAP message reception;

e commonDi stri but edAppl i cati onProt ocol - same submodule as in case of
DAF components description;

* ribdSplitter - gplitter is delegating CDAP management messages to/from the
nock EFCPI or appropriate EFCPIs. Currently, it is just a placeholder forwarding
messages between gates.

Other three submodules (faNotifier, routi ngNotifier,
enrol | ment Not i fi er)arenctifiersthat contain listenersand delegates callsto other IPCP
components in case of sending/receiving event to/by RIBd.

96

Deliverable-2.6: RINA simulator

5.4.12.2. Source codes

Component sources are located in /src/DIF/RIBD. It consists of following files:

Filename(s) Description
RIBd.h/.cc Implementation of RIBd core functionality
RIBdBase.h/.cc Base class for general RIBd functionality

intended for inheritance and extensions

RIBdListeners.h/cc
RIBdSplitter.h/cc

RIBd listeners
RIBd listeners

RIBd.ned RIBd processing CDAP messages and
delegating them to RA and FA/FAIs

RIBdSplitter.ned RIBdSplitter simple module forwarding
messages

RIBDaemon.ned Compound module holding all RIBd

functionality submodules

5.4.12.3. NED design

* RIBd simulation module design is similar to AE.

» Gates utilized by this submodule:

commonDi stri but edAppl i cati onProtocol . southlo

ribdSplitter.cdaplo
ribdSplitter.rntlo
ri bDaemon.rntlo
ribdSplitter.efcplo
ri bDaenon. ef cpl o;

* None of RIBd submodules has abstract data structures configurable via config.xml file.

5.4.12.4. Available policies

No policies are currently associated with this module.

5.4.12.5. C++ Implementation

» Registered signals that RIBd module is emitting:

97

Deliverable-2.6: RINA simulator

SI G_RI BD_Dat aSend
SI G RI BD _CongestionNotification

* Registered signals that RIBd module is receiving:

SI G_CDAP_Dat eRecei ve
SI G_RA | nvokeSl owdown

* Registered signalsthat Notifiers are emitting:

SI G RI BD _Cr eat eRequest Fl ow

SI G_RI BD _Del et eRequest FI ow

SI G_RI BD _Del et eResponseFl ow

SI G_AERI BD Al | ocat eResponsePosi tive
SI G_AERI BD_Al | ocat eResponseNegati ve
SI G_RI BD _Creat eFl ow

SI G_RI BD_Cr eat eFl owResponsePosi tive
SI G_RI BD_Cr eat eFl ownResponseNegati ve

SIG RIBD _Start Enrol | nent Request

SI G RIBD Start Enrol | nent Response

SI G_RI BD_St opEnr ol | nent Request

SI G_RI BD_St opEnr ol | nent Response

SI G RIBD St art Oper ati onRequest

SI G RIBD Start Operati onResponse

SI G_RI BD_Connecti onResponsePosi tive
SI G_RI BD _Connecti onResponseNegati ve
SI G_RI BD _Connecti onRequest

SI G_RI BD_CACESend

SI G_RI BD_Rout i ngUpdat eRecei ved

* Registered signalsthat Notifiers are receiving:

SI G_FA Creat eFl owRequest Forwar d

SI G_FAI _Creat eFl owRequest

SI G_FAI _Del et eFl owRequest

SI G_FAI _Del et eFl owResponse

SI G_FA Creat eFl owResponseNegati ve
SI G_FAI _Cr eat eFl owResponseNegati ve
SI G_FAI _Creat eFl owResponsePosi tive
SI G_FA_Cr eat eFl owResponseFor war d

98

Deliverable-2.6: RINA simulator

SI G RA CreateFl owPositive
SI G RA Creat eFl owNegati ve
SI G_FAI _Al | ocat eRequest

SI G_CACE Dat aRecei ve

S| G_ENROLLMENT_CACEDat aSend

SI G_ENROLLMENT_St art Enr ol | nent Request
SI G_ENROLLMENT_St ar t Enr ol | rent Response
SI G_ENROLLMENT_St opEnr ol | ment Request

SI G_ENROLLMENT_St opEnr ol | nent Response
SI G_ENROLLMENT_St art Oper at i onRequest

SI G_ENROLLMENT_St art Oper at i onResponse

SI G_RI BD_Rout i ngUpdat e

5.4.12.6. Future work

1. Probably remove RIBd splitter.

5.4.13. Routing

The Routing moduleisapolicy that servesfor exchanging information with other IPC Processes

in the DIF in order to generate a set of routing information. It indirectly provides input for

populating the RMT PDU Forwarding policy.

B} package rina.src.DIF.Routing

IntRouting (interface)

Figure 56. Routing

5.4.13.1. Submodules

None (thisis a simple module interface).

5.4.13.2. Source codes

The source codesfor each variation of the Routing policy areavailablein/policies/DIF/Routing.

5.4.13.3. NED design

Policy-specific.

99

Deliverable-2.6: RINA simulator

5.4.13.4. Avalilable policies
Routing as awhole isapolicy by itself, and there aren’t any additional policies to specify.
5.4.13.5. C++ Implementation

Policy-specific.

100

Deliverable-2.6: RINA simulator

6. Policies

RINA specifications present the proposed network architecture as a generic framework, where
mechanisms are intended to perform basic common functionality and policies are defined to
select the most appropriate implementation of variable functionality. Rather than providing
an exhaustive implementation of policies for each parameterized function, RINASIm provides
interfaces that are used by the core implementation to call functions defined by the selected
policies.

The RINASIm policy framework is based on OMNeT NED module interfaces, which helps to
minimize the need for modifying existing C/NED source codes. Instead of placing a smple
module with a policy implementation inside the simulation network graph, a placeholder
interface module is used. This design allows the potentially unlimited amount of user policy
implementations to be defined and easily switchable via the configuration files (by setting
a proper parameter of the encompassing module). Each policy consists of an NED module
interface and a base C++ class.

6.1. Used Template
Each atomic RINA component is described using the following set of information:

1. Narrative description when isthe policy triggered
2. Existing variants of policy with their brief description

3. Relevant source files containing code of the policy implementation

6.2. Flow Allocator policies
This subchapter discusses the Flow Allocator policies currently supported by RINASIm.

6.2.1. AllocateRetry

AllocateRetry occurs whenever initiating FAI receives negative create flow response. This
policy allows FAI to reformulate the request and/or to recover properly from failure.

6.2.1.1. Variants

¢ Base - Allows unlimited number of retries.

» LimitedRetries- Allows retry attempt until maxCr eat eFl owRet ri es limit isreached.

101

Deliverable-2.6: RINA simulator

6.2.1.2. Source codes

Policy source codes are located in /policies/DIF/FA/AllocateRetry and they contain following
files:

Filename(s) Description

| AllocateRetry.ned NED interface module
AllocateRetryBase.h/.cc Base class for general functionality
LimitedRetries/LimitedRetries.h/cc LimitedRetries version core functionality
LimitedRetries/LimitedRetries.ned AllocateRetry interface implementation

6.2.2. MultilevelQoS

isValid is invoked during N flow allocation. This policy task consist in check if existing N-1
flows can be used to support an N flow. setRequirementsisinvoked during N flow allocation if
no current flow can be used. This policy task consist set the requirements needed for new N-1
flow to support the new N flow.

6.2.2.1. Variants

* QoS dComparer - Only flows with the same QoSId are valid for mapping N to N-1 flows.
N flows request same QoS Cube or better to N-1.

e QoSMinComparer - Maps N flow to N-1 flows that satisfies N QoS Cube in k equal QoS
Cube hops.

6.2.2.2. Source codes

Policy source codes are located in /policies/DIF/FA/Multilevel QoS and they contain following
files:

Filename(s) Description
| AMultilevel QoS.ned NED interface module
Multilevel QoS.h/.cc Base class for general functionality

QoS dComparerversion /QoS dComparer.n/ QoSldComparerversion core functionality
cc

QoS dComparerversion / NewFlowRequest interface implementation
QoS dComparer.ned

102

Deliverable-2.6: RINA simulator

Filename(s) Description

QoSMinComparer/QoSMinComparer.h/cc ~ QoSMinComparerversion core functionality

QoSMinCompar er/QoSMinComparer.ned QoSMinComparerinterface implementation

6.2.3. NewFlowRequest

NewFlowRequst isinvoked after FAI’ sinstantiation. Policy subtasksinvolve both 1) evaluation
of access control rights; and 2) translation of QoS requirements specified in allocate request to
appropriate RA’s QoS-cubes.

6.2.3.1. Variants

» Base - Implicitly accepts any new flow.
* MinComparer - The first QoSCube meeting ALL QoS requirements is chosen.

e ScoreComparer - Mapped QoSCube is chosen based on computed score. The score is
incremented for each QoSCube parameter meeting QoS requirement. Otherwise, the score
Is decremented.

6.2.3.2. Source codes

Policy source codes are located in /policies/DIF/FA/NewFlowRequest and they contain
following files:

Filename(s) Description

I NewFlowRequest.ned NED interface module
NewFlowRequestBase.h/.cc Base class for general functionality
MinComparer/MinComparer.h/cc MinComparer version core functionality
MinComparer/MinComparer.ned NewFlowRequest interface implementation
ScoreComparer/ScoreComparer.h/cc ScoreComparer version core functionality
ScoreComparer/ScoreCompar er.ned NewFlowRequest interface implementation

6.3. EFCP policies

This subchapter discusses EFCP policies. Policies are further structured into two subsections:
DTP and DTCP. All DTP and DTCP policies share the same base class EFCPPol i cy that
provides acommon interface-like approach to their invocation. Upon invocation, each policy is

103

Deliverable-2.6: RINA simulator

providedwith DTPSt at e and DTCPSt at e objects. Each * Base policy classimplementsthe
default action that is executed if the specified policy returns t r ue or if no policy is specified.

As an example, al default actions are also created as a standalone policy with name
<pol i cyName>Pol i cyDef aul t which directly executes parent def aul t Acti on
method and then returns f al se to prevent calling the default action again. Among all known
policies from specification belong:

DTP:

* Initial SeqNunPol i cy32 - Thispolicy allows some discretion in selecting theinitial
sequence number when DRF is going to be sent.

Rcvrl nactivityPolicy 33 _If no PDUs arrive in this period, the receiver should
expect aDRF in the next Transfer PDU. If not, something isvery wrong. It should generally
be set to 2(MPL+R+A).

e Senderl nacti vityPol i cy34 - Thispolicy isused to detect long periods of no traffic,
indicating that a DRF should be sent. If not, something is very wrong. It should generally
be set to 3(MPL+R+A).

e DTPRTTEst i mat or Pol i cy 35 _ This policy is executed by the sender to estimate the
duration of the retransmission timer. This policy will be based on an estimate of round-trip
time and the Ack or Ack List policy in use.

* UnknownFl ow - When aPDU arrives for a Data Transfer Flow terminating in this IPC-
Processand thereisno active DTSV, thispolicy consultsthe ResourceAllocator to determine
what to do.

DTCP:

« ECNPol i cy 36 _ This policy isinvoked upon receiving PDU with ECN set in the header.

* ECNSI owDownPol i cy37 - This policy is invoked upon RA receives the SlowDown
request from relaying node.

e Lost Cont r ol PDUPol i cy38 - Thispolicy determines what action to take when the PM
detects that a control PDU (Ack or Flow Control) may have been lost. If this procedure

32 p26-RINASIm-Policies EFCP-Initial SequenceNumber
33 p26-RINASIm-Policies EFCP-Revr Timerl nactivity

34 D26-RINASIm-Policies EFCP-Sender Timerinactivity
35 p26-RINASIM-Policies EFCP-RTTEstimator

36 p26-RINASIM-Policies EFCP-ECN

37 p26-RINASIm-Policies EFCP-ECNSlowDown

38 p26-RINASIm-Policies EFCP-LostControl PDU

104

D26-RINASim-Policies-EFCP-InitialSequenceNumber
D26-RINASim-Policies-EFCP-RcvrTimerInactivity
D26-RINASim-Policies-EFCP-SenderTimerInactivity
D26-RINASim-Policies-EFCP-RTTEstimator
D26-RINASim-Policies-EFCP-ECN
D26-RINASim-Policies-EFCP-ECNSlowDown
D26-RINASim-Policies-EFCP-LostControlPDU
D26-RINASim-Policies-EFCP-InitialSequenceNumber
D26-RINASim-Policies-EFCP-RcvrTimerInactivity
D26-RINASim-Policies-EFCP-SenderTimerInactivity
D26-RINASim-Policies-EFCP-RTTEstimator
D26-RINASim-Policies-EFCP-ECN
D26-RINASim-Policies-EFCP-ECNSlowDown
D26-RINASim-Policies-EFCP-LostControlPDU

Deliverable-2.6: RINA simulator

returns True, then the PM will send a Control-Ack and an empty Transfer PDU. If it returns
False, then any action is determined by the policy.

NoOver ri dePeakPol i cy* - This policy allows rate-based flow control to exceed its
nominal rate. Presumably this would be for short periods, and policies should enforce this.
Likeal policies, if this returns True it creates the default action that is no override.

NoRat eSl owDownPol i cy#° - This policy is used to lower momentarily the send rate
below the rate allowed.

Rat eReduct i onPol i cy41 - This policy is executed in case of Rate-based Flow
Control and if a condition of local shortage of buffers occurs or when the condition is
opposite and buffers are less full than a given threshold so that rate can be increased to the
rate agreed during the connection establishment.

RcvFCOver runPol i cy42 - This policy determines what action to take if the receiver
receives PDUS, but the credit or rate has been exceeded. If this procedure returns True, then
the PDU is discarded; otherwise PDU processing is allowed to continue normally.

Rcvr AckPol i cy43 - This policy is executed by the receiver of the PDU and provides
some discretion in the action taken. The default action is to either Ack immediately or to
start the A-Timer and Ack the LeftWindowEdge when it expires.

Rcvr Cont r ol AckPol i cy44 - This policy is executed by the receiver of Control-Ack
PDU. Its purposeisto recover faster from PM inconsistency.

Revr FCPol i cy® - Thispolicy isinvoked when a Transfer PDU is received to give the
receiving PM an opportunity to update the flow control allocations.

Recei vi ngFCPol i cy46 - This policy isinvoked by the receiver of PDU in case there
is a Flow Control present, but no Retransmission Control. The default action is to send
FlowControl PDU.

Reconci | eFCPol i cy47 - Thispolicy isinvoked when both Credit and Rate-based flow
control arein use, and they disagree on whether the PM can send or receive data. If it returns
True, then the PM can send or receive; if False, it cannot.

39 p26-RINASIm-Policies EFCP-NoOverrideDefaultPeak
40 p26-RINASIm-Policies EFCP-NoRate-SlowDown

41 p26-RINASIM-Policies EFCP-RateReduction

42 p26-RINASIm-Policies EFCP-RevFlowControl Overrun
43 D26-RINASIim-PoliciessEFCP-RcvrAck

44 D26-RINA Sim-Policies-EFCP-RcvrControl Ack

45 D26-RINASIm-Policies EFCP-RevrFlowControl

46 b26-RINASIm-Policies EFCP-ReceivingFlowControl
47 p26-RINASIm-Policies EFCP-ReconcileFlowConflict

105

D26-RINASim-Policies-EFCP-NoOverrideDefaultPeak
D26-RINASim-Policies-EFCP-NoRate-SlowDown
D26-RINASim-Policies-EFCP-RateReduction
D26-RINASim-Policies-EFCP-RcvFlowControlOverrun
D26-RINASim-Policies-EFCP-RcvrAck
D26-RINASim-Policies-EFCP-RcvrControlAck
D26-RINASim-Policies-EFCP-RcvrFlowControl
D26-RINASim-Policies-EFCP-ReceivingFlowControl
D26-RINASim-Policies-EFCP-ReconcileFlowConflict
D26-RINASim-Policies-EFCP-NoOverrideDefaultPeak
D26-RINASim-Policies-EFCP-NoRate-SlowDown
D26-RINASim-Policies-EFCP-RateReduction
D26-RINASim-Policies-EFCP-RcvFlowControlOverrun
D26-RINASim-Policies-EFCP-RcvrAck
D26-RINASim-Policies-EFCP-RcvrControlAck
D26-RINASim-Policies-EFCP-RcvrFlowControl
D26-RINASim-Policies-EFCP-ReceivingFlowControl
D26-RINASim-Policies-EFCP-ReconcileFlowConflict

Deliverable-2.6: RINA simulator

RxTi mer Expi ryPol i cy®® - This policy is executed by the sender when a
Retransmission Timer Expires. If this policy returns True, then all PDUs with the sequence
number less than or equal to the sequence number of the PDU associated with this timeout
are retransmitted; otherwise the procedure must determine what action to take. This policy
must be executed in less than the maximum time to Ack.

« Sender AckPol i cy® - This policy is executed by the Sender and provides the Sender
with some discretion on when PDUs may be deleted from the ReTransmissionQ. This is
useful for multicast and similar situations where one might want to delay discarding PDUs
from the retransmission queue.

e Sender AckLi st Pol i cy %0 _ This policy is executed by the Sender and provides the
Sender with somediscretion on when PDUsmay be del eted from the ReTransmissionQ. This
policy isused in conjunction with the sel ective acknowledgement aspects of the mechanism.
Thisisuseful for multicast and similar situations where one might want to delay discarding
PDUs from the retransmission queue.

* Sendi ngAckPol i cy51 - Thispolicy is executed upon A-Timer expiration in case there
is DTCP present. The default action is to update Receiver Left Window Edge, invoke
delimiting and to send Ack/FlowControl PDU.

« SndFCOver r unPol i cy ®? - This policy determines what action to take if the receiver
receives PDUS, but the credit or rate has been exceeded. If this procedure returns True, then
the PDU is discarded; otherwise PDU processing is alowed to continue normally.

TxControl Pol i cy 5 _ This policy is used when there are conditions that warrant
sending fewer PDUsthan allowed by the sliding window flow control, e.g. the ECN bit isset.

From all of the mentioned policies, RINASIm does not support only UnknownFl ow policy,
but it performsits default action i.e. deletesincoming PDU that does not belong to any known
flow.

6.3.1. DTP: InitialSequenceNumber

Initial SegNum policy allows somediscretionin selecting theinitial sequence number when DRF
is going to be sent.

48 D26-RINASIm-Policies EFCP-RetransmissionTi merExpiry
49 D26-RINASIm-Policies EFCP-SenderAck

50 p26-RINASIM-Policies EFCP-SenderAckList

51 p26-RINASIM-Policies EFCP-SendingAck

52 p26-RINASIm-Policies EFCP-SndFlowControl Overrun

53 p26-RINASIm-Policies EFCP-TransmissionControl

106

D26-RINASim-Policies-EFCP-RetransmissionTimerExpiry
D26-RINASim-Policies-EFCP-SenderAck
D26-RINASim-Policies-EFCP-SenderAckList
D26-RINASim-Policies-EFCP-SendingAck
D26-RINASim-Policies-EFCP-SndFlowControlOverrun
D26-RINASim-Policies-EFCP-TransmissionControl
D26-RINASim-Policies-EFCP-RetransmissionTimerExpiry
D26-RINASim-Policies-EFCP-SenderAck
D26-RINASim-Policies-EFCP-SenderAckList
D26-RINASim-Policies-EFCP-SendingAck
D26-RINASim-Policies-EFCP-SndFlowControlOverrun
D26-RINASim-Policies-EFCP-TransmissionControl

Deliverable-2.6: RINA simulator

6.3.1.1. Variants
» Default - Default actions set the new seq num to 1.

6.3.1.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTP/Initial SegNum and they contain
following files:

Filename(s) Description

IntInitial SegNumPolicy.ned NED interface module

Initial SegNumPolicyBase.h/.cc Base class for general functionality
Initial SsgqNumPolicyDefault/ Simple module

Initial SsgqNumPolicyDefault.ned

I nitial SegNumPolicyDefault/ Policy invoking only default action
Initial SegNumPolicyDefault.h/.cc

6.3.2. DTP: RTTEstimator

RTTEstimator policy is executed by the sender to estimate the duration of the retransmission
timer. Thispolicy will be based on an estimate of round-trip time and the Ack or Ack List policy
in use.

6.3.2.1. Variants

» Default - Computes Round trip time only as an average from current and the last computed
RTT.

6.3.2.2. Source codes

Policy source codes are located in /policies/ DIF/EFCP/DTP/RTTEstimator and they contain
following files:

Filename(s) Description

IntRTTESstimator Policy.ned NED interface module
RTTESstimator PolicyBase.h/.cc Base class for general functionality
RTTEstimator PolicyDefault/ Simple module

RTTEstimator PolicyDefault.ned

RTTEstimator PolicyDefault/ Base class for general functionality
RTTEstimator PolicyDefault.h/.cc

107

Deliverable-2.6: RINA simulator

6.3.3. DTP: RcvrTimerlnactivity

Revr Timer Inactivity policy is used when DTCPisin use. If no PDUs arrive in this period, the
receiver should expect a DRF in the next Transfer PDU. If not, something is very wrong. It
should be set to 2(MPL+R+A).

6.3.3.1. Variants
e Default - Resets all receiver-side variables and queues.

6.3.3.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTP/Revr TimerInactivity and they
contain following files:

Filename(s) Description

IntRevr Timer I nactivityPolicy.ned NED interface module

IntRevr Timer InactivityPolicyBase.h/.cc Base class for general functionality
Revr Timer I nactivityPolicyDefault/ Simple module

Revr Timer I nactivityPolicyDefault.ned

Revr Timer | nactivityPolicyDefault/ Policy invoking only default action
Revr Timer I nactivityPolicyDefault.h/.cc

6.3.4. DTP: SenderlnactivityTimer

SenderInactivityTimer policy is used when DTCP isin use. This timer is used to detect long
periods of no traffic, indicating that a DRF should be sent. If not, something is very wrong. It
should be set to 3(MPL+R+A).

6.3.4.1. Variants
» Default - Resets all sender-side variables and queues.

6.3.4.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTP/SenderInactivityTimer and they
contain following files:

Filename(s) Description
IntSender I nactivityTimer Policy.ned NED interface module
SendernactivityTimer PolicyBase.h/.cc Base class for general functionality

108

Deliverable-2.6: RINA simulator

Filename(s) Description

Sender I nactivityTimer PolicyDefaul t/ Simple module
Sender I nactivityTimer PolicyDefault.ned

Sender I nactivityTimer PolicyDefaul t/ Policy invoking only default action
SendernactivityTimer PolicyDefault.h/.cc

6.3.5. DTCP: ECN

ECN policy handles ECN bit in incoming DT-PDUSs.

6.3.5.1. Variants

» Default - Setsinner variable based on bit in DT-PDU header.

6.3.5.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/ECN and they contain following
files:

Filename(s) Description
IntECNPolicy.ned NED interface module
ECNPolicyBase.h/.cc Base class for general functionality

ECNPolicyDefault/ECNPolicyDefault.ned Simple module
ECNPolicyDefault/ECNPolicyDefault.h/.cc Policy invoking only default action

6.3.6. DTCP: ECNSlowDown

ECNSowDown policy is executed upon IPCP’ s RA receives Congestion Notification.
6.3.6.1. Variants
» Default - Default action is empty.

6.3.6.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/ECNS owDown and they contain
following files:

Filename(s) Description

IntECNlowDownPolicy.ned NED interface module

109

Deliverable-2.6: RINA simulator

Filename(s) Description
ECNIowDownPolicyBase.h/.cc Base class for general functionality
ECNIowDownPolicyDefault/ Simple module

ECNIowDownPolicyDefault.ned

ECNIowDownPolicyDefault/ Policy invoking only default action
ECNIowDownPolicyDefault.h/.cc

6.3.7. DTCP: LostControlPDU

LostControlPDU policy determineswhat action to take when the PM detectsthat a control PDU
(Ack or Flow Control) may have been lost. If this procedure returns True, then the PM will send
a Control-Ack and an empty Transfer PDU. If it returns False, then any action is determined
by the policy.

6.3.7.1. Variants
» Default - Sends ControlAck and empty DT-PDU.

6.3.7.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/LostControlPDU and they
contain following files:

Filename(s) Description
IntLostControlPDUPolicy.ned NED interface module
LostControlPDUPolicyBase.h/.cc Base class for general functionality
LostControlPDUPolicyDefault/ Simple module

LostControlPDUPolicyDefault.ned

LostControlPDUPolicyDefault/ Policy invoking only default action
LostControlPDUPalicyDefault.h/.cc

6.3.8. DTCP: NoOverridePeak

NoOverridePeak policy allows rate-based flow control to exceed its nominal rate. Presumably
thiswould be for short periods, and policies should enforce this. Like all policies, if thisreturns
Trueit creates the default action that is no override.

6.3.8.1. Variants

e Default - Puts DT-PDU on ClosedWindowQ.

110

Deliverable-2.6: RINA simulator

6.3.8.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/NoOverridePeak and they
contain following files:

Filename(s) Description

IntNoOver ridePeakPolicy.ned NED interface module
NoOverridePeakPolicyBase.h/.cc Base class for general functionality
NoOverridePeakPolicyDefault/ Simple module

NoOverridePeakPolicyDefault.ned

NoOverridePeakPolicyDefault/ Policy invoking only default action
NoOverridePeakPolicyDefault.h/.cc

6.3.9. DTCP: NoRateSlowDown

NoRate-SowDown policy is used to lower momentarily the send rate below the rate allowed.
6.3.9.1. Variants
» Default - Default action does not slow down.

