
S C H E D A E I N F O R M A T I C A E

XXXXXXXXX VOLUME nn Year

On State-Synchronized Automata Systems

Alexander Meduna, Jiř́ı Kučera
Formal Language Research Group, Department of Information Systems

Faculty of Information Technology, Brno University of Technology,
Božetěchova 2, 612 66 Brno, Czech Republic

e-mail: {meduna, ikucera}@fit.vutbr.cz

Abstract. In this paper, we introduce a new kind of automata systems, called

state-synchronized automata systems of degree n. In general, they consists of

n pushdown automata, referred to as their components. These systems can

perform a computation step provided that the concatenation of the current

states of all their components belongs to a prescribed control language. As

its main result, the paper demonstrates that these systems characterize the

family of recursively enumerable languages. In fact, this characterization is

demostrated in both deterministic and nondeterministic versions of these sys-

tems. Restricting their components, these systems provides less computational

power.

Keywords: state-synchronized automata systems, automata systems, push-

down automata, determinism, recursively enumerable languages

1. Introduction

At present, processing information in a largely discontinuous and concurrent way
represents a common computational phenomenon. Indeed, consider a process p that
deals with information i. During a single computational step, p can simultaneously
perform several concurrent subprocesses, each of which works with a different piece
of information in i. As obvious, computation like this necessitates a highly sophis-
ticated communication and synchronization between the subprocesses. As a result,
to explore computation of this kind systematically and rigorously, computer science
needs formal models that adequately reflect this way of computation.

2

Traditionally, formal language theory has always provided computer science with
language-defining models to explore various information processors mathematically,
so it should do so for the purpose sketched above as well. However, the classical
versions of these models, such as automata and grammars, work in a completely
single and isolated way, so they can hardly serve as appropriate models of the com-
putation sketched above. Therefore, a proper formalization of processors that work
in the way described above necessitates an adaptation of classical automata and
grammars so they work on words in a multiple and synchronised way. At the same
time, any adaptation of this kind should conceptually maintain the original structure
of these models as much as possible so computer science can quite naturally base
its investigation upon these newly adapted models by analogy with the standard
approach based upon their classical versions. Simply put, these new models should
work on words in a communicating and synchronized way while keeping their struc-
tural conceptualization unchanged. That is why, over the past two decades or so,
formal language theory has introduced several versions of these models that work in
the above-mentioned way to some extend. More specifically, this theory has concep-
tualized systems whose components consist of several grammars or automata, whose
communication is based on some prespecified strategy, usually referred to as com-
munication protocols. Let us give a broad overview of the most important systems
of this kind.

The early work on grammar systems, inspired by problem solving theory, was
focused to model an agent systems, where agents use for cooperation so called ”black-
board model”. Such a systems, called cooperating distributed grammar systems [3],
consist of finite number of Chomsky grammars[2] (”agents”). The ”blackboard” here
is represented by a sentential form shared by all grammars. The communication in
these systems is performed in the way that when some grammar ends its deriva-
tion on the shared sentential form, another grammar continues. This task switching
between grammars is driven by derivation modes (see [3]).

The parallel communicating grammar systems [3] use a different strategy. Each
grammar works independently on its own sentential form. When some grammar
generates a query symbol, all derivations are paused and this query symbol is sub-
stituted by corresponding sentential form from requested grammar. After that, the
derivation process may continue. A similar strategy is used in parallel communicat-
ing finite automata systems [7], where the communication between finite automata
components is realized by query states. If some finite automaton performs a move
to a query state, then this state is replaced by the current state of corresponding
requested component. The parallel communicating pushdown automata systems [4]
use the query symbols in the same manner as in parallel communicating grammar
systems, except that all operations are performed on pushdowns.

Another ways of communication between components can be found in [1] and
[10]. In multigenerative grammar systems [10], the cooperation between components
is synchronized either by rules or by nonterminal symbols. In these systems, all
components work simultaneously on their own sentecial forms. If some component is
unable to do its derivation, remaining components are blocked. The direct derivation
in these systems is performed if and only if all components can perform their direct
derivations and the rules used during these derivations form a tuple from a prescribed
control set (for nonterminal symbols, the situation is similar).

3

In n-accepting state-restricted pushdown automata systems [1], the states of the
components determine which components can do their moves and which components
leave their configurations unchanged. This activity of components is changed during
each computation step depending on the fact if an n-tuple formed from states is the
left-hand side of some switch rule from the prescribed control set.

The present paper contributes to this vivid trend of formal langauge theory
by introducing new automata systems whose behavior is elegantly synchronized by
state-based restrictions. More specifically, these systems, called state-synchronized
automata systems of degree n, have pushdown automata as their components. The
synchronization is performed by finite control language containing words formed
from states of particular components. In these systems, only first component can
read from input tape. A computation step is performed if and only if all components
can simultaneously do their moves and their states form a word from the control
language.

