
ON DOUBLE-JUMPING FINITE
AUTOMATA

Radim Kocman Zbyněk Křivka
Alexander Meduna

Centre of Excellence IT4Innovations
Faculty of Information Technology

Brno University of Technology
Božetěchova 2, Brno Czech Republic
{ikocman,krivka,meduna}@fit.vutbr.cz

Abstract
The present paper modifies and studies jumping finite automata so they always perform two
simultaneous jumps according to the same rule. For either of the two simultaneous jumps, it
considers three natural directions—(1) to the left, (2) to the right, and (3) in either direction.
According to this jumping-direction three-part classification, the paper investigates the mutual
relation between the language families resulting from jumping finite automata performing the
jumps in these ways and the families of regular, linear, context-free, and context-sensitive lan-
guages. It demonstrates that most of these language families are pairwise incomparable—that
is, they are not subfamilies of each other and, simultaneously, they are not disjoint.

1. Introduction

At present, jumping versions of rewriting systems, such as grammars and automata, represent
a vivid investigation area in language theory (see [1, 2, 3, 4, 6, 8, 9]). In essence, they work just
like classical rewriting systems except that they work on strings discontinuously. That is, they
apply a production so they erase an occurrence of its left-hand side in the rewritten string while
placing the right-hand side anywhere in the string. As a result, the position of the insertion
may occur far away from the position of the erasure. The present paper continues with this
investigation in terms of jumping finite automata.

To give an insight into this study, let us first recall the well-known notion of a classical finite
automaton, M , which consists of an input tape, a read head, and a finite state control. The
input tape is divided into squares. Each square contains one symbol of an input string. The
symbol under the read head, a, is the current input symbol. The finite control is represented
by a finite set of states together with a control relation, which is usually specified as a set
of computational rules. M computes by making a sequence of moves. Each move is made
according to a computational rule that describes how the current state is changed and whether

2 Radim Kocman, Zbyněk Křivka, Alexander Meduna

the current input symbol is read. If the symbol is read, the read head is shifted precisely one
square to the right. M has one state defined as the start state and some states designated as
final states. If M can read w by making a sequence of moves from the start state to a final
state, M accepts w; otherwise, M rejects w.

In essence, a jumping finite automaton works just like a classical finite automaton except it
does not read the input string in a symbol-by-symbol left-to-right way. That is, after reading a
symbol, M can jump over a portion of the tape in either direction and continue making moves
from there. Once an occurrence of a symbol is read on the tape, it cannot be re-read again
later during the computation of M . Otherwise, it coincides with the standard notion of a finite
automaton.

Consider the notion of a jumping finite automaton M sketched above. The present paper
modifies the way M works so it simultaneously performs two jumps according to the same rule.
For either of the two jumps, it always considers three natural directions—(1) to the left, (2)
to the right, and (3) in either direction. In correspondence to this jumping-direction three-
part classification, the paper investigates the mutual relation between the language families
resulting from jumping finite automata working in these ways and the families of regular,
linear, context-free, and context-sensitive languages. In essence, it demonstrates that most of
these language families are pairwise incomparable—that is, they are not subfamilies of each
other and, simultaneously, they are not disjoint either. Consequently, from a computationally
broader viewpoint, it actually demonstrates that the jumping directions fulfill an essential role
in the computation formalized by jumping finite automata—a general result, which might be
of some interest and importance to the investigation as well as the application of jumping finite
automata in the future.

The rest of the paper is organized as follows. Section 2 recalls all the terminology needed in this
paper and introduces a variety of jumping modes of general jumping finite automata. Section 3
presents fundamental results achieved in this paper. Section 4 closes all the study by pointing
out some open problem areas.

2. Preliminaries and Definitions

This paper assumes that the reader is familiar with the theory of automata and formal languages
(see [5, 10]). For a setQ, card(Q) denotes the cardinality ofQ. For an alphabet (finite nonempty
set) V , V ∗ represents the free monoid generated by V under the operation of concatenation. The
unit of V ∗ is denoted by ε. Members of V ∗ are called strings. For x ∈ V ∗, |x| denotes the length
of x, and alph(x) denotes the set of all symbols occurring in x; for instance, alph(0010) = {0, 1}.
Let x = a1a2 . . . an, where ai ∈ V for all i = 1, . . . , n, for some n ≥ 0 (x = ε if and only if
n = 0). Let X and Y be sets; we call X and Y to be incomparable if X 6⊆ Y , Y 6⊆ X, and
X ∩ Y 6= ∅.

A linear grammar is a quadruple G = (N, T, P, S), where N and T are alphabets such that
N ∩ T = ∅, S ∈ N , and P is a finite set of productions of the form A → x, where A ∈ N

ON DOUBLE-JUMPING FINITE AUTOMATA 3

and x ∈ T ∗(N ∪ {ε})T ∗. If A → x ∈ P and u, v ∈ T ∗, then uAv ⇒ uxv [A → x], or simply
uAv ⇒ uxv. In the standard manner, extend ⇒ to ⇒n, where n ≥ 0; then, based on ⇒n,
define ⇒+ and ⇒∗. The language of G, L(G), is defined as L(G) = {w ∈ T ∗ | S ⇒∗ w}.
A language, L, is linear if and only if L = L(G), where G is a linear grammar.

A right-linear grammar is a linear grammar G = (N, T, P, S) such that every rule in P is of
the form A → x and satisfies x ∈ T ∗N ∪ T ∗. A language, L, is right-linear (or regular) if and
only if L = L(G), where G is a right-linear grammar.