6.3.9.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/NoRateSowDown and they
contain following files:

Filename(s) Description

IntNoRateS owDownPolicy.ned NED interface module

NoRateS owDownPolicyBase.h/.cc Base class for general functionality
NoRateS owDownPolicyDefault/ Simple module

NoRateS owDownPolicyDefault.ned

NoRateS owDownPolicyDefault/ Policy invoking only default action
NoRateS owDownPolicyDefault.h/.cc

6.3.10. DTCP: RateReduction

RateReduction policy is executed in case of Rate-based Flow Control and if a condition of local
shortage of buffers occurs or when the condition isopposite and buffersarelessfull than agiven
threshold so that rate can be increased to the rate agreed during the connection establishment.

111

Deliverable-2.6: RINA simulator

6.3.10.1. Variants
» Default - Slow down 10% if buffers are getting low.

6.3.10.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/RateReduction and they contain
following files:

Filename(s) Description
IntRateReductionPolicy.ned NED interface module
RateReductionPolicyBase.h/.cc Base class for general functionality
RateReductionPolicyDefault/ Simple module

RateReductionPolicyDefault.ned

RateReductionPolicyDefault/ Policy invoking only default action
RateReductionPolicyDefault.h/.cc

6.3.11. DTCP: RcvFlowControlOverrun

RecvFlowControlOverrun This policy determines what action to take if the receiver receives
PDUs, but the credit or rate has been exceeded. If this procedure returns True, then the PDU is
discarded; otherwise PDU processing is allowed to continue normally.

6.3.11.1. Variants
» Default - Default action isto drop the PDU and to send control PDU.

6.3.11.2. Source codes

Policy source codes arelocated in /policies/DIF/EFCP/DTCP/RcvFCOverrun and they contain
following files:

Filename(s) Description
IntRcvFCOverrunPolicy.ned NED interface module
RcvFCOverrunPolicyBase.h/.cc Base class for general functionality
RcvFCOverrunPolicyDefault/ Simple module

RcvFCOverrunPolicyDefault.ned

RcvFCOverrunPolicyDefault/ Policy invoking only default action
RcvFCOverrunPolicyDefault.h/.cc

112

Deliverable-2.6: RINA simulator

6.3.12. DTCP: RcvrAck

Revr Ack policy is executed by the receiver of the DT-PDU and provides some discretion in the
action taken. The default action isto either Ack immediately or to start the A-Timer and Ack
the RevL eftWindowEdge when it expires.

6.3.12.1. Variants
o Default - Sends Ack.

6.3.12.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/RcvrAck and they contain
following files:

Filename(s) Description

IntRcvr AckPolicy.ned NED interface module

Revr AckPolicyBase.h/.cc Base class for general functionality
Revr AckPolicyDefault/ Simple module

Revr AckPolicyDefault.ned

Revr AckPolicyDefault/ Policy invoking only default action
Revr AckPolicyDefault.h/.cc

6.3.13. DTCP: RcvrControlACK

Revr Control Ack policy is executed upon reception of ControlAck PDU.
6.3.13.1. Variants

» Default - Default action isto check the values and if necessary send back Control PDU with
updated information.

6.3.13.2. Source codes

Policy source codesarelocated in/policies/DIF/EFCP/DTCP/Rcvr Control Ack and they contain
following files:

Filename(s) Description

IntRcvr Control AckPolicy.ned NED interface module

113

Deliverable-2.6: RINA simulator

Filename(s) Description
Revr Control AckPolicyBase.h/.cc Base class for general functionality
Revr Control AckPolicyDefault/ Simple module

Revr Control AckPolicyDefault.ned

Revr Control AckPolicyDefault/ Policy invoking only default action
Revr Control AckPolicyDefault.h/.cc

6.3.14. DTCP: RcvrFlowControl

RevrFlowControl policy isinvoked when a Transfer PDU isreceived to give the receiving PM
an opportunity to update the flow control allocations.

6.3.14.1. Variants
¢ Default - Increment RRWE.

6.3.14.2. Source codes

Policy source codes are located in /policiesDIF/EFCP/DTCP/RcvrFC and they contain
following files:

Filename(s) Description
RevrFlowControl.ned NED interface module

IntRcvr FCPolicy.ned NED interface module

Revr FCIPolicyBase.h/.cc Base class for general functionality
Revr FCPolicyDefault/ Simple module

Revr FCPolicyDefault.ned

Revr FCPolicyDefault/ Policy invoking only default action
Revr FCPolicyDefault.h/.cc

6.3.15. DTCP: ReceivingFlowControl

ReceivingFlowControl policy is invoked by the receiver of a DataTransferPDU in case there
is a Flow Control present, but no Retransmission Control. The default action is to send
FlowControlPDU.

6.3.15.1. Variants

o Default - Send Control PDU with Flow Control Informations.

114

Deliverable-2.6: RINA simulator

6.3.15.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/ReceivingFC and they contain

following files:

Filename(s)

Description

ReceivingFC.ned
IntReceivingFCPolicy.ned

NED interface module

NED interface module

ReceivingFCPolicyBase.h/.cc

Base class for general functionality

ReceivingFCPolicyDefault/
ReceivingFCPolicyDefault.ned

ReceivingFCPolicyDefault/
ReceivingFCPolicyDefault.h/.cc

Simple module

Policy invoking only default action

6.3.16. DTCP: ReconcileFlowConflict

ReconcileFlowConflict policy is invoked when both Credit and Rate-based flow control are in
use, and they disagree on whether the PM can send or receive data. If it returns True, then the

PM can send or receive; if False, it cannot.

6.3.16.1. Variants

» Default - Does nothing.

6.3.16.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/ReconcileFC and they contain

following files:

Filename(s)

Description

IntReconcileFCPolicy.ned
ReconcileFCPolicyBase.h/.cc

ReconcileFCPolicyDefault/
ReconcileFCPolicyDefault.ned

NED interface module
Base class for general functionality

Simple module

ReconcileFCPolicyDefault/
ReconcileFCPolicyDefault.h/.cc

Policy invoking only default action

115

Deliverable-2.6: RINA simulator

6.3.17. DTCP: RetransmissionTimerExpiry

RetransmissionTimerExpiry policy is executed by the sender when a Retransmission Timer
Expires. If this policy returns True, then all PDUs with the sequence number less than or equal
to the sequence number of the PDU associated with this timeout are retransmitted; otherwise
the procedure must determine what action to take. This policy must be executed in less than
the maximum time to Ack.

6.3.17.1. Variants
» Default - Retransmits PDU with seq hum equal to the onein RXTimer.

6.3.17.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/RxTimer Expiry and they contain
following files:

Filename(s) Description

IntRXTimer ExpiryPolicy.ned NED interface module

RxTimer ExpiryPolicyBase.h/.cc Base class for general functionality
RxTimer ExpiryPolicyDefault/ Simple module

RxTimer ExpiryPolicyDefault.ned

RxTimer ExpiryPolicyDefault/ Policy invoking only default action
RxTimer ExpiryPolicyDefault.h/.cc

6.3.18. DTCP: SenderAck

Sender Ack policy is executed by the Sender and provides the Sender with some discretion on
when PDUs may be deleted from the RetransmissionQ. Thisis useful for multicast and similar
situations where one might want to delay discarding PDUs from the retransmission queue.

6.3.18.1. Variants
» Default - Removes DT-PDU from Retransmission Queue up to Acked sequence number.

6.3.18.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/SenderAck and they contain
following files:

116

Deliverable-2.6: RINA simulator

Filename(s) Description

IntSender AckPolicy.ned NED interface module

Sender AckPolicyBase.h/.cc Base class for general functionality
Sender AckPolicyDefault/ Simple module

Sender AckPolicyDefault.ned

Sender AckPolicyDefault/ Policy invoking only default action

Sender AckPolicyDefault.h/.cc

6.3.19. DTCP: SenderAckList

Sender AckList policy is executed by the Sender and provides the Sender with some discretion
on when PDUs may be deleted from the ReTransmissionQ. This policy is used in conjunction
with the selective acknowledgement aspects of the mechanism. Thisis useful for multicast and
similar situations where to want to delay discarding PDUs from the retransmission queue.

6.3.19.1. Variants
» Default - Removes specified seq num ranges from from Retransmission Queue.

6.3.19.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/Sender AckList and they contain
following files:

Filename(s) Description

IntSender AckListPolicy.ned NED interface module

Sender AckListPolicyBase.h/.cc Base class for general functionality
Sender AckListPolicyDefault/ Simple module

Sender AckListPolicyDefault.ned

Sender AckListPolicyDefault/ Policy invoking only default action
Sender AckListPolicyDefault.h/.cc

6.3.20. DTCP: SendingAck

SendingAck policy is executed upon A-Timer expiration in case there is DTCP present.
The default action is to update RevLeftWindowEdge, invoke delimiting and to send Ack/
FlowControlPDU.

117

Deliverable-2.6: RINA simulator

6.3.20.1. Variants

e Default - Updates RcvLeftWindowEdge, invokes delimiting and sends Ack/
FlowControlPDU.

6.3.20.2. Source codes

Policy source codes are located in /policies/ DIF/EFCP/DTCP/SendingAck and they contain
following files:

Filename(s) Description
IntSendingAckPolicy.ned
SendingAckPolicyBase.h/.cc

SendingAckPolicyDefault/
SendingAckPolicyDefault.ned

SendingAckPolicyDefault/
SendingAckPolicyDefault.h/.cc

NED interface module

Base class for general functionality

Simple module

Policy invoking only default action

6.3.21. DTCP: SndFlowControlOverrun

ShdFlowControl Overrun - policy determines what action to take if the Sender has PDU to send
but its SndRightWindowEdge or SndRate prevents him from sending it. The default action is
to put it in ClosedWindowQueue.

6.3.21.1. Variants
e Default - Puts DT-PDU in ClosedWindowQueue.

6.3.21.2. Source codes

Policy source codes arelocated in /policies/DIF/EFCP/DTCP/ShdFCOverrun and they contain
following files:

Filename(s)
IntShdFCOverrunPolicy.ned

Description

NED interface module

ShdFCOverrunPolicyBase.h/.cc

Base class for general functionality

ShdFCOverrunPolicyDefault/
ShdFCOverrunPolicyDefault.ned

ShdFCOverrunPolicyDefault/
ShdFCOverrunPolicyDefault.h/.cc

Simple module

Policy invoking only default action

118

Deliverable-2.6: RINA simulator

6.3.22. DTCP: Transmission Control

TransmissionControl policy isused when there are conditions that warrant sending fewer PDUs
than allowed by the sliding window flow control.

6.3.22.1. Variants
» Default - Puts as many DT-PDUsfrom gener at edPDUQ to post abl ePDUQ.

6.3.22.2. Source codes

Policy source codes are located in /policiesDIF/EFCP/DTCP/TXControl and they contain
following files:

Filename(s) Description
IntTXControlPolicy.ned NED interface module
TXControlPolicyBase.h/.cc Base class for general functionality
TXControl PolicyDefault/ Simple module

TXControlPolicyDefault.ned

TXControlPolicyDefault/ Policy invoking only default action
TXControlPolicyDefault.h/.cc

6.4. Resource Allocator Policies

This subchapter discusses RA policies. Since there currently aren’t any available specifications
for policies needed in Resource Allocator, all following policies are simulator-specific.

AddressComparator

PDUForwardingGenerator

QueueAlloc

QueuelDGen

6.4.1. AddressComparator

AddressComparator isinvoked by RMT and its policies to determine whether a PDU address
matches the IPC process address. Thisis used mainly on message arrival to decide whether the
PDU isdirected to the |PC process.

119

Deliverable-2.6: RINA simulator

6.4.1.1. Variants

» ExactMatch - Provides exact matching.

* PrefixMatch - Provides matching based on common prefix.

6.4.1.2. Source codes

Policy source codes are located in /policies/DIF/RA/AddressComparator and they contain
following files:

Filename(s) Description
IntAddressComparator.ned NED interface module
AddressComparator Base.cc/h Base class for general functionality
ExactMatch/ExactMatch.cc/h ExactMatch version core functionality
ExactMatch/ExactMatch.ned ExactMatch interface implementation
PrefixMatch/PrefixMatch.cc/h PrefixMatch version core functionality
PrefixMatch/PrefixMatch.ned PrefixMatch interface implementation

6.4.2. PDU Forwarding Generator

PDUFG (PDU Forwarding Generator) manages the PDU Forwarding policy (traditionaly a
forwarding table), usually by means of adding and removing forwarding information. For
this purpose, PDUFG uses pieces of information provided by other sources, most notably the
Routing policy.

6.4.2.1. Variants

» SaticGenerator - The default implementation using forwarding information statically
provided to DIF Allocator via XML configuration.

» SmpleGenerator - The simplest dynamic generator proxying information provided by the
routing policy.

» HierarchicalGenerator - An implementation working with hierarchical addresses (e.g.
AB.C...)

e HopsSnglelEntry - An implementation for hop-based routing managing only one port per
destination address.

» HopsSngleMEntries - An implementation for hop-based routing managing multiple ports
per destination address.

120

Deliverable-2.6: RINA simulator

» LatencySnglelEntry - Animplementation for latency-based routing managing only one port
per destination address.

» LatencySingleMEntries - An implementation for latency-based routing managing multiple
ports per destination address.

» SngleDomainGenerator - Domain routing: generator with asingle domain
« BiDomainGenerator - Domain routing: generator with two domains per |PC process

e QoSDomainGenerator - Domain routing: QoS-based generator

6.4.3. QueueAlloc

QueueAlloc policy manages allocation and deallocation of RMT queues in response to events
happening inside the I|PC process. Thisalowsfor flexibility when experimenting with queuing
disciplines.

6.4.3.1. Variants

SngleQueue - A pair of queues per (N-1)-port.

QueuePerNFlow - A pair of queues per active (N-1)-flow + a pair of management queues.

QueuePerNQoS- A pair of queues per each available QoS cube.

QueuePerNCU - A pair of queues per each available Cherish/Urgency class. QoS Cubes are
mapped each to a Cherish/Urgency class.

6.4.4. PDU Forwarding Generator

PDUFG (PDU Forwarding Generator) manages the PDU Forwarding policy (traditionaly a
forwarding table), usually by means of adding and removing forwarding information. For
this purpose, PDUFG uses pieces of information provided by other sources, most notably the
Routing policy.

6.4.4.1. Variants

» SaticGenerator - The default implementation using forwarding information statically
provided to DIF Allocator via XML configuration.

» SmpleGenerator - The simplest dynamic generator proxying information provided by the
routing policy.

» HierarchicalGenerator - An implementation working with hierarchical addresses (e.g.
AB.C...)

121

Deliverable-2.6: RINA simulator

* HopsSnglelEntry - An implementation for hop-based routing managing only one port per
destination address.

* HopsSngleMEntries - An implementation for hop-based routing managing multiple ports
per destination address.

» LatencySnglelEntry - Animplementation for latency-based routing managing only one port
per destination address.

» LatencySngleMEntries - An implementation for latency-based routing managing multiple
ports per destination address.

» SngleDomainGenerator - Domain routing: generator with asingle domain
» BiDomainGenerator - Domain routing: generator with two domains per |PC process

e QoSDomainGenerator - Domain routing: QoS-based generator

6.4.5. QueuelDGen

Queuel DGen isacompanion policy to the QueueAlloc policy and provides generation of queue
IDs from given objects (PDUs/flow specifics).

6.4.5.1. Variants

SngleQueue - Returns"0".

QueuePer NFlow - Returns a concatenation of the other endpoint’s IPC address and CEP-id.

QueuePerNQoS - Returns a QoS-cube ID.

QueuePerNCU - Returns a Cherish/Urgency class of the QoS-cube ID. BE if not defined.

6.5. RMT Policies

This subchapter discusses RMT policies. According to the specifications, RMT providiesthree
policies:

e Scheduler
* Monitor

* MaxQueue

RINASIm RMT implements those policies and additionally contains one RINASim-specific
policy:

* PDUForwarding

122

Deliverable-2.6: RINA simulator

6.5.1. MaxQueue

MaxQueue is a policy used for deciding what to do when queue lengths are overflowing their
threshold lengths. I’ sinvoked whenever the size of itemsin a queue reaches above a threshol d.

6.5.1.1. Variants

TailDrop - A policy that drops arriving PDUs when queue size >= allowed maximum.

ECNMarker - A policy that marks arriving PDUs when queue size >= threshold and drops
them when queue size >= allowed maximum.

ReadRateReducer - A policy that causes RMT to stop receiving data from relevant (N-1)-
ports when queue size >= allowed maximum.

UpstreamNotifier - A policy that causes a notification to be sent to the PDU sender when
gueue size >= allowed maximum.

REDDropper - A policy used for for the Random Early Detection feature.

DumbMaxQ - A policy used in conjunction with Monitor policies extending the
SmartMonitor interface. Drop a new PDU heuristically depending on a probability given
by the monitor.

6.5.2. Monitor

Monitor isastateful policy that manages variables used by other RMT policies. It’sinvoked by
various events happening inside RMT and its ports and queues.

6.5.2.1. Variants

DummyMonitor - A noop implementation.
REDMonitor - A monitor used for for the Random Early Detection feature.

SmartMonitor - A monitor interface that joins al scheduling related tasks (monitor, maxQ
and scheduling)

WeightedFairQMonitor - A monitor used to compute rates for WFW.

BEMonitor - Extends SmartMonitor. Implementation of Best-effort.

DLMonitor - Extends SmartMonitor. Implementation of Cherish/Urgency monitor.
DQMonitor - Extends SmartMonitor. Implementation of DeltaQ monitor.

eDLMonitor - Extends SmartMonitor. Implementation of an enhanced version of Cherish/
Urgency monitor.

123

Deliverable-2.6: RINA simulator

6.5.3. PDUForwarding

PDUForwarding is a policy deciding where to forward a PDU. It accepts the PDU as an
argument, does alookup in its internal structures (usually a forwarding table populated by the
PDUFG policy) and returns a set of (N-1)-ports.

6.5.3.1. Variants

+ SmpleTable - A table with { (dstAddr, QoS) _, port} mappings.

* MiniTable - A table with {dstAddr _ port} mappings.

* MultiMiniTable - A table with {dstAddr _ vector<port>} mappings.
* FloodMiniTable - A table with {dstAddr _, port} mappings.

» DomainTable - Two tables { (prefix, QoS) _, domainlD} {(domainID, address) _ port}}
mappings.

» HierarchicalTable - A table with { prefix _ {(infix, QoS) _, port}} mappings.

» QoSTable - A table with { (dstAddr, QoS) _, port} mappings.

6.5.4. Scheduler

Scheduler isinvoked each time some (N-1)-port has datato send and uses an algorithm to make
adecision about which of port’s queues should be handled first.

6.5.4.1. Variants

» LongestQFirst - Always picks the queue which contains the most PDUSs.

* DumbSch - A policy used in conjunction with Monitor policies extending the SmartMonitor
interface. Returns the PDU decided by the monitor.

» WeightedFairQ - Picks the queues depending on datarate of QoS

* DQ<ch - A policy used in conjunction with DQMonitor. Returns the PDU decided by the
monitor or waits some time to space bursts.

6.6. Routing policies

This subchapter discusses Routing policies implementations. Routing policies are used to
propagate information about routing in the DIF and are dependent on PDU Forwarding
Generator (PDUFG).

124

Deliverable-2.6: RINA simulator

6.6.1. Variants

e DummyRouting - Does nothing.

« DomainRouting - Exchanges routing information of distinct routing domains configured
either with link-state or distance-vector (see subchapter 7.3.3% for detailed description).

« SmpleRouting - Exchanges routing information of distinct routing domains based on QoS
Cube configured either with link-state (see subchapter 7.3.155) or distance-vector (see
subchapter 7.3.256).

« TDomainRouting - Exchanges routing information of distinct routing domains configured
either with link-state or distance-vector. Metric data-type is defined by template.

« TSmpleRouting - Exchanges routing information of distinct routing domains based on QoS
Cube configured either with link-state or distance-vector. Metric data-type is defined by
template.

54 D26-RINASIm-PolicyFeatures-Routing-Domain
55 p26-RINASIm-PolicyFeatures-Routing-TSimpleL S
56 p26-RINASIM-PolicyFeatures-Routing-TSimpleDV

125

D26-RINASim-PolicyFeatures-Routing-Domain
D26-RINASim-PolicyFeatures-Routing-TSimpleLS
D26-RINASim-PolicyFeatures-Routing-TSimpleDV
D26-RINASim-PolicyFeatures-Routing-Domain
D26-RINASim-PolicyFeatures-Routing-TSimpleLS
D26-RINASim-PolicyFeatures-Routing-TSimpleDV

Deliverable-2.6: RINA simulator

7. Policy-driven Features

7.1. Congestion Avoidance

7.1.1. Legacy Random Early Detection

Port of the legacy Random Early Detection algorithm, included mainly for demonstrating
RINA’s programmability.

7.1.1.1. Policy set

* /policies/DIF/RMT/Monitor/REDMonitor
* /policies’DIF/RMT/MaxQueue/REDDropper

7.1.1.2. Configuration

Module Variable Description Default value
REDDropper double probability of packet 0.4
dropProbability drop
REDDropper bool marking applies ECN false
markings on PDUs
instead of dropping
them

7.1.1.3. References
 [RED]

7.1.2. TCP-like congestion avoidance

A set of ssmple TCP-like congestion control policies is specified here to demonstrate RINA’s
congestion control capabilities. The TxControlPolicyTCPTahoe policy is an implementation of
TxControl policy of DTCP. It defines a set of internal variables such as congestion window size
(CWND) to control the number of sent packets additionally based on congestion signals such as
ECN and pushback. Therefore, the given credit to the sender is the minimum of the one allowed
by CWND and the flow control’s window. The congestion controller of this policy behaves
similarly to the onein TCP [RFC5681].

Since TCP's congestion controller is coupled with other functions such as round-trip-time
(RTT) and retransmission timeout (RTO) estimations and acknowledgement packets treatment,

126

Deliverable-2.6: RINA simulator

two other policies, called RTTEstimator Policy TCP and Sender AckPolicyTCPTahoe have been
additionally defined to respectively handle those functions in RINA. RTTEstimator PolicyTCP
calculates RTT and RTO based on the method presented in RFC 6298 [RFC6298].

7.1.2.1. Policy set

* /policies/DIF/EFCP/DTCP/TxControl/TxControl PolicyTCPTahoe
* /policies/DIF/EFCP/DTCP/Sender Ack/Sender AckPolicy TCPTahoe
* /policies’DIF/EFCP/DTP/RTTESstimator/RTTEstimator Policy TCP

7.1.2.2. Configuration

Module Variable Description Default value

TxControl Policy TCPTaimbgoacketSize packet size 536

7.2. Scheduling

7.2.1. Delay-loss
Delay Loss scheduling based on strict cherish/urgency distinction.
7.2.1.1. Policy set

* /policies’DIF/RMT/Monitor/DLMonitor
* /policies/DIF/RMT/MaxQueue/DumbMaxQ
« /policies/DIF/RMT/Scheduler/DumbSch

7.2.1.2. Configuration

Module Variable Description Default value
DLMonitor xml cuData (array Cherish/Urgency empty xml
CUltem) classes definition

CUItem - Cherish/Urgency Class definition

Parameter Type DataType Description

id attribute string Name of the C/U
class

queue element string Queue of the C/U
class

127

Deliverable-2.6: RINA simulator

Parameter Type DataType Description

urgency element int Priority of the C/U
class

cherishThreshold element int Port packet count

threshold for the C/U
class

7.2.2. Enhanced Delay-Loss

Enhanced Delay L oss scheduling based on probabilistic cherish/urgency distinction.

7.2.2.1. Policy set

* /policies’'DIF/RMT/Monitor/eDLMonitor

* /policies/DIF/RMT/MaxQueue/DumbMaxQ
* /policies/DIF/RMT/Scheduler/DumbSch

7.2.2.2. Configuration

Module Variable Description Default value
eDLMonitor xml cuData (array Cherish/Urgency empty xml
CUltem) classes definition
eDLMonitor xml urgData (array ~ Cherish/Urgency empty xml
urgency) priority probability of
skip
CUItem - Cherish/Urgency Class definition
Parameter Type DataType Description
id attribute string Name of the C/U
class
gueue element string Queue of the C/U
class
urgency element int Priority of the C/U
class
cherishThreshold element int Port packet count

min-drop threshold
for the C/U class

128

Deliverable-2.6: RINA simulator

Parameter Type DataType Description

cherishAbsThreshold | element int Port packet count
absolute threshold for
the C/U class

cherishDropProbability element double Probability of

drop between min-
drop and absolute

threshold for the C/U
class
urgency - Cherish/Urgency priority probability of skip
Parameter Type DataType Description
va attribute int Priority
prob attribute double Probability of skip

7.3. Routing
7.3.1. Distance Vector (legacy)
7.3.2. Link-state (legacy)

7.3.3. TSimple Link-state

Routing policy for QoS based routing domains. It alows to configure QoS named routing
domains running a simple Link-State algorithm.

Extends "IntT SimpleRouting".
7.3.3.1. Policy set

* /policies/DIF/Routing/TSmplelL S

7.3.3.2. Configuration

Module Variable Description Default value
TSmpleLS string myAddr Node addressin the

DIF, for sending

updates

129

Deliverable-2.6: RINA simulator

Module Variable Description Default value

TSmpleLS bool printAtEnd Print routing false
information at finish?