The organization of this paper is as follows. After the next section with prelim-
inary definitions, we give the definitions of state-synchronized automata systems,
deterministic and nondeterministic. In the section with theoretical results, we study
the accepting power of these systems with various types of components. We show
that state-synchronized automata systems are able to accept every recursively enu-
merable language. It remains an open problem whether or not a deterministic state-
synchronized automata systems with two or more one-turn pushdown automata can
describe the whole family of recursively enumerable languages.

2. Preliminaries

We assume that the reader is familiar with the basic notions of formal language
theory (see [5] and [8]). Let S be a set. Then, the cardinality of S is denoted by
card(S). Let Σ be an alphabet. Then, Σ∗ represents the free monoid generated
by Σ under the operation of concatenation, with ε as the unit of Σ∗. Let ̺ be
a (binary) relation. Then, ̺∗ denotes the reflexive and transitive closure of ̺, and ̺i

denotes the ith power of ̺, i ≥ 0. Let w be a word over Σ. Then, the length of w is
denoted by |w|, and the set of all subwords contained in w is denoted by subword(w).
LIN, CF, and RE denotes the family of linear languages, the family of context-free
languages, and the family of recursively enumerable languages, respectively.

A finite automaton (FA) is a quintuple M = (Q,Σ, R, s, F), where Q is a finite
set of states, Σ is an input alphabet, Q ∩ Σ = ∅, R ⊆ Q × (Σ ∪ {ε})×Q is a finite
set of rules, s ∈ Q is the initial state, and F ⊆ Q is a set of final states. Instead of
(p, a, q) ∈ R, we write pa → q ∈ R throughout. A configuration of M is a word from
QΣ∗. The relation of direct move ⊢M⊆ QΣ∗ ×QΣ∗ is defined as follows: if w ∈ Σ∗

and pa → q ∈ R, then paw ⊢M qw. The language accepted by M , L(M), is defined
as L(M) = {w ∈ Σ∗ | sw ⊢∗

M f, f ∈ F}.
A pushdown automaton (PDA), is a septuple M = (Q,Σ,Γ, R, s, S, F), where

Q is a finite set of states, Σ is an input alphabet, Γ is a pushdown alphabet, Q,

4

Σ, and Γ are pairwise disjoint, R ⊆ Γ × Q × (Σ ∪ {ε}) × Γ∗ × Q is a finite set
of rules, s ∈ Q is the initial state, S ∈ Γ is the initial symbol on pushdown, and
F ⊆ Q is a set of final states. Instead of (A, p, a, x, q) ∈ R, we write Apa → xq ∈ R
throughout. A configuration ofM is a word from Γ∗QΣ∗. The relation of direct move
⊢M⊆ Γ∗QΣ∗ × Γ∗QΣ∗ is defined as follows: if u ∈ Γ∗, w ∈ Σ∗, and Apa → xq ∈ R,
then uApaw ⊢M uxqw. The language accepted by M by final state, L(M)f , is defined
as L(M)f = {w ∈ Σ∗ | Ssw ⊢∗

M γf, γ ∈ Γ∗, f ∈ F}. The language accepted by M by
empty pushdown, L(M)ε, is defined as L(M)ε = {w ∈ Σ∗ | Ssw ⊢∗

M q, q ∈ Q}. The
language accepted by M by final state and empty pushdown, L(M)fε, is defined as
L(M)fε = {w ∈ Σ∗ | Ssw ⊢∗

M f, f ∈ F}. A pushdown automaton M is said to be
deterministic (dPDA) if for every rule Apa → xq ∈ R it holds card({α → γ ∈ R |
α ∈ subword(Apa)}) = 1.

The family of languages accepted by X by final state, empty pushdown, and
final state and empty pushdown, where X is PDA or dPDA, is denoted by L (X)f ,
L (X)ε, and L (X)fε, respectively.

Let M = (Q,Σ,Γ, R, s, S, F) be a pushdown automaton, and let xoabw ⊢M

ypbw ⊢M zqw, where x, y, z ∈ Γ∗, o, p, q ∈ Q, a, b ∈ Σ∪{ε}, and w ∈ Σ∗. If |y| ≥ |x|
and |y| > |z|, then during the move ypbw ⊢M zqw, M makes a turn in its pushdown.
We say that M is a one-turn pushdown automaton (one-turn PDA) if it makes no
more than one turn in its pushdown during any computation.