A general jumping finite automaton (see [6]), a GJFA for short, is a quintuple M=(Q,Σ,R,s,F),
where Q is a finite set of states, Σ is an input alphabet, Q ∩ Σ = ∅, R ⊆ Q× Σ∗ ×Q is finite,
s ∈ Q is the start state, and F is a set of final states. Members of R are referred to as rules
of M . For brevity, we sometimes denote a rule (p, y, q) with a unique label h as h : (p, y, q),
and instead of h : (p, y, q) ∈ R, we simply write h ∈ R. A configuration of M is any string in
Σ∗QΣ∗. The binary jumping relation, symbolically denoted by y, over Σ∗QΣ∗, is defined as
follows. Let x, z, x′, z′ ∈ Σ∗ such that xz = x′z′ and (p, y, q) ∈ R; then, M makes a jump from
xpyz to x′qz′, symbolically written as xpyz y x′qz′.

We define a new mode for general jumping finite automata that performs two single jumps
simultaneously. In this mode, both single jumps follow the same rule, however, they are per-
formed on two different positions on the tape and thus handle different parts of the input string.
Moreover, these two jumps cannot ever cross each other—their initial mutual order is preserved
during the whole process. As a result, when needed, we can specifically denote them as the
first jump and the second jump. Furthermore, we define new versions of single jumps in order
to get a more consistent behavior. These modified single jumps always read strings from the
tape in the same direction as the direction of their jumping.

Let M = (Q,Σ, R, s, F) be a GJFA. Let X denote the set of all configurations of M . Let
w, x, y, z ∈ Σ∗ and h : (p, y, q) ∈ R; then,

wpyxz Iy wxqz [h]

in M . When the specification of the rule h is immaterial, we can omit [h]. Let w, x, y, z ∈ Σ∗

and h : (p, y, q) ∈ R; then,
wxypz Jy wqxz [h]

in M . The binary unrestricted jumping relation, symbolically denoted by �y, over X, is defined
as follows. Let ζ, ϑ ∈ X, and h ∈ R; then, M makes an unrestricted jump from ζ to ϑ according
to h, symbolically written as

ζ �y ϑ [h]

if either ζ Iy ϑ [h] or ζ Jy ϑ [h].

A 2-configuration of M is any string in XX. Let X2 denote the set of all 2-configurations
of M . The binary unrestricted 2-jumping relation, symbolically denoted by ��y, over X2, is
defined as follows. Let ζ1ζ2, ϑ1ϑ2 ∈ X2, where ζ1, ζ2, ϑ1, ϑ2 ∈ X, and h ∈ R; then, M makes an
unrestricted 2-jump from ζ1ζ2 to ϑ1ϑ2 according to h, symbolically written as

ζ1ζ2 ��y ϑ1ϑ2 [h]

4 Radim Kocman, Zbyněk Křivka, Alexander Meduna

if and only if ζ1 �y ϑ1 [h] and ζ2 �y ϑ2 [h].

Besides the unrestricted 2-jumping relation, we also define other four different types of limited
2-jumping relations, which are the main subject of this paper. The presented limitation restricts
the jumping direction of jumps, moreover, it restricts each jump separately; which in total gives
four different possible variants of such limitation. As we show further, these restrictions severely
and uniquely impact the automata’s behavior and thus the families of accepted languages.

(1) M makes a right-right 2-jump from ζ1ζ2 to ϑ1ϑ2 according to h, symbolically written as

ζ1ζ2 IIy ϑ1ϑ2 [h]

if and only if ζ1 Iy ϑ1 [h] and ζ2 Iy ϑ2 [h];
(2) M makes a right-left 2-jump from ζ1ζ2 to ϑ1ϑ2 according to h, symbolically written as

ζ1ζ2 IJy ϑ1ϑ2 [h]

if and only if ζ1 Iy ϑ1 [h] and ζ2 Jy ϑ2 [h];
(3) M makes a left-right 2-jump from ζ1ζ2 to ϑ1ϑ2 according to h, symbolically written as

ζ1ζ2 JIy ϑ1ϑ2 [h]

if and only if ζ1 Jy ϑ1 [h] and ζ2 Iy ϑ2 [h]; and
(4) M makes a left-left 2-jump from ζ1ζ2 to ϑ1ϑ2 according to h, symbolically written as

ζ1ζ2 JJy ϑ1ϑ2 [h]

if and only if ζ1 Jy ϑ1 [h] and ζ2 Jy ϑ2 [h].

Let o be any of the jumping direct relations introduced above. In the standard way, extend o to
om, m ≥ 0; o+; and o∗. Let M = (Q,Σ, R, s, F) be a GJFA. To express that M only performs
jumps according to o, write Mo. If o is one of the relations y, Iy, Jy, �y, set

L(Mo) = {uv | u, v ∈ Σ∗, usv o∗ f, f ∈ F}.

If o is one of the relations ��y, IIy, IJy, JIy, JJy, set

L(Mo) = {uvw | u, v, w ∈ Σ∗, usvsw o∗ ff, f ∈ F}.

L(Mo) is referred to as the language of Mo. Set Lo = {L(Mo) | M is a GJFA}; Lo is referred
to as the language family accepted by GJFAs according to o.

To illustrate this terminology, take o = ��y. Consider M��y. Notice that

L(M��y) = {uvw | u, v, w ∈ Σ∗, usvsw ��y∗ ff, f ∈ F}.

