
From protecting protocols to layers: designing,
implementing and experimenting with security

policies in RINA
Eduard Grasa∗, Ondrej Rysavy†, Ondrej Lichtner†, Hamid Asgari‡, John Day§ and Lou Chitkushev§

∗Distributed Applications and Networks Area, Fundacio i2CAT, eduard.grasa@i2cat.net
†Faculty of Information Technology, Brno University of Technology, {rysavy, ilichtner}@fit.vutbr.cz

‡Thales Research and Technology, United Kingdom, hamid.asgari@uk.thalesgroup.com
§Computer Science Department, Metropolitan College, Boston University, {day, ltc}@bu.edu

Abstract—Current Internet security is complex, expensive and
ineffective. The usual argument is that the TCP/IP protocol suite
was not designed having security in mind and security mech-
anisms have been added as add-ons or separate protocols. We
argue that fundamental limitations in the Internet architecture
are a major factor contributing to the insecurity of the Net. In
this paper we explore the security properties of the Recursive
InterNetwork Architecture, analyzing the principles that make
RINA networks inherently more secure than TCP/IP-based ones.
We perform the specification, implementation and experimental
evaluation of the first authentication and SDU protection policies
for RINA networks. RINA’s approach to securing layers instead
of protocols increases the security of networks, while reducing
the complexity and cost of providing security.

I. INTRODUCTION AND MOTIVATION

Current Internet security is complex, expensive and inef-
fective. Attacks on the applications using the Internet and on
the infrastructure providing it grow every year, in spite of the
ever-increasing security-related protocols, systems and devices
deployed in the net. One of the usual explanations is that the
TCP/IP protocol suite was not designed having security in
mind. Security mechanisms have been added as add-ons or
separate protocols. However, two decades after recognizing
this issue [1], Internet security levels are still not adequate for
a critical infrastructure. We argue that one of the main causes
of the Internet’s security problems are the fundamental flaws
and limitations in the TCP/IP protocol suite design [2], which
have caused a proliferation of protocols that try to address
some of the issues, making the overall system more complex
and difficult to protect.

In this paper we explore the security properties of RINA,
the Recursive InterNetwork Architecture [3]. RINA is a funda-
mental theory of computer networks that sees all networking
as distributed Inter Process Communication (IPC). RINA is
structured around a single type of layer - called Distributed
IPC Facility or DIF - that repeats as many times as needed
by the network designer (see Figures 1 and 2). In RINA
all layers provide the same service (communication flows
between distributed applications) and have the same internal
structure. The instantiation of a layer in a computing system is
an application process called IPC Process (IPCP). All IPCPs

Sending/receiving SDUs 
through N-1 DIF 

Confidentiality, integrity 

                                N DIF 

                                 N-1 DIF 

IPCP IPCP 

IPCP 

IPCP 

Sending/receiving SDUs 
through N-1 DIF 

Confidentiality, Integrity 

IPCP 

App 

DIF Operation 
Logging, Auditing, 

Access control Joining a DIF 
Authentication, 
Access control 

DIF Operation 
Logging, Auditing, 

Access control 
Fig. 1. Placement of security functions in RINA

have the same functions, divided into data transfer (delimiting,
addressing, relaying, multiplexing, lifetime termination, error
check, encryption), data transfer control (flow and retransmis-
sion control) and layer management (enrollment, routing, flow
allocation, namespace management, resource allocation, secu-
rity management). The functions of an IPCP are programmable
via policies, so that each DIF can adapt to its operational
environment and to different application requirements.

The rest of the paper is structured as follows. In section
II we discuss the RINA design principles that are relevant to
security, and compare them to the TCP/IP protocol suite struc-
ture, focusing on the security implications of both approaches.
Section III describes our main contribution: the specification,
design, implementation and experimental evaluation of the first
authentication and SDU Protection policies for RINA. Section
IV provides concluding remarks and discusses future work.

II. ASPECTS OF RINA DESIGN CONTRIBUTING TO
SECURITY

The following paragraphs describe the more important fea-
tures present in the RINA design that make RINA networks
inherently more secure than networks built using the TCP/IP
protocol suite - such as the current Internet.