A two-pushdown automaton is an 8-tuple M = (Q,Σ,Γ, R, s, S1, S2, F), where
Q, Σ, Γ, s, and F are defined as in PDA, Q, Σ, and Γ are pairwise disjoint, S1 ∈ Γ
is the initial symbol on pushdown 1, S2 ∈ Γ is the initial symbol on pushdown 2,
and R ⊆ Γ × Γ × Q × (Σ ∪ {ε}) × Γ∗ × Γ∗ × Q is a finite set of rules. Instead
of (A,B, p, a, x, y, q) ∈ R, we write A#Bpa → x#yq ∈ R throughout, where # /∈
Σ∪Γ∪Q. A configuration of M is a word from Γ∗{#}Γ∗QΣ∗. The relation of direct
move ⊢M⊆ Γ∗{#}Γ∗QΣ∗×Γ∗{#}Γ∗QΣ∗ is defined as follows: if u, v ∈ Γ∗, w ∈ Σ∗,
and A#Bpa → x#yq ∈ R, then uA#vBpaw ⊢M ux#vyqw. The language accepted
by M by final state, L(M)f , is defined as L(M)f = {w ∈ Σ∗ | S1#S2sw ⊢∗

M

γ1#γ2f, γ1, γ2 ∈ Γ∗, f ∈ F}. The language accepted by M by empty pushdown,
L(M)ε, is defined as L(M)ε = {w ∈ Σ∗ | S1#S2sw ⊢∗

M #q, q ∈ Q}. The language
accepted by M by final state and empty pushdown, L(M)fε, is defined as L(M)fε =
{w ∈ Σ∗ | S1#S2sw ⊢∗

M #f, f ∈ F}. A two-pushdown automaton M is said to be
deterministic if for every rule A#Bpa → x#yq ∈ R it holds card({α → γ ∈ R | α ∈
subword(A#Bpa)}) = 1.

Let M = (Q,Σ,Γ, R, s, S1, S2, F) be a two-pushdown automaton. Let

x1#x2oabw ⊢M y1#y2pbw ⊢M z1#z2qw

in M , where o, p, q ∈ Q, a, b ∈ Σ ∪ {ε}, w ∈ Σ∗, and x1, x2, y1, y2, z1, z2 ∈ Γ∗. If
|yi| ≥ |xi| and |yi| > |zi| for some i ∈ {1, 2}, then during the move y1#y2pbw ⊢M

z1#z2qw, M makes a turn in pushdown i. If |yi| ≥ |xi| and |yi| > |zi| for both
i = 1, 2, then during move y1#y2pbw ⊢M z1#z2qw, M makes a simultaneous turn
in both pushdowns. We say that M is one-turn if it makes no more than one turn in
either of its pushdowns during any computation. We say that M is simultaneously
one-turn if it makes either no turn or one simultaneous turn in both pushdowns
during any computation.

5

3. Definitions and Examples

This section recalls the definition of state-synchronized automata system from [6].

Definition 1. Let n be a positive integer. A state-synchronized automata sys-
tem of degree n (SCASn for short) is an (n + 1)-tuple Γ = (M1,M2, . . . ,Mn,Ψ),
where Mi is an FA or a PDA, and it is referred to as the ith component of Γ, for all
1 ≤ i ≤ n. Ψ ⊆ Q1Q2 . . .Qn is a control language of Γ, where Qi is the set of states
in Mi, 1 ≤ i ≤ n. Furthermore, Σ, Γi, si, Si, and Fi denote the input alphabet of
Γ, the pushdown alphabet of Mi, the initial state of Mi, the initial symbol on Mi’s
pushdown, and the set of final states in Mi, respectively, for all 1 ≤ i ≤ n. If Mi is
an FA, we set Γi = ∅ and Si = ε, for all 1 ≤ i ≤ n.

A configuration of Γ is an n-tuple (χ1, χ2, . . . , χn), where χi is a configuration
of Mi, for all 1 ≤ i ≤ n.

Let πi be the mapping from Γ∗

iQiΣ
∗ to Qi such that πi(xiqiw) = qi, xi ∈ Γ∗

i ,
qi ∈ Qi, w ∈ Σ∗, for all 1 ≤ i ≤ n. Furthermore, let α = (χ1, χ2, . . . , χn) and
α′ = (χ′

1, χ
′

2, . . . , χ
′

n) be two configurations of Γ. The relation of direct move in
Γ, ⊢Γ, is defined as follows: if for every 1 ≤ i ≤ n it holds χi ⊢Mi

χ′

i, and
π1(χ1)π2(χ2) . . . πn(χn) ∈ Ψ, then α ⊢Γ α′.

Analogously to PDA, define three types of languages accepted by Γ as follows:

L(Γ)f = {w ∈ Σ∗ | (S1s1w, S2s2, . . . , Snsn) ⊢∗

Γ (γ1f1, γ2f2, . . . , γnfn),
γi ∈ Γ∗

i , fi ∈ Fi, 1 ≤ i ≤ n};
L(Γ)ε = {w ∈ Σ∗ | (S1s1w, S2s2, . . . , Snsn) ⊢∗

Γ (q1, q2, . . . , qn),
qi ∈ Qi, qi ∈ Fi if Mi is an FA, 1 ≤ i ≤ n};

L(Γ)fε = {w ∈ Σ∗ | (S1s1w, S2s2, . . . , Snsn) ⊢∗

Γ (f1, f2, . . . , fn),
fi ∈ Fi, 1 ≤ i ≤ n}.

The following example demonstrates the capability of SCASn to accept a lan-
guage which is not context-free.