L(M��y) is referred to as the language of M��y. Set L��y = {L(M��y) | M is a GJFA};
L��y is referred to as the language family accepted by GJFAs according to ��y.

Furthermore, set L2 = L��y ∪LIIy ∪LIJy ∪LJIy ∪LJJy.

Lastly, we introduce a subfamily of the family of regular languages essential to the study of the
generative power of GJFAs that perform right-left and left-right 2-jumps.

ON DOUBLE-JUMPING FINITE AUTOMATA 5

Definition 2.1 Let Lm,n be a simply-expandable language, a SEL for short, over an alphabet
Σ if it can be written as follows. Let m and n be positive integers; then,

Lm,n =
m⋃

h=1

{
uh,1uh,2 . . . uh,nv

i
hv

i
huh,n . . . uh,2uh,1 | i ≥ 0, uh,k, vh ∈ Σ∗, 1 ≤ k ≤ n

}
.

For the sake of clarity, let us note that, in the previous definition, uh,k and vh are fixed strings
that only vary for different values of h.

Throughout the rest of this paper, the remaining language families under discussion are denoted
in the following way. FIN, REG, LIN, CF, CS, and SEL denote the families of finite lan-
guages, regular languages, linear languages, context-free languages, context-sensitive languages,
and SELs, respectively.

3. Results

This section studies the generative power of GJFAs making their computational steps by un-
restricted, right-left, left-right, right-right, and left-left 2-jumps.

3.1. On the unrestricted 2-jumping relation

Example 3.1 Consider the GJFA

M��y = ({s, f},Σ, R, s, {f}),

where Σ = {a, b, c} and R consists of the rules (s, ab, f) and (f, c, f). Starting from s, M has
to read two times some ab, entering the final state f ; then, M can arbitrarily many times read
two times some c. Consequently, if we work with the unrestricted 2-jumps, the input must
always contain two separate strings ab and the symbols c can be anywhere around these two
strings. Therefore, the accepted language is

L(M��y) = {ckabcmabcn | k +m+ n is an even integer, k,m, n ≥ 0}.

Lemma 3.2 For every language L ∈ L2, there is no x ∈ L such that |x| is an odd number.

Proof. By the definition of 2-jumps, any GJFA that uses 2-jumps always performs two single
jumps simultaneously and they both follow the same rule, therefore, there is no way how to
read an odd number of symbols from the input string. 2

Lemma 3.3 There is no GJFA My that accepts {ckabcmabcn | k +m+ n is an even integer,
k,m, n ≥ 0}.

Proof. We follow Lemma 19 from [6] which effectively shows that a GJFA My can maintain
a specific order of symbols only in the sole context of a rule. Therefore, by contradiction. Let

6 Radim Kocman, Zbyněk Křivka, Alexander Meduna

K = {ckabcmabcn | k+m+n is an even integer, k,m, n ≥ 0}. Assume that there is a GJFA My
such that L(My) = K. If M uses two times a rule reading ab, then it can also accept input aabb
and clearly aabb 6∈ K. Consequently, M has to always read the whole sequence abcmab with a
single rule; however, number m is unbounded and thus there cannot be finitely many rules that
cover all possibilities—a contradiction with the assumption that L(My) = K exists. Therefore,
there is no GJFA My that accepts {ckabcmabcn | k + m + n is an even integer, k,m, n ≥ 0}.

2

Theorem 3.4 Ly and L��y are incomparable.

Proof. Ly 6⊆ L��y follows from FIN ⊂ Ly (see Theorem 18 in [6]) and Lemma 3.2. L��y
6⊆ Ly follows from Example 3.1 and Lemma 3.3. Moreover, observe that both Ly and L��y
clearly contain simple finite language {aa}. 2

3.2. On the right-left 2-jumping relation

Claim 3.5 Let M = (Q,Σ, R, s, F) be a GJFA; then, every x ∈ L(MIJy) can be written as
x = u1u2 . . . unun . . . u2u1, where n ∈ N, and ui ∈ Σ∗, 1 ≤ i ≤ n.

Proof. Consider any GJFA MIJy = (Q,Σ, R, s, F). Since we work with the right-left 2-
jumps, the first jump can move only to the right, the second jump can move only to the left,
and both jumps cannot cross each other. Observe that if the configuration of M is of the
form upvpw, where u, v, w ∈ Σ∗, and p ∈ Q, then M cannot read the symbols in u and w
anymore. Also, observe that this covers the situation when M starts to accept x ∈ Σ∗ from
another configuration than sxs. Therefore, to read the whole input string, M has to start in the
configuration sxs and it cannot jump over any symbols during the whole process. Consequently,
since both jumps always follow the same rule, they have to read the same corresponding strings
and, at the end, meet in the middle of the input string. Therefore, every x ∈ L(MIJy) can be
surely written as x = u1u2 . . . unun . . . u2u1, where n ∈ N, and ui ∈ Σ∗, 1 ≤ i ≤ n. 2

Lemma 3.6 For every GJFA M , there is a linear grammar G such that L(MIJy) = L(G).