7.3.3.3. Interaction

Parameter Type <T> correspond to metric Type, defined by template. Currently TSimpleLS
module sets T as unsigned short.

e void insertFlow(Address addr, string dst, string qos, T metric) Inserts or replaces a
connection with QoS "qgos' to a neighbour node. Neighbour defined with address in DIF
"addr" and name "dst" within the routing domain. Metric of the connection "metric".

 voidremoveFlow(Addressaddr, string dst, string qos) Removes a connection for QoS " qos"
to a neighbour node. Neighbour defined with address in DIF "addr" and name "dst" within
the routing domain.

* map<string, map<string, nhLMetric<T> > > getChanges() Get changed next-hop entries
for all domains after last query. Returned value in the form domain _ dst Name _ struct(T
metric, set<string> next-hop)

e map<string, map<string, nhLMetric<T> > > getAll() Get al next-hop entries. Returned
value in the form domain _ dst Name _ struct(T metric, set<string> next-hop)

e void setInfinite(T inf) Set the infinite metric to "inf".

7.3.4. TSimple Distance-vector

Routing policy for QoS based routing domains. It alows to configure QoS named routing
domains running a simple Distance-V ector algorithm.

Extends "IntT SimpleRouting".
7.3.4.1. Policy set

* /policies/DIF/Routing/TSmpleDV

7.3.4.2. Configuration

Module Variable Description Default value
TSmpleDV string myAddr Node addressinthe ™"

DIF, for sending

updates

130

Deliverable-2.6: RINA simulator

Module Variable Description Default value

TSmpleDV bool printAtEnd Print routing false
information at finish?

7.3.4.3. Interaction

Parameter Type <T> correspond to metric Type, defined by template. Currently TSimpleL S
module sets T as unsigned short.

* void insertFlow(Address addr, string dst, string gos, T metric) Inserts or replaces a
connection with QoS "qos' to a neighbour node. Neighbour defined with address in DIF
"addr" and name "dst" within the routing domain. Metric of the connection "metric".

 void removeFlow(Addressaddr, string dst, string qos) Removes a connection for QoS " qos"
to aneighbour node. Neighbour defined with address in DIF "addr" and name "dst" within
the routing domain.

e map<string, map<string, nhLMetric<T> > > getChanges() Get changed next-hop entries
for all domains after last query. Returned value in the form domain _ dst Name _ struct(T
metric, set<string> next-hop)

« map<string, map<string, nhLMetric<T> > > getAll() Get all next-hop entries. Returned
value in the form domain _ dst Name _ struct(T metric, set<string> next-hop)

 void setInfinite(T inf) Set the infinite metric to "inf".

7.3.5. Routing domain

Routing policy for configurable domains. It allows to configure named routing domains, for
distinct QoS, sub-DIFs, etc., aswell as decide which agorithm use within the domain (currently
simple Link-State or Distance-Vector), node name and synonyms within the domain and
neighbours in the domain.

7.3.5.1. Policy set

« /policies/DIF/Routing/ TDomainRouting

7.3.5.2. Configuration

Module Variable Description Default value
TDomainRouting string myAddr Node addressinthe | ™"

DIF, for sending

updates

131

Deliverable-2.6: RINA simulator

Module Variable Description Default value

TDomainRouting bool printAtEnd Print routing false
information at finish?

7.3.5.3. Interaction

Parameter Type <T> correspond to metric Type, defined by template. Currently
TDomainRouting module sets T as unsigned short.

» void addDomain(string domld, string addr, T infinite, ModuleAlgs ag) Define a new
routing domain with name "domld". Self address"addr", infinite metric set at "infinite", and
using routing algorithm "alg".

« void removeDomain(string domld) Removes the routing domain with name "domid".

e void insertFlow(Address addr, string dst, string domid, T metric) Inserts or replaces a
connection to a neighbour node within domain "domld". Neighbour defined with addressin
DIF "addr" and name "dst" within the domain. Metric of the connection "metric".

* void removeFlow(Address addr, string dst, string domld) Removes a connection to a
neighbour node within domain "domld". Neighbour defined with addressin DIF "addr" and
name "dst" within the domain.

» void addAddr (string domid, string syn) Add the synonim "syn" for the node in routing
domain "domid".

» void removeAddr (string domld, string syn) Remove the synonim "syn" from the node in
routing domain "domid".

e map<string, map<string, nhLMetric<T> > > getChanges() Get changed next-hop entries
for all domains after last query. Returned value in the form domain _ dst Name _ struct(T
metric, set<string> next-hop)

e map<string, map<string, nhLMetric<T> > > getAll() Get al next-hop entries. Returned
valuein the form domain _ dst Name _ struct(T metric, set<string> next-hop)

7.4. Forwarding

7.4.1. MiniTable

Simpleforwarding policy based on aforwarding table storing amapping dst addr . RMTPort*.

Extends "IntMiniForwarding".

132

Deliverable-2.6: RINA simulator

7.4.1.1. Policy set

* /policies’DIF/RMT/PDUForwarding/MiniTable

7.4.1.2. Configuration

Module

Variable

Description

Default value

MiniTable

bool printAtEnd

Print forwarding
table at finish?

false

7.4.1.3. Interaction

* void insert(string addr, RMTPort * port) Inserts the entry "addr" _ "port"

e void

insert(Address addr,

RMTPort *

insert(addr.getlpcAddress().getName(), port).
 void remove(string addr) Remove entry "addr".
» void remove(Address addr) Synonym for remove(addr.getl pcAddress().getName()).

* void clean() Clears forwarding table.

7.4.2. MultiMiniTable

Synonym for

Simple forwarding policy based on a forwarding table storing a mapping dst addr _
vector<RMTPort*>. On lookup, it returns a random RMTPort* if more than one is available,
resulting in afirst/easy approach to load balancing.

Extends"IntMM Forwarding".

7.4.2.1. Policy set

* /policiesDIF/RMT/PDUForwarding/MultiMini Table

7.4.2.2. Configuration

M odule
MiniTable

Variable
bool printAtEnd

Description

Print forwarding
table at finish?

Default value

fase

7.4.2.3. Interaction

» void addReplace(string addr, vector<RMTPort *> ports) Sets entry "addr" as "ports". If

"ports' is empty, removes entry "addr".

133

Deliverable-2.6: RINA simulator

7.5. PDU Forwarding Table Generator

7.5.1. HopsSingle1lEntry

PDU Forwarding Generator policy for hop based routing without distinction on QoS and only
one dst Port per dst addr.

7.5.1.1. Policy set
* /policies’DIF/RA/PDUFG/HopsSnglelEntry
7.5.1.2. Requires

» Forwarding policy implements IntMiniForwarding

* Routing policy IntTSimpleRouting<unsigned short>

7.5.1.3. Configuration

Module Variable Description Default value
HopsSinglelEntry unsigned short Infinite value for 32
infinite routing

7.5.2. HopsSingleMEntries

PDU Forwarding Generator policy for hop based routing without distinction on QoS and
multiple ports per dst addr.

7.5.2.1. Policy set
* /policies’DIF/RA/PDUFG/HopsSngleMEntries
7.5.2.2. Requires

» Forwarding policy implements IntMM Forwarding

* Routing policy IntTSimpleRouting<unsigned short>

7.5.2.3. Configuration

Module Variable Description Default value
HopsSngleMEntries | unsigned short Infinite value for 32
infinite routing

134

Deliverable-2.6: RINA simulator

7.5.3. LatencySinglelEntry

PDU Forwarding Generator policy for latency based routing without distinction on QoS and
only one dst Port per dst addr.

7.5.3.1. Policy set
* /policies/DIF/RA/PDUFG/LatencySnglelEntry
7.5.3.2. Requires

» Forwarding policy implements IntMiniForwarding

* Routing policy IntTSimpleRouting<unsigned short>

7.5.3.3. Configuration

Module Variable Description Default value
LatencySinglelEntry | unsigned short Infinite value for 1000
infinite routing
LatencySnglelEntry | unsigned short Link Cost = 1
redLinkCost QoS Latency /
redLinkCost
LatencySnglelEntry | unsigned short Maximum Link Cost | 100
maxLinkCost
LatencySnglelEntry | unsigned short Minimum link cost 1
minLinkCost

7.5.4. LatencySingleMEntries

PDU Forwarding Generator policy for latency based routing without distinction on QoS and
multiple ports per dst addr.

7.5.4.1. Policy set
* /policiesDIF/RA/PDUFG/LatencySngleMEntries

7.5.4.2. Requires

» Forwarding policy implements IntMiniForwarding

135

Deliverable-2.6: RINA simulator

* Routing policy IntTSimpleRouting<unsigned short>

7.5.4.3. Configuration

Module Variable Description Default value
LatencyS ngleMEntriesunsigned short Infinite value for 1000

infinite routing
LatencySngleMEntriesunsigned short Link Cost = 1

redLinkCost QoS Latency /

redLinkCost

LatencyS ngleMEntriesunsigned short Maximum Link Cost | 100

maxLinkCost
LatencyS ngleMEntriesunsigned short Minimumlink cost |1

minLinkCost

136

Deliverable-2.6: RINA simulator

8. Demonstration scenarios

This chapter outlines available examples of networks using RINA as native network stack.
General instructions, how to setup and run scenarios, are provided to reader. Furthermore, detall
description of notable scenariostry to reveal advantages of adopting RINA for certain Internet
use-cases.

Source codes of demonstrationsarelocated in/examples/ folder and each oneincludesfollowing
files, which may be used as templates when creating other RINASIm scenarios:

* <name>.ned — OMNeT++ simulation network graph description which contains nodes and
interconnections definitions,

e omnetpp.ini —scheduled simulation setup with models configuration (e.g., nodes addresses,
ANI for AEs, pointersto XML configurations) applied during network initialization;

» config.xml — additional more structured and complex models configuration (e.g., DA’s
mappings, RA’s QoS-cubes sets, preallocation and preenrollment settings) in the form of
XML dataisloaded to the smulation using thisfile;

o *.anf —gtatistic collection setup file(s);

Jresults/ — results of various simulation runs containing gathered scalar and vector data.

Folder /playground/ contains various scenarios for testing purposes of their authors.

8.1. Running a Scenario

This assumes that OMNeT++ along with RINASIm were correctly installed according to
Chapter 3: Installation and Configuration.

8.1.1. From the IDE

1) Run the OMNeT++ IDE.
2) In the left pane, navigate to the folder with the desired example.
3) Right-click on omnetpp.ini, Run astOMNeT++ simulation

4) Control the simulation viathe Tkenv GUI, described in detail in the OMNeT++ User Guide
[omnetpp-userguide].

» Note: For running the simulation viathe consol e interface, change the User interface option
in Run#Run configurations#<chosen example>.

137

Deliverable-2.6: RINA simulator

8.1.2. From the Command Line
0) Prepare the console environment:

» on Windows: Execute the mingwenv.cmd batch file inside the OMNeT++ folder.
e On UN*X platforms. Open a console, navigate to the OMNeT++ folder and run . ./

setenv.

1) Enter the root directory of RINASIm.

2) Pick afolder with the desired example and run a simulation by one of the following ways.

e For CLI: ./simulate exanple folder [-c configuration] [-Xx
addi ti onal opp_run options]
Note: if the-c argument isomitted, the simulation will default to configuration [General].

 For GUI: ./simul ate exanple_folder -G [-c configuration] [-X
addi ti onal opp_run options]

8.2. Used Template
Each example except the first one has a fixed structure that contains the following items:

1. Brief motivation what could be observed in scenario
2. Picture of the scenario

3. Description of the events that may of interest for user
4. Initial simulation settings in omnetpp.ini file

5. Static XML configuration used to initialize RINA environment in config.xml file

8.3. Demo Network

Source files of this scenario are located in /examples/Demos/UseCaseb.

8.3.1. Motivation

This subchapter presents one of the many demonstration RINA simulations available in
RINASIm. The goals are: @) to give a reader overview of RINASIm capabilities; and b)
to familiarize the reader with RINA concepts on simple computer network example. The

138

Deliverable-2.6: RINA simulator

motivation behind this particular ssimulation is to show ping-like application communication
within the simple network consisting of all different node types.

8.3.2. Network Graph

Topology contains two host nodes (called HostA and HostB), two border routers
(called BorderRouterA and BorderRouterB) and one interior router (called InteriorRouter)
interconnected together as depicted in Figure below. Links between nodes are configured with
one millisecond fixed transmission delay, which means that sending a packet from HostA to
HostB takes four milliseconds.

There are totally six DIFs of three different ranks. Please notice addressing scheme where the
same node may use the same address on different DIF as long as they are unambiguous within
thelayer’ sscope. RINA address|ength and syntax is policy-dependent. The demonstration uses
flat address space with simple string addresses.

e Top most TopLayer DIF common to HostA (with address hA), BorderRouter A (address rA
and self-enrolled), Border Router B (address rB) and HostB (hB);

» Three middle DIFs MediumLayer A, MediumLayer AB and MediumLayer B. MediumLayer A
iIs common to HostA (ha) and BorderRouterA (address ra and self-enrolled).
MediumLayer AB is common to BorderRouter A (rA), InteriorRouter (address rC and self-
enrolled) and BorderRouterB (rB). MediumLayerB is common to BorderRouter B (address
rb and self-enrolled) and HostB (hb).

* Two bottom most DIFs BottomLayerA and BottomLayerB. BottomLayerA is common to
BorderRouterA (ra) and InteriorRouter (address rc and self-enrolled). BottomLayerB is
common to Interior Router (address rc and self-enrolled) and Border Router B (rb).

(Host1AP) UseCaseS.HostA
DB ey

(Host1AP) UseCaseS.HostB
DS BE sy

...

Intericr
ReuterzInt

ipcResourceManager

|

Usec:
‘ (InteriorRouter fint) UseCaseS.InteriorRouter
| . @©@—___ % e nno—

aossna | e

Top |
Layer
™

:
—

i
E“
g
e |
do |

r

I

)

i

|

I

g)a/fs7||

R WP ||
| I —

e D s e
7 e _ﬁjf»ff;l D

((((((((

ipcP

,-——
foi Hedlum
Leyard

|

|

|
!

i

|

|

|

|

|

]

bottomlpc

All nodes topology with three levels of DIF

Figure 57. Demo network graph

139

Deliverable-2.6: RINA simulator

8.3.3. Description
Multiple noticeable events happen during demonstration:

1. If another IPCP wants to communicate within agiven DIF, then, it needs to be enrolled by
aDIF member. Self-enrolled IPCPs are members of certain DIFs from the beginning of the
simulation, and they help other IPCPstojoinaDIF. In order to allow | PC between any node,
the simulation is scheduled to commence enrollment of: Bor der Router A into BottomLayer A
a t=1s; BorderRouterA into MediumLayerAB™ at t =1.5s ; BorderRouterB into
TopLayer at t =2s ; and HostB into TopLayer at t =5s . The enrollment usually involves
recursive calls of enrollment proceduresin lower rank DIFs.

2. The IPC comprises of flow allocation, data transfer, and optional flow deallocation. HostA
and HostB are configured for IPC using ping-like application (measuring one-way and
round-trip delays). In this case, flow allocation isinitiated at t =10s , first ping is sent at
t =15s and flow deallocation occursat t =20s .

By default, every RA contains implicit QoSCube (with QoS-id “MGMT-QoSCube”) that
defines QoS parameters (e.g., reliability, minimum bandwidth) for management traffic and
guarantees successful mapping of management SDUs onto appropriate (N)-flow. Apart from
this default QoS-cube, each RA loads QoS-cube set according to the simulation configuration.
For demonstration, there are two more QoS-cubes available for each RA caled “QoSCube-
RELIABLE” and “QoSCube-UNRELIABLE” (same QoS parameters differing only in data
transfer reliability). Please see figure below for visualization of loaded QoS-cube.

DA implementation currently allows only static change of its settings (namely different kinds of
mappings). Hence, necessary configuration step isto initialize DA properly in order to provide
servicesto FA, RA and other components depending on naming information. Namely two DA’ s
tables are important for overall functionality — Di r ect ory (helpsto search target IPCP for
agiven APN) and Nei ghbor Tabl e (used by FA to find aneighbor IPCP for agiven IPCP).
Figure below shows shared directory information by all DA instances within the demonstration.

140

Deliverable-2.6: RINA simulator

é—g this-» QoSCubes (std:list<QoSCubes)
this-> Qo5Cubes[3] (QoSCube)

-+ 0] = QoSCube |d> QoS5Cube-UNRELIABLE

average BW = 12000000 bit/s, average SDU BW = 1000 SDU/s
peak BW duration = 24000000 bit/s, peak 50U BW duration = 2000 SDU/s
burst period = 10000000 usecs, burst duration = 1000000 usecs
undetect. bit errors = 0.01%, PDU dropping prebability = 0%
max 50U Size = 1500 B

partial delivery = no, incomplete delivery = no

force order = no

max allowed gap = 0 5DUs

delay = 1000000 usecs, jitter = 300000 usecs

cost-time = 0 §/ms, cost-bits = 0 §/Mb

A-Time = Oms

[—]—[#] = QoSCube |d> Qo5Cube-RELIABLE

average BW = 12000000 bit/s, average S0U BW = 1000 SDU/s
peak BW duration = 24000000 bit/s, peak SDU BW duration = 2000 SDU/s
burst period = 10000000 usecs, burst duration = 1000000 usecs
undetect. bit errors = 0.01%, PDU dropping probability = 0%
rax SOU Size = 1500 B

partial delivery = no, incomplete delivery = no

force order = yes

max allowed gap = 0 5DUs

delay = 1000000 usecs, jitter = 300000 usecs

cost-time = 0 §/ms, cost-bits = 0 5/Mb

A-Time = Oms

El—[&] = QoSCube Id> MGMT-CoSCube

average BW = 12000 bit/s, average SDU BW = 10 5DU/s

peak BW duration = 24000 bit/s, peak SDU BW duration = 20 SDU/s
burst pericd = 10000 usecs, burst duration = 10000 usecs
undetect. bit errars = 0%, PDU dropping probability = 0%
max 50U Size = 1500 B

partial delivery = no, incomplete delivery = no

force order = yes

max allowed gap = 0 5DUs

delay = 0 usecs, jitter = 0 usecs

cost-time = 0 §/ms, cost-bits = 0 5/Mb

A-Time = Oms

Figure58. Visualization RA’s available QoS-cubes

141

Deliverable-2.6: RINA simulator

él— Director (std::list<DirectoryEntry>)
Director[9] (DirectoryEntry)

—[0] = APM: Sourced is available via:
DIF: TopLayer, IPCaddress: h&

—]—[#] = APMN: DestinationB is available via:
DIF: Toplayer, IPCaddress: hB

El—[ﬁ] = APN: hA_TopLayer is available via:

DIF: MediumLayerd, IPCaddress: ha
-]—[!-’.] = APN: hB_ToplLayer is available via:

DIF: MediumLayerB, IPCaddress: hb
-]-[J-i] = APM: rA_Toplayer is available via:

DIF: MediumLayerd, IPCaddress: ra
DIF: MediumLayerAB, IPCaddress: r&
-]-[15] = APM: rB_Toplayer is available via:

DIF: MediumLayerB, IPCaddress: rb
DIF: MediumLayer&B, IPCaddress: rB

-}[E] = APN: rA_MediumlLayerAB is available via:
DIF: BottemlLayerA, IPCaddress: ra

El—[l.?] = APN: rB_MediumLayerAB is available via:
DIF: BottornLayerB, IPCaddress: rb

El—[l’;] = APN: rC_MediumLayerAB is available via:
DIF: BottornLayerd, IPCaddress: rc
DIF: BottomLayerB, IPCaddress: rc

Figure59. Visualization of Directory mappings

1

Tl

Tl

Tl

1

Simulation description is divided into two subsections. All events connected with enrollment
procedures are described in “Enrollment Phase” subsection and events related to data transfer
between HostA and HostB are in “Data Transfer Phase” subsection. The most important parts
are descriptions of thetrivial enrollment use-case (steps marked with #), trivial flow allocation
use-case (steps marked with #), trivial recursion call (steps marked with #*). They outline
steps, which repeat upon similar use-cases employing recursive calls.

8.3.3.1. Enrollment Phase

Whole enrollment phase is divided into four events. The first event is enrollment of
BorderRouter A into BottomLayerA a t =1s with the help of InteriorRouter as enroller:

#1) ipcProcess2’s Enrollment module of BorderRouterA is scheduled to join the DIF
BottomLayerA just a second after the simulation started. Enrollment asks FA to provide
management (N-1)-flow (with destination address rc of InteriorRouter) to carry CACEP
messages. Because bottomipc is 0-level DIF (i.e., it is directly connected to the medium), then

142

Deliverable-2.6: RINA simulator

RA returns automatically successful binding of the (N-1)-flow — recursion cannot continue
below O-level DIFs,

#2) ipcProcess0’ s Enrollment sends M_CONNECT (with ra as source and rc as the destination
address) via RIBd to InteriorRouter. ipcProcess0’s Enrollment module leverages IPCP with
address rc within BottomLayerA (which is bottomlipc of InteriorRouter) when joining this
DIF. Because management (N-1)-flow isinherently present, management messages can be sent
immediately. M_CONNECT opens application connection for management messages between
BorderRouter A’ s bottoml pc and Interior Router’ s ipcProcess0;

#3) bottomipc’s Enrollment replies with positive M_CONNECT_R. With this message (sent
from rc to ra), bottomlpc of Interior Router accepts application connection;

#4) ipcProcess0’ s Enrollment begins enrollment procedure by sending M_START.

#5) InteriorRouter responds with M_START R. Both of these messages contains
EnrollmentObj as abstract data structure holding important parameters such as current address,
address expiration time and APN. EnrolimentObj allows to assign dynamically address to
newcoming DIF member. Nevertheless, this scenario works only with statically preconfigured
addresses;

#6) Optionaly, either InteriorRouter may send some M_CREATE messages to populate
BorderRouterA RIB with information about neighboring IPCPs and their addresses.
Alternatively, BorderRouterA may ask for this information using M_READ messages.
Alternatively, alternatively, both can exchange some authentication objects proving theidentity
of communicating parties.

#7) However, let us consider the smplest case, where bottomlpc’s Enrollment sends M_STOP
immediately after M_START_R. InteriorRouter ends enrollment procedure because it has all
the necessary information from ajoining member;

#8) ipcProcess0’'s Enrollment replies with M_STOP_R. BorderRouterA finalizes enrollment
by sending this message as Acknowledgement. The previous description outlines the most
straightforward enrollment procedure that happens between joining member and enroller.
The contents of EnrollmentStateTable (as abstract data structures holding information for
IPCP' s DIF membership) illustrating above-mentioned event is available in Addendum 8.5.3.
Subsequent descri ptions mention only notable changes because enrol |ment steps#1-#3 (CACEP
message exchange) are present in all of them.

The second event is joining of BorderRouter A into MediumLayerAB at t =1. 5S once again
with the help of InteriorRouter as enroller:

143

Deliverable-2.6: RINA simulator

#1) BorderRouterA’s ipcProcess2 is scheduled with enrollment procedure to join
MediumLayerAB leveraging InteriorRouter. Both IPCPs needs communication channel
through which they may exchange management messages. Hence, BorderRouterA’s FA of
ipcProcess2 receives request for management flow (from Enrollment module) and asks RA
to allocate appropriate (N-1)-flow (with source ra and destination rc) for communication with
InteriorRouter’s IPCP with address rC;

#2) ipcProcess2’'s RA bothers bottomlpc’s FA with allocation request because destination
name resolution returned bottomlpc IPCP as being in the same DIF as IPCP with address rc.
bottomipc’s FA creates EFCPI to handle this data transfer (from perspective of bottomlpc this
communication isjust another data flow);

#3) bottomipc’s FA sends M_CREATE containing Flow object inside via RIBd (because
bottomlpc is already enrolled to the DIF BottomLayerA). Flow object describes all properties
including source’s and destination’s addresses, port-ids, CEP-ids, QoS demands and chosen
QoSCube (in case of management messagesit is always predefined QoSCubewithid “MGMT-
QoSCube”);

#4) M_CREATE is delivered to ipcProcess0’s RIBd and FA, where it initiates the procedure
for processing of create request flow. On InteriorRouter, ipcProcessO IPCP represents (N-1)-
DIF for flow and relaylpc IPCP represents (N)-DIF for connection. Hence, ipcProcess0’'s FA
notifies relaylpc about possible flow allocation. relaylpc’s RIBd delegates this call to RA and
Resource Allocator decides whether it has enough resources to accept or not the new flow.

#5) ipcProcess0’ sFA replieswith positiveM_CREATE_R. relaylpc’ s RA responded positively
to allocation call. Therefore, ipcProcessO’ s FA instantiates opposite EFCPI, which involvesthe
assignment of local port-id/CEP-id and bindings of gates. Following this, ipcProcess)’ sFA asks
ipcProcess0’ s RIBd to generate and dispaich M_CREATE_R with updated Flow object stating
successful flow allocation;

#6) bottomlpc’s FA receives M_CREATE_R and notifies ipcProcess2’'s RA about it. FA
updateslocal Flow object. Flow is effectively in place as a channel for communication between
BorderRouter A’ sipcProcess2 and InteriorRouter’ srelayl pc. Hence, RA isalerted about (N-1)-
flow being ready and handles control back to Enrollment module;

#7) Subsequently, steps#1-#8 repeats, where |PCP with addressrA (BorderRouterA) isenrolled
into MediumLayer AB by |PCP with address rC (Interior Router).

Create request/response flow calls are always accompanied by aforementioned steps #3-#7
and exchange of M_CREATE and M_CREATE_R messages. State information for each
flow are stored in flowAllocator's submodule caled nFlowTable. Illustration of relevant
BottomLayerA’s state tables is depicted in Figure below.