Example 1. Let Γ = (M,M ′,Ψ) be an SCAS2, where M , M ′ are PDAs defined
as

• M = ({s, qa, qb, qc, f}, {a, b, c}, {S,A,B,C}, R, s, S, {f});

• M ′ = ({s′, q′a, q
′

b, q
′

c, f
′}, {a, b, c}, {S,A,B,C}, R′, s′, S, {f ′});

• R = {Ssa → SAqa, Aqaa → AAqa, Aqab → Aqb, Aqbb → Aqb, Aqbc → qc,
Aqcc → qc, Sqc → f};

• R′ = {Ss′ → Sq′a, Sq
′

a → Sq′a, Sq
′

a → SBq′b, Bq′b → BBq′b, Bq′b → q′c,
Bq′c → q′c, Sq

′

c → f ′}.

Finally, Ψ is a control language of Γ defined as Ψ = {ss′, qaq′a, qbq
′

b, qcq
′

c}. The word

6

aaabbbccc is accepted by Γ in this way

(Ssaaabbbccc, Ss′) ⊢Γ (SAqaaabbbccc, Sq
′

a)
⊢Γ (SAAqaabbbccc, Sq

′

a)
⊢Γ (SAAAqabbbccc, Sq

′

a)
⊢Γ (SAAAqbbbccc, SBq′b)
⊢Γ (SAAAqbbccc, SBBq′b)
⊢Γ (SAAAqbccc, SBBBq′b)
⊢Γ (SAAqccc, SBBq′c)
⊢Γ (SAqcc, SBq′c)
⊢Γ (Sqc, Sq

′

c)
⊢Γ (f, f ′)

Clearly, L(Γ)f = L(Γ)ε = L(Γ)fε = {anbncn | n ≥ 1}.

Observe that SCASn Γ, n ≥ 1, to make a successful final computation step, do not
need to contain a word in Ψ which is formed from states from a final configuration.
On the other hand, as will be shown later in Definition 2, it would be useful to
introduce Ψf as

Ψf = Ψ ∪ {q1q2 . . . qn | (γ1q1, γ2q2, . . . , γnqn) is a final configuration of Γ,
γi ∈ Γ∗

i , qi ∈ Qi, 1 ≤ i ≤ n}.

Let Γ be an SCASn, for some n ≥ 1. By RΓ, we denote the Cartesian product
RΓ = R1 × R2 × · · · × Rn, where Ri is the set of rules of the ith component of Γ,
for all 1 ≤ i ≤ n. If α ∈ RΓ, then by α(i), we denote the ith element of α, and
clearly α(i) ∈ Ri, for all 1 ≤ i ≤ n. For a rule r = u → v, we use lhs(r) and rhs(r)
as an abbrevation for the left-hand side and right-hand side of r, respectively, so
lhs(r) = u and rhs(r) = v.

Define the mapping πl from RΓ to Q1Q2 . . . Qn as follows:

πl(α) = π1(lhs(α(1)))π2(lhs(α(2))) . . . πn(lhs(α(n))),

that is πl maps an n-tuple of rules

(A1p1a1 → x1q1, A2p2 → x2q2, . . . , Anpn → xnqn)

to the word p1p2 . . . pn. The mapping πr from RΓ to Q1Q2 . . .Qn is defined analo-
gously as πr(α) = π1(rhs(α(1)))π2(rhs(α(2))) . . . πn(rhs(α(n))).

We are now at position to introduce the definition of determinism in SCASn,
which is given formally in Definition 2.

Definition 2. Let Γ be an SCASn, for some n ≥ 1. Then Γ is said to be
deterministic (dSCASn) if for every α ∈ RΓ, such that πl(α) ∈ Ψ and πr(α) ∈ Ψf ,
it holds

card({α′ ∈ RΓ | πr(α
′) ∈ Ψf , lhs(α

′(i)) ∈ subword(lhs(α(i))), 1 ≤ i ≤ n}) = 1.

Clearly, the SCAS2 from Example 1 is deterministic. The following example
shows the difference between deterministic and nondeterministic SCASn according
to Definition 2.

7

Example 2. Consider we have SCAS2 Γ = (M1,M2,Ψ), where M1, M2 are
PDAs defined as

• M1 = ({s, q1, q2, f}, {a, b}, {S,A,B}, {r1, r2, r3, r4}, s, S, {f}) and

• M2 = ({s′, q′1, q
′

2, f
′}, {a, b}, {S,A,B}, {r′1, r

′

2, r
′

3, r
′

4}, s
′, S, {f ′}), where

r1 = Ssa → Sq1; r′1 = Ss′ → Sq′1;
r2 = Ssb → Sq2; r′2 = Ss′ → Sq′2;
r3 = Sq1 → Sf ; r′3 = Sq′1 → SAf ′;
r4 = Sq2 → Sf ; r′4 = Sq′2 → SBf ′.