Proof. Consider any GJFA MIJy = (Q,Σ, R, s, F). Define the linear grammar

G = (Q,Σ, P, s),

where P is constructed in the following way:

1. For each (p, y, q) ∈ R, add p→ yqy to P .

2. For each p ∈ F , add p→ ε to P .

We follow Claim 3.5 and its proof. Let p, q ∈ Q, f ∈ F , and y, u, v, w ∈ Σ∗. Observe that every
time M can make a 2-jump pywyp IJy qwq according to (p, y, q) ∈ P , G can also make the
derivation step upv ⇒ uyqyv according to p→ yqy ∈ P . Moreover, every time M is in a final
state f , G can finish the string with f → ε ∈ P . Finally, observe that G cannot do any other
action, therefore, L(MIJy) = L(G). 2

ON DOUBLE-JUMPING FINITE AUTOMATA 7

Theorem 3.7 LIJy ⊂ LIN.

Proof. LIJy ⊆ LIN follows from Lemma 3.6. LIN 6⊆ LIJy follows from Lemma 3.2. 2

Claim 3.8 There is a GJFA M such that L(MIJy) = {w ∈ Σ∗ | w is an even palindrome}.

Proof. Consider an arbitrary alphabet Σ. Define the GJFA

MIJy = ({f},Σ, R, f, {f})

where R = {(f, a, f) | a ∈ Σ}.

We follow Claim 3.5 and its proof, which shows that every x ∈ L(MIJy) can be written as
x = u1u2 . . . unun . . . u2u1, where n ∈ N, and ui ∈ Σ∗, 1 ≤ i ≤ n. Observe that we use only rules
reading single symbols, thus we can even say that ui ∈ (Σ ∪ {ε}), 1 ≤ i ≤ n, which, in fact,
models the string pattern of the even palindrome. Moreover, we use only one sole state that
can accept all symbols from Σ, therefore, L(MIJy) = {w ∈ Σ∗ | w is an even palindrome}. 2

Lemma 3.9 For every SEL Km,n, there is a GJFA M such that Km,n = L(MIJy).

Proof. Let m and n be positive integers. Consider any SEL over an alphabet Σ,

Km,n =
m⋃

h=1

{
uh,1uh,2 . . . uh,nv

i
hv

i
huh,n . . . uh,2uh,1 | i ≥ 0, uh,k, vh ∈ Σ∗, 1 ≤ k ≤ n

}
.

Define the GJFA MIJy = (Q,Σ, R, 〈s〉, F), where Q, R, and F are constructed in the following
way:

1. Add 〈s〉 to Q.

2. Add 〈h, k〉 to Q, for all 1 ≤ h ≤ m, 1 ≤ k ≤ n+ 1.

3. Add 〈h, n+ 1〉 to F , for all 1 ≤ h ≤ m.

4. Add (〈s〉, ε, 〈h, 1〉) to R, for all 1 ≤ h ≤ m.

5. Add (〈h, k〉, uh,k, 〈h, k + 1〉) to R, for all 1 ≤ h ≤ m, 1 ≤ k ≤ n.

6. Add (〈h, n+ 1〉, vh, 〈h, n+ 1〉) to R, for all 1 ≤ h ≤ m.

We follow Claim 3.5 and its proof. Observe that M starts from 〈s〉 by jumping to an arbitrary
state 〈h, 1〉, where 1 ≤ h ≤ m. Then, the first jump consecutively reads uh,1uh,2 . . . uh,n,
and the second jump consecutively reads uh,n . . . uh,2uh,1, until M ends up in the final state
〈h, n+ 1〉. Here, both jumps can arbitrarily many times read vh. As a result, M accepts
uh,1uh,2 . . . uh,nv

i
hv

i
huh,n . . . uh,2uh,1, for all 1 ≤ h ≤ m, where i ≥ 0, uh,k, vh ∈ Σ∗, 1 ≤ k ≤ n;

therefore, Km,n = L(MIJy). 2

Lemma 3.10 For every SEL Km,n, there is a right-linear grammar G such that Km,n = L(G).

Proof. Let m and n be positive integers. Consider any SEL over an alphabet Σ,

Km,n =
m⋃

h=1

{
uh,1uh,2 . . . uh,nv

i
hv

i
huh,n . . . uh,2uh,1 | i ≥ 0, uh,k, vh ∈ Σ∗, 1 ≤ k ≤ n

}
.

Define the right-linear grammar G = (N,Σ, P, 〈s〉), where N and P are constructed in the
following way:

8 Radim Kocman, Zbyněk Křivka, Alexander Meduna

1. Add 〈s〉 to N .

2. Add 〈h, 1〉 and 〈h, 2〉 to N , for all 1 ≤ h ≤ m.

3. Add 〈s〉 → 〈h, 1〉 to P , for all 1 ≤ h ≤ m.

4. Add 〈h, 1〉 → uh,1uh,2 . . . uh,n〈h, 2〉 to P , for all 1 ≤ h ≤ m.

5. Add 〈h, 2〉 → vnvn〈h, 2〉 to P , for all 1 ≤ h ≤ m.

6. Add 〈h, 2〉 → uh,n . . . uh,2uh,1 to P , for all 1 ≤ h ≤ m.

Observe that at the beginning, G has to change nonterminal 〈s〉 to an arbitrary nonterminal
〈h, 1〉, where 1 ≤ h ≤ m. Then, it generates uh,1uh,2 . . . uh,n and nonterminal 〈h, 2〉. Here, it can
arbitrarily many times generate vnvn and ultimately finish the generation with uh,n . . . uh,2uh,1.
As a result, G generates uh,1uh,2 . . . uh,n(vhvh)iuh,n . . . uh,2uh,1, for all 1 ≤ h ≤ m, where i ≥ 0,
uh,k, vh ∈ Σ∗, 1 ≤ k ≤ n, which is indistinguishable from uh,1uh,2 . . . uh,nv

i
hv

i
huh,n . . . uh,2uh,1;

therefore, Km,n = L(G). 2

Theorem 3.11 SEL ⊂ REG.