144

Deliverable-2.6: RINA simulator

BarderRouterA (allacator)

(std:list<NFlowTableEntry>) ..rderRouterA.bottomlpc.flowAllocator.... n

€ iEB

Fields | Contents (0)

(std:list<NFlowTableEntry>) ..rderRouterA.bottomipc.flowAllocator.... -

fer BB

Fields | Contents (0)

B- i NFlowTab (std::list<NFlowTableEntry>)
B-NFlowTab[1] (NFlowTableEntry)
B-[0] = STATUS: allocation pending

ég NFlowTab (std:list<NFlowTableEntry>)
NFlowTab[1] (NFlowTableEntry)
[0] = STATUS: allocation pasitive, transfer

FAI> (FAI)fai_52620_14650
SRC> AP: rA_MediumLayerAB
address: ayerA), neighbor:
port: 52620
cep: 14650
DST> AP: rC_MediumLayerAB
address: ayerA), neighbor:
port: -1
cepi -1
Hop Count: 16
Retries: 0/3
DDT:no
Chosen RA's QoS cube: MGMT-QoSCube (2ggregated)
QoS Requirements List>
average BW = 12000 bit/s, average SDU BW = 10 SDU/s
peak BW duration = 24000 bit/s, peak SDU BW duration = 20 SDU/s
burst period = 10000 usecs, burst duration = 10000 usecs
undetect. bit errors = 0%, PDU dropping probability = 0%
max SDU Size = 1500 B
partial delivery = no, incomplete delivery = no
force order = yes
max allowed gap = 0 SDUs
delay = 0 usecs, jitter = 0 usecs
cost-time = 0 §/ms, cost-bits = 0 §/Mb
Created at: 1.5, invid: 43567001
Deleted at: 0, 0

ayerk)

ayerk)

c2)

FAI> (FAI)fai_52620_14650
SRC> AP: rA_MediumLayerAB
address: ra(BottomLayerA), neighbor: ra(BottomLayerA)
port: 52620
cep: 14650
DST> AP: rC_MediumLayerAB
address: re(BottomLayerA), neighbor: re(BottomLayerA)
port: 17089
cep: 32230
Hop Count: 16
Retries: 0/3
DOT: no
Chosen RA's QoS cube: MGMT-QoSCube (2ggregated)
QoS Requirements List>
average BW = 12000 bit/s, average SDU BW = 10 SDU/s
peak BW duration = 24000 bit/s, peak SDU BW duration = 20 SDU/s
burst period = 10000 usecs, burst duration = 10000 usecs
undetect. bit errors = 0%, PDU dropping probability = 0%
max SDU Size = 15008
partial delivery = no, incomplete delivery = no
force order = yes
max allowed gap = 0 SDUs
delay = 0 usecs, jitter = 0 usecs
cost-time = 0 §/ms, cost-bits = 0 §/Mb
Created at: 1.5, invid: 43367001
Deleted at: 0, invld: 0

c6)

(std:list<NFlowTableEntry>) ..iorRouter.ipcProcess0.flowAllocator.n...

€ B

Fields | Contents (0)

& g NFlawTab (std:list <NFlowTableEntry>)
NFlowTabi 1] (NFlowTableEntry)
[0] = STATUS: allocation positive, transfer

FAI> (FADfai_17089_32230
SRC> AP: rC_MediumLayerAB
address: ayerd), neighbor:
port: 17089
cep: 32230
DST> AP: rA_MediumLayerAB
address: ayerd), neighbor:
port: 52620
cep: 14650
Hop Count: 16
Retries: 0/3
DDT: no
Chosen RA's QoS cube: MGMT-QoSCube (aggregated)
QoS Requirements List>
average BW = 12000 bit/s, average SDU BW = 10SDU/s

ayerd)

ayerd)

peak BW duration = 24000 bit/s, peak SDU BW duration = 20 SDU/s
burst period = 10000 usecs, burst duration = 10000 usecs
undetect, bit errors = 0%, PDU dropping probability = 0%
max SDU Size = 1500 B
partial delivery = no, incomplete delivery = no
force order = yes
max allowed gap = 05DUs
delay = 0 usecs, jitter = 0 usecs
cost-time = 0 §/ms, cost-bits = 0 $/Mb

Created at: 1,501, invid: 43567001

Deleted at: 0, invid: 0

cd)

IntericrRouter

Figure 60. Content of BottomL ayer A’s NFlowT ables of BorderRouterA and I nteriorRouter

The third event is an enrollment of BorderRouterB into TopLayer at t =2s . Enrollment
is scheduled on the top ranked IPCP (which is relaylpc) using BorderRouterA as enroller.
Nevertheless, neither Bor der Router B’ sipcProcess2, nor Border Router B’ sbottomlpcisenrolled
to its DIF. Hence, MediumLayer AB enrollment must occur before TopLayer enrollment, and
BottomLayer B enrollment must precede MediumLayer AB enrollment:

#1) relaylpc’s Enroliment asks FA for management (N-1)-flow in order to send CACEP
messagesfromrB torA within TopLayer. Becauseit doesnot exist, RA delegatesflow allocation
to ipcProcessz;

145

Deliverable-2.6: RINA simulator

#2) ipcProcess2’s FA receives a call. FA checks whether there is management (N-1)-
flow for create request flow messages between rB (BorderRouterB’s ipcProcess2) and rA
(BorderRouterA’s ipcProcess2) within MediumLayer AB. There is none flow and more over
BorderRouter B’ sipcProcess2 is not even enrolled into MediumLayer AB. Hence, ipcProcess2’ s
FA notifies RA that it need underlying management (N-1)-flow (from perspective of relaylpc
it is (N-2)-flow) for enrollment procedure;

#3) bottomlpc’'s FA receives a call. Because bottomipc is in O-level DIF, then RA returns
automatically successful binding of the management (N-1)-flow. Enrollment procedure occurs
between BorderRouterB’s bottomipc and InteriorRouter’s ipcProcessl, which both are in
BottomLayerB DIF. Basically, IPCP with address rb successfully enrolls into BottomLayerB
using |PCP with address rc going through steps #1-#8;

#4) bottomlpc’s FA is notified about successful enrollment into BottomLayerB and continues
with flow alocation initiated during step #3. Hence, BorderRouterB’s bottomlpc and
Interior Router’ sipcProcessl RIBds and FAs exchange messages asin steps #3-#7. Eventually,
management flow between rb and rc for MediumLayerAB communication is ready, and
BorderRouterB’ s ipcProcess?2 is alerted about this;

#5) ipcProcess2’s RA is notified about successful management flow allocation. Hence,
enrollment procedure initiated in step #2 may continue. IPCP with address rB (ipcProcess2
of BorderRouterB) successfully enrolls into MediumLayer AB using IPCP with address rC
(relaylpc of Interior Router) going through steps #1-#8;

#6) ipcProcess2’s FA is notified about successful enrollment into MediumLayerAB and
continues with flow allocation initiated during step #2. Hence, BorderRouter B’ s ipcProcess2
and BorderRouterA’s ipcProcess2 exchange create request/response flow as in steps #3-
#7. Notable difference comparing to flow allocation in step #4 is that messages pass
through InteriorRouter (namely its relaylpc) as an interim device. Management flow between
InteriorRouter’s relaylpc and BorderRouter A’s ipcProcess? is already present as the result of
the second event of “Enrollment Phase”. Eventually, management flow between rC and rA for
TopLayer communication isin place, and Border Router B’ srelaylpc isinformed,;

#7) relaylpc’ s RA is notified about successful management flow allocation. Hence, enrollment
procedure initiated in step #1 may continue. All underlying connections are ready, and data
path for management messages exists between Border Router B and Border Router A on relevant
DIFs. IPCP with address rB (relaylpc of BorderRouterB) successfully enrolls into TopLayer
using IPCP with addressrA (relayl pc of Border Router A) going through steps #1-#8.

The fourth and the last event is an enrollment of HostB into TopLayer at t =5s . Enrollment
is scheduled on the top ranked IPCP (which is ipcProcessl) using BorderRouterB as enroller.

146

Deliverable-2.6: RINA simulator

Nevertheless, BorderRouter B’ s ipcProcess0 is aso not enrolled into its DIF (MediumLayer B).
Hence, MediumLayer B enrollment must occur before TopLayer enrollment. Situation issimilar
due to the recursions as in previous use-cases. Hence, we will omit unnecessary details when
describing this event:

#1) HostB's ipcProcessl checks existence of management (N-1) flow between HostB's
ipcProcess0 and Border Router B’ sipcProcessl. Thereisnoneflow. Thus one must be allocated
before enrollment procedure on TopLayer;

#2) Flow allocation call descend to HostB's ipcProcess0. Over there is also as the first thing
checked whether management (N-1) flow exists. BecauseipcProcessO isin O-level DIF, binding
of (N-1)-flow is automatically successful;

#3) HostB's ipcProcess0 (with address hb) enrolls into MediumLayerB DIF using
BorderRouterB’ s ipcProcessl (with address rb) as enroller going through steps #1-#8;

#4) After HostB is successfully enrolled into MediumLayer B, management flow allocation from
step #2 continues. The flow between HostB's ipcProcessO and BorderRouterB’s ipcProcessl
is created employing steps #3-#7. This flow is going to carry as data CACEP signalization
messages between HostB' s ipcProcessl and Border Router B’ s relaylpc;

#5) HostB's ipcProcessl is notified about management (N-1) flow presence and enrollment
procedure initiated in #1 continues. HostB's ipcProcess0 (with address hB) is enrolled into
TopLayer DIF leveraging Border Router B’ s relaylpc (with address rB).

The final state after “Enrollment Phase” is that al nodes IPCPs are enrolled (or self-enrolled)
into their DIFs except HostA’s IPCPs. All flows created during “Enrollment Phase” carries
only CACEP messages (for connection establishment) and they are intended for direct RIBd-
to-RIBd communication employing various management messages, thus, these flows are called
management flows.

8.3.3.2. Data Transfer Phase

The main outcome of this scenario is a ssmulation of data transfer events between HostA and
HostB employing ping-like application (AEMyPi ng). This application sends probe request
(M_READ) from HostA to HostB, where HostB replies with the response (M_READ_R). One-
way and round-trip time delays are measured employing this simple application.

“Data Transfer Phase” is divided into three notable events — flow allocation, data transfer,
and flow deallocation. We will describe them in similar fashion as the previous phase. Data
flow allocation starts at t =10s . HostA’s applicationProcessl (with APN SourceA, API-
id 0, AEN MyPing, AE-id 0 as ANI parameters) requests flow for communication with

147

Deliverable-2.6: RINA simulator

HostB’ s applicationProcessl (with APN DestinationB, API-id 0, AEN MyPing, AE-id 0 asANI
parameters). Event goes through following set of steps:

#1) Allocate request is delivered to IRM. Over there, DA is asked to resolve destination ANI
onto IPC addresswithin certain DIF availableto HostA. Thefollowing result isreturned yielding
that DestinationB is reachable via IPCP hB in TopLayer DIF;

#2) HostA can access TopLayer leveraging ipcProcessl. Hence, IRM delegates all ocate request
call to ipcProcessl’'s FA. As usualy, FA instantiates EFCPI and verifies whether IPCP is
enrolled into DIF before any attempt for sending create request flow (analogous to steps #1-
#2). The situation is now similar to enrollment procedure of HostB because neither ipcProcessl
nor ipcProcessO are enrolled into their DIFs. Therefore, HostA repeats same steps #1-5, which
involve following actions performed due to the recursive calls in this order of finalization:
a) enrollment of HostA’s ipcProcessO into MediumLayer A by BorderRouterA; b) creation of
management flow between IPCP ha and IPCP ra within MediumLayerA; c) enrollment of
HostA’s ipcProcessl into TopLayer by Border Router A,

#3) After successful enrollment of ipcProcessl, FA may continue with flow allocation. FA
exchanges create request/respond flow with HostB (analogously to #3-#7). This includes the
creation of (N-1)-flow between ha and rain MediumLayer A and creation of (N)-flow between
hA and hB in TopLayer. However, it gets more complex in TopLayer DIF becauseM_CREATE
and M_CREATE_R messages must be relayed by border routers to reach HostB, which
causes additional recursive flow allocations between interim devices (i.e., Border RouterA,
InteriorRouter, Border RouterB). All interim devices are already enrolled into their DIFs, thus
established flows serve as carriers for HostA and HostB data transfer. The next steps briefly
describe this multi-action step;

#4) M_CREATE from HostA to HostB is received by BorderRouterA's relaylpc.
BorderRouter A inspects create request flow and determines Border Router B with the help of
DA as the next-hop. Because border routers are not directly connected, they can communicate
vialnteriorRouter as aproxy. Therefore, BorderRouter A establishes flow between raand rc of
BottomLayer A and sends create request flow in MediumLayer AB.

#5) M_CREATE from BorderRouterA to BorderRouterB is received by InteriorRouter’s
relaylpc. The message needs to be relayed to Border Router B. Hence, flow is created between
rc and rb in BottomLayerB. Then, create request flow is forwarded within this DIF;

#6) M_CREATE from BorderRouter A to Border RouterB within MediumLayerAB is received
by BorderRouterB’s ipcProcess2. Border Router B accepts flow and sends create respond flow
that travels back to Border Router A. Because flow connecting both border routers (rA and rB
within MediumLayer AB) is established, flow allocation from #4 may continue;

148

Deliverable-2.6: RINA simulator

#7) M_CREATE from HostA to HostB is received by BorderRouterB’s relaylpc after passing
through flows created during #5 and #6. BorderRouterB inspects create request flow and
determines that HostB is reachable via its MediumLayerB. In order to successfully relay
M_CREATE to its final destination, BorderRouterB allocates flow between rb and hb in
MediumLayer B. Subsequently, M_CREATE isforwarded to HostB;

#3) M_CREATE is received by HostB's ipcProcessl. FA notifies applicationProcessl about
ongoing flow allocation. applicationProcessl accepts flow for data transfer between APs. The
decisionisreturned toipcProcessl’ sFA. IRM isasked to create bindings between AP and I PCP.
FA instantiates EFCPI, updates Flow object and replies back to requestor withM_CREATE_R;

#9) M_CREATE_Risrelayed viaall flows formed during #4-#7 to HostA until ipcProcessl’s
FA receives this message. FA updates Flow object and notifies applicationProcessl about
successful flow allocation. Then IRM adds missing bindings and whol e data path between HostA
and HostB is ready. (N)-flow in TopLayer can carry data traffic between AEs with the help of
all underlying flows.

The next event is a transfer of data traffic between AEs. HostA sends five ping-like probes
employing own object inside M_READ message starting at t =15s . Upon reception of these
messages, HostB replies with probe response, which is dedicated M_READ R message. Data
path and relevant flows are depicted in with different colors to get oriented in the following the
description. Event consists of five repetitions of two steps.

#1) HostA's applicationProcessl sends a M_READ message, which is passed through IRM
into ipcProcessl to flow prepared during the previous event and descends to ipcProcess0.
The message travels through the medium and flow connecting HostA with BorderRouter A
within MediumLayerA, where it is received by ipcProcessl. It is relayed by BorderRouterA’s
relaylpc to ipcProcess2 and flow interconnecting BorderRouterA and BorderRouterB in
MediumLayer AB. Because border routers are not directly connected, the messageis passed to a
lower bottoml pc into flow interconnecting Border Router A with the neighboring Interior Router
in BottomLayerA. Message traverses through the medium and it reaches InteriorRouter’s
ipcProcess0. Over there, message ascendsto relayl pc, whereisrelayed within MediumLayer AB.
Then it descends to ipcProcessl into flow interconnecting InteriorRouter and Border Router B
in BottomLayerB. The message travels through medium to BorderRouterB’'s bottomipc. It
ascends to ipcProcess2 and isrelayed by relaylpc to ipcProcessl. Finally, the message reaches
HostB's ipcProcess0 through medium inside flow within MediumLayerB. It ascends to flow
in ipcProcessl (member of TopLayerB) and through IRM to HostB’ s applicationProcessl as
recipient;

#2) HostB's applicationProcessl responds with M_READ_R message that returns to HostA
traveling in opposite direction through the same data (marked with violet line) path as in #1.

149

Deliverable-2.6: RINA simulator

Depending on direction message is either encapsulated (from HostA to HostB green circles) or
decapsulated (from HostA to HostB orange circles) into/from PDU or relayed (brown circles).

HostA Border Interior Border HostB
RouterA Router RouterB
— s A A —
HostA HostB
‘e %‘o
BorderRouterA BorderRouterB ‘
r T = &
A
Py
) 0 =0
Q
S|
= | @ InteriorRouter
T :—_ cp_ha__[I |_-IPC_P'a _]| PO A IPCP rC ES
5 =
- |l [3
£ | =
= |)
8| | S

N ,: - /[
\\\ // //’
Physical medium g Physical medium

Figure 61. Data transfer phaseillustration

After APs exchanged pings, HostA’'s AE closes the connection and sends deallocate submit
to HostB at t =20s . Deallocation affects only flow present in TopLayer. Current RINASIm
implementation leaves underlying (N-1/2)-flows (i.e., those not directly connected with APS)
intact because they may be reused later by other applications. This event is accompanied by
following steps:

#1) HostA’ s applicationProcessl tells IRM to deliver deallocate submit. IRM disconnects from
its side port binding. Then, IRM delegates flow deallocation to ipcProcessl’s FA;

#2) ThisFA generatesaM_DELETE message with updated Flow object state inside and sends
it towards HostB through flow in TopLayer. Message follows data path leveraging existing
management flows created during enrollment phase;

#3) HostB's ipcProcessl receives M_DELETE. FA updates its version of Flow object. FA
delivers deallocation submit to HostB's applicationProcessl, which tells IRM to remove
bindings.

150

Deliverable-2.6: RINA simulator

#4) ipcProcessl’'s FA on HostB then replies with M_DELETE_R acknowledging successful
flow deallocation. This message is carried back to HoStA;

#5) HostA’s ipcProcessl receives M_DELETE_R. FA marks flow as deallocated and
disconnects remaining bindings between IPCP and IRM. The result of flow (de)allocation and
flow’s state is maintained in ipcProcessl’s NFlowTable of HostA and HostB. We can inspect
flow parameters in these tables as illustrated in figure below. We can see that two EFCPIs
handled endpoints of data transfer — EFCPI with CEP-id 18 430 in HostA’s ipcProcessl and
EFCPI with CEP-id 60 067 in HostB’ s ipcProcessl. Bindings between AP and IPCP are ports
identified with port-id 7 877 for HostA and port-id 57 495 for HostB. The only QoS demand by
AEMyPing is the reliability of data transfer (expressed with QoS attribute “force order” set to
true). Therefore, RA assigned QoSCube named “QoSCube-RELIABLE” to flows requested by
thisAE. Flow object between HostA and HostB in TopLayer wascreatedat t =10s/ 10. 026s
and was deleted at t=20.0085/20.004s.

HostA ipcProcess1 HostB ipcProcess1

é’ NFlowTab (std:list<NFlowTableEntry>) =8 NFlowTab (std:list< NFlowTableEntry>)
NFlowTab[1] (NFlowTableEntry) NFlowTab[1] (NFlowTableEntry)
[0] = STATUS: deallocated [0] = STATUS: deallocated

FAL>. (FAlfai 7877, 18430 FAl=_(FAI)fai 57495 60067

SRC> AP: SourceA (0) AE: MyPing (0) SRC> AP: DestinationB (0) AE: MyPing (0) [—
address: hA(TopLayer), neighbor: hA(TopLayer) address: hB(TopLayer), neighbor: hB(TopLayer)
port: TBT7 port: 57495 AHLIPCP ez
cep: 18430 cep: 60067 Pout-#, G

DST> AP: DestinationB (0) AE: MyPing (0) DST> AP: SourceA (0) AE: MyPing (0) o
address: hB(Toplayer), neighbor: rA(TopLayer) address: hA(TopLayer), neighbor: rB(TopLayer) Iezsneriicam
port: 57495 port: 7877 AHIL IPCP addiess
cep: 60067 cep: 18430 Froat-i, CE-d

Hop Count: 16 Hop Count: T4

Retries: 0/3 Retries: 0/3 -

PRT: 0 DOT: no (Hhes pamelee:

oo Chosen RA's QoS cube: QoSCube-RELIABLE Chosen RA's CoS cube: QoSCube-RELIABLE e £ ke

QoS Requirements List> QoS Requirements List>
average BW = do-not-care, average SDU BW = do-not-care average BW = do-not-care, average SDU BW = do-not-care
peak BW duration = do-not-care, peak SDU BW duration = do-not-care peak BW duration = do-not-care, peak SDU BW duration = do-not-care
burst period = do-not-care, burst duration = do-not-care burst period = do-not-care, burst duration = do-not-care
undetect. bit errors = do-not-care, PDU dropping probability = do-not-care undetect. bit erors = do-not-care, PDU dropping probability = do-not-care
max SDU Size = do-not-care max SDU Size = do-not-care Cos
partial delivery = no, incomplete delivery = no partial delivery = no, incomplete delivery = no sittritmitrs
force order = yes force order = yes
max allowed gap = do-not-care max allowed gap = de-net-care
delay = do-not-care, jitter = do-not-care delay = do-not-care, jitter = do-not-care
cost-time.= do-not-care. cost-bits = do-not-care. cost-time = do-not-care, cost-bits = do-not-care

Created at: 10, invid: 20757001 Created at: 10.026, invid: 20757001

Deleted at: 20.008, invid: 20757002 Deleted at: 20.004, invid: 20757002 Tmeskamges

Figure 62. Content of TopLayer ipcProcessl NFlowTables for HostA and HostB

8.3.4. omnetpp.ini

[General]

net work = UseCaseb

check-signals = true

simtine-linmt = 5mn

debug-on-errors = true

#Appl i cation setup

** Host A. appl i cati onProcessl. apNane " Sour ceA"

** Host B. appl i cati onProcessl. apNane = "Desti nati onB"
** | ae.aeNane = "M/Pi ng"

** applicationEntity.aeType = "AEM/Pi ng"

151

Deliverable-2.6: RINA simulator

#Dl F Nami ng

** Host*.ipcProcessl. dif Nane = "TopLayer"

** Border Router*.rel ayl pc. di f Nanme = "TopLayer"

** Host A.i pcProcessO0. di f Nane = "Medi unLayer A"
** Border Rout er A. i pcProcessl. di f Nane = "Medi uniayer A"
** Host B. i pcProcessO0. di f Nane = "Medi unLayer B"

** Border Rout erB. i pcProcessl. di f Nane = "Medi uniayerB"
**_ Border Rout er A. i pcProcess2. di f Name = " Medi uniLayer AB"

** |InteriorRouter.relaylpc.difName = "MediuniLayer AB"
**_ Border Rout erB. i pcProcess2. di f Nane = " Medi uniLayer AB"
** Bor der Rout er A. bott onl pc. di f Nane = "BottonLayer A"
** InteriorRouter.ipcProcessO.di f Nane= "BottonlLayer A"
**_ Bor der Rout er B. bot t onl pc. di f Nane = "BottonlLayer B"

** InteriorRouter.ipcProcessl.di f Nane= "BottonlLayerB"

#Static | PC Addressing

** Host A i pcProcessl. i pcAddress = "hA"

** HostB.ipcProcessl.ipcAddress = "hB"

** Border RouterA relaylpc.ipcAddress = "rA"

** BorderRouterB.rel ayl pc.i pcAddress = "rB"

** Host A.i pcProcess0. i pcAddress = "ha"

** Border Rout er A.i pcProcessl.ipcAddress = "ra"

** Host B.i pcProcess0. i pcAddress = "hb"

** BorderRout erB.ipcProcessl.ipcAddress = "rb"

** Border Rout er A. i pcProcess?2. i pcAddress = "rA"

** InteriorRouter.relaylpc.ipcAddress = "rC

** Border Rout erB. i pcProcess2.ipcAddress = "rB"

** Border Rout er A. bottom pc.i pcAddress = "ra"

** InteriorRouter.ipcProcessO0.ipcAddress= "rc"

** Border Rout erB. bottom pc.i pcAddress = "rb"

** InteriorRouter.ipcProcessl.ipcAddress= "rc"

#DI F Al l ocat or settings

** Host A.di f Al l ocator.configbData = xm doc("config.xm", "Configuration/
Host [@ d=' Host A']/ DA")

** HostB.difAllocator.configbata = xm doc("config.xm ", "Configuration/

Host [@ d=' Host B']/ DA")

** BorderRout er A di fAllocator.configbata = xm doc("config.xm",
"Configuration/ Router[@ d="Border RouterA]/DA")

** BorderRout erB.difAllocator.configbata = xm doc("config.xm",
"Configuration/ Router[@ d="BorderRouterB]/DA")

** InteriorRouter.difAllocator.configbData = xm doc("config.xm",
"Configuration/Router[@d="InteriorRouter']/DA")

** HostB.difAllocator.directory.configbData = xm doc("config.xm",
"Configuration/Host[@d="Host A']/DA")

152

Deliverable-2.6: RINA simulator

** Border RouterA difAllocator.directory. configData
"Configuration/Host[@d="Host A']/DA")

** BorderRouterB.di fAllocator.directory. configData
"Configuration/Host[@d="Host A']/DA")

** InteriorRouter.difAllocator.directory.configbata = xm doc("config.xm",
"Configuration/Host[@d="Host A']/DA")

xm doc("config.xm",

xm doc("config.xm",

#Enrol | ment settings

** |InteriorRouter.**. enrollment.isSelfEnrolled = true

** BorderRouterA. relaylpc.**.enroll nent.isSelfEnrolled = true

** Border Router A i pcProcessl. **. enrol |l nment.isSelfEnrolled = true

** BorderRouterB.ipcProcessl. **. enroll ment.isSelfEnrolled = true

** Bor der Rout er A. bott oml pc. enrol | nent. configbata = xm doc("config.xm",
"Configuration/Router[@d="BorderRouterA]/Enrollnment[@d="bottom pc']")