Let Ψ = {ss′, q1q′1, q2q
′

2}. This SCAS2, depending on its input, modify either its first
or second pushdown. According to Definition 2, the allowed combinations of rules
are:

(r1, r
′

1) : card({(r1, r′1)}) = 1;
(r2, r

′

2) : card({(r2, r′2)}) = 1;
(r3, r

′

3) : card({(r3, r′3)}) = 1;
(r4, r

′

4) : card({(r4, r′4)}) = 1;

so Γ is a dSCAS2. Observe that condition πr(α
′) ∈ Ψf is necessary because its

omission leads to
(r1, r

′

1) : card({(r1, r′1), (r1, r
′

2)}) = 2;
(r2, r

′

2) : card({(r2, r′2), (r2, r
′

1)}) = 2;
(r3, r

′

3) : card({(r3, r′3)}) = 1;
(r4, r

′

4) : card({(r4, r′4)}) = 1;

which is in contradiction with the fact that Γ is deterministic.

4. Theoretical Results

Since deterministic SCASns are special cases of ordinary SCASns, we show firstly
that every recursively enumerable language can be accepted by some deterministic
SCASn.

Theorem 1. For every recursively enumerable language L over an alphabet Σ,
there exists a deterministic SCAS2, Γ = (M1,M2,Ψ), where

Mi = (Qi,Σ,Γi, Ri, si, Si, Fi)

is a PDA, 1 ≤ i ≤ 2, such that L(Γ)f = L.

Proof. Let L be a recursively enumerable language over an alphabet Σ. Then
there exists a deterministic two-pushdown automaton, M , such that L = L(M)f
(see Theorem 8.2.3.3 in [8]). Let M = (Q,Σ, Γ̂, R, s, S1, S2, F) be a deterministic
two-pushdown automaton such that L = L(M)f . From M , we construct a dSCAS2
Γ in the following way.

8

1. Set Q1 = ∅, Q2 = ∅, and Ψ = ∅.

2. Set Γ1 = Γ2 = Γ̂.

3. For every rule r = A#Bpa → x#yq from R:

• add states p̄, ¯〈r〉, and q̄ to Q1;

• add states p̂, ˆ〈r〉, and q̂ to Q2;

• add rules Ap̄a → A ¯〈r〉 and A ¯〈r〉 → xq̄ to R1;

• add rules Bp̂ → B ˆ〈r〉 and B ˆ〈r〉 → yq̂ to R2;

• add words p̄p̂, q̄q̂, and ¯〈r〉 ˆ〈r〉 to Ψ.

4. Set F1 = {f̄ | f ∈ F} and F2 = {f̂ | f ∈ F}.

From the construction above follows that if M is deterministic, then Γ must be also
deterministic. Next, we prove that L(M)f = L(Γ)f .

Claim 2. If u0#v0q0w0 ⊢i
M ui#viqiwi, then

(u0q̄0w0, v0q̂0) ⊢
2i
Γ (uiq̄iwi, viq̂i),

where ui ∈ Γ∗

1, vi ∈ Γ∗

2, qi ∈ Q, q̄i ∈ Q1, q̂i ∈ Q2, and wi ∈ Σ∗, for all i ≥ 0.

Proof. The proof is established by induction on i ≥ 0.
Basis: For i = 0, u0#v0q0w0 ⊢0

M u0#v0q0w0 implies that

(u0q̄0w0, v0q̂0) ⊢
0
Γ (u0q̄0w0, v0q̂0).

Thus, the basis holds.
Induction Hypothesis: Suppose that the claim holds for all 0 ≤ i ≤ k, for some

k ≥ 0.
Induction Step: If

u0#v0q0w0 ⊢k
M uk#vkqkwk ⊢M uk+1#vk+1qk+1wk+1,

then there exists a rule r = A#Bqka → x#yqk+1 in R such that uk = γA, vk = δB,
uk+1 = γx, vk+1 = δy, and wk = awk+1, where γ ∈ Γ∗

1, δ ∈ Γ∗

2. Then, there

also exist rules Aq̄ka → A ¯〈r〉 ∈ R1, A ¯〈r〉 → xq̄k+1 ∈ R1, Bq̂k → B ˆ〈r〉 ∈ R2,

B ˆ〈r〉 → yq̂k+1 ∈ R2, and words q̄k q̂k, q̄k+1q̂k+1, ¯〈r〉 ˆ〈r〉 ∈ Ψ, which implies that

(u0q̄0w0, v0q̂0) ⊢2k
Γ (uk q̄kwk, vk q̂k)

⊢Γ (uk
¯〈r〉wk+1, vk ˆ〈r〉)

⊢Γ (uk+1q̄k+1wk+1, vk+1q̂k+1),

and the claim holds for k + 1, too. Therefore, Claim 2 holds.