Customer network 

Interior 
Router 

Customer 
Border 
Router 

Interior 
Router Border 

Router 

P2P DIF 

Interior 
Router 

P2P DIF 

Border 
Router 

P2P DIF P2P DIF 

Interior 
Router 

Border 
Router 

Provider 1 Backbone DIF 

P2P DIF 

Border 
Router 

Provider 1 Regional DIF 

Multi-provider DIF 

P2P DIF 

Access DIF 

P2P DIF P2P DIF 

Provider 1 network Provider 2 network 

IPCP	  	  
A	  

IPCP	  	  
B	  

IPCP	  	  
C	  

P2P DIF P2P DIF 

IPCP	  	  
D	  

Border 
Router 

Fig. 2. Using RINAs recursive structure to hide the internal layers of a service providers network. Only provider 1 knows about the green and orange DIFs

A. Secure layers instead of protocols

Layers are the composable building block of RINA, the tool
available to network designers to build networks. Layers, and
not individual protocols, are the item to be secured in the
RINA architecture. The recursive structure of RINA enables a
clear security model in which the trust relationships between
layers and between the members of a single layer are well
understood. Figure 1 illustrates these trust boundaries, which
facilitate the placement of the different security functions.

Users of a DIF need to have little trust of the DIF they
are using: only that the DIF will attempt to deliver Service
Data Units (SDUs) to some process. Applications using a DIF
are ultimately responsible for ensuring the confidentiality and
integrity of the SDUs they pass to the DIF. Therefore, proper
SDU protection mechanisms (such as encryption) have to be
put in place. When a new IPCP wants to join a DIF it first
needs to allocate a flow to another IPCP that is a already a DIF
member via an N-1 DIF both processes must share in common.
Here access control is used to determine if the requesting
application is allowed to talk to the requested application. If
the flow to the existing member is accepted, the next step is
to go through an authentication phase, the strength of which
can range from no authentication to cryptographic schemes.
In case of a successful authentication the DIF member will
decide whether the new IPCP is admitted to the DIF, executing
a specific access control policy.

Remote operations on peer IPCPs are another area where
access control is of key importance. All the layer management
functions of an IPCP use a common infrastructure to exchange
information with its peers: the Resource Information Base
(RIB) and CDAP. CDAP defines a protocol to perform six
remote operations over a set of distributed objects, which
are used to model the information of each specific layer
management task. The RIB imposes a schema (naming and set
of relationships) on the DIF objects. At the finest granularity it
is possible to take an access control decision to authorize the
access to each individual object in the RIB schema for each of
the CDAP operations (allowing different tasks to define their

own access control restrictions).
Small et al. perform a threat analysis of RINA at the

architecture level in [4], concluding that when proper authen-
tication, SDU protection and access control policies are put
in place, a DIF is a securable container: a structure used
to hold or transport data that can be made not subject to
threat. In contrast the TCP/IP protocol suite security model
is usually based on building security functions for each
protocol. For example, DNSSEC [5] provides data integrity
and authentication to security-aware resolvers. IPsec [6] is a
general framework for secure IP communications, supporting
confidentiality, integrity, authentication or protection against
replay attacks. However since IPsec works end-to-end within
an IP layer, it either only protects the IP payload (trans-
port mode) or makes IP connection-oriented (tunnel mode),
encapsulating a protected IP packet into an unprotected IP
packet. This makes IPsec a partial solution, not addressing
the requirements of IP control plane protocols, which need
to define their own security functions, such as OSPF [7] or
BGP [8]. TLS, the Transport Layer Security Protocol [9],
specifies a set of related security functions to enable secure
communications over the transport layer. All in all, this ap-
proach results in more overhead and complexity compared to
securing layers. In [10] Small performs an initial comparison
between RINA and the current Internet, measuring the flows,
protocols and mechanisms required to secure each architecture.
Small concludes that RINA networks can deliver on security
requirements with less complexity than is currently possible
using the Internet protocol suite.

B. Recursion allows for isolation and layers of smaller scope

One of the main challenges in securing the current Internet
is that of its scope. The attack surface of a layer increases with
its size: the bigger a layer is the larger will be the number of
potential attackers and of exploitable vulnerabilities such as
missconfigurations, use of weak credentials, etc. The scope of
the public Internets IP layer is gigantic; big enough to exhaust
IPv4s 32 bits of address space, and it will continue growing



with IPv6. Not only does this fact make nodes in the public
Internet more prone to attacks, but also thwarts the deployment
of new protocols due to two reasons: either the new protocols
need to assume some level of trust in their peers that cannot
be guaranteed in the wild public net; or millions of standard
defense mechanisms such as firewalls need to be updated
to consider the particularities of the new protocol, which is
hard to do in practice (e.g. SCTP deployment [11]). Existing
protocols are also hard to upgrade, even if the upgrades are
critical to the security of the Internet such as the case for
BGP security extensions [12].