Proof. SEL ⊆ REG follows from Lemma 3.10. REG 6⊆ SEL follows from Lemma 3.9 and
Lemma 3.2. 2

Theorem 3.12 SEL ⊂ LIJy.

Proof. SEL ⊆ LIJy follows from Lemma 3.9. LIJy 6⊆ SEL follows from Theorem 3.11
and Claim 3.8 because a subfamily of the family of regular languages surely cannot contain a
non-trivial language of all even palindromes. 2

Theorem 3.13 The following pairs of language families are incomparable:

(i) LIJy and REG;

(ii) LIJy and FIN.

Proof. LIJy 6⊆ REG and LIJy 6⊆ FIN follow from Claim 3.8, Theorem 3.11 , and Theorem
3.12. REG 6⊆ LIJy and FIN 6⊆ LIJy follow from Lemma 3.2. Moreover, observe that LIJy
clearly contains regular language {a2n | n ≥ 0} and finite language {aa}. 2

Open Problem 3.14 (LIJy − SEL) ∩ REG = ∅?

3.3. On the left-right 2-jumping relation

Claim 3.15 Let M = (Q,Σ, R, s, F) be a GJFA; then, every x ∈ L(MJIy) can be written as
x = un . . . u2u1u1u2 . . . un, where n ∈ N, and ui ∈ Σ∗, 1 ≤ i ≤ n.

Proof. Consider any GJFA MJIy = (Q,Σ, R, s, F). Since we work with the left-right 2-jumps,
the first jump can move only to the left and the second jump can move only to the right. Observe
that if the configuration of M is of the form upvpw, where u, v, w ∈ Σ∗, and p ∈ Q, then M
cannot read the symbols in v anymore. Also, observe that this covers the situation when M

ON DOUBLE-JUMPING FINITE AUTOMATA 9

starts to accept x ∈ Σ∗ from another configuration than yssz, where y, z ∈ Σ∗ such that
x = yz. Therefore, to read the whole input string, M has to start in the configuration yssz and
it cannot jump over any symbols during the whole process. Consequently, since both jumps
always follow the same rule, they have to read the same corresponding strings and ultimately
finish at the ends of the input string. Therefore, every x ∈ L(MJIy) can be surely written as
x = un . . . u2u1u1u2 . . . un, where n ∈ N, and ui ∈ Σ∗, 1 ≤ i ≤ n. 2

Lemma 3.16 For every GJFA M , there is a GJFA N such that L(MJIy) = L(NIJy).

Proof. Consider any GJFA MJIy = (Q,Σ, R1, s1, F). Without a loss of generality, assume
that s2 6∈ Q. Define the GJFA

NIJy = (Q ∪ {s2},Σ, R2, s2, {s1}),

where R2 is constructed in the following way:

1. For each (p, y, q) ∈ R1, add (q, y, p) to R2.

2. For each f ∈ F , add (s2, ε, f) to R2.

Note that this construction resembles the well-known conversion technique for finite automata
which creates a finite automaton that accepts the reversal of the original language. However,
observe that in this case, the effect is quite different. We follow Claims 3.5 and 3.15. Consider
any x ∈ L(MJIy). We can surely find x = un . . . u2u1u1u2 . . . un, where n ∈ N, and ui ∈ Σ∗,
1 ≤ i ≤ n, such that N reads un . . . u2u1 and u1u2 . . . un in the reverse order. Moreover, in N ,
both jumps have their direction reversed, compared to jumps in M , and thus they start on the
opposite ends of their parts, which is demonstrated in the mentioned claims. Consequently, if
each jump in N reads its part reversely and from the opposite end, then, in fact, N reads the
same un . . . u2u1u1u2 . . . un as M . Finally, N surely cannot accept anything new that is not
accepted by M , therefore, L(MJIy) = L(NIJy). 2

Lemma 3.17 For every GJFA M , there is a GJFA N such that L(MIJy) = L(NJIy).

Proof. Consider any GJFA MIJy = (Q,Σ, R1, s1, F). Without a loss of generality, assume
that s2 6∈ Q. Define the GJFA

NJIy = (Q ∪ {s2},Σ, R2, s2, {s1}),

where R2 is constructed in the following way:

1. For each (p, y, q) ∈ R1, add (q, y, p) to R2.

2. For each f ∈ F , add (s2, ε, f) to R2.

The reasoning here is exactly the same as in Lemma 3.16. 2

Theorem 3.18 LJIy = LIJy.

Proof. LJIy ⊆ LIJy follows from Lemma 3.16. LIJy ⊆ LJIy follows from Lemma 3.17.
2

10 Radim Kocman, Zbyněk Křivka, Alexander Meduna

Corollary 3.19 The following relations between language families hold:

(i) LJIy ⊂ LIN;

(ii) SEL ⊂ LJIy;

(iii) LJIy and REG are incomparable;

(iv) LJIy and FIN are incomparable.

Proof. These results directly follow from Theorems 3.7, 3.12, 3.13, and 3.18. 2

Open Problem 3.20 (LJIy − SEL) ∩ REG = ∅?

The results concerning the generative power of GJFAs that perform right-left and left-right
2-jumps are summarized in Figure 1.