** Border Rout er A. i pcProcess2. enrol | ment. configbData =
xm doc("config.xm ", "Configuration/Router[@d="BorderRouterA']/

Enrol I ment[@d="i pcProcess2']")

** BorderRouterB.relayl pc. enrol | nent. configbData = xm doc("config.xm",
"Configuration/Router[@d="BorderRouterB']/Enrollment[@d="relaylpc']")

** HostB.ipcProcessl. enrol |l nent.configbData = xm doc("config.xm",
"Configuration/Host[@d="HostB']/Enrollnment")

#Q0S Cube sets
** ra.qoscubesData = xm doc("config.xm ", "Configuration/ QSCubesSet")

[Config Ping]

#Pi ngApp setup

** forceOrder = true

** Host A. applicationProcessl. applicationEntity.iae.dstApNane
"Desti nati onB"

** Host A appl i cationProcessl. applicationEntity.iae.dstAeNane = "M/Pi ng"

** Host A. appl i cationProcessl. applicationEntity.iae.startAt = 10s

** Host A. applicationProcessl. applicationEntity.iae.pingAt = 15s
** Host A. appl i cati onProcessl. applicationEntity.iae.rate =5
** Host A applicationProcessl. applicationEntity.iae.stopAt = 20s

** Host A. appl i cati onProcessl. applicationEntity.iae.size = 1024B
8.3.5. config.xml
<?xm version="1.0"7?>
<Confi guration>
<Host id="HostA">

<DA>
<Directory>

153

Deliverable-2.6: RINA simulator

<APN apn="Sour ceA">

<Dl F di f Name="TopLayer" i pcAddress="hA" />

</ APN>
<APN apn="Desti nati onB">

<Dl F di f Name="TopLayer" i pcAddress="hB" />

</ APN>

<APN apn="hA ToplLayer">

<Dl F di f Name=" Medi unLayer A"
</ APN>
<APN apn="hB_TopLayer">

<Dl F di f Name=" Medi unLayer B"
</ APN>

<APN apn="r A TopLayer">
<DI F di f Nane="Medi uniLayer A"
<Dl F di f Nane=" Medi un_Layer AB"
</ APN>
<APN apn="rB_TopLayer">
<DI F di f Nane="Medi uniLayer B"
<Dl F di f Nane=" Medi unLayer AB"
</ APN>

<APN apn="r A Medi unLayer AB" >
<Dl F di f Name="Bot t onmLayer A"
</ APN>
<APN apn="r B_Medi uniLayer AB" >
<Dl F di f Name="Bot t onLayer B"
</ APN>
<APN apn="r C_Medi unLayer AB" >
<Dl F di f Name="Bot t onmLayer A"
<Dl F di f Name="Bot t onLayer B"
</ APN>
</Directory>
<Nei ghbor Tabl e>
<APN apn="hA ToplLayer">
<Nei ghbor apn="rA ToplLayer"
</ APN>
<APN apn="hB_TopLayer">
<Nei ghbor apn="rA ToplLayer"
</ APN>
</ Nei ghbor Tabl e>
</ DA>
</ Host >

<Host i d="HostB">

i pcAddr ess="ha"

i pcAddr ess="hb"

i pcAddress="ra"

/>

/>

/>

i pcAddress="rA" />

i pcAddress="rb"

/>

i pcAddress="rB" />

i pcAddress="ra"

i pcAddress="rb"

i pcAddress="rc"

i pcAddress="rc"

/>

/>

/>

/>

/>
/>

154

Deliverable-2.6: RINA simulator

<DA>
<Nei ghbor Tabl e>
<APN apn="hA ToplLayer">
<Nei ghbor apn="rB_TopLayer" />
</ APN>
<APN apn="hB_ToplLayer" >
<Nei ghbor apn="rB_TopLayer" />
</ APN>
</ Nei ghbor Tabl e>
</ DA>
<Enrol | ment >
<Pr eenrol | nent >
<SinTine t="5">
<Connect src="hB TopLayer" dst="rB _TopLayer" />
</ Si nili me>
</ Preenrol | ment >
</ Enrol I ment >
</ Host >

<Rout er i d="Border Rout er A" >
<DA>
<Nei ghbor Tabl e>
<APN apn="hB_TopLayer">
<Nei ghbor apn="rB_TopLayer" />
</ APN>
<APN apn="r B_Medi unLayer AB" >
<Nei ghbor apn="r C_Medi unLayer AB" />
</ APN>
</ Nei ghbor Tabl e>
</ DA>
<Enrol | rent id='bottom pc'>
<Preenrol | mrent >
<Sinfinme t="1">
<Connect src="ra_BottonlLayer A" dst="rc_BottonlLayerA" />
</ Si nili me>
</ Preenrol | ment >
</ Enrol | nrent >
<Enrol | ment id="ipcProcess2' >
<Preenrol | mrent >
<SinTinme t="1.5">
<Connect src="rA Mediuniayer AB" dst="rC _Medi uniLayer AB" />
</ Si nili me>
</ Preenrol | ment >
</ Enrol I mrent >
</ Rout er >

155

Deliverable-2.6: RINA simulator

<Rout er i d="Bor der Rout er B">
<DA>
<Nei ghbor Tabl e>
<APN apn="hA ToplLayer">
<Nei ghbor apn="r A _TopLayer" />
</ APN>
<APN apn="r A _Medi uniLayer AB" >
<Nei ghbor apn="r C_Medi unLayer AB" />
</ APN>
</ Nei ghbor Tabl e>
</ DA>
<Enrol |l ment id="rel aylpc' >
<Preenrol | mrent >
<SinTine t="2">
<Connect src="rB TopLayer" dst="rA TopLayer"
</ Si nli me>
</ Preenrol | mrent >
</ Enrol | mrent >
</ Rout er >

<Router id="InteriorRouter">
<DA>
<Nei ghbor Tabl e>
<APN apn="hA ToplLayer">
<Nei ghbor apn="rB_TopLayer" />
</ APN>
</ Nei ghbor Tabl e>
</ DA>
</ Rout er >

<QoSCubesSet >
<QoSCube i d="QSCube- UNRELI ABLE" >
<Aver ageBandw dt h>12000000</ Aver ageBandw dt h>
<Aver ageSDUBandwi dt h>1000</ Aver ageSDUBandw dt h>
<PeakBandw dt hDur at i on>24000000</ PeakBandwi dt hDur ati on>
<PeakSDUBandwi dt hDur at i on>2000</ PeakSDUBandwi dt hDur at i on>
<Bur st Peri 0d>10000000</ Bur st Peri od>
<Bur st Dur ati on>1000000</ Bur st Dur at i on>
<Undet ect edBi t Error >0. 01</ Undet ect edBi t Err or >
<PDUDr oppi ngPr obabi | i t y>0</ PDUDr oppi ngPr obabi | i ty>
<Max SDUSI ze>1500</ MaxSDUSI ze>
<Partial Delivery>0</Partial Delivery>
<Inconpl et eDel i very>0</ 1 nconpl et eDel i very>
<For ceOr der >0</ For ceOr der >
<MaxAl | owabl eGap>0</ MaxAl | owabl eGap>

156

Deliverable-2.6: RINA simulator

<Del ay>1000000</ Del ay>
<Jitter>500000</Jitter>
<Cost Ti ne>0</ Cost Ti nme>
<Cost Bi t s>0</ Cost Bi t s>
<ATi ne>0</ ATi me>

</ QSCube>

<QoSCube i d="QSCube- RELI ABLE" >
<Aver ageBandw dt h>12000000</ Aver ageBandw dt h>
<Aver ageSDUBandwi dt h>1000</ Aver ageSDUBandw dt h>
<PeakBandw dt hDur at i on>24000000</ PeakBandwi dt hDur ati on>
<PeakSDUBandwi dt hDur at i on>2000</ PeakSDUBandwi dt hDur at i on>
<Bur st Peri 0d>10000000</ Bur st Peri od>
<Bur st Dur ati on>1000000</ Bur st Dur at i on>
<Undet ect edBi t Error >0. 01</ Undet ect edBi t Err or >
<PDUDr oppi ngPr obabi | i t y>0</ PDUDr oppi ngPr obabi | i ty>
<Max SDUSI ze>1500</ MaxSDUSI ze>
<Partial Delivery>0</Partial Delivery>
<Inconpl et eDel i very>0</ 1 nconpl et eDel i very>
<For ceOrder >1</ For ceOr der >
<MaxAl | owabl eGap>0</ MaxAl | owabl eGap>
<Del ay>1000000</ Del ay>
<Jitter>500000</Jitter>
<Cost Ti ne>0</ Cost Ti nme>
<Cost Bi t s>0</ Cost Bi t s>
<ATi ne>0</ ATi me>

</ QSCube>

</ QSCubesSet >
</ Configuration>

8.4. Demonstration: Congestion

8.4.1. Motivation

The way RINA controls congestion is a generalization of how it is done in the Internet: if
there is only one DIF doing congestion control in the network, it operates in an end-to-end
fashion. If two or more congestion controlled DIFs are concatenated, the end-to-end control
loop is broken into shorter loops. As another interesting capability, RINA alows DIFs to be
stacked, and upper DIFs can have their own congestion control policies. If there are severa
flows from one sender to one receiver through several EFCP connections, packets of all of them
are mapped to only one EFCP connection in the DIFs bel ow; this means that at the lower DIFs,
thereis only one aggregated flow, and congestion control in these DIFs operates on aggregates.
In area RINA network where DIFs are stacked above each other, an N-DIF would carry an
aggregate of flows from the (N+1)-DIF sitting above it. Edge router pairs would then only keep

157

Deliverable-2.6: RINA simulator

the congestion state of active flow aggregates between them. Here, RINA-ACC automatically
avoids the competition between multiple end-to-end flows that occursin the Internet today.

The goal of this demonstration is to show how RINA’s Aggregate Congestion Control (ACC)
policies are used in a smple network topology. In particular, we show how flows can be
aggregated and controlled using one congestion controller to reduce the negative effect of
competing flows for a shared bandwidth on each other.

8.4.2. Description

To achieve the above goal, we simulated a scenario in which multiple flows were sharing the
same bottleneck link in the network. The example is named SmallNetwork3 in the example
folder of RINASIm. The network topology and its RINA stack are shown in Figure 63 and
Figure 64, respectively. hostlx sends a large file to host2x, respectively. The link between
Router; and Router, was the bottleneck link. There was one lower-layer DIF per each link,
and one upper-layer DIF on top of them. The RMTs used UpstreamNotifier, and the set of
TxControlPolicyTCPTahoe, RTTEstimatorPolicyTCP, and Sender AckPolicyTCPTahoe ACC
policies was used as the congestion controller in |PCPs.

hostll hostd1
hostl2 host22

Y router Iﬁ i
hostl3 host23
hostld host24
hostl5 host25

Figure 63. Network topology

158

Deliverable-2.6: RINA simulator

{ (EECP EFCP
i [(RMT RMT 2-DIE
[P o [
- e
EFCP -~ [EECB}i [EFCP
1-DIF .~ ! 1-DIF
RMT RMT :g RMT

host11 .

Figure 64. The corresponding RINA stack

8.4.3. Major events

After running the sample in OMNeT++, the following events happen which are worth
mentioning. The time unit is second.

o Att =2, dl sender nodes, hostlx, start transmission.

» Att=3.88, the bottleneck link is fully utilized and the output buffer in Router;, the RMT
output queue of the lower DIF, builds up.

e Att=3.97,the RMT output queue reaches its threshold, which in turn, sends a notification
in the EFCP module in the same IPCP to slow down. Upon getting the slow down signal,
the EFCP instance calls the slow down method in DTCP, which reduces the transmission
window.

e Att=3.98, the closed window queue of DTP builds up.

e Att = 4.05 the RMT output queue of the upper DIF in Routery is built up and exceeds
its threshold. This initiates another pushback signal to the sender EFCP instance of the last
packet on the queue. In this case, the EFCPI is in the top DIF of one of the sender nodes.
The signal is converted to a pushback packet and sent towards the sender node.

» Att=4.08, the corresponding sender node getsthe pushback signal through ECNSlowDown
policy and consequently, TxControlPolicyTCPTahoe reduces its send window. The above
series events happen for all the other senders during the simulation until it finishes.

* Att=62, thesimulation ends; al sender nodes stop transmission, and statistics is collected.
The results are in the Aggregation-0.vec, Aggregation-0.vci, and Aggregation-0.sca files.
By creating the Aggregation.anf file, results are observable.

Thefollowing diagramsare generated automatically by the Aggregation.anf file. The congestion
window size (in Bytes) of the senders and the EFCP instance in Router; is shown in Figure 65.
The upper line in the diagram belongs to the window size of the EFCP instance in Router;.

159

Deliverable-2.6: RINA simulator

TCP-Tahoe-CWND vector

0 IE 1|U 1IE- 2|U 2|E- 3'0 3|E- 4IEI 4IE- E;U E;E- GIIJ
400000 [400000
350000 [350000
3000004 300000
250000+ 250000
2000004 200000
1500004 150000
100000 [100000
50000 [50000
0- 0

0 5 10 15 20 25 30 35 40 45 50 55 60

Figure 65. The congestion window size

The queue length of the RMT output queue in Router; in the lower and upper DIF isillustrated
in Figure 66. The red curve belongs to the RMT queue in the upper DIF.

rmtqueue-size:vector

o 5 10 15 20 25 30 35 40 45 50 55 80
350 350
3001 300
2504 250
200 200
150 F150
1001 100
50+ 50
0- Lo
0 5 10 15 20 25 30 35 40 45 50 55 &0

Figure66. The RMT queue length

160

Deliverable-2.6: RINA simulator

Taking alook at the Scalarstab in the Aggregation.anf file, the AE-PING-BY TES-RCVD:last
values, in particular, reveals that the receivers got 1.2966376E7, 1.0637992E7, 1.3288512E7,
1.3411792E7, and 1.1893304E7 Bytes, respectively.

8.4.4. omnetpp.ini

[General]

simtine-limt = 62s
seed-set = ${runnunber}
** vector-recording = true

** applicationEntity. aeType = "AEStreant

** host 11. appl i cati onProcessl. apNane = "Appl1l"
** host 12. appl i cati onProcessl. apNane = "Appl2"
** host 13. appl i cati onProcessl1. apNane = "Appl3"
** host 14. appl i cati onProcessl1. apNane = "Appl4"
** host 15. appl i cati onProcessl1. apNane = "Appl5"

** host 21. appl i cati onProcessl. apNane = "App21"
** host 22. appl i cati onProcessl. apNane = "App22"
** host 23. appl i cati onProcessl1. apNane = "App23"
** host 24. appl i cati onProcessl. apNane = "App24"
** host 25. appl i cati onProcessl1. apNane = "App25"

** host 11. appl i cationProcessl. applicationEntity.iae.aeName = "Streamll"
** host 12. appl i cationProcessl. applicationEntity.iae.aeNanme = "Streanml2"
** host 13. appl i cati onProcessl. applicationEntity.iae.aeName = "Streaml3"
** host 14. appl i cati onProcessl. applicati onEntity.iae.aeNanme = "Streanl4"
** host 15. appl i cati onProcessl. applicati onEntity.iae.aeName = "Streaml5"
** host 21. applicationProcessl. applicationEntity.iae.aeName = "StreanRl"
** host 22. appl i cationProcessl. applicationEntity.iae.aeNanme = "StreanR2"
** host 23. appl i cati onProcessl. applicationEntity.iae.aeNanme = "StreanR3"
** host 24. appl i cati onProcessl. applicationEntity.iae.aeNanme = "Streank4"
** host 25. appl i cati onProcessl. applicati onEntity.iae.aeName = " StreanR5"

#Static addressing: |ower |PC |ayer

** host 11.i pcProcessO0. i pcAddress = "011"
** host 12. i pcProcessO0. i pcAddress = "012"
** host 13. i pcProcessO0. i pcAddress = "013"
** host 14. i pcProcessO0. i pcAddress = "014"
** host 15. 1 pcProcess0. i pcAddress = "015"

161

Deliverable-2.6: RINA simulator

.routerl.ipcProcess[5].difNane
.router?2.ipcProcess[0].difNane

. host21.i pcProcess0. i pcAddress = "021"
. host 22.i pcProcess0. i pcAddress = "022"
. host 23. i pcProcessO0. i pcAddress = "023"
. host 24.i pcProcess0. i pcAddress = "024"
. host 25. i pcProcessO0. i pcAddress = " 025"

.routerl.ipcProcess[0].ipcAddress = "031"
.routerl.ipcProcess[1].ipcAddress = "032"
.routerl.ipcProcess[2].ipcAddress = "033"
.routerl.ipcProcess[3].ipcAddress = "034"
.routerl.ipcProcess[4].ipcAddress = "035"
.routerl.ipcProcess[5].ipcAddress = "036"

.router?2.ipcProcess[0].ipcAddress = "046"
.router?2.ipcProcess[1].ipcAddress = "041"
.router?2.ipcProcess[2].ipcAddress = "042"
.router?2.ipcProcess[3].ipcAddress = "043"
.router?2.ipcProcess[4].ipcAddress = "044"
.router?2.ipcProcess[5].ipcAddress = "045"

.host 11.i pcProcessO. di f Nane = "Layer 011"
.routerl.ipcProcess[0].difName = "Layer011"

. host 12.i pcProcessO. di f Nanme = "Layer 012"
.routerl.ipcProcess[1].difNanme = "Layer012"

. host 13.i pcProcessO. di f Nane = "Layer 013"
.routerl.ipcProcess[2].difNane = "Layer013"

. host 14. i pcProcessO0. di f Nane = "Layer 014"
.routerl.ipcProcess[3].difNanme = "Layer014"

. host 15.i pcProcessO. di f Nane = "Layer 015"
.routerl.ipcProcess[4].difName = "Layer 015"

"Layer 034"
"Layer 034"

. host 21.i pcProcessO. di f Nane = "Layer 021"
.router?2.ipcProcess[1].difName = "Layer 021"

. host 22.i pcProcessO. di f Nanme = "Layer 022"
.router?2.ipcProcess[2].difNanme = "Layer 022"

. host 23.i pcProcessO. di f Nane = "Layer 023"

162

Deliverable-2.6: RINA simulator

** router2.ipcProcess[3].difName = "Layer 023"

** host 24. i pcProcessO0. di f Nane = "Layer 024"
** router2.ipcProcess[4].difNanme

"Layer 024"

** host 25.1 pcProcessO0. di f Nane = "Layer 025"
** router2.ipcProcess[5].difName = "Layer 025"
#Stati c addressing: higher 1 PC |ayer

** host11.i pcProcessl. i pcAddress = "111"
** host12.i pcProcessl.i pcAddress = "112"
** host 13.1i pcProcessl.i pcAddress = "113"
** host 14. i pcProcessl. i pcAddress = "114"
** host 15.1 pcProcessl.i pcAddress = "115"
** host 21.i pcProcessl.ipcAddress = "121"
** host 22.1i pcProcessl. i pcAddress = "122"
** host 23. i pcProcessl. i pcAddress = "123"
** host 24. i pcProcessl. i pcAddress = "124"
** host 25. 1 pcProcessl. i pcAddress = "125"
** routerl.relaylpc.ipcAddress = "131"

** router2.relayl pc.ipcAddress = "141"

** host*.i

pcProcessl. di f Name = "Layer1"
** router*.relayl pc.difNane = "Layer1"

#DI F Al l ocat or settings

** host 11.

Host [@ d='

** host 12.

Host [@ d='

** host 13.

Host [@ d='

** host 14.

Host [@ d='

** host 15.

Host [@ d='

** host 21.

Host [@ d='

** host 22.

Host [@ d='

** host 23.

Host [@ d='

di f Al'l ocator. configbata
host 11']/ DA")
di f Al'l ocator. configbata
host 12']/ DA")
di f Al'l ocator. configbata
host 13']/ DA")
di f Al'l ocator. configbata
host 14' 1/ DA")
di f Al'l ocator. configbata
host 15']/ DA")
di fAl'l ocator. configbata
host 21']/ DA")
di fAl'l ocator. configbata
host 22' 1/ DA")
di fAl'l ocator. configbData
host 23']/ DA")

xm doc("config.

xm doc("config.

xm doc("config.

xm doc("config.

xm doc("config.

xm doc("config.

xm doc("config.

xm doc("config.

xm ",

xm ",

xm ",

xm ",

xm ",

xm ",

xm ",

xm ",

"Configurati

"Configurati

"Configurati

"Configurati

"Configurati

"Configurati

"Configurati

"Configurati

on/

on/

on/

on/

on/

on/

on/

on/

163

Deliverable-2.6: RINA simulator

** host 24. di f Al l ocat or. confi gDat a

Host [@ d=' host 24']/ DA")

** host 25. di f Al l ocat or. confi gDat a

Host [@ d=' host 25'] / DA")
#

** routerl.difAllocator.configbData =

Router[@d="router1']/DA")

** router2.di fAllocator.configData

Router[@d="router?2']/DA")
#
##Di rectory settings
** host12.difAll ocator.directory.
"Configuration/Host[@d="host11'
** host13.difAll ocator.directory.
"Configuration/Host[@d="host11'
** host14.difAl |l ocator.directory.
"Configuration/Host[@d="host11'
** host 15.di fAl'l ocator.directory.
"Configuration/Host[@d="host11'
** host21.difAllocator.directory.
"Configuration/Host[@d="host11'
** host22.difAllocator.directory.
"Configuration/Host[@d="host11'
** host23.difAll ocator.directory.
"Configuration/Host[@d="host11'
** host24.difAllocator.directory.
"Configuration/Host[@d="host11'
** host25.di fAl'l ocator.directory.
"Configuration/Host[@d="host11'
#

** router2.difAllocator.directory.configData

confi gDat a
1/ DA")
confi gDat a
1/ DA")
confi gDat a
1/ DA")
confi gDat a
1/ DA")
confi gDat a
]/ DA")
confi gDat a
]/ DA")
confi gDat a
]/ DA")
confi gDat a
]/ DA")
confi gDat a
]/ DA")

"Configuration/Router[@d="routerl']/DA")

#
** ra.qoscubesData =

xm doc("config.xm",

flows to allocate at the beginning

** ra.preallocation =\
xm doc("config.xm",
ConnectionSet[@d="all"']/")

[Config Aggregation]
net work = Snmal | Net wor kAgg
Smal | Net wor kAgg. | del ay = 37.5ns

xm doc("config.xm",

xm doc("config.xm",

xm doc("config.xm",

xm doc("config.xm",

xm doc ("

xm doc ("

xm doc ("

xm doc ("

xm doc ("

xm doc ("

xm doc ("

xm doc ("

xm doc ("

xm doc("config.xm",

config.

config.

config.

config.

config.

config.

config.

config.

config.

"Confi guration/ ConnectionSets/

"Configuration/

"Configuration/

"Configuration/

"Configuration/

xm "

xm "

xm "

xm "

xm "

xm "

xm "

xm "

xm "

"Configuration/ QSCubesSet")

164

Deliverable-2.6: RINA simulator

** host 11. appl i cati onProcessl
** host 11. appl i cati onProcessl
** host 12. appl i cati onProcessl
** host 12. appl i cati onProcessl
** host 13. appl i cati onProcessl
** host 13. appl i cati onProcessl
** host 14. appl i cati onProcess1
** host 14. appl i cati onProcessl
** host 15. appl i cati onProcess1
** host 15. appl i cati onProcessl
** host 1*. appl i cati onProcessl
** host 1*. appl i cati onProcessl
** host 1*. appl i cati onProcessl
** host 1*. appl i cati onProcessl
** host 1*. appl i cati onProcessl
** host 1*. appl i cati onProcessl
** host 1*. appl i cati onProcessl

"DTPRTTEst i mat or Pol i cy TCP"

** host 1*. i pcProcessl. ef cp. efcp
** host 1*.i pcProcessl. efcp. efcp

Upstream

** routerl.rel ayl pc. rel ayAndMix.
rel ayl pc. rel ayAndMux.
rel ayl pc. rel ayAndMux.

** routerl.
** routerl

.routerl.
.routerl.
.routerl.
** routerl.

Noti fication

i pcProcess[5].
i pcProcess|[5].
i pcProcess[5].
i pcProcess|[5].