The advent of network virtualization and its large-scale
deployment in datacentres (DCs) has provided DC network
designers with a tool to create layers of smaller scope that
provide enhanced isolation, minimize the impact of security
threats and enable the customization of security policies to
different user profiles [13]. RINAs recursive structure gener-
alizes network virtualization, allowing network architects to
compose layers of arbitrary size and custom policies into a
network with a clear security model.

Figure 2 shows an example of the network of a service
provider, connected to a customer network (left) and peer-
ing with another providers network (right). Provider 1 only
shares the access DIF and the multi-provider DIF with other
networks, the internal layers of the provider - regional and
backbone DIFs - are not visible outside of the providers
network. This design reduces the networks attack surface,
limiting the damage that an external attacker can perform:
most of the provider’s routing and resource allocation func-
tions are executed in the internal DIFs. Compromising those
DIFs requires physically compromising the providers assets,
therefore the provider can focus its resources on protecting the
perimeter of its network with strong authentication and SDU
protection policies.

C. Separation of mechanism from policy

In RINA the principle of separating mechanism from policy
[14] is used to separate the fixed parts of an IPC Process
function - which are the same across DIFs - from the variable
parts. For example, an acknowledgement is a mechanism,
when to acknowledge is policy. This principle enables the
same mechanisms to be re-used across DIFs, minimizing
the number of different mechanisms present in the network
[10] while still allowing for the customization of the DIF
security policies. Policies written for a DIF can be re-used
in other DIFs, maximizing the efficiency of specifications and
implementations.

Separating mechanism from policy allows each DIF to adapt
to different operating environments while keeping an upper
bound to the complexity of the architecture, which is one of
the critical metrics when securing a distributed system [15].
Network architects don’t need to design more protocols, just
policies that are tailored to the requirements of different DIFs.
For example, in Figure 2 IPCP B in the blue DIF use some
form of cryptographic authentication and encryption when
exchanging information with IPCP A over the red DIF, since

IPCPP	  	  
A	  

App	  	  
A	  

Port-‐id	  

read/	  
write	   1	  

EFCP	  instance,	  
cep-‐id	  

8736	  

IPCPP	  	  
A	  

App	  	  
B	  

Port-‐id	  

read/	  
write	  

4	  

EFCP	  instance,	  
cep-‐id	  

9123	  

Synchroniza9on	  

Fig. 3. Decoupling of port allocation and synchronization in RINA

the red DIF is shared between the provider and different
customers. However IPCP B may use no authentication nor
encryption when exchanging information with IPCP C over
the green DIF, since in this case all systems are under the
control of the provider.

D. Decoupling of port allocation form synchronization

In the TCP/IP Protocol suite TCP overloads the port-id to
be both a local handle (socket) and the connection-endpoint-id
(cep-id). Furthermore the lack of application names overloads
port-ids with application semantics: application endpoints are
identified by a combination of IP address and a well-known
port-id that is assigned when the application binds to an IP
layer. Static destination port-id values have to be known by
the source application when requesting a transport connection.
Therefore an attacker wanting to intercept a particular TCP
connection only needs to guess/spoof the source port-id.

In RINA port-allocation and synchronization are separate
functions, applying the results obtained by Watson with the
delta-t protocol design [16]. The port-allocation procedure is
explicitly triggered by an application requesting a flow to a
destination application. The source IPCP dynamically assigns
a local port-id to the flow and creates an instance of the
EFCP protocol that takes care of the feedback synchronization
aspects (flow and retransmission control). The EFCP instance
is identified by a dynamically generated source cep-id that is
mapped to the port-id via a local binding as shown in Figure
3. The destination IPCP does the equivalent steps, resulting
in a local port-id and a destination cep-id. The source and
destination cep-id are the values seen on PDUs in the wire;
port-ids are just of local significance and used by applications
to read/write data from flows.

The state of ports and connections is managed with different
approaches: port state is explicitly created and removed by
applications (hard-state) whereas connection state is created
and removed following a timer-based approach (soft-state):
after long periods of no traffic the connection state is removed,
and created again when new traffic is sent/received on the
connection. Bodappati et al. showed in [17] how RINA lever-
ages this design to achieve a greater resiliency than TCP/IP
to transport-level attacks such as port scanning, connection
opening or data transfer.