LIN

REG LIJy LJIy

FIN SEL

Figure 1: A hierarchy of language families closely related to the right-left and left-right 2-jumps is
shown. If there is a line or an arrow from family X to family Y in the figure, then X = Y or X ⊂ Y ,
respectively. A crossed line represents the incomparability between connected families.

3.4. On the right-right 2-jumping relation

Example 3.21 Consider the GJFA

MIIy = ({s, p, f},Σ, R, s, {f}),

where Σ = {a, b, c} and R consists of the rules (s, ab, p) and (p, c, f). Starting from s, M has
to read two times ab and two times c. Observe that if the first jump skips (jumps over) some
symbols, then they cannot be ever read afterwards. However, the second jump is not so harshly
restricted and can potentially skip some symbols which will be read later by the first jump.
Therefore, the accepted language is

L(MIIy) = {ababcc, abcabc}.

ON DOUBLE-JUMPING FINITE AUTOMATA 11

Example 3.22 Consider the GJFA

MIIy = ({s, f},Σ, R, s, {f}),

where Σ = {a, b} and R consists of the rules (s, b, f) and (f, a, f). Starting from s, M has to
read two times b and then it can arbitrarily many times read two times a. Both jumps behave
in the same way as in Example 3.21. Observe that when we consider no skipping of symbols,
then M reads banban, n ≥ 0. Nevertheless, when we consider the skipping with the second
jump, then the second b can also occur arbitrarily closer to the first b; until they are neighbors,
and M reads bba2n, n ≥ 0. When combined together, the accepted language is

L(MIIy) = {banbana2m | n,m ≥ 0}.

Observe that this is clearly a non-regular context-free language.

Example 3.23 Consider the GJFA

MIIy = ({s, f},Σ, R, s, {f}),

where Σ = {a, b, c, d} and R = {(s, y, f) | y ∈ Σ} ∪ {(f, y, f) | y ∈ Σ}. Starting from s, M has
to read two times some symbol from Σ and then it can arbitrarily many times read two times
any symbols from Σ. Again, both jumps behave in the same way as in Example 3.21. Consider
the special case when the second jump consistently jumps over one symbol each time (except
the last step) during the whole process. In such a case, the accepted strings can be written
as u1u

′
1u2u

′
2 . . . unu

′
n, where n ∈ N, ui, u

′
i ∈ Σ, ui = u′i, 1 ≤ i ≤ n. Observe that symbols

without primes are read by the first jump, and symbols with primes are read by the second
jump. Moreover, such strings can be surely generated by a right-linear grammar. Nevertheless,
now consider no special case. Observe that, in the accepted strings, symbols with primes can
be arbitrarily shifted to the right over symbols without primes, this creates a more complex
structure, due to ui = u′i, with multiple crossed agreements. Lastly, consider the other border
case with no skipping of any symbols at all. Then, the accepted strings can be written as ww,
where w ∈ Σ+. Such strings represent the reduplication phenomenon—the well-known example
of non-context-free languages (see Chapter 3.1 in [7]). As a result, due to the unbound number
of crossed agreements, we can safely state that L(MIIy) is a non-context-free language.

This statement can be formally proved by contradiction. Assume that L(MIIy) is a context-
free language. The family of context-free languages is closed under intersection with regular
sets. Let K = L(MIIy) ∩ ab+c+dab+c+d. Consider the previous description. Observe that
this selects strings where u1 = a and u′n = d. Since there are only exactly two symbols a and
two symbols d in each selected string, we know where precisely both jumps start and end. And
since the second jump starts after the position where the first jump ends, we also know that
this, in fact, follows the special border case of behavior with no skipping of any symbols at
all. Consequently, K = {abncmdabncmd | n,m ≥ 1}. However, K is clearly a non-context-free
language (see Chapter 3.1 in [7])—a contradiction with the assumption that L(MIIy) is a
context-free language. Therefore, L(MIIy) is a non-context-free language.

12 Radim Kocman, Zbyněk Křivka, Alexander Meduna

Theorem 3.24 LIIy ⊂ CS.

Proof. Clearly, any GJFA MIIy can be simulated by linear bounded automata, so LIIy ⊆
CS. CS 6⊆ LIIy follows from Lemma 3.2. 2

Lemma 3.25 Let n ∈ N. For every GJFA M , where for every x ∈ L(MIIy) holds either
|x| ≤ n or alph(x) = 1, there is a right-linear grammar G such that L(MIIy) = L(G).

Proof. Let n ∈ N. Consider any GJFA MIIy, where for every x ∈ L(MIIy) holds either
|x| ≤ n or alph(x) = 1. Define the right-linear grammar G in the following way. Observe that
the number of x for which holds |x| ≤ n must be finite, therefore, for each such x, we can create
a separate rule that generates x in G. On the other hand, the number of x for which holds
alph(x) = 1 can be infinite, however, every such x is defined by the finite number of rules in
M . And we can surely convert these rules (p, y, q) from M into rules in G in such a way that
they generate y2 and simulate the state transitions of M . Consequently, since the position of
symbols here is ultimately irrelevant, these rules properly simulate results of 2-jumps in M .
Therefore, L(MIIy) = L(G). 2

Theorem 3.26 The following pairs of language families are incomparable:

(i) LIIy and CF;

(ii) LIIy and REG;

(iii) LIIy and FIN.