Claim 3. If
(u0q̄0w0, v0q̂0) ⊢

2i
Γ (uiq̄iwi, viq̂i),

then u0#v0q0w0 ⊢i
M ui#viqiwi, where ui ∈ Γ∗

1, vi ∈ Γ∗

2, qi ∈ Q, q̄i ∈ Q1, q̂i ∈ Q2,
and wi ∈ Σ∗, for all i ≥ 0.

9

Proof. The proof is established by induction on i ≥ 0. Observe that only even
number of computation steps are possible in Γ (see the construction of Γ from M
above).

Basis: For i = 0,
(u0q̄0w0, v0q̂0) ⊢

0
Γ (u0q̄0w0, v0q̂0)

implies that u0#v0q0w0 ⊢0
M u0#v0q0w0. Thus, the basis holds.

Induction Hypothesis: Suppose that the claim holds for all 0 ≤ i ≤ k, for some
k ≥ 0.

Induction Step: If

(u0q̄0w0, v0q̂0) ⊢2k
Γ (uk q̄kwk, vk q̂k)

⊢Γ (uk
¯〈r〉wk+1, vk ˆ〈r〉)

⊢Γ (uk+1q̄k+1wk+1, vk+1q̂k+1),

then there exist rules Aq̄ka → A ¯〈r〉 ∈ R1, A ¯〈r〉 → xq̄k+1 ∈ R1, Bq̂k → B ˆ〈r〉 ∈ R2,

B ˆ〈r〉 → yq̂k+1 ∈ R2, and words q̄k q̂k, q̄k+1q̂k+1, ¯〈r〉 ˆ〈r〉 ∈ Ψ, such that uk = γA,
vk = δB, uk+1 = γx, vk+1 = δy, γ ∈ Γ∗

1, δ ∈ Γ∗

2, wk = awk+1, and r = A#Bqka →
x#yqk+1 ∈ R. This immediately implies that

u0#v0q0w0 ⊢k
M uk#vkqkwk ⊢M uk+1#vk+1qk+1wk+1,

which proves that the claim holds for k + 1, too. Therefore, Claim 3 holds.

From Claim 2 and Claim 3, it immediately follows that for every w ∈ Σ∗,

S1#S2sw ⊢∗

M γ1#γ2f iff (S1s1w, S2s2) ⊢
∗

Γ (γ1f1, γ2f2),

where γ1 ∈ Γ∗

1, γ2 ∈ Γ∗

2. Therefore, L(M)f = L(Γ)f , and Theorem 1 holds.

Theorem 4. For every recursively enumerable language L over an alphabet Σ,
there exists a deterministic SCAS2, Γ = (M1,M2,Ψ), where

Mi = (Qi,Σ,Γi, Ri, si, Si, Fi)

is a PDA, 1 ≤ i ≤ 2, such that L(Γ)ε = L.

Proof. Let L be a recursively enumerable language over an alphabet Σ. Then
there exists a deterministic two-pushdown automaton, M , such that L = L(M)ε
(see Chapter 8 in [8]). The rest of proof is analogous as in Theorem 1.

Theorem 5. For every recursively enumerable language L over an alphabet Σ,
there exists a deterministic SCAS2, Γ = (M1,M2,Ψ), where

Mi = (Qi,Σ,Γi, Ri, si, Si, Fi)

is a PDA, 1 ≤ i ≤ 2, such that L(Γ)fε = L.

Proof. The proof is analogous to the proof of Theorem 4.

10

Theorem 6. Let k ≥ 3. For every recursively enumerable language L over an
alphabet Σ, there exists a deterministic SCASk,

Γ = (M1,M2, . . . ,Mk,Ψ),

where Mi is a PDA, for all 1 ≤ i ≤ k, such that L = L(Γ)f .

Proof. Let L be a recursively enumerable language over an alphabet Σ. Then,
by Theorem 1, there exists a deterministic SCAS2, Γ

′, such that all its components
are PDAs and L = L(Γ′)f . Let Γ

′ = (M ′

1,M
′

2,Ψ
′) be a deterministic SCAS2, where

M ′

i is a PDA, 1 ≤ i ≤ 2, such that L = L(Γ′)f . Let k ≥ 3. From Γ′, we construct
a deterministic SCASk,

Γ = (M1,M2, . . . ,Mk,Ψ),

where Mi is a PDA, for all 1 ≤ i ≤ k, in the following way.

1. M1 = M ′

1, M2 = M ′

2;

2. Mi = ({si},Σ, {Si}, {Sisi → Sisi}, si, Si, {si}), for all 3 ≤ i ≤ k;

3. Ψ = Ψ′{s3s4 . . . sk}.

It is obvious that components M3 to Mk are redudant in Γ. Therefore, L(Γ)f =
L(Γ′)f , and Theorem 6 holds.

Theorem 7. Let k ≥ 3. For every recursively enumerable language L over an
alphabet Σ, there exists a deterministic SCASk,

Γ = (M1,M2, . . . ,Mk,Ψ),

where Mi is a PDA, for all 1 ≤ i ≤ k, such that L = L(Γ)ε.