E. Use of a complete naming and addressing architecture

Naming and addressing design considerations also have a
profound impact in the security of network architectures. Since
the TCP/IP protocol suite doesn’t have application names
(DNS is an external directory), IP layers expose addresses to
applications. This disclosure of information facilitates spoofing
of IP addresses, and in combination with the use of common
monitoring tools such as traceroute or ping allows attackers
on end hosts to learn about the addresses of potential targets
in a layer - routers or other hosts - as well as the network
connectivity graph. Attackers can use this information to setup
DDoS attacks by automating the discovery and infection of
vulnerable machines [18], or to attack the network infrastruc-
ture by gaining control over routers. RINA features a complete
network and addressing architecture, with application names
and per-layer directories that perform application to IPC
Process address resolution. When an application requests a
DIF to allocate a flow to a destination application, it provides
the source and destination application process names. The
DIF internally resolves the destination application name to the
address of the IPC Process where the destination application
is registered. Due to the existence of application names a
layer’s addressing information (address format, valid/active
addresses) is not divulged outside of the scope of the layer.
An attacker in a host cannot address the IPC Processes of a
layer unless it joins the layer it wants to attack, which requires
authentication.

III. SPECIFICATION, DESIGN, IMPLEMENTATION AND
EXPERIMENTAL VALIDATION OF SECURITY POLICIES

In this section we present the specification, design and
implementation of authentication and SDU protection policies
for RINA. The policies have been developed for the IRATI
open source RINA implementation [19], programmed via
the Software Development Kit (SDK) designed by the FP7
PRISTINE project. The SDK allows the policies to be plugged
into any DIF, maximizing the re-use of the code. We have
experimentally evaluated the behaviour of the policies using a
simple scenario that reproduces the relevant characteristics of
the service provider network depicted in Figure 2.

A. Authentication and SDU Protection policies

Authentication in RINA is part of the Common Application
Connection Establishment Phase (CACEP), which two IPC
Processes use to establish an application connection. Such ap-
plication connection enables the IPC Processes to negotiate the
id and version of the object set to be exchanged via CDAP, as
well as its concrete encoding. Multiple authentication policies
can be plugged into CACEP, ranging from no authentication
to those using strong cryptographic techniques. We focus on
an authentication policy that uses asymmetric keys for mutual
authentication of IPCPs, adapting the SSH2 [20] authentication
protocol to the DIF environment.

The policy has two differentiated phases, as illustrated in
Figure 4. In the first phase both parties securely negotiate
a shared secret via the Diffie-Hellman (DH) key exchange

IPCP	  	  
A	  

IPCP	  	  
B	  

1	  
M_CONNECT  

Policy alg negotiation, DH public key 

2	  
DH EXCHANGE 

DH pubKey, selected algorithms 

3	  

CLIENT CHALLENGE 
Client random challenge encrypted with RSA pub key 

4	  

CLIENT CHALLENGE RESPONSE AND SEVER CHALLENGE 
Hashed, decrypted client random challenge 

Server random challenge encrypted with RSA  public key 

5	  
SERVER CHALLENGE RESPONSE 

Hashed, decrypted server random challenge 

6	  

M_CONNECT_R 

C
LE

A
R

 
E

N
C

R
Y

P
TE

D
 

Fig. 4. Message exchanges of the SSH2-based authentication policy

method. The shared secret is then used to generate an encryp-
tion key to encrypt all communications between both parties.
During the second phase both parties use RSA to authenticate
its peer. The policy assumes that both parties use the same
RSA key pair, but it can be easily extended to use different sets
of keys. Authentication works by an IPCP generating a random
byte array, signing it with the RSA public key and sending it
to the other IPCP in a challenge message. The receiving IPCP
decrypts the challenge with the RSA private key and XORs
the result with the shared secret generated via the DH key
exchange. The result is hashed via the MD5 algorithm and sent
back to the IPCP that issued the challenge, who will perform
the equivalent operations to check if the result was correct.
The complete specification of this authentication policy can
be found at [21], more policies will be specified in the future.