Proof. LIIy 6⊆ CF, LIIy 6⊆ REG, and LIIy 6⊆ FIN follow from Example 3.23. CF 6⊆
LIIy, REG 6⊆LIIy, and FIN 6⊆LIIy follow from Lemma 3.2. Moreover, observe that LIIy
clearly contains the context-free language from Example 3.22, regular language {a2n | n ≥ 0},
and the finite language from Example 3.21. 2

3.5. On the left-left 2-jumping relation

Example 3.27 Consider the GJFA

MJJy = ({s, p, f},Σ, R, s, {f}),

where Σ = {a, b, c} and R consists of the rules (s, c, p) and (p, ab, f). Starting from s, M has
to read two times c and two times ab. Observe that if the second jump skips some symbols,
then they cannot be ever read afterwards. However, the first jump is not so harshly restricted
and can potentially skip some symbols which will be read later by the second jump. Note that
this precisely resembles the inverted behavior of the right-right 2-jumping relation. Therefore,
the accepted language is

L(MJJy) = {ababcc, abacbc, abcabc}.

ON DOUBLE-JUMPING FINITE AUTOMATA 13

Example 3.28 Consider the GJFA

MJJy = ({s, f},Σ, R, s, {f}),

where Σ = {a, b} and R consists of the rules (s, a, s) and (s, b, f). Starting from s, M can
arbitrarily many times read two times a and, at the end, it has to read two times b. Both
jumps behave in the same way as in Example 3.27. Observe that when we consider no skipping
of symbols, then M reads banban, n ≥ 0. Nevertheless, when we consider the skipping with the
first jump, then the second b can also occur arbitrarily closer to the first b, since the first jump
can now read symbols a also behind this second b. Consequently, the accepted language is

L(MJJy) = {banbana2m | n,m ≥ 0}.

Note that this is the same language as in Example 3.22.

Example 3.29 Consider the GJFA

MJJy = ({s, f},Σ, R, s, {f}),

where Σ = {a, b, c, d} and R = {(s, y, f) | y ∈ Σ} ∪ {(f, y, f) | y ∈ Σ}. Starting from s, M
has to read two times some symbol from Σ and then it can arbitrarily many times read two
times any symbols from Σ. Both jumps behave in the same way as in Example 3.27 and the
overall behavior tightly follows Example 3.23. Consider the special case when the first jump
consistently jumps over one symbol each time (except the last step) during the whole process.
In such a case, the accepted strings can be written as u′nun . . . u

′
2u2u

′
1u1, where n ∈ N, u′i, ui ∈ Σ,

u′i = ui, 1 ≤ i ≤ n. Observe that symbols with primes are read by the first jump, and symbols
without primes are read by the second jump. Now consider no special case. Observe that, in
the accepted strings, symbols with primes can be arbitrarily shifted to the left over symbols
without primes, which creates a more complex structure with multiple crossed agreements.
And lastly, consider the other border case with no skipping of any symbols at all. Then, the
accepted strings can be written as ww, where w ∈ Σ+, which represents the reduplication
phenomenon. As a result, due to the unbound number of crossed agreements, we can safely
state that L(MJJy) is a non-context-free language. This statement can be formally proved in
the same way as in Example 3.23.

Theorem 3.30 LJJy ⊂ CS.

Proof. Clearly, any GJFA MJJy can be simulated by linear bounded automata, so LJJy ⊆
CS. CS 6⊆ LJJy follows from Lemma 3.2. 2

Lemma 3.31 Let n ∈ N. For every GJFA M , where for every x ∈ L(MJJy) holds either
|x| ≤ n or alph(x) = 1, there is a right-linear grammar G such that L(MJJy) = L(G).

Proof. The reasoning here is exactly the same as in Lemma 3.25. 2

Theorem 3.32 The following pairs of language families are incomparable:

(i) LJJy and CF;

14 Radim Kocman, Zbyněk Křivka, Alexander Meduna

(ii) LJJy and REG;

(iii) LJJy and FIN.

Proof. LJJy 6⊆ CF, LJJy 6⊆ REG, and LJJy 6⊆ FIN follow from Example 3.29. CF 6⊆
LJJy, REG 6⊆LJJy, and FIN 6⊆LJJy follow from Lemma 3.2. Moreover, observe that LJJy
clearly contains the context-free language from Example 3.28, regular language {a2n | n ≥ 0},
and the finite language from Example 3.27. 2

Claim 3.33 There is no GJFA MIIy that accepts {ababcc, abacbc, abcabc}.

Proof. By contradiction. Let K = {ababcc, abacbc, abcabc}. Assume that there is a GJFA
M such that L(MIIy) = K. Observe that each string in K contains three pairs of symbols,
therefore, to effectively read such a string, we need a maximum of three chained rules in M or
less. (Note that additional rules reading ε do not affect results.) Moreover, due to the nature
of strings in K, we need to consider only such chains of rules where, in the result, a precedes
b, and b precedes c. Therefore, we can easily try all possibilities and calculate their resulting
sets. Surely, L(MIIy) must be a union of some of these sets:

(i) if M reads abc, the set is {abcabc};
(ii) if M reads ab, and c, the set is {ababcc, abcabc};
(iii) if M reads a, and bc, the set is {aabcbc, abacbc, abcabc};
(iv) if M reads a, b, and c, the set is {aabbcc, ababcc, aabcbc, abacbc, abcabc}.

Clearly, no union of these sets can result in K—a contradiction with the assumption that
L(MIIy) = K exists. Therefore, there is no GJFA MIIy that accepts {ababcc, abacbc, abcabc}.