"DTPRTTEst i mat or Pol i cy TCP"
** routerl.ipcProcess[5].efcp.efcp.sender AckPolicy =
" DTCPSender AckPol i cy TCP"

** routerl.ipcProcess[5].efcp.efcp. maxCl osedW nQuelLen =

End; Upstream Notification

appl i
appli
appl i
appli
appl i
appli
appl i
appli
appl i
appli

appli
appl i
appli
appl i
appli
appl i
appli
.host 1*.i pcProcessl. efcp. efcp.txControl Policy =
"DTCPTxCont r ol Pol i cyTCPTahoe"

** host 1*. i pcProcessl. efcp. efcp

rttEstimatorPolicy
sender AckPolicy ="
maxCl osedW nQuelLen

def aul t MaxQLength =
def aul t ThreshQLengt
maxQPol i cyNane =

rel ayAndMux. def aul t MaxQLengt h =
rel ayAndMux. def aul t ThreshQLengt h =
rel ayAndMux. maxQPol i cyName

ef cp. ef cp. txControl Policy =
" DTCPTxCont r ol Pol i cyTCPTahoe"

** routerl.ipcProcess[5].efcp.efcp.rttEstimatorPolicy

** host*.ipcProcess*. efcp.efcp.initial Sender Credit
** host*.ipcProcess*. ef cp. ef cp. maxCl osedW nQuelLen =

** host*.ipcProcess*. efcp.efcp.rcvCredit

= 600#122

cationEntity.i ae.
cationEntity.iae.
cationEntity.iae.
cationEntity.iae.
cationEntity.i ae.
cationEntity.i ae.
cationEntity.i ae.
cationEntity.i ae.
cationEntity.i ae.
cationEntity.i ae.
cationEntity.i ae.
cationEntity.i ae.
cationEntity.i ae.
cationEntity.i ae.
cationEntity.i ae.
cationEntity.i ae.
cationEntity.i ae.

dst ApNane = " App21"
dst AeNane = "StreanRl"
dst ApNane = " App22"
dst AeNane = " StreanR2"
dst ApNane = " App23"
dst AeNane = " Streank3"
dst ApNane = " App24"
dst AeNane = " Streank4"
dst ApNane = " App25"
dst AeNane = " Streank5"
startAt = 1s

begi nStreamAt = 2s
endStreamAt = 162s
interval = 0.002s
stopAt = 162s

size = 536B
forceOrder = true

DTCPSender AckPol i cy TCP"

= 200

175

h = 175

"UpstreamNotifier"

175
175

= "UpstreamNotifier"

25

= 600
100000#50000

165

Deliverable-2.6: RINA simulator

** router*.ipcProcess*.efcp.efcp.initial SenderCredit

= 600

** router*.ipcProcess*. ef cp. ef cp. maxCd osedW nQueLen = 50000

** router*.ipcProcess*.efcp.efcp.rcvCredit

** defaul t ThreshQ.,ength = 50000

** defaul t MaxQLengt h = 50000

8.4.5. config.xml

<?xm version="1.0"?>
<Confi guration>
<Connecti onSet s>

<Connect i onSet

<Sinfline t="0">
<Connecti on

<Connecti on

<Connecti on

<Connecti on

<Connecti on

<Connecti on

<Connecti on

<Connecti on

<Connecti on

<Connecti on

<Connecti on

</ Si mli ne>

</ Connecti onSet >

</ Connecti onSet s>

<Host
<DA>

i d="host 11" >

id="all">

src="111 lLayer1"

src="112 lLayer1"

src="113 Layer1"

src="114 lLayer1"

src="115 Layer1"

src="131_Layer1"

src="141 lLayer1"

src="141 lLayer1"

src="141 lLayer1"

src="141 lLayer1"

src="141 lLayer1"

600

dst="131 Layer1"

dst="131 Layer1"

dst="131 Layer1"

dst="131 Layer1"

dst="131 Layer1"

dst="141_Layer 1"

dst="121 Layer1"

dst="122 Layer 1"

dst="123 Layer 1"

dst="124 Layer 1"

dst="125 Layer 1"

gosCube="1"/
gosCube="1"/
gosCube="1"/
gosCube="1"/
gosCube="1"/
gosCube="1"/
gosCube="1"/
gosCube="1"/
gosCube="1"/
gosCube="1"/
gosCube="1"/

166

Deliverable-2.6: RINA simulator

<Directory>

<APN apn="Appl1l">

<Dl F di f Nane="Layer 1" i pcAddress="111" />
</ APN>

<APN apn="Appl2">

<Dl F di f Name="Layer 1" i pcAddress="112" />
</ APN>

<APN apn="Appl3">

<Dl F di f Nane="Layer 1" ipcAddress="113" />
</ APN>

<APN apn="Appl4">

<Dl F di f Name="Layer 1" i pcAddress="114" />
</ APN>

<APN apn="Appl5">

<Dl F di f Nane="Layer 1" i pcAddress="115" />
</ APN>

<APN apn="App21">

<Dl F di f Name="Layer 1" i pcAddress="121" />
</ APN>

<APN apn="App22">

<Dl F di f Nane="Layer 1" i pcAddress="122" />
</ APN>

<APN apn="App23" >

<Dl F di f Name="Layer 1" i pcAddress="123" />
</ APN>

<APN apn="App24" >

<Dl F di f Nane="Layer 1" i pcAddress="124" />
</ APN>

<APN apn="App25" >

<Dl F di f Name="Layer 1" i pcAddress="125" />
</ APN>

<APN apn="111 Layer1">

<Dl F di f Name="Layer 011" i pcAddress="011" />
</ APN>

<APN apn="112 Layer1">

<DI F di f Nane="Layer 012" i pcAddress="012" />
</ APN>

<APN apn="113_Layer1">

<Dl F di f Name="Layer 013" i pcAddress="013" />
</ APN>

<APN apn="114_Layer1">

<DI F di f Nane="Layer 014" i pcAddress="014" />
</ APN>

<APN apn="115_Layer1">

<Dl F di f Name="Layer 015" i pcAddress="015" />

167

Deliverable-2.6: RINA simulator

</ APN>

<APN apn="121 Layer1">

<DI F di f Nane="Layer 021" i pcAddress="021" />
</ APN>

<APN apn="122_ Layer1">

<Dl F di f Name="Layer 022" i pcAddress="022" />
</ APN>

<APN apn="123 Layer1">

<Dl F di f Name="Layer 023" i pcAddress="023" />
</ APN>

<APN apn="124_Layer1">

<Dl F di f Name="Layer 024" i pcAddress="024" />
</ APN>

<APN apn="125 Layer1">

<Dl F di f Name="Layer 025" i pcAddress="025" />
</ APN>

<APN apn="131 Layer1">
<DI F di f Nane="Layer 011" i pcAddress="031" />
<Dl F di f Name="Layer 012" i pcAddress="032" />
<Dl F di f Name="Layer 013" i pcAddress="033" />
<Dl F di f Name="Layer 014" i pcAddress="034" />
<Dl F di f Name="Layer 015" i pcAddress="035" />
<Dl F di f Name="Layer 034" i pcAddress="036" />
</ APN>

<APN apn="141 Layer1">
<DI F di f Nane="Layer 021" i pcAddress="041" />
<Dl F di f Name="Layer 022" i pcAddr ess="042" />
<Dl F di f Name="Layer 023" i pcAddress="043" />
<Dl F di f Name="Layer 024" i pcAddress="044" />
<Dl F di f Name="Layer 025" i pcAddress="045" />
<Dl F di f Name="Layer 034" i pcAddr ess="046" />
</ APN>

</Directory>

<Nei ghbor Tabl e>

<APN apn="121 Layer1">
<Nei ghbor apn="131_Layer1" />

</ APN>

</ Nei ghbor Tabl e>

</ DA>
</ Host >

<Host id="host12">
<DA>
<Nei ghbor Tabl e>
<APN apn="122 Layer1">

168

Deliverable-2.6: RINA simulator

<Nei ghbor apn="131_Layer1" />
</ APN>
</ Nei ghbor Tabl e>
</ DA>
</ Host >

<Host id="host 13">
<DA>
<Nei ghbor Tabl e>
<APN apn="123 Layer1">
<Nei ghbor apn="131_Layer1" />
</ APN>
</ Nei ghbor Tabl e>
</ DA>
</ Host >

<Host id="host 14">
<DA>
<Nei ghbor Tabl e>
<APN apn="124_Layer1">
<Nei ghbor apn="131_Layer1" />
</ APN>
</ Nei ghbor Tabl e>
</ DA>
</ Host >

<Host id="host 15">
<DA>
<Nei ghbor Tabl e>
<APN apn="125 Layer1">
<Nei ghbor apn="131_Layer1" />
</ APN>
</ Nei ghbor Tabl e>
</ DA>
</ Host >

<Host id="host21">
<DA>
<Nei ghbor Tabl e>
<APN apn="111 Layer1">
<Nei ghbor apn="141_Layer1" />
</ APN>
</ Nei ghbor Tabl e>
</ DA>
</ Host >

169

Deliverable-2.6: RINA simulator

<Host id="host22">
<DA>
<Nei ghbor Tabl e>
<APN apn="112 Layer1">
<Nei ghbor apn="141_Layer1" />
</ APN>
</ Nei ghbor Tabl e>
</ DA>
</ Host >

<Host id="host23">
<DA>
<Nei ghbor Tabl e>
<APN apn="113 Layer1">
<Nei ghbor apn="141_Layer1" />
</ APN>
</ Nei ghbor Tabl e>
</ DA>
</ Host >

<Host id="host24">
<DA>
<Nei ghbor Tabl e>
<APN apn="114_Layer1">
<Nei ghbor apn="141_Layer1" />
</ APN>
</ Nei ghbor Tabl e>
</ DA>
</ Host >

<Host i d="host 25">
<DA>
<Nei ghbor Tabl e>
<APN apn="115 Layer1">
<Nei ghbor apn="141_Layer1" />
</ APN>
</ Nei ghbor Tabl e>
</ DA>
</ Host >

<Router id="routerl">
<DA>
<Directory>
<APN apn="Appl1l">
<Dl F di f Nane="Layer 1" ipcAddress="111" />
</ APN>

170

Deliverable-2.6: RINA simulator

<APN apn="Appl2">

<Dl F di f Name="Layer 1" i pcAddress="112" />
</ APN>

<APN apn="Appl3">

<Dl F di f Nane="Layer 1" i pcAddress="113" />
</ APN>

<APN apn="Appl4">

<Dl F di f Name="Layer 1" i pcAddress="114" />
</ APN>

<APN apn="Appl5">

<Dl F di f Nane="Layer 1" i pcAddress="115" />
</ APN>

<APN apn="App21">

<Dl F di f Name="Layer 1" i pcAddress="121" />
</ APN>
<APN apn="App22">

<Dl F di f Nane="Layer 1" i pcAddress="122" />
</ APN>
<APN apn="App23" >

<Dl F di f Name="Layer 1" i pcAddress="123" />
</ APN>
<APN apn="App24" >

<DI F di f Nane="Layer 1" i pcAddress="124" />
</ APN>
<APN apn="App25" >

<Dl F di f Name="Layer 1" i pcAddress="125" />
</ APN>

<APN apn="111 Layer1">

<Dl F di f Name="Layer 011" i pcAddress="011" />
</ APN>

<APN apn="112 Layer1">

<DI F di f Nane="Layer 012" i pcAddress="012" />
</ APN>

<APN apn="113_Layer1">

<Dl F di f Name="Layer 013" i pcAddress="013" />
</ APN>
<APN apn="114_Layer1">

<DI F di f Nane="Layer 014" i pcAddress="014" />
</ APN>
<APN apn="115_Layer1">

<Dl F di f Name="Layer 015" i pcAddress="015" />
</ APN>
<APN apn="121 Layer1">

<DI F di f Nane="Layer 021" i pcAddress="021" />
</ APN>

171

Deliverable-2.6: RINA simulator

<APN apn="122_ Layer1">

<Dl F di f Name="Layer 022" i pcAddress="022" />
</ APN>

<APN apn="123 Layer1">

<Dl F di f Name="Layer 023" i pcAddress="023" />
</ APN>

<APN apn="124_Layer1">

<Dl F di f Name="Layer 024" i pcAddress="024" />
</ APN>

<APN apn="125 Layer1">

<Dl F di f Name="Layer 025" i pcAddress="025" />
</ APN>

<APN apn="131 Layer1">
<Dl F di f Nane="Layer 011" i pcAddress="031" />
<Dl F di f Name="Layer 012" i pcAddress="032" />
<Dl F di f Name="Layer 013" i pcAddress="033" />
<Dl F di f Name="Layer 014" i pcAddress="034" />
<Dl F di f Name="Layer 015" i pcAddress="035" />
<Dl F di f Name="Layer 034" i pcAddress="036" />
</ APN>

<APN apn="141 Layer1">
<DI F di f Nane="Layer 021" i pcAddress="041" />
<Dl F di f Name="Layer 022" i pcAddr ess="042" />
<Dl F di f Name="Layer 023" i pcAddress="043" />
<Dl F di f Name="Layer 024" i pcAddress="044" />
<Dl F di f Name="Layer 025" i pcAddress="045" />
<Dl F di f Name="Layer 034" i pcAddr ess="046" />
</ APN>

</Directory>

<Nei ghbor Tabl e>

<APN apn="121 Layer1">
<Nei ghbor apn="141_Layer1" />

</ APN>

<APN apn="122_ Layer1">
<Nei ghbor apn="141 Layer1" />

</ APN>

<APN apn="123 Layer1">
<Nei ghbor apn="141_Layer1" />

</ APN>

<APN apn="124_Layer1">
<Nei ghbor apn="141 Layer1" />

</ APN>

<APN apn="125 Layer1">
<Nei ghbor apn="141_Layer1" />

</ APN>

172

Deliverable-2.6: RINA simulator

</ Nei ghbor Tabl e>

</ DA>
</ Rout er >

<Router id="router2">

<DA>

<Nei ghbor Tabl e>
<APN apn="111 Layer1">
<Nei ghbor apn="131 Layer1" />

</ APN>

<APN apn="112 Layer1">
<Nei ghbor apn="131_Layer1" />

</ APN>

<APN apn="113_Layer1">
<Nei ghbor apn="131 Layer1" />

</ APN>

<APN apn="114_Layer1">
<Nei ghbor apn="131_Layer1" />

</ APN>

<APN apn="115_Layer1">
<Nei ghbor apn="131 Layer1" />

</ APN>

</ Nei ghbor Tabl e>

</ DA>
</ Rout er >

<QoSCubesSet >
<QosCube id="1">

<Aver ageBandw dt h>12000000</ Aver ageBandw dt h>

<Aver ageSDUBandwi dt h>1000</ Aver ageSDUBandw dt h>
<PeakBandw dt hDur at i on>24000000</ PeakBandwi dt hDur ati on>
<PeakSDUBandwi dt hDur at i on>2000</ PeakSDUBandwi dt hDur at i on>
<Bur st Peri 0d>10000000</ Bur st Peri od>

<Bur st Dur ati on>1000000</ Bur st Dur at i on>

<Undet ect edBi t Error >0. 01</ Undet ect edBi t Err or >

<MaxSDUSi ze>1500</ MaxSDUSI ze>

<Partial Delivery>0</Partial Delivery>

<l nconpl et eDel i very>0</ 1 nconpl et eDel i very>

<For ceOr der >1</ For ceOr der >

<MaxAl | owabl eGap>0</ MaxAl | owabl eGap>

<Del ay>1000000</ Del ay>

<Ji tter>500000</Jitter>

<Cost Ti me>0</ Cost Ti nme>

<Cost Bi t s>0</ Cost Bi t s>

<ATi me>0</ ATi nme>

</ QosCube>
</ QSCubesSet >

173

Deliverable-2.6: RINA simulator

</ Configuration>

8.5. Demonstration: Routing

8.5.1. Motivation

The goa of this demonstration is to show how RINA’s Forwarding, PDUGE and Routing
policies are used in asimple network topology with distinct requirements.

8.5.2. Description

To achievethisgoal, we simulated a scenario in which there were multipl e paths between hosts
with distinct properties. The example is named LatEx in the example/Routing/LatEx folder of
RINASIm. The network topology is shown in Figure 67. hostl communicates with host2. The
links between Routers, and Router4 and Routersz and Router, have various length, forming the
path with different latencies, given by the shim DIFs QoS Cubes.

174

Deliverable-2.6: RINA simulator

LatEx

routerd uter3d

Figure 67. Network topology
8.5.3. Configurations

The example is used to test multiple routing policies and has multiple configurations with
individual results.

e Hop*, HR Forwarding using the minimum length paths to a destination. Some use
memoryless ECMP if more than one path is found.

e Lat* Forwarding using the minimum latency paths to a destination. Some use memoryless
ECMP if more than one path is found.

175

Deliverable-2.6: RINA simulator

8.5.4. omnetpp.ini

[General]
network = Lat Ex
simtine-limt = 5mn

** host1.**.ipcAddress = "hl"

** host2.**.ipcAddress = "h2"

** routerl.**.ipcAddress = "r1"
** router2.**.ipcAddress = "r2"
** router3.**.ipcAddress = "r3"
** router4.**. ipcAddress = "r4"

** host*.ipcProcessl. di fNane = "NET"
** router*.relaylpc.di fName = "NET"

** host 1.i pcProcess0. di f Nanme = "shi nHRL"
** routerl.ipcProcess[0].difName = "shi mHRL"

** host 2.i pcProcess0. di f Name = "shi nHR2"
** router4.ipcProcess[0].difName = "shi nHR2"

** routerl.ipcProcess[1].difNanme = "shinl2"
** router2.ipcProcess[0].difName = "shim2"

** routerl.ipcProcess[2].difName = "shim3"
** router3.ipcProcess[0].difNanme = "shi nl3"

** router4.ipcProcess[1].difNanme = "shi nk4"
** router2.ipcProcess[1].difName = "shinR4"

** router4d.ipcProcess[2].difName = "shinB4"

** router3.ipcProcess[1].difNanme = "shi nB4"

** f1 owAl | ocat or. newrl owReqPol i cyType = "M nConparer"

** ra.qoscubesData = xm doc(" QoS. xm ", "Configuration/ QSCubesSet")
** ra.qosReqData = xm doc("QoS. xnml ", "Configuration/ QSReqSet")

** ra.preallocation = xm doc("connections.xm", "Configuration/
ConnectionSet")

176

Deliverable-2.6: RINA simulator

** di fAll ocator.configbData = xm doc("config.xm ", "Configuration/DA")
** difAllocator.directory.configbData = xm doc("config.xm",
"Configuration/DA")

** relayl pc. **. pduForwar di ngPol i cy. print At End = true

** | pcProcessl. **, pduForwardi ngPolicy. printAtEnd = true
** relaylpc.routingPolicy.printAtEnd = true

** jpcProcessl.routingPolicy.printAtEnd = true

** i pcProcessl.**. print AtEnd = true

** printAtEnd = fal se

** | pcProcessl. rel ayAndMux. For war di ngPol i cyNane = "M ni Tabl e"
** relayl pc. rel ayAndMux. For war di ngPol i cyNane = "M ni Tabl e"

#

Appliction entities naning

#

** host 1. applicationProcessl. apNane = "Snd"

** host 2. appl i cati onProcessl. apNane = "Rcv"

** applicationEntity. aeType = " AEPi ng"

** i ae. aeNane = "Ping"

** host 1. applicati onProcessl. applicationEntity.iae.dstApNane = "Rcv"
** host 1. applicati onProcessl. applicationEntity.iae.dstAeNane = "Ping"
** host 1. applicationProcessl. applicationEntity.iae.startAt = 130s
** host 1. appl i cati onProcessl. applicationEntity.iae.pi ngAt = 140s
** host 1. applicationProcessl. applicationEntity.iae.rate =5

** host 1. appl i cati onProcessl. applicationEntity.iae.stopAt =0

[Config HopDV]

** | pcProcessl. resourceAl | ocator. pduf gPol i cyName = " Si npl eGener at or"
** relayl pc. resourceAl | ocat or. pduf gPol i cyNanme = " Si npl eGener at or "

** i pcProcessl. routingPolicyName = "Si npl eDV"

** relayl pc. routingPolicyName = "Si npl eDV"

[Config HopLS]

** i pcProcessl. resourceAl | ocator. pdufgPol i cyName = "Si npl eGener at or™"
** relayl pc. resourceAl | ocat or. pduf gPol i cyNanme = " Si npl eGener at or"

177

Deliverable-2.6: RINA simulator

* %

* %

.ipcProcessl.routingPolicyName = "Sinpl eLS"
.relayl pc.routingPolicyNane = "Si npl eLS"

[Config LatDV]

.i pcProcessl.routingPolicy.infMetric = 1000
.relaylpc.routingPolicy.infMetric = 1000

.1 pcProcessl. resourceAl | ocat or. pduf gPol i cyNane = "Lat Generator"
.relayl pc.resourceAl | ocat or. pduf gPol i cyNane = "Lat Generator"

.ipcProcessl.routingPolicyName = "Si npl eDV"
.relayl pc.routingPolicyNane = "Si npl eDV"

[Config LatLS]

* %

. i pcProcessl. resourceAl | ocator. pduf gPol i cyNane = "Lat Generator"
.relayl pc. resourceAl | ocat or. pduf gPol i cyNane = "Lat Generator"

.1 pcProcessl.routingPolicyNanme = "Sinpl eLS"
.relayl pc.routingPolicyNanme = "Sinpl eLS"

[Config HopsSingl elEntryLS]

* %

. i pcProcessl. resourceAl | ocator. pduf gPol i cyNane = "HopsSi ngl elEntry"
.relayl pc. resourceAl | ocat or. pduf gPol i cyNane = "HopsSi ngl elEntry"

.1 pcProcessl.routingPolicyNane = "TSi npl eLS"
.relayl pc.routingPolicyName = "TSi npl eLS"

[Config HopsSi ngl eMENntri esLS]

* %

. i pcProcessl. resourceAl | ocator. pduf gPol i cyNane = "HopsSi ngl eMEntries
.relayl pc. resourceAl | ocat or. pduf gPol i cyNane = "HopsSi ngl eMEntri es”

.1 pcProcessl.routingPolicyNane = "TSi npl eLS"
.relayl pc.routingPolicyName = "TSi npl eLS"

. i pcProcessl. rel ayAndMux. Forwar di ngPol i cyName = "Ml ti M ni Tabl e"
.relayl pc. rel ayAndMux. For war di ngPol i cyName = "Ml ti M ni Tabl e"

178

Deliverable-2.6: RINA simulator

[Config LatencySi ngl elEntryLS]

** i pcProcessl. resourceAl |l ocator. pduf gPol i cyName = "Lat encySi ngl elEntry"
** relayl pc.resourceAl | ocator. pduf gPol i cyNane = "Lat encySi ngl elEntry"

** i pcProcessl. routingPolicyName = "TSi npl eLS"

** relayl pc.routingPolicyNanme = "TSi npl eLS"

[Config LatencySi ngl eMENtri esLS]

** i pcProcessl. resourceAl |l ocator. pdufgPol i cyName = "LatencySi ngl eMeEntries"
** relayl pc. resourceAl | ocator. pduf gPol i cyName = "Lat encySi ngl eMENntri es”

** i pcProcessl. routingPolicyName = "TSi npl eLS"
** relaylpc.routingPolicyNane = "TSi npl eLS"

** i pcProcessl. rel ayAndMux. Forwar di ngPol i cyNane = "Ml ti M ni Tabl e"
** relayl pc. rel ayAndMux. For war di ngPol i cyNane = "Ml ti M ni Tabl e"

[Confi g HopsSi ngl elEnt ryDV]

** i pcProcessl. resourceAl | ocator. pduf gPol i cyName = "HopsSi ngl elEntry"
** relayl pc.resourceAl | ocat or. pduf gPol i cyNanme = "HopsSi ngl elEntry"

** jpcProcessl. routingPolicyName = "TSi npl eDV"
** relayl pc. routingPolicyNanme = "TSi npl eDV"

[Confi g HopsSi ngl eMENt ri esDV]

** i pcProcessl. resourceAl |l ocator. pduf gPol i cyName = "HopsSi ngl eMENntries”
** relayl pc.resourceAl | ocat or. pduf gPol i cyNane = "HopsSi ngl eMeEntri es”

** jpcProcessl. routingPolicyName = "TSi npl eDV"
** relayl pc. routingPolicyNanme = "TSi npl eDV"

** i pcProcessl. rel ayAndMux. For war di ngPol i cyNane = "Ml ti M ni Tabl e"
** relayl pc. rel ayAndMux. For war di ngPol i cyName = "Ml ti M ni Tabl e"

[Config LatencySingl elEnt ryDV]

179

Deliverable-2.6: RINA simulator

** | pcProcessl. resourceAl |l ocator. pduf gPolicyNanme = "LatencySi ngl elEntry"
** relayl pc.resourceAl | ocat or. pduf gPol i cyNane = "Lat encySi ngl elEntry"
** i pcProcessl. routingPolicyName = "TSi npl eDV"
** relayl pc.routingPolicyName = "TSi npl eDV"

[Config LatencySi ngl eMEntri esDV]

** i pcProcessl. resourceAl | ocator. pduf gPol i cyName = "Lat encySi ngl eMEntries”
** relayl pc. resourceAl |l ocator. pdufgPoli cyName = "LatencySi ngl eMeEntries"

** i pcProcessl. routingPolicyName = "TSi npl eDV"
** relayl pc. routingPolicyNanme = "TSi npl eDV"

** i pcProcessl. rel ayAndMux. For war di ngPol i cyNane = "Ml ti M ni Tabl e"
** relayl pc. rel ayAndMux. For war di ngPol i cyName = "Ml ti M ni Tabl e"

[Config HR]

** relayl pc. resourceAl |l ocator. pdufgPol i cyName = "Hi erarchical Generator"
** relayl pc.routingPolicyNane = "TDonai nRouti ng"

** relayl pc. rel ayAndMux. For war di ngPol i cyNanme = " 0"

** | pcProcessl. resourceAl |l ocator. pduf gPol i cyName = "Hi erarchical Generator"
** i pcProcessl. routingPolicyName = "TDomai nRouti ng"
** | pcProcessl. rel ayAndMux. For war di ngPol i cyNane = "Hi erarchi cal Tabl e"

8.5.5. config.xml

<?xm version="1.0"?>
<Confi guration>
<DA>
<Di rectory>
<APN apn="h1l_NET">
<Dl F di f Name="shi nHR1" i pcAddress="h1" />
</ APN>
<APN apn="h2_NET" >
<DI F di f Nane="shi THR2" i pcAddress="h2" />
</ APN>