SDU protection is the set of functions used to protect the
integrity and confidentiality of traffic when passed on to an un-
derlying DIF. Encryption, error/integrity check, packet lifetime
limiting and compression are functions that belong to SDU
Protection, but we will just focus on encryption in the context
of this paper. The passed SDU is protected according to the
policy associated with the underlying DIF. As SDU Protection
is fully specified as a policy, there is a considerable flexibility
of a degree of security level applied. It is possible to apply a
null policy, which does not apply any protective method to the
SDU if the underlying DIF is fully trusted. On the other hand,
a strong policy involving a robust encryption algorithm can be
applied when demanded. In general each layer, being it a DIF
or an application layer, should protect its own data from the N-
1 layers if they are not trusted. Therefore a default encryption
policy for a DIF could just encrypt the traffic generated by
the DIF: the headers of data transfer packets, complete data
transfer control packets (acknowledgements, etc) and layer
management packets. However there may be cases in which
the application cannot perform this task and may delegate
encryption to a ”VPN DIF” under the applications control.

In order to support applications that cannot encrypt, we have
initially specified a SDU Protection policy that encrypts the



Security 
Manager 

Authentication 
Policy 

Type = AuthSSH2 

Security Context, 
id = 1 

RIB 
Daemon 

SDU 
Protection 

SDUP policy set, 
id = 1 

CACEP/CDAP 
state machine, id 

= 1 

Read/write from 
N-1 flow 

Send/receive 
authentication 

messages 

Configure 
encryption/ 
decryption 

Read/write 
security  
context 

Fig. 5. IPCP components that interact with the policy-set implementation

header and payload of all the packets. The policy does not
assume that the N-1 DIF provides flows with reliable and
in-order-delivery of SDUs, therefore stream ciphers cannot
be employed. Instead, the counter mode is a viable alterna-
tive, which has been already developed for IPsec [22]. In
counter mode each SDU can be independently encrypted and
decrypted from others, so that SDUs can be lost or arrive not
in order. It works by combining a nonce and a counter value
that increments for each SDU that is encrypted. The combined
value is encrypted via a block cipher. The output is XORed
with plaintext blocks, and the value of the counter is prepended
to the encrypted SDU. Finally a HMAC code is added to the
SDU by computing a hash function, in order to protect the
integrity of the resulting SDU. Regarding specific algorithms,
the Advanced Encryption Standard (AES) with 128 bit keys
has been chosen as a block cipher that provides a good
computational cost security level tradeoff, while SHA256 has
been chosen for the hash function.

B. Design and implementation using the IRATI prototype

IRATI is a C/C++ open source RINA implementation for
the Linux/OS. The implementation is divided in three parts:
user-space daemons, libraries and kernel components. The IPC
Process functions have been split between the user and kernel
spaces: the layer management parts are implemented as a
user-space daemon, while the data transfer and data transfer
control functions reside in the kernel. The IPC Manager
Daemon manages the lifetime of IPC Processes in the system,
acts as a broker between applications and DIF instances
(IPC Processes) and hosts the Management Agent. Librina is
the library that abstracts out the communication mechanisms
between user-space daemons (Netlink sockets) as well as
between user-space daemons and the kernel (Netlink sockets
and system calls). A more detailed explanation can be found
at [19]. The PRISTINE project has developed an SDK to
facilitate the programmability of the different components of
the implementation, allowing developers to write policies by
implementing a set of well-defined C and C++ APIs [23].

Authentication policies are located in librina, since they
can be used both by the daemons (IPCP, IPC Manager)
and applications, within the Security Manager component as
illustrated in Figure 5. The Security Manager hosts all the
authentication instances supported by the IPC Process, as
well as the security contexts of all the N-1 flows currently

allocated (the security context stores the configuration of
the authentication and SDU protection policies used for a
particular N-1 flow). Each authentication policy is in charge of
initializing invididual security profiles with the relevant data
(algorithms, key material, protection policies).

Authentication policies interact with the RIB Daemon to
send/receive messages to its peer, and with librina APIs to
configure the SDU protection functions in the kernel with the
appropriate keys. The RIB Daemon hosts the CACEP state ma-
chines, responsible for maintaining the state of the application
connection. Each CACEP state machine is associated to an N-1
flow. When a CACEP state machine is in the ”authenticating”
state, the RIB Daemon forwards all the messages from the
remote peer to the appropriate authentication policy code. The
RIB Daemon is also in charge of writing the authentication
messages from the authentication policy to the right N-1 flow.