Proof. Let L be a recursively enumerable language over an alphabet Σ. Then,
by Theorem 4, there exists a deterministic SCAS2, Γ

′, such that all its components
are PDAs and L = L(Γ′)ε. Let Γ

′ = (M ′

1,M
′

2,Ψ
′) be a deterministic SCAS2, where

M ′

i is a PDA, 1 ≤ i ≤ 2, such that L = L(Γ′)ε. Let k ≥ 3. From Γ′, we construct
a deterministic SCASk,

Γ = (M1,M2, . . . ,Mk,Ψ),

where Mi is a PDA, for all 1 ≤ i ≤ k, in the following way.

1. Let M ′

1 = (Q′

1,Σ,Γ
′

1, R
′

1, s
′

1, S
′

1, F
′

1). Then M1 = (Q1,Σ,Γ1, R1, s1, S1, F
′

1), where

• Q1 = Q′

1 ∪ {s1, q1}, where s1, q1 /∈ Q′

1;

• Γ1 = Γ′

1 ∪ {S1}, where S1 /∈ Γ′

1;

• R1 = R′

1 ∪ {S1s1 → S1S
′

1s
′

1, S1p → q1 | p ∈ Q′

1}.

2. Analogously, we construct M2 from M ′

2.

3. For all 3 ≤ i ≤ k, set Mi = ({si, pi, qi},Σ, {Si}, {Sisi → Sipi, Sipi → Sipi, Sipi →
qi}, si, Si, ∅).

11

4. Set Ψ = Ψ′{p3p4 . . . pk} ∪ {s1s2 . . . sk, q1q2 . . . qk}.

Γ works in this way:

1. During its move from si to s′i, Mi pushes S
′

i on its pushdown, 1 ≤ i ≤ 2. Simul-
taneously, Mj moves from sj to pj, for all 3 ≤ j ≤ k.

2. Γ accepts (or rejects) its input word. During this phase, M1 and M2 perform
their moves by using the same sequences of rules like M ′

1 and M ′

2, respectively.
M3 through Mk do loops over states p3 through pk, respectively.

3. When M ′

1 and M ′

2 in Γ′ empty their pushdowns, the pushdowns of M1 and M2

in Γ have S1 and S2 on their tops, respectively. At this point, M1 through
Mk deterministically empty their pushdowns by moving to states q1 through qk,
respectively.

Thus, Γ accepts its input word if and only if Γ′ accepts its input word, which
completes the proof of Theorem 7.

Theorem 8. Let k ≥ 3. For every recursively enumerable language L over an
alphabet Σ, there exists a deterministic SCASk,

Γ = (M1,M2, . . . ,Mk,Ψ),

where Mi is a PDA, for all 1 ≤ i ≤ k, such that L = L(Γ)fε.

Proof. Prove this by analogy with Theorem 7 except that states q1 through qk
are final.

Corollary 9. Let n ≥ 2. For every recursively enumerable language L, there
exists a deterministic SCASn, Γ, such that all its components are PDAs and L =
L(Γ)f .

Proof. This follows from Theorem 1 and Theorem 6.

Corollary 10. Let n ≥ 2. For every recursively enumerable language L, there
exists a deterministic SCASn, Γ, such that all its components are PDAs and L =
L(Γ)ε.

Proof. This follows from Theorem 4 and Theorem 7.

Corollary 11. Let n ≥ 2. For every recursively enumerable language L, there
exists a deterministic SCASn, Γ, such that all its components are PDAs and L =
L(Γ)fε.

Proof. This follows from Theorem 5 and Theorem 8.

The family of recursively enumerable languages can be also characterized by
SCASn, where n ≥ 2, such that all its components are one-turn PDAs.

12

Theorem 12. Let x ∈ {f, ε, fε}. For every recursively enumerable language L
over an alphabet Σ, there exists an SCAS2, Γ = (M1,M2,Ψ), where both M1 and
M2 are one-turn pushdown automata, such that L = L(Γ)x.

Proof. Let x ∈ {f, ε, fε}. Let L be a recursively enumerable language over an
alphabet Σ. In [9], it was shown that there exists a simultaneously one-turn two-
pushdown automaton, M , such that L = L(M)x. We can construct Γ from M in
the exactly same way as demonstrated in Theorem 1, and we can use the same proof
to show the accepted language identity of Γ and M . From the construction of Γ and
from the definition of one-turn two pushdown automaton follows that M1 and M2

are both one-turn pushdown automata.

Theorem 13. Let x ∈ {f, ε, fε} and k ≥ 3. For every recursively enumerable
language L over an alphabet Σ, there exists an SCASk,

Γ = (M1,M2, . . . ,Mk,Ψ),

where Mi is a one-turn PDA, for all 1 ≤ i ≤ k, such that L = L(Γ)x.