<APN apn="r1 NET">

<DI F di f Nane="shi THR1" i pcAddress="r1" />
<Dl F di f Name="shi nl2" i pcAddress="r1" />
<DI F di f Nane="shi ml3" i pcAddress="r1" />

180

Deliverable-2.6: RINA simulator

</ APN>
<APN apn="r2_NET">
<DI F di f Nane="shi mL2" i pcAddress="r2" />
<Dl F di f Name="shi n24" i pcAddress="r2" />
</ APN>
<APN apn="r3_NET">
<DI F di f Nane="shi mL3" i pcAddress="r3" />
<Dl F di f Name="shi nB4" i pcAddress="r3" />
</ APN>
<APN apn="r4_NET" >
<DI F di f Nane="shi THR2" i pcAddress="r4" />
<Dl F di f Name="shi n24" i pcAddress="r4" />
<DI F di f Nane="shi n84" i pcAddress="r4" />
</ APN>

<APN apn="Snd" >
<Dl F di f Name="NET" i pcAddress="h1l" />
</ APN>
<APN apn="Rcv">
<DI F di f Nane="NET" i pcAddress="h2" />
</ APN>
</ Directory>
</ DA>
</ Configuration>

8.5.6. QoS.xml

<?xm version="1.0"?>
<Confi guration>
<QoSReqSet >
<QosReq id="1">
<Del ay>1</ Del ay>
</ QosReqg>
<QosReq i d="2">
<Del ay>2</ Del ay>
</ QosReqg>
<QosReq i d="3">
<Del ay>3</ Del ay>
</ QosReqg>
<QosReq i d="4">
<Del ay>4</ Del ay>
</ QosReqg>
<QosReq i d="5">
<Del ay>5</ Del ay>

181

Deliverable-2.6: RINA simulator

</ QosReqg>

<QosReq id="6">
<Del ay>6</ Del ay>

</ QosReqg>

<QosReq i d="7">
<Del ay>7</ Del ay>

</ QosReqg>

<QosReq id="8">
<Del ay>8</ Del ay>

</ QosReqg>

<QosReq i d="9">
<Del ay>9</ Del ay>

</ QosReqg>

<QosReq id="10">
<Del ay>10</ Del ay>

</ QosReqg>

<QosReq id="15">
<Del ay>15</ Del ay>

</ QosReqg>

<QosReq id="20">
<Del ay>20</ Del ay>

</ QosReqg>

<QosReq i d="30">
<Del ay>30</ Del ay>

</ QosReqg>

<QosReq i d="50">
<Del ay>50</ Del ay>

</ QosReqg>

<QosReq id="100">

<Del ay>100</ Del ay>

</ QosReqg>
</ QoSReqSet >

<QoSCubesSet >
<QosCube id="1">
<Del ay>1</ Del ay>

<Cost Bi t s>1</ Cost Bi t s>

<PDUDr oppi ngPr obabi | i t y>0. 001</ PDUDr oppi ngPr obabi I i ty>

<Cost Ti me>10000</ Cost Ti me>
<Aver ageBandw dt h>12000000</ Aver ageBandw dt h>
<Aver ageSDUBandwi dt h>1000</ Aver ageSDUBandw dt h>

<PeakBandw dt hDur at i on>24000000</ PeakBandw dt hDur ati on>
<Peak SDUBandwi dt hDur at i on>2000</ PeakSDUBandwi dt hDur at i on>

<Bur st Peri 0d>10000000</ Bur st Peri od>

182

Deliverable-2.6: RINA simulator

<Bur st Dur ati on>1000000</ Bur st Dur at i on>
<Undet ect edBi t Error >0. 01</ Undet ect edBi t Err or >
<MaxSDUSi ze>1500</ MaxSDUSI ze>
<Partial Delivery>0</Partial Delivery>
<l nconpl et eDel i very>0</ 1 nconpl et eDel i very>
<For ceOr der >0</ For ceOr der >
<MaxAl | owabl eGap>0</ MaxAl | owabl eGap>
<Jitter>500000</Jitter>
<ATi ne>0</ ATi me>
<RxOn>0</ RxOn>
<W nOn>0</ W nOn>
<Rat eOn>0</ Rat eOn>

</ QosCube>

<QosCube id="2">
<Del ay>2</ Del ay>
<Cost Bi t s>2</ Cost Bi t s>

<PDUDr oppi ngPr obabi | i t y>0. 001</ PDUDr oppi ngPr obabi I i ty>
<Cost Ti mne>10000</ Cost Ti nme>
<Aver ageBandw dt h>12000000</ Aver ageBandw dt h>
<Aver ageSDUBandwi dt h>1000</ Aver ageSDUBandw dt h>
<PeakBandw dt hDur at i on>24000000</ PeakBandwi dt hDur ati on>
<PeakSDUBandwi dt hDur at i on>2000</ PeakSDUBandwi dt hDur at i on>
<Bur st Peri 0d>10000000</ Bur st Peri od>
<Bur st Dur ati on>1000000</ Bur st Dur at i on>
<Undet ect edBi t Error >0. 01</ Undet ect edBi t Err or >
<MaxSDUSi ze>1500</ MaxSDUSI ze>
<Partial Delivery>0</Partial Delivery>
<l nconpl et eDel i very>0</ 1 nconpl et eDel i very>
<For ceOr der >0</ For ceOr der >
<MaxAl | owabl eGap>0</ MaxAl | owabl eGap>
<Jitter>500000</Jitter>
<ATi ne>0</ ATi me>
<RxOn>0</ RxOn>
<W nOn>0</ W nOn>
<Rat eOn>0</ Rat eOn>
</ QosCube>

<QosCube id="3">

<Del ay>3</ Del ay>
<Cost Bi t s>3</ Cost Bi t s>

<PDUDr oppi ngPr obabi | i t y>0. 001</ PDUDr oppi ngPr obabi I i ty>

183

Deliverable-2.6: RINA simulator

<Cost Ti mne>10000</ Cost Ti me>
<Aver ageBandw dt h>12000000</ Aver ageBandw dt h>
<Aver ageSDUBandwi dt h>1000</ Aver ageSDUBandw dt h>
<PeakBandw dt hDur at i on>24000000</ PeakBandwi dt hDur ati on>
<PeakSDUBandwi dt hDur at i on>2000</ PeakSDUBandwi dt hDur at i on>
<Bur st Peri 0d>10000000</ Bur st Peri od>
<Bur st Dur ati on>1000000</ Bur st Dur at i on>
<Undet ect edBi t Error >0. 01</ Undet ect edBi t Err or >
<MaxSDUSi ze>1500</ MaxSDUSI ze>
<Partial Delivery>0</Partial Delivery>
<l nconpl et eDel i very>0</ 1 nconpl et eDel i very>
<For ceOr der >0</ For ceOr der >
<MaxAl | owabl eGap>0</ MaxAl | owabl eGap>
<Jitter>500000</Jitter>
<ATi ne>0</ ATi me>
<RxOn>0</ RxOn>
<W nOn>0</ W nOn>
<Rat eOn>0</ Rat eOn>
</ QosCube>

<QosCube id="4">
<Del ay>4</ Del ay>
<Cost Bi t s>4</ Cost Bi t s>

<PDUDr oppi ngPr obabi | i t y>0. 001</ PDUDr oppi ngPr obabi I i ty>
<Cost Ti mne>10000</ Cost Ti nme>
<Aver ageBandw dt h>12000000</ Aver ageBandw dt h>
<Aver ageSDUBandwi dt h>1000</ Aver ageSDUBandw dt h>
<PeakBandw dt hDur at i on>24000000</ PeakBandwi dt hDur ati on>
<PeakSDUBandwi dt hDur at i on>2000</ PeakSDUBandwi dt hDur at i on>
<Bur st Peri 0d>10000000</ Bur st Peri od>
<Bur st Dur ati on>1000000</ Bur st Dur at i on>
<Undet ect edBi t Error >0. 01</ Undet ect edBi t Err or >
<MaxSDUSi ze>1500</ MaxSDUSI ze>
<Partial Delivery>0</Partial Delivery>
<l nconpl et eDel i very>0</ 1 nconpl et eDel i very>
<For ceOr der >0</ For ceOr der >
<MaxAl | owabl eGap>0</ MaxAl | owabl eGap>
<Jitter>500000</Jitter>
<ATi ne>0</ ATi me>
<RxOn>0</ RxOn>
<W nOn>0</ W nOn>
<Rat eOn>0</ Rat eOn>
</ QosCube>

184

Deliverable-2.6: RINA simulator

<QosCube id="5">
<Del ay>5</ Del ay>
<Cost Bi t s>5</ Cost Bi t s>

<PDUDr oppi ngPr obabi | i t y>0. 001</ PDUDr oppi ngPr obabi I i ty>
<Cost Ti mne>10000</ Cost Ti nme>
<Aver ageBandw dt h>12000000</ Aver ageBandw dt h>
<Aver ageSDUBandwi dt h>1000</ Aver ageSDUBandw dt h>
<PeakBandw dt hDur at i on>24000000</ PeakBandwi dt hDur ati on>
<PeakSDUBandwi dt hDur at i on>2000</ PeakSDUBandwi dt hDur at i on>
<Bur st Peri 0d>10000000</ Bur st Peri od>
<Bur st Dur ati on>1000000</ Bur st Dur at i on>
<Undet ect edBi t Error >0. 01</ Undet ect edBi t Err or >
<MaxSDUSi ze>1500</ MaxSDUSI ze>
<Partial Delivery>0</Partial Delivery>
<l nconpl et eDel i very>0</ 1 nconpl et eDel i very>
<For ceOr der >0</ For ceOr der >
<MaxAl | owabl eGap>0</ MaxAl | owabl eGap>
<Jitter>500000</Jitter>
<ATi ne>0</ ATi me>
<RxOn>0</ RxOn>
<W nOn>0</ W nOn>
<Rat eOn>0</ Rat eOn>
</ QosCube>

<QosCube id="6">
<Del ay>6</ Del ay>
<Cost Bi t s>6</ Cost Bi t s>

<PDUDr oppi ngPr obabi | i t y>0. 001</ PDUDr oppi ngPr obabi I i ty>
<Cost Ti mne>10000</ Cost Ti nme>

<Aver ageBandw dt h>12000000</ Aver ageBandw dt h>

<Aver ageSDUBandwi dt h>1000</ Aver ageSDUBandw dt h>
<PeakBandw dt hDur at i on>24000000</ PeakBandwi dt hDur ati on>
<PeakSDUBandwi dt hDur at i on>2000</ PeakSDUBandwi dt hDur at i on>
<Bur st Peri 0d>10000000</ Bur st Peri od>

<Bur st Dur ati on>1000000</ Bur st Dur at i on>

<Undet ect edBi t Error >0. 01</ Undet ect edBi t Err or >

<MaxSDUSi ze>1500</ MaxSDUSI ze>

<Partial Delivery>0</Partial Delivery>

<l nconpl et eDel i very>0</ 1 nconpl et eDel i very>

<For ceOr der >0</ For ceOr der >

<MaxAl | owabl eGap>0</ MaxAl | owabl eGap>
<Jitter>500000</Jitter>

185

Deliverable-2.6: RINA simulator

<ATi ne>0</ ATi me>

<RxOn>0</ RxOn>

<W nOn>0</ W nOn>

<Rat eOn>0</ Rat eOn>
</ QosCube>

<QosCube id="7">
<Del ay>7</ Del ay>
<Cost Bi t s>7</ Cost Bi t s>

<PDUDr oppi ngPr obabi | i t y>0. 001</ PDUDr oppi ngPr obabi I i ty>
<Cost Ti mne>10000</ Cost Ti nme>
<Aver ageBandw dt h>12000000</ Aver ageBandw dt h>
<Aver ageSDUBandwi dt h>1000</ Aver ageSDUBandw dt h>
<PeakBandw dt hDur at i on>24000000</ PeakBandwi dt hDur ati on>
<PeakSDUBandwi dt hDur at i on>2000</ PeakSDUBandwi dt hDur at i on>
<Bur st Peri 0d>10000000</ Bur st Peri od>
<Bur st Dur ati on>1000000</ Bur st Dur at i on>
<Undet ect edBi t Error >0. 01</ Undet ect edBi t Err or >
<MaxSDUSi ze>1500</ MaxSDUSI ze>
<Partial Delivery>0</Partial Delivery>
<l nconpl et eDel i very>0</ 1 nconpl et eDel i very>
<For ceOr der >0</ For ceOr der >
<MaxAl | owabl eGap>0</ MaxAl | owabl eGap>
<Jitter>500000</Jitter>
<ATi ne>0</ ATi me>
<RxOn>0</ RxOn>
<W nOn>0</ W nOn>
<Rat eOn>0</ Rat eOn>
</ QosCube>

<QosCube i d="8">
<Del ay>8</ Del ay>
<Cost Bi t s>8</ Cost Bi t s>

<PDUDr oppi ngPr obabi | i t y>0. 001</ PDUDr oppi ngPr obabi I i ty>
<Cost Ti mne>10000</ Cost Ti nme>

<Aver ageBandw dt h>12000000</ Aver ageBandw dt h>

<Aver ageSDUBandwi dt h>1000</ Aver ageSDUBandw dt h>
<PeakBandw dt hDur at i on>24000000</ PeakBandwi dt hDur ati on>
<PeakSDUBandwi dt hDur at i on>2000</ PeakSDUBandwi dt hDur at i on>
<Bur st Peri 0d>10000000</ Bur st Peri od>

<Bur st Dur ati on>1000000</ Bur st Dur at i on>

<Undet ect edBi t Err or >0. 01</ Undet ect edBi t Err or >

186

Deliverable-2.6: RINA simulator

<MaxSDUSi ze>1500</ MaxSDUSI ze>
<Partial Delivery>0</Partial Delivery>
<l nconpl et eDel i very>0</ 1 nconpl et eDel i very>
<For ceOr der >0</ For ceOr der >
<MaxAl | owabl eGap>0</ MaxAl | owabl eGap>
<Jitter>500000</Jitter>
<ATi ne>0</ ATi me>
<RxOn>0</ RxOn>
<W nOn>0</ W nOn>
<Rat eOn>0</ Rat eOn>

</ QosCube>

<QosCube i d="9">
<Del ay>9</ Del ay>
<Cost Bi t s>9</ Cost Bi t s>

<PDUDr oppi ngPr obabi | i t y>0. 001</ PDUDr oppi ngPr obabi I i ty>
<Cost Ti mne>10000</ Cost Ti me>
<Aver ageBandw dt h>12000000</ Aver ageBandw dt h>
<Aver ageSDUBandwi dt h>1000</ Aver ageSDUBandw dt h>
<PeakBandw dt hDur at i on>24000000</ PeakBandwi dt hDur ati on>
<PeakSDUBandwi dt hDur at i on>2000</ PeakSDUBandwi dt hDur at i on>
<Bur st Peri 0d>10000000</ Bur st Peri od>
<Bur st Dur ati on>1000000</ Bur st Dur at i on>
<Undet ect edBi t Error >0. 01</ Undet ect edBi t Err or >
<MaxSDUSi ze>1500</ MaxSDUSI ze>
<Partial Delivery>0</Partial Delivery>
<l nconpl et eDel i very>0</ 1 nconpl et eDel i very>
<For ceOr der >0</ For ceOr der >
<MaxAl | owabl eGap>0</ MaxAl | owabl eGap>
<Jitter>500000</Jitter>
<ATi ne>0</ ATi me>
<RxOn>0</ RxOn>
<W nOn>0</ W nOn>
<Rat eOn>0</ Rat eOn>
</ QosCube>

<QosCube id="10">
<Del ay>10</ Del ay>
<Cost Bi t s>10</ Cost Bi t s>

<PDUDr oppi ngPr obabi | i t y>0. 001</ PDUDr oppi ngPr obabi I i ty>
<Cost Ti me>10000</ Cost Ti me>
<Aver ageBandw dt h>12000000</ Aver ageBandw dt h>

187

Deliverable-2.6: RINA simulator

<Aver ageSDUBandwi dt h>1000</ Aver ageSDUBandw dt h>
<PeakBandw dt hDur at i on>24000000</ PeakBandwi dt hDur ati on>
<PeakSDUBandwi dt hDur at i on>2000</ PeakSDUBandwi dt hDur at i on>
<Bur st Peri 0d>10000000</ Bur st Peri od>
<Bur st Dur ati on>1000000</ Bur st Dur at i on>
<Undet ect edBi t Error >0. 01</ Undet ect edBi t Err or >
<MaxSDUSi ze>1500</ MaxSDUSI ze>
<Partial Delivery>0</Partial Delivery>
<l nconpl et eDel i very>0</ 1 nconpl et eDel i very>
<For ceOr der >0</ For ceOr der >
<MaxAl | owabl eGap>0</ MaxAl | owabl eGap>
<Jitter>500000</Jitter>
<ATi ne>0</ ATi me>
<RxOn>0</ RxOn>
<W nOn>0</ W nOn>
<Rat eOn>0</ Rat eOn>
</ QosCube>

<QosCube id="15">
<Del ay>15</ Del ay>
<Cost Bi t s>15</ Cost Bi t s>

<PDUDrx oppi ngPr obabi | i t y>0. 001</ PDUDr oppi ngPr obabi I i ty>
<Cost Ti mne>10000</ Cost Ti nme>
<Aver ageBandw dt h>12000000</ Aver ageBandw dt h>
<Aver ageSDUBandwi dt h>1000</ Aver ageSDUBandw dt h>
<PeakBandw dt hDur at i on>24000000</ PeakBandwi dt hDur ati on>
<PeakSDUBandwi dt hDur at i on>2000</ PeakSDUBandwi dt hDur at i on>
<Bur st Peri 0d>10000000</ Bur st Peri od>
<Bur st Dur ati on>1000000</ Bur st Dur at i on>
<Undet ect edBi t Error >0. 01</ Undet ect edBi t Err or >
<MaxSDUSi ze>1500</ MaxSDUSI ze>
<Partial Delivery>0</Partial Delivery>
<l nconpl et eDel i very>0</ 1 nconpl et eDel i very>
<For ceOr der >0</ For ceOr der >
<MaxAl | owabl eGap>0</ MaxAl | owabl eGap>
<Jitter>500000</Jitter>
<ATi ne>0</ ATi me>
<RxOn>0</ RxOn>
<W nOn>0</ W nOn>
<Rat eOn>0</ Rat eOn>
</ QosCube>

<QosCube i d="20">
<Del ay>20</ Del ay>

188

Deliverable-2.6: RINA simulator

<Cost Bi t s>20</ Cost Bi t s>

<PDUDrx oppi ngPr obabi | i t y>0. 001</ PDUDr oppi ngPr obabi I i ty>
<Cost Ti mne>10000</ Cost Ti me>
<Aver ageBandw dt h>12000000</ Aver ageBandw dt h>
<Aver ageSDUBandwi dt h>1000</ Aver ageSDUBandw dt h>
<PeakBandw dt hDur at i on>24000000</ PeakBandwi dt hDur ati on>
<PeakSDUBandwi dt hDur at i on>2000</ PeakSDUBandwi dt hDur at i on>
<Bur st Peri 0d>10000000</ Bur st Peri od>
<Bur st Dur ati on>1000000</ Bur st Dur at i on>
<Undet ect edBi t Error >0. 01</ Undet ect edBi t Err or >
<MaxSDUSi ze>1500</ MaxSDUSI ze>
<Partial Delivery>0</Partial Delivery>
<l nconpl et eDel i very>0</ 1 nconpl et eDel i very>
<For ceOr der >0</ For ceOr der >
<MaxAl | owabl eGap>0</ MaxAl | owabl eGap>
<Jitter>500000</Jitter>
<ATi ne>0</ ATi me>
<RxOn>0</ RxOn>
<W nOn>0</ W nOn>
<Rat eOn>0</ Rat eOn>
</ QosCube>

<QosCube i d="30">
<Del ay>30</ Del ay>
<Cost Bi t s>30</ Cost Bi t s>

<PDUDr oppi ngPr obabi | i t y>0. 001</ PDUDr oppi ngPr obabi I i ty>
<Cost Ti mne>10000</ Cost Ti nme>

<Aver ageBandw dt h>12000000</ Aver ageBandw dt h>

<Aver ageSDUBandwi dt h>1000</ Aver ageSDUBandw dt h>
<PeakBandw dt hDur at i on>24000000</ PeakBandwi dt hDur ati on>
<PeakSDUBandwi dt hDur at i on>2000</ PeakSDUBandwi dt hDur at i on>
<Bur st Peri 0d>10000000</ Bur st Peri od>

<Bur st Dur ati on>1000000</ Bur st Dur at i on>

<Undet ect edBi t Err or >0. 01</ Undet ect edBi t Err or >

<MaxSDUSi ze>1500</ MaxSDUSI ze>

<Partial Delivery>0</Partial Delivery>

<l nconpl et eDel i very>0</ 1 nconpl et eDel i very>

<For ceOr der >0</ For ceOr der >

<MaxAl | owabl eGap>0</ MaxAl | owabl eGap>
<Jitter>500000</Jitter>

<ATi ne>0</ ATi me>

<RxOn>0</ RxOn>

189

Deliverable-2.6: RINA simulator

<W nOn>0</ W nOn>
<Rat eOn>0</ Rat eOn>
</ QosCube>

<QosCube i d="50">
<Del ay>50</ Del ay>
<Cost Bi t s>50</ Cost Bi t s>

<PDUDr oppi ngPr obabi | i t y>0. 001</ PDUDr oppi ngPr obabi I i ty>
<Cost Ti mne>10000</ Cost Ti nme>
<Aver ageBandw dt h>12000000</ Aver ageBandw dt h>
<Aver ageSDUBandwi dt h>1000</ Aver ageSDUBandw dt h>
<PeakBandw dt hDur at i on>24000000</ PeakBandwi dt hDur ati on>
<PeakSDUBandwi dt hDur at i on>2000</ PeakSDUBandwi dt hDur at i on>
<Bur st Peri 0d>10000000</ Bur st Peri od>
<Bur st Dur ati on>1000000</ Bur st Dur at i on>
<Undet ect edBi t Error >0. 01</ Undet ect edBi t Err or >
<MaxSDUSi ze>1500</ MaxSDUSI ze>
<Partial Delivery>0</Partial Delivery>
<l nconpl et eDel i very>0</ 1 nconpl et eDel i very>
<For ceOr der >0</ For ceOr der >
<MaxAl | owabl eGap>0</ MaxAl | owabl eGap>
<Jitter>500000</Jitter>
<ATi ne>0</ ATi me>
<RxOn>0</ RxOn>
<W nOn>0</ W nOn>
<Rat eOn>0</ Rat eOn>
</ QosCube>

<QosCube i d="100">
<Del ay>100</ Del ay>
<Cost Bi t s>100</ Cost Bi t s>

<PDUDr oppi ngPr obabi | i t y>0. 001</ PDUDr oppi ngPr obabi I i ty>
<Cost Ti mne>10000</ Cost Ti nme>

<Aver ageBandw dt h>12000000</ Aver ageBandw dt h>

<Aver ageSDUBandwi dt h>1000</ Aver ageSDUBandw dt h>
<PeakBandw dt hDur at i on>24000000</ PeakBandwi dt hDur ati on>
<PeakSDUBandwi dt hDur at i on>2000</ PeakSDUBandwi dt hDur at i on>
<Bur st Peri 0d>10000000</ Bur st Peri od>

<Bur st Dur ati on>1000000</ Bur st Dur at i on>

<Undet ect edBi t Err or >0. 01</ Undet ect edBi t Err or >

<MaxSDUSi ze>1500</ MaxSDUSI ze>

<Partial Delivery>0</Partial Delivery>

190

Deliverable-2.6: RINA simulator

<l nconpl et eDel i very>0</ 1 nconpl et eDel i very>
<For ceOr der >0</ For ceOr der >
<MaxAl | owabl eGap>0</ MaxAl | owabl eGap>
<Jitter>500000</Jitter>
<ATi ne>0</ ATi me>
<RxOn>0</ RxOn>
<W nOn>0</ W nOn>
<Rat eOn>0</ Rat eOn>
</ QosCube>
</ QSCubesSet >
</ Configuration>

8.5.7. connections.xml

<?xm version="1.0"7?>
<Confi guration>

<Connecti onSet >

<I-- Allocate nmanagenent flows. -->
<SinTine t="1">
<Connection src="hl1_NET" dst="r1_NET" qosReq="ngnt"/>
<Connection src="r2 _NET" dst="r1 NET" qosReq="ngnt"/>
<Connection src="r3_NET" dst="r1_NET" qosReq="ngnt"/>
<Connection src="h2_NET" dst="r4_ NET" qosReq="ngnt"/>
<Connection src="r2_NET" dst="r4_NET" qosReq="ngnt"/>
<Connection src="r3_NET" dst="r4_NET" qosReq="ngnt"/>
</ Si nili me>

<I-- Allocate data flows. -->
<SinTine t="2">
<Connection src="h1_NET" dst="r1_NET" qosReq="1"/>
<Connection src="r2_NET" dst="r1 NET" qosReq="1"/>
<Connection src="r3_NET" dst="r1_NET" qosReq="1"/>
<Connection src="h2_NET" dst="r4_NET" qosReq="1"/>
<Connection src="r2_NET" dst="r4_NET" qosReq="10"/>
<Connection src="r3_NET" dst="r4_NET" qosReq="15"/>

</ Si nili me>

</ Connect i onSet >
</ Confi gurati on>

191

Deliverable-2.6: RINA simulator

9. Conclusions

The presented deliverable documents the advances in implementation fo RINASIim as stated in
D2.4 and summarized three experiments of networking scenarios developed in this simulator.
Since the last deliverable, the RINASIm matured in the tool that can be used for

* getting a deep understanding of RINA mechanisms,

* researching RINA policies and evaluating them in the ssmulator, and

» analysing various application scenarios in RINA environment by simulating them using

RINASIm.