Since the authentication policy needs to perform a number
of cryptographic operations, it needs to rely on a proven
implementation of those. The openSSL libcrypto library has
been chosen as a provider of crypto functions for the user-
space IRATI daemons, due to its widespread use and extensive
feature set. In particular the policy uses DH key and shared
secret generation, MD5 and SHA-256 hash functions, RSA
key management, public encryption and private decryption.

SDU Protection is designed as a separate module in the
kernel part of the IRATI prototype, where it connects to the
RMT (Relaying and Multiplexing Task). The SDU Protection
module stores the per-port policy configuration, including pa-
rameters and state variables negotiated during authentication.
After the RMT determines which N-1 port will be used for the
SDU transmission it passes the SDU to the SDU Protection
module that protects it based on the configuration for this port.
In a similar fashion validation of a protected SDU is called
from the RMT after it is received from the underlying port.

We have implemented a Proof of Concept (PoC) of the
previously described SDU Protection policy in order to test
the feasibility of using the native Linux Crypto API for
SDU encryption and integration of the basic SDU Protection
mechanisms with the rest of the IRATI implementation. Per-
port configuration of SDU Protection parameters is stored in
the RMT and the N-1 port data structures. The SDU Protection
mechanism itself is implemented as part of the serialization
and deserialization module, with a series of default policies:
TTL as a Lifetime limiting method, 32-bit CRC as an error
check method, PKCS#7 padding method and the Linux Crypto
API to perform AES128 Electronic Code Book mode en-
cryption. Implementation of cryptographic hashes for message
authentication and compression was skipped for the PoC since
they can be easily added using the Linux Crypto API.

C. Experimental evaluation

In order to validate the correct operation of the authentica-
tion and SDU Protection policies, as well as to demonstrate
in practice some of the RINA properties described in section
II, we have setup a experiment reproducing the parts of the
network service provider scenario described in Figure 2 that



Provider Border 
Router 

Provider Border 
Router 

Customer 
Border Router 

Shim DIF over Eth Shim DIF over Eth 

IPCP 
A 

IPCP 
B 

access.DIF IPCP 
C 

IPCP 
D regional.DIF 

IPCP 
E 

IPCP 
F 

IPCP 
G multi-provider.DIF 

Customer  
network 

Provider  
network 

Fig. 6. Experimental scenario based on a simplified service provider

are most relevant for a security analysis. The goals of the
experiment are i) to validate the correct behavior of the policies
presented in this paper, further analyzing their impact on the
performance of the prototype in terms of goodput and delay;
ii) to show a working example of the concepts introduced in
section II: policies can be plugged into any DIF, recursion
provides isolation, addresses are internal to layers and not
exposed to applications using them, security policies protect
all the protocols of a given layer.

The experimental scenario is depicted in Figure 6; a tutorial
with detailed steps on how to reproduce the experiment is
available at [24]. Only the border routers of the provider
and customer network are considered. The access DIF (in
red) allows customers to gain access to higher-level DIFs
available through the provider’s network. Since the access
DIF is shared between the provider and multiple customers,
cryptographic authentication and SDU protection policies are
a good choice to prevent potential attackers to join the DIF
and/or intercept the data carried by the DIF. The regional DIF
(green) is in full control of the provider and not visible to
customers or other providers: in this case no authentication
and no encryption are feasible policies. The multi-provider
DIF (blue) is floating on top of the access and regional DIFs;
therefore different policies are advisable for different parts
of this DIF. For instance IPCP E should use cryptographic
authentication and SDU protection policies; IPCP G can use
no authentication/no encryption while IPCP F should use
the cryptographic policies for flows over the access DIF
and can use the no authentication/no encryption approach for
flows over the regional DIF. The three systems in Figure
6 are XEN VMs hosted in the same physical machine, and
use paravirtualized Ethernet drivers for the virtual NICs (not
restricted to 1 Gbps as a physical NIC would be).