2

Claim 3.34 There is no GJFA MJJy that accepts {ababcc, abcabc}.

Proof. By contradiction. Let K = {ababcc, abcabc}. Assume that there is a GJFA M such
that L(MJJy) = K. Observe that each string in K contains three pairs of symbols, therefore,
to effectively read such a string, we need a maximum of three chained rules in M or less.
Moreover, due to the nature of strings in K, we need to consider only such chains of rules
where, in the result, a precedes b, and b precedes c. Therefore, we can easily try all possibilities
and calculate their resulting sets. Surely, L(MJJy) must be a union of some of these sets:

(i) if M reads abc, the set is {abcabc};
(ii) if M reads c, and ab, the set is {ababcc, abacbc, abcabc};
(iii) if M reads bc, and a, the set is {aabcbc, abcabc};
(iv) if M reads c, b, and a, the set is {aabbcc, aabcbc, ababcc, abacbc, abcabc}.

Clearly, no union of these sets can result in K—a contradiction with the assumption that
L(MJJy) = K exists. Therefore, there is no GJFA MJJy that accepts {ababcc, abcabc}. 2

ON DOUBLE-JUMPING FINITE AUTOMATA 15

Theorem 3.35 LIIy and LJJy are incomparable.

Proof. LIIy 6⊆ LJJy follows from Example 3.21 and Claim 3.34. LJJy 6⊆ LIIy follows from
Example 3.27 and Claim 3.33. Moreover, observe that both LIIy and LJJy clearly contain
the same language from Examples 3.22 and 3.28. 2

The results concerning the generative power of GJFAs that perform right-right and left-left
2-jumps are summarized in Figure 2.

CS

CF

LJJy

REG

FIN

LIIy

Figure 2: A hierarchy of language families closely related to the right-right and left-left 2-jumps is
shown. If there is a line or an arrow from family X to family Y in the figure, then X = Y or X ⊂ Y ,
respectively. A crossed line represents the incomparability between connected families.

4. Conclusion

We propose some future investigation areas concerning jumping finite automata that link several
jumps together. Within the previous sections, we have already pointed out two specific open
problems concerning right-left and left-right 2-jumps. This concluding section continues with
other more general and broader suggestions.

(I.) Study closure properties of the newly defined jumping modes.

(II.) Investigate remaining possible variants of 2-jumps where the unrestricted single jumps and
the restricted single jumps are combined together.

16 Radim Kocman, Zbyněk Křivka, Alexander Meduna

(III.) Extend the definition of 2-jumps to the general definition of n-jumps, where n ∈ N. Can
we find some interesting general results about these multi-jumps?

(IV.) Study relaxed versions of 2-jumps where the single jumps do not have to follow the same
rule and where each single jump have its own state.

(V.) Use the newly defined jumping modes in jumping finite automata in which rules read single
symbols rather than whole strings (JFAs—see [6]).

(VI.) In the same fashion as in finite automata, consider deterministic versions of GJFAs with
the newly defined jumping modes.

Acknowledgment

This work was supported by The Ministry of Education, Youth and Sports of the Czech Republic
from the National Programme of Sustainability (NPU II); project IT4Innovations excellence
in science - LQ1602; the TAČR grant TE01020415; and the BUT grant FIT-S-14-2299. The
authors thank all the anonymous referees for their useful comments and suggestions.

References

[1] H. CHIGAHARA, S. Z. FAZEKAS, A. YAMAMURA, One-way Jumping Finite Automata. In:
The 77th National Convention of IPSJ . 2015.

[2] H. FERNAU, M. PARAMASIVAN, M. L. SCHMID, Jumping Finite Automata: Characteri-
zations and Complexity. In: Implementation and Application of Automata - 20th International
Conference, CIAA. LNCS 9223, Springer, 2015, 89–101.

[3] Z. KŘIVKA, A. MEDUNA, Jumping Grammars. International Journal of Foundations of Com-
puter Science 26 (2015) 6, 709–731.

[4] R. KOCMAN, A. MEDUNA, On Parallel Versions of Jumping Finite Automata. In: Proceedings
of the 2015 Federated Conference on Software Development and Object Technologies. 2015. (in
print).

[5] A. MEDUNA, Automata and Languages: Theory and Applications. Springer, London, 2000.

[6] A. MEDUNA, P. ZEMEK, Jumping Finite Automata. International Journal of Foundations of
Computer Science 23 (2012) 7, 1555–1578.

[7] G. ROZENBERG, A. SALOMAA, Handbook of Formal Languages, Vol. 2: Linear Modeling:
Background and Application. Springer-Verlag, 1997.

[8] V. VOREL, On Basic Properties of Jumping Finite Automata. CoRR abs/1511.08396 (2015).
http://arxiv.org/abs/1511.08396

[9] V. VOREL, Two Results on Discontinuous Input Processing. CoRR abs/1511.08642 (2015).
http://arxiv.org/abs/1511.08642

[10] D. WOOD, Theory of Computation: A Primer . Addison-Wesley, Boston, 1987.

http://arxiv.org/abs/1511.08396
http://arxiv.org/abs/1511.08642

	1. Introduction
	2. Preliminaries and Definitions
	3. Results
	3.1. On the unrestricted 2-jumping relation
	3.2. On the right-left 2-jumping relation
	3.3. On the left-right 2-jumping relation
	3.4. On the right-right 2-jumping relation
	3.5. On the left-left 2-jumping relation

	4. Conclusion
	References