RINASmM is the open environment that can be extended with experimental features. The
simulator helps to evaluate new features and to compare them with existing methods. In this
report, several such extensions are described, namely:

 congestion avoidance and control - legacy RED policy is compared to ACC policy,

 scheduling - delay loss and enhanced delay loss scheduling policies are implemented as
simulation models and their performance is evaluated,

* routing and forwarding - simulation model sfor existing distance vector and link-state routing
were developed together with TSimple versions and Domain routing policy.

RINASIm at its current state represents an entirely working implementation of the simulation
environment for RINA. Thesimulator containsall mechanismsof RINA according to the current
specification. Thenext activitiesrelated to RINA Sim represent mainly bug fixing, and extending
it with policies that represent additional features. RINASIim contributes to PRISTINE project
by offering a suitable environment for evaluating fresh research ideas quickly.

PRISTINE’ s Description of Work (DoW) document containsindicator to measurethe utilization
of RINASIm among partnersin PRISTINE project. This metricsis stated in following table.

Table 1. PRISTINE evaluation metric regarding RINASIm, as presented in the " Description of Work"

No

Metric

Description

4

Number of simulations done
with the RINA simulator
developed by PRISTINE

Thisindicator will measure the relevance
and usefulness of the RINA simulator, by
keeping track of the usage of the simulator by
the consortium partners. It is expected that al
the tasks within WP3-4 will use the simulator
and document the results achieved with it.

192

Deliverable-2.6: RINA simulator

The indicative values for evaluation metric of RINASIm are presented in the following table.
This table enumerates all completed simulation scenarios.

Table2. RINASIm scenarios

Name, description Research area Notes
Set of basic demonstration scenarios RINA basic The set of
principles demonstration
scenarios was

made for showing
basic principles

in RINA, such as,
flow handling,
resource alocation,
traffic relaying, RIB
management. These
examples are bundled
with RINASIm.

An advanced demo RINA principles The demo presents
application
communication
within a network
consisting of all
different node types.
There are two border
routers and ainterior
router and totally

six DIFs of three
different ranks. The
simulation present
variety of RINA
mechanims involved
in the end-to-end
communication.

Aggregated Congestion Control Congestion control This demonstration
simulates a scenario
in which multiple
flows were sharing
the same bottleneck

193

Deliverable-2.6: RINA simulator

Name, description Research area Notes

link in the network.
Theamisto anayze
how flows can be
aggregated and
controlled using

one congestion
controller to reduce
the negative effect of
competing flows for
a shared bandwidth
on each other.

Routing Routing and This demonstration
forwarding aims at analysis of

RINA’s Forwarding,

PDUGE and Routing

policies.
Scalable Forwarding with RINA Routing and This demonstration
forwarding deals with advanced

RINA’s Forwarding
policies. The goal
isto evaluate the
proposed algorithms
for scaling up PDU
forwarding.

In addition to listed demonstration scenarios, RINASIm is being used as a tool for evaluating
newly proposed policiesthat outcome from research activities. These activities are part of WP3,
WP4 and WP6. The list of simulation scenarios is not definitive and the growing is expected.
Thislist will be update at the end of the project.

194

Deliverable-2.6: RINA simulator

References

* [rina-intro] J. Day, "An introduction to the Recursive InterNetwork Architecture,” January
2015. Available: online®

* [networking-is-ipc] J. Day, |. Mattaand K. Mattar, "Networking is IPC: aguiding principle
to abetter internet," in CONEXT '08 Proceedings of the 2008 ACM CoNEXT Conference,
New York, NY, USA, 2008.

 [delta-t-spec] R. Watson, "Delta-t Protocol Specification,” Lawrence Livermore Laboratory,
December 1981. Available: online®®

» [delta-t-features] R. Watson, "The Delta-t transport protocol: features and experience,” in
Proceedings 14th Conference on Local Computer Networks, Minneapolis, USA, 1989.

* [RINA-layer-discovery] E. Trouva E. Grasa, J. Day and S. Bunch, "Layer discovery in
RINA networks," in |EEE 17th International Workshop on Computer Aided Modeling and
Design of Communication Links and Networks (CAMAD), Barcelona, Spain, 2012.

e [IRM-spec] J. Day, "D-Base-2011-017: IPC Resource Manager (IRM) Specification,"
Pouzin Society, 2012.

 [Enroll-spec] J. Day, "D-Base-2012-014: Basic Enrollment Specification,” Pouzin Society,
2012.

* [Deliml] J. Day, "D-Base-2010-007: Delimiting Module,” Pouzin Society, 20009.
» [Delim2] J. Day, "DelimitingGeneral 130904: Delimiting Module,” Pouzin Society, 2013.

o [EFCP-spec] J. Day, M. Maek, L. Bergeso and M. Tarzan,
"EFCPSpec140824 MT_LBJD_MM_v6.6: Error and Flow Control Protocol Specification,
Data Transfer + Data Transfer Control,” Pouzin Society, 2015.

* [RMT-spec] J. Day, "D-Base-2012-010: Relaying and Multiplexing Task Specification,"
Pouzin Society, 2012.

» [FA-spec] J. Day, "D-Base-2011-015: Flow Allocator Specification,” Pouzin Society, 2011.

* [RA-notes] J. Day, "RINA-RFC-2010-002: Notes on the Resource Allocator,” Pouzin
Society, 2010.

» [mobj-spec] E. Grasa, S. Bunch and P. deWolf, " Specification of Managed Objects for the
Demo DIF," Pouzin Society, 2012.

* [RIB-notes] J. Day, "Notes on the OIB/RIB Daemon," Pouzin Society, 2010.

57 http://ict-pristine.eu/wp-content/uploads/2014/12/Ghentl ntroRINA Pt1-150119. pdf

58 http://www.osti.gov/scitech/servlets/purl /5542785

195

http://ict-pristine.eu/wp-content/uploads/2014/12/GhentIntroRINAPt1-150119.pdf
http://www.osti.gov/scitech/servlets/purl/5542785
http://ict-pristine.eu/wp-content/uploads/2014/12/GhentIntroRINAPt1-150119.pdf
http://www.osti.gov/scitech/servlets/purl/5542785

Deliverable-2.6: RINA simulator

[isoiec-15953] SO, "Information technology — Open Systems Interconnection — Service
definition for the Application Service Object Association Control Service Element”. Patent
| SO/IEC 15953:1999, 1999.

[isoiec-10035-1] 1SO, "Information technology — Open Systems Interconnection —
Connectionless protocol for the Association Control Service Element: Protocol
specification™. Patent | SO/IEC 10035-1:1995, 1995.

[isoiec-9596-1] 1SO, "Information technology — Open Systems I nterconnection — Common
Management Information Protocol: Specification”. Patent |SO/IEC 9596-1:1998, 1997.

[CDAP] S. Bunch, "D-Base-2010-009: CDAP — Common Distributed Application
Protocol," Pouzin Society, 2010.

[CACEP] S. Bunch, J. Day and E. Trouva, "D-Base-2012-016: Common Application
Connection Establishment Phase (CACEP)," Pouzin Society, 2012.

[omnetpp-dwnld] OpenSim Ltd., OMNeT++ Releases, available online™
[github-kvetak] GitHub, RINA Simulator repository, available online®
[ops-rinasimtickets] OpenSource Projects, RINASim Tickets, available online®
[ops-rinasim] OpenSource Projects, RINASIm, available onli ne®?
[omnetpp-main] OpenSim Ltd., OMNeT++ Discrete Event Simulator, available onli ne®?
[omnetpp-inet] OpenSim Ltd., INET Framework, available online®
[omnetpp-ansa] OpenSim Ltd., ANSA Project, available online®
[omnetpp-mixim] OpenSim Ltd., MIXIM Framework, available online®
[omnetpp-oversim] OpenSim Ltd., Oversim Framework, available online®”’
[omnetpp-veins] OpenSim Ltd., Veins Framework, available onli ne%®
[omnetpp-castalia] OpenSim Ltd., Castalia Framework, available onli ne®

[omnetpp-manual] OpenSim Ltd., Manual, available online®

59 http://www.omnetpp.org/omnetpp/category/30-omnet-rel eases
60 https://github.com/kvetak/RINA

61 https://opensourceprojects.eu/p/pristine/rinasimul ator/tickets/
62 https://opensourceprojects.eu/p/pristine/rinasimul ator/rinasim/
63 http://www.omnetpp.org

64 http://inet.omnetpp.org/

65 http://nes.fit.vutbr.cz/ansa

66 http://mixim.sourceforge.net/

67 http://www.oversim.org/

68 http://veins.car2x.org/

69 http://castalia.research.nicta.com.au/index.php/en/

70 http://www.omnetpp.org/doc/omnetpp/manual/usman.html

196

http://www.omnetpp.org/omnetpp/category/30-omnet-releases
https://github.com/kvetak/RINA
https://opensourceprojects.eu/p/pristine/rinasimulator/tickets/
https://opensourceprojects.eu/p/pristine/rinasimulator/rinasim/
http://www.omnetpp.org
http://inet.omnetpp.org/
http://nes.fit.vutbr.cz/ansa
http://mixim.sourceforge.net/
http://www.oversim.org/
http://veins.car2x.org/
http://castalia.research.nicta.com.au/index.php/en/
http://www.omnetpp.org/doc/omnetpp/manual/usman.html
http://www.omnetpp.org/omnetpp/category/30-omnet-releases
https://github.com/kvetak/RINA
https://opensourceprojects.eu/p/pristine/rinasimulator/tickets/
https://opensourceprojects.eu/p/pristine/rinasimulator/rinasim/
http://www.omnetpp.org
http://inet.omnetpp.org/
http://nes.fit.vutbr.cz/ansa
http://mixim.sourceforge.net/
http://www.oversim.org/
http://veins.car2x.org/
http://castalia.research.nicta.com.au/index.php/en/
http://www.omnetpp.org/doc/omnetpp/manual/usman.html

Deliverable-2.6: RINA simulator

[omnetpp-ide] OpenSim Ltd., IDE in Nutshell, available online”*

[omnetpp-dema] OpenSim Ltd., Eclipse, available online’

[omnetpp-userguide] OpenSim Ltd., User Guide, available online”
[omnetpp-highlight] V.Vesely, RINASIm C/C++ code highlighter, available online’

[omnetpp-editbox] P.Metel, EditBox | Eclipse Plugins, Bundles and Products - Eclipse
Marketplace, available online”™

[omnetpp-stats] OpenSim Ltd., Manual, available online’®
[RFC6298] Paxson, Vern, et a. "Computing TCP sretransmission timer.” RFC 6298. 2011.

[RFC5681] M. Allman, V. Paxson, and E. Blanton. "TCP congestion Control." RFC 5681,
20009.

[RED] S. Floyd, V. Jacobson. Random early detection gateways for congestion avoidance.
Networking, IEEE/ACM Transactions on, 1993, 1.4: 397-413.

1 http://www.omnetpp.org/pmwiki/index.php?n=Main.Omnetppl nNutshell
72 Yttp:/iwww.omnest.com/webdemolide/demo. html

3 https://omnetpp.org/doc/omnetpp/UserGui de. pdf

74 http:/ines fit.vutbr.czfivesely/rinasim-highlight.zip

& https://marketpl ace.eclipse.org/content/editbox

76 https://omnetpp.org/doc/omnetpp/manual /usman.html#sec195

197

http://www.omnetpp.org/pmwiki/index.php?n=Main.OmnetppInNutshell
http://www.omnest.com/webdemo/ide/demo.html
https://omnetpp.org/doc/omnetpp/UserGuide.pdf
http://nes.fit.vutbr.cz/ivesely/rinasim-highlight.zip
https://marketplace.eclipse.org/content/editbox
https://omnetpp.org/doc/omnetpp/manual/usman.html#sec195
http://www.omnetpp.org/pmwiki/index.php?n=Main.OmnetppInNutshell
http://www.omnest.com/webdemo/ide/demo.html
https://omnetpp.org/doc/omnetpp/UserGuide.pdf
http://nes.fit.vutbr.cz/ivesely/rinasim-highlight.zip
https://marketplace.eclipse.org/content/editbox
https://omnetpp.org/doc/omnetpp/manual/usman.html#sec195

	Deliverable-2.6: RINA simulator
	Table of Contents
	1. Introduction
	2. Brief Theory
	2.1. Nature of applications and application protocols
	2.2. Core Terms
	2.3. Connection-oriented vs. connection-less
	2.4. Delta-t synchronization
	2.5. Separation of mechanism and policy
	2.6. Naming and addressing

	3. Installation and configuration
	3.1. Support
	3.2. OMNeT Installation
	3.2.1. Windows Installation
	3.2.2. Linux installation

	3.3. RINASim Installation
	3.3.1. The IDE way
	3.3.2. The command line way
	3.3.3. Makefile

	3.4. OMNeT Handbook
	3.4.1. Basics
	3.4.1.1. Simple modules
	3.4.1.2. Compound modules
	3.4.1.3. Network modules

	3.4.2. Simulator and IDE
	3.4.3. Tips and Tricks
	3.4.3.1. Parallel build
	3.4.3.2. Visual aid

	4. High-level design
	4.1. Nodes
	4.2. DAF Design
	4.2.1. DIF Allocator
	4.2.2. IPC Resource Manager

	4.3. DIF Design
	4.3.1. Enrollment
	4.3.2. Delimiting
	4.3.3. Data Transfer with Error and Flow Control
	4.3.4. Relaying and Multiplexing
	4.3.5. SDU Protection
	4.3.6. Flow Allocator
	4.3.7. Resource Allocator
	4.3.8. RIB Daemon
	4.3.9. Common Distributed Application Protocol

	4.4. Policy Framework
	4.4.1. Description
	4.4.2. Using the policy framework
	4.4.3. Example usage
	4.4.3.1. Use case
	4.4.3.2. Solution

	4.5. Results Analysis
	4.5.1. Collecting Statistics
	4.5.2. Tracefiles
	4.5.2.1. Usage
	4.5.2.2. Description
	4.5.2.3. Example output

	5. Components
	5.1. Used Template
	5.2. Nodes
	5.3. DAF Modules
	5.3.1. Application Process
	5.3.1.1. Submodules
	5.3.1.2. Source codes
	5.3.1.3. NED design
	5.3.1.4. Available policies
	5.3.1.5. C++ implementation
	Limitations
	Future work

	5.3.2. Application Entity
	5.3.2.1. Submodules
	5.3.2.2. Source codes
	5.3.2.3. NED design
	5.3.2.4. C++ Implementation
	5.3.2.5. Future work

	5.3.3. DAFEnrollment
	5.3.3.1. Submodules
	5.3.3.2. Source codes
	5.3.3.3. NED design
	5.3.3.4. Available policies
	5.3.3.5. C++ implementation
	5.3.3.6. Limitations
	5.3.3.7. Future work

	5.3.4. DIF Allocator
	5.3.4.1. Submodules
	5.3.4.2. Source codes
	5.3.4.3. NED design
	5.3.4.4. Available policies
	5.3.4.5. C++ implementation
	5.3.4.6. Limitations
	5.3.4.7. Future work

	5.3.5. IPC Resource Manager
	5.3.5.1. Submodules
	5.3.5.2. Source codes
	5.3.5.3. NED design
	5.3.5.4. Available policies
	5.3.5.5. C++ Implementation
	5.3.5.6. Future work

	5.3.6. Common Distributed Application Protocol
	5.3.6.1. Submodules
	5.3.6.2. Source code
	5.3.6.3. NED design
	5.3.6.4. Available policies
	5.3.6.5. C++ implementation
	5.3.6.6. Limitations
	5.3.6.7. Future work

	5.4. DIF Modules
	5.4.1. Delimiting
	5.4.1.1. Submodules
	5.4.1.2. Source codes
	5.4.1.3. NED design
	5.4.1.4. Available policies
	5.4.1.5. C++ implementation
	5.4.1.6. Limitations
	5.4.1.7. Future work

	5.4.2. Enrollment
	5.4.2.1. Submodules
	5.4.2.2. Source codes
	5.4.2.3. NED design
	5.4.2.4. Available policies
	5.4.2.5. C++ implementation
	5.4.2.6. Limitations
	5.4.2.7. Future work

	5.4.3. Error and Flow Control Compound module
	5.4.3.1. Submodules
	5.4.3.2. Source codes
	5.4.3.3. NED design
	5.4.3.4. Available policies
	5.4.3.5. C++ implementation
	5.4.3.6. Future work

	5.4.4. EFCP Instance
	5.4.4.1. Submodules
	5.4.4.2. Source codes
	5.4.4.3. NED design
	5.4.4.4. Available policies
	5.4.4.5. C++ Implementation

	5.4.5. DTP
	5.4.5.1. Submodules
	5.4.5.2. Source codes
	5.4.5.3. NED design
	5.4.5.4. Available policies
	5.4.5.5. C++ Implementation
	5.4.5.6. Limitations
	5.4.5.7. Future work

	5.4.6. DTP State
	5.4.6.1. Submodules
	5.4.6.2. Source codes
	5.4.6.3. NED design
	5.4.6.4. Available policies
	5.4.6.5. C++ Implementation

	5.4.7. DTCP
	5.4.7.1. Submodules
	5.4.7.2. Source codes
	5.4.7.3. NED design
	5.4.7.4. Available policies
	5.4.7.5. C++ Implementation
	Future work

	5.4.8. DTCP State
	5.4.8.1. Submodules
	5.4.8.2. Source codes
	5.4.8.3. NED design
	5.4.8.4. Available policies
	5.4.8.5. C++ Implementation

	5.4.9. Flow Allocator
	5.4.9.1. Submodules
	5.4.9.2. Source codes
	5.4.9.3. NED design
	5.4.9.4. Available policies
	5.4.9.5. C++ Implementation
	5.4.9.6. Future work

	5.4.10. Relaying and Multiplexing Task
	5.4.10.1. Submodules
	5.4.10.2. Source codes
	5.4.10.3. NED design
	5.4.10.4. Available policies
	5.4.10.5. C++ Implementation

	5.4.11. Resource Allocator
	5.4.11.1. Submodules
	5.4.11.2. Source codes
	5.4.11.3. NED design
	5.4.11.4. Available policies
	5.4.11.5. C++ Implementation

	5.4.12. RIB Daemon
	5.4.12.1. Submodules
	5.4.12.2. Source codes
	5.4.12.3. NED design
	5.4.12.4. Available policies
	5.4.12.5. C++ Implementation
	5.4.12.6. Future work

	5.4.13. Routing
	5.4.13.1. Submodules
	5.4.13.2. Source codes
	5.4.13.3. NED design
	5.4.13.4. Available policies
	5.4.13.5. C++ Implementation

	6. Policies
	6.1. Used Template
	6.2. Flow Allocator policies
	6.2.1. AllocateRetry
	6.2.1.1. Variants
	6.2.1.2. Source codes

	6.2.2. MultilevelQoS
	6.2.2.1. Variants
	6.2.2.2. Source codes

	6.2.3. NewFlowRequest
	6.2.3.1. Variants
	6.2.3.2. Source codes

	6.3. EFCP policies
	6.3.1. DTP: InitialSequenceNumber
	6.3.1.1. Variants
	6.3.1.2. Source codes

	6.3.2. DTP: RTTEstimator
	6.3.2.1. Variants
	6.3.2.2. Source codes

	6.3.3. DTP: RcvrTimerInactivity
	6.3.3.1. Variants
	6.3.3.2. Source codes

	6.3.4. DTP: SenderInactivityTimer
	6.3.4.1. Variants
	6.3.4.2. Source codes

	6.3.5. DTCP: ECN
	6.3.5.1. Variants
	6.3.5.2. Source codes

	6.3.6. DTCP: ECNSlowDown
	6.3.6.1. Variants
	6.3.6.2. Source codes

	6.3.7. DTCP: LostControlPDU
	6.3.7.1. Variants
	6.3.7.2. Source codes

	6.3.8. DTCP: NoOverridePeak
	6.3.8.1. Variants
	6.3.8.2. Source codes

	6.3.9. DTCP: NoRateSlowDown
	6.3.9.1. Variants
	6.3.9.2. Source codes

	6.3.10. DTCP: RateReduction
	6.3.10.1. Variants
	6.3.10.2. Source codes

	6.3.11. DTCP: RcvFlowControlOverrun
	6.3.11.1. Variants
	6.3.11.2. Source codes

	6.3.12. DTCP: RcvrAck
	6.3.12.1. Variants
	6.3.12.2. Source codes

	6.3.13. DTCP: RcvrControlACK
	6.3.13.1. Variants
	6.3.13.2. Source codes

	6.3.14. DTCP: RcvrFlowControl
	6.3.14.1. Variants
	6.3.14.2. Source codes

	6.3.15. DTCP: ReceivingFlowControl
	6.3.15.1. Variants
	6.3.15.2. Source codes

	6.3.16. DTCP: ReconcileFlowConflict
	6.3.16.1. Variants
	6.3.16.2. Source codes

	6.3.17. DTCP: RetransmissionTimerExpiry
	6.3.17.1. Variants
	6.3.17.2. Source codes

	6.3.18. DTCP: SenderAck
	6.3.18.1. Variants
	6.3.18.2. Source codes

	6.3.19. DTCP: SenderAckList
	6.3.19.1. Variants
	6.3.19.2. Source codes

	6.3.20. DTCP: SendingAck
	6.3.20.1. Variants
	6.3.20.2. Source codes

	6.3.21. DTCP: SndFlowControlOverrun
	6.3.21.1. Variants
	6.3.21.2. Source codes

	6.3.22. DTCP: Transmission Control
	6.3.22.1. Variants
	6.3.22.2. Source codes

	6.4. Resource Allocator Policies
	6.4.1. AddressComparator
	6.4.1.1. Variants
	6.4.1.2. Source codes

	6.4.2. PDU Forwarding Generator
	6.4.2.1. Variants

	6.4.3. QueueAlloc
	6.4.3.1. Variants

	6.4.4. PDU Forwarding Generator
	6.4.4.1. Variants

	6.4.5. QueueIDGen
	6.4.5.1. Variants

	6.5. RMT Policies
	6.5.1. MaxQueue
	6.5.1.1. Variants

	6.5.2. Monitor
	6.5.2.1. Variants

	6.5.3. PDUForwarding
	6.5.3.1. Variants

	6.5.4. Scheduler
	6.5.4.1. Variants

	6.6. Routing policies
	6.6.1. Variants

	7. Policy-driven Features
	7.1. Congestion Avoidance
	7.1.1. Legacy Random Early Detection
	7.1.1.1. Policy set
	7.1.1.2. Configuration
	7.1.1.3. References

	7.1.2. TCP-like congestion avoidance
	7.1.2.1. Policy set
	7.1.2.2. Configuration

	7.2. Scheduling
	7.2.1. Delay-loss
	7.2.1.1. Policy set
	7.2.1.2. Configuration

	7.2.2. Enhanced Delay-Loss
	7.2.2.1. Policy set
	7.2.2.2. Configuration

	7.3. Routing
	7.3.1. Distance Vector (legacy)
	7.3.2. Link-state (legacy)
	7.3.3. TSimple Link-state
	7.3.3.1. Policy set
	7.3.3.2. Configuration
	7.3.3.3. Interaction

	7.3.4. TSimple Distance-vector
	7.3.4.1. Policy set
	7.3.4.2. Configuration
	7.3.4.3. Interaction

	7.3.5. Routing domain
	7.3.5.1. Policy set
	7.3.5.2. Configuration
	7.3.5.3. Interaction

	7.4. Forwarding
	7.4.1. MiniTable
	7.4.1.1. Policy set
	7.4.1.2. Configuration
	7.4.1.3. Interaction

	7.4.2. MultiMiniTable
	7.4.2.1. Policy set
	7.4.2.2. Configuration
	7.4.2.3. Interaction

	7.5. PDU Forwarding Table Generator
	7.5.1. HopsSingle1Entry
	7.5.1.1. Policy set
	7.5.1.2. Requires
	7.5.1.3. Configuration

	7.5.2. HopsSingleMEntries
	7.5.2.1. Policy set
	7.5.2.2. Requires
	7.5.2.3. Configuration

	7.5.3. LatencySingle1Entry
	7.5.3.1. Policy set
	7.5.3.2. Requires
	7.5.3.3. Configuration

	7.5.4. LatencySingleMEntries
	7.5.4.1. Policy set
	7.5.4.2. Requires
	7.5.4.3. Configuration

	8. Demonstration scenarios
	8.1. Running a Scenario
	8.1.1. From the IDE
	8.1.2. From the Command Line

	8.2. Used Template
	8.3. Demo Network
	8.3.1. Motivation
	8.3.2. Network Graph
	8.3.3. Description
	8.3.3.1. Enrollment Phase
	8.3.3.2. Data Transfer Phase

	8.3.4. omnetpp.ini
	8.3.5. config.xml

	8.4. Demonstration: Congestion
	8.4.1. Motivation
	8.4.2. Description
	8.4.3. Major events
	8.4.4. omnetpp.ini
	8.4.5. config.xml

	8.5. Demonstration: Routing
	8.5.1. Motivation
	8.5.2. Description
	8.5.3. Configurations
	8.5.4. omnetpp.ini
	8.5.5. config.xml
	8.5.6. QoS.xml
	8.5.7. connections.xml

	9. Conclusions
	References