Figures 7 and 8 show how the RTT and goodput degrade
when using the cryptographic SDU protection policies. With-
out encryption RTT is mostly independent of the SDU size, but
the graph shows how encryption introduces a non-negligible
processing cost per SDU that causes the RTT to grow with
the SDU size. Regarding goodput, performance drops up to
60% for the case of directly connected IPCPs (A-E) when
encryption is used. The results for the multi-provider DIF
(E-G) show less performance degradation for two reasons:

100	  

200	  

300	  

400	  

500	  

600	  

0	   500	   1000	   1500	  

A-‐B	  

E-‐F	  	  

A-‐B	  (E)	  

E-‐F	  (E)	  

Fig. 7. Application RTT (microseconds) vs. SDU size (bytes) for flows
between IPCPs A-B (access DIF) and IPCPs E-F (multi-provider DIF), with
and without encryption policies

0	  

200	  

400	  

600	  

800	  

1000	  

0	   500	   1000	   1500	  

A-‐B	  	  

E-‐G	  	  

A-‐B	  (	  E	  )	  

E-‐G	  (	  E	  )	  

Fig. 8. Application goodput (Mbps) vs. SDU size (bytes) for flows between
IPCPs A-B (access DIF) and IPCPs E-F (multi-provider DIF), with and
without encryption policies

encryption is only performed in one hop (over the access
DIF) and the goodput for the base case (no encryption) was
much lower. The big difference in goodput observed between
the back-to-back (A-E) and relayed (E-F) experiments can be
attributed to the fact that the relaying and scheduling opera-
tions are not optimized in the IRATI implementation. Figure 9
shows the time for the enrollment operation to complete when
using no authentication and the SSH2-based authentication
policy, going from the 10 ms range to approximately 120
ms. Enrollment is the procedure by which an IPCP joins a
DIF and acquires enough information to become operational.
Since the RTT is very low the cost of performing the policy’s
cryptographic operations (approx 100 ms) is much higher than
the cost of message exchanges (approx 20 ms).

The three DIFs use ovelapping address spaces, which is not
a problem since addresses are internal to the layers. When the
IPCPs in the multi-provider DIF request a flow to the lower
DIFs, they just provide the source and destination application
names (e.g. E to F). The SSH-2 based authentication policy
and the SDU Protection policies are used in the multi-provider
and access DIFs, securing all the data exchanged between the



0,00	  

20,00	  

40,00	  

60,00	  

80,00	  

100,00	  

120,00	  

A-‐B	  	   E-‐F	  	  

no	  auth	  

ssh2	  

Fig. 9. Enrollment time (ms) between IPCPs A-B (access DIF) and IPCPs
E-F (multi-provider DIF), with no authentication (blue) and the SSH2-based
authentication policy (red)

IPCPs that use them. IPCP F in the multi-provider DIF uses
different policies depending on the underlying DIFs. All-in-all,
the experiment shows a practical example of the flexibility and
simplicity of RINA’s security model.

IV. CONCLUSIONS AND FUTURE WORK

Shortcomings in the structure of the current Internet pro-
tocol suite make networks built to the TCP/IP architecture
very complex and difficult to secure. The lack of a structured
approach towards design causes a proliferation of protocols,
each of which has to be individually protected. Unexpected
interactions between the ever-increasing protocol-base, ineffi-
ciency in the number of repeated security mechanisms, a flat
network layer and exposing addresses to applications make the
Internet virtually impossible to secure at an affordable cost
[25]. In contrast RINA provides an architectural framework
with a well-defined building block - the DIF - that recurses as
many times as required. Security functions belong to the DIF,
not to individual protocols within the DIF. Interactions and
the trust model between DIFs are well understood, allowing
network architects to reason about the security of a network,
understand the threads it is exposed to and design the policies
that are more adequate to protect its DIFs.

In this paper we have described the design principles that
make RINA networks inherently more secure than current
Internet networks, and at a much lower cost. In spite of being
an alternative to TCP/IP, RINA networks can be deployed
above, below and next to the Internet, facilitating adoption. We
have also shown the design, implementation and experimental
validation of security policies for DIFs, applying them to a
network service provider use case. There is a lot of research
and experimentation work to be done in RINA security, we
hope that this paper motivates researchers to get involved
in this promising approach towards building the networks of
tomorrow. Regarding the planned work within FP7 PRISTINE,
we will design security policies based on the TLS hand-
shake and record protocols, develop capability-based access
control policies for DIFs, investigate credential management
approaches and their interaction with network management,
and experiment with the results on larger-scale scenarios.

ACKNOWLEDGMENT

This work is partly funded by the European Commission
through the FP7 PRISTINE project (Grant 619305). The
authors would like to thank all PRISTINE WP4 partners.

REFERENCES

[1] D. Clark, L. Chapin, V. Cerf, R. Braden, and R. Hobby, “Rfc 1287.
towards the future internet architecture,” IETF Network Working Group,
Tech. Rep., 1991.

[2] J. Day, “How in the heck do you lose a layer!?” in Network of the Future
(NOF), 2011 International Conference on the, 2011, pp. 135–143.

[3] J. Day, I. Matta, and K. Mattar, “”Networking is IPC”: A Guiding
Principle to a Better Internet,” in Proceedings of the 2008 ACM CoNEXT
Conference, 2008.

[4] J. Small, “Threat analysis of recursive internetwork architecture difs,”
Boston University Computer Science Department, Tech. Rep., 2011.

[5] D. Eastlake, “Rfc 2535. domain name system security extensions,” IETF,
Network Working Group, Tech. Rep., March 1999.

[6] S. Kent and K. Seo, “Rfc 2401. security architecture for the ip protocol,”
IETF Network Working Group, Tech. Rep., December 2005.

[7] S. Hartman and D. Zhang, “Rfc 6863. analysis of ospf security according
to the keying and authentication for routing protocols (karp) design
guidelines,” IETF Network Working Group, Tech. Rep., March 2013.

[8] M. Lepinski, “Bgpsec protocol sepcification,” IETF Network Working
Group, Tech. Rep., July 2015.

[9] T. Dierks and E. Rescola, “Rfc 5246. the transport layer security
protocol, version 1.2,” IETF Network Working Group, Tech. Rep.,
August 2008.

[10] J. Small, “Patterns in network security: An analysis of architectural
complexity in securing rina networks,” Boston University Computer
Science Department, Master thesis, 2012.

[11] R. Stewart, M. Tuexen, and I. Ruengeler, “Stream control transmission
protocol network address translation,” IETF Network Working Group,
Tech. Rep., June 2011.

[12] R. Lychev, S. Goldberg, and M. Schapira, “Bgp security in partial
deployment: Is the juice worth the squeeze?” Proceedings of ACM
SIGCOMM 2013, pp. 171–182, 2014.

[13] M. Bari, R. Boutaba, R. Esteves, L. Granville, M. Podlesny, M. Rabbani,
Q. Zhang, and M. Zhani, “Data center network virtualization: A survey,”
IEEE Communications Surveys and Tutorials, vol. 15, no. 2, 2013.

[14] R. Levin, E. Cohen, W. Corwin, F. Pollak, and W. Wulf, “Pol-
icy/mechanism separation in hydra,” Proceedings of the fifth ACM
symposium on Operating System principles, 1975.

[15] B. Schneier, “A plea for simplicity: You can’t secure what you don’t
understand,” Information Security, 1999.

[16] R. Watson, “Mechanisms for a reliable timer-based protocol,” Computer
Networks, vol. 2, pp. 271–290, 1978.

[17] G. Boddapati, J. Day, I. Matta, and L. Chitkushev, “Assessing the secu-
rity of a clean-slate internet architecture,” Proceedings of the Network
Protocols (ICNP), 2012 20th IEEE International Conference on, 2012.

[18] J. Mirkovic and P. Reiher, “A taxonomoy of ddos attacks and ddos
defense mechanisms,” ACM SIGCOMM Computer Communication Re-
view, vol. 34, no. 2, pp. 39–53, 2004.

[19] S. Vrijders, D. Staessens, D. Colle, F. Salvestrini, E. Grasa, M. Tarzan,
and L. Bergesio, “Prototyping the Recursive InterNet Architecture: The
IRATI project approach,” IEEE Network, March 2014.

[20] T. Ylonen and C. Lonvick, “Rfc 4252. the secure shell authentication
protocol,” IETF Network Working Group, Tech. Rep., 2006.

[21] P. consortium, “D4.2. initial specification and proof of concept imple-
mentation of innovative security and reliability enablers,” FP7 PRIS-
TINE, Tech. Rep., 2015.

[22] R. Housley, “Rfc 3686. using advanced encryption standard (aes) counter
mode with ipsec encapsulating security payload (esp),” IETF, Tech. Rep.,
2004.

[23] P. consortium, “D2.3. proof of concept rina software development kit,”
FP7 PRISTINE, Tech. Rep., 2015.

[24] F. PRISTINE, “Security experiments on a small provider network,” on-
line: https://github.com/IRATI/stack/wiki/Tutorial-3:-Security-provider-
net, October 2015.

[25] B. S. center on International Security, “Risk nexus: Overcome by cyber
risks? economic benefits and costs of alternate cyber futures,” Zurich
Insurance Group, Tech. Rep., 2015.