Proof. Let x ∈ {f, ε, fε} and k ≥ 3. Let L be a recursively enumerable
language over an alphabet Σ. Then, by Theorem 12, there exists an SCAS2,
Γ′ = (M ′

1,M
′

2,Ψ
′), whereM ′

1 andM ′

2 are both one-turn PDAs, such that L = L(Γ′)x.
From Γ′, we can construct Γ, and then proof the identity of languages accepted by
Γ′ and Γ, in the same way as demonstrated in proofs of Theorem 6, Theorem 7,
and Theorem 8. Observe that components M3 through Mk of Γ are all one-turn
PDAs.

Corollary 14. Let x ∈ {f, ε, fε} and n ≥ 2. For every recursively enumerable
language L, there exists an SCASn, Γ, such that all its components are one-turn
PDAs and L = L(Γ)x.

Proof. This follows from Theorem 12 and Theorem 13.

The previous results are summarized in the following theorem.

Theorem 15. For every L ∈ RE, there are

a) an SCASn Γ such that all its components are PDAs and L = L(Γ)x, where n ≥ 2
and x ∈ {f, ε, fε};

b) an dSCASn Γ such that all its components are PDAs and L = L(Γ)x, where
n ≥ 2 and x ∈ {f, ε, fε};

c) an SCASn Γ such that all its components are one-turn PDAs and L = L(Γ)x,
where n ≥ 2 and x ∈ {f, ε, fε}.

Proof. This theorem follows from Corollary 9, Corollary 10, Corollary 11, Corol-
lary 14, and from the obvious observation that deterministic SCASns are no more
powerful than nondeterministic SCASns.

13

Next, we study the case when no more than one pushdown component is per-
mitted in SCASn.

Lemma 16. Let x ∈ {f, ε, fε} and n ≥ 1. For every SCASn,

Γ = (M1,M2, . . . ,Mn,Ψ),

where for some 1 ≤ i ≤ n, Mi is a PDA, and for all 1 ≤ j ≤ n, i 6= j, Mj is an FA,
there exists a PDA, M , such that L(M)x = L(Γ)x.

Proof. Let x ∈ {f, ε, fε}. For n = 1, Γ has only one component, which is
a PDA, and therefore Lemma 16 holds immediately. Further is shown that the
lemma holds also for n ≥ 2, where the case that the only first component of Γ can
be a PDA is considered (the other situations can be proved analogously).

Let n ≥ 2 and Γ = (M1,M2, . . . ,Mn,Ψ) be an SCASn, where M1 is a PDA, and
M2 troughMn are FAs. From Γ, we construct a PDA,M , such that L(M)x = L(Γ)x,
in the following way.

1. Let M1 = (Q1,Σ,Γ1, R1, s1, S1, F1) be a PDA from Γ, and let

Mi = (Qi,Σ, Ri, si, Fi)

be an FA from Γ, for all 2 ≤ i ≤ n.

2. Set M = (Q,Σ,Γ1, R, 〈s1s2 . . . sn〉, S1, F), where

• Q = {〈ω〉 | ω ∈ Ψ ∪ F1F2 . . . Fn};

• R = {A〈ω1〉a → x〈ω2〉 |
Ap1a → xq1 ∈ R1, p2 → q2 ∈ R2, . . . , pn → qn ∈ Rn

ω1 = p1p2 . . . pn, ω2 = q1q2 . . . qn
〈ω1〉, 〈ω2〉 ∈ Q

};

• F = {〈ω〉 | ω ∈ F1F2 . . . Fn}.

To proof that L(Γ)x = L(M)x, we first establish the following two claims.

Claim 17. If
(up1w, p2, . . . , pn) ⊢

i
Γ (u′q1w

′, q2, . . . , qn),

then u〈p1p2 . . . pn〉w ⊢i
M u′〈q1q2 . . . qn〉w

′, where u, u′ ∈ Γ∗

1, w,w
′ ∈ Σ∗, pi, qi ∈ Qi,

1 ≤ i ≤ n, and 〈p1p2 . . . pn〉, 〈q1q2 . . . qn〉 ∈ Q.

Proof. The proof is made by induction on i ≥ 0.
Basis: For i = 0, we have

(up1w, p2, . . . , pn) ⊢
0
Γ (up1w, p2, . . . , pn)

implies u〈p1p2 . . . pn〉w ⊢0
M u〈p1p2 . . . pn〉w, so the claim holds for i = 0.

Induction Hypothesis: Suppose that the claim holds for all 0 ≤ i ≤ k, for some
k ≥ 0.

14

Induction Step: If

(uAp1aw, p2, . . . , pn) ⊢Γ (uxo1w, o2, . . . , on) ⊢
k
Γ (u′q1w

′, q2, . . . , qn),

then there exist rules Ap1a → xo1 ∈ R1, pj → oj ∈ Rj , 2 ≤ j ≤ n, and words
p1p2 . . . pn, o1o2 . . . on ∈ Ψ∪F1F2 . . . Fn. According to the construction of M from Γ
above, this implies that there also exists a rule A〈p1p2 . . . pn〉a → x〈o1o2 . . . on〉 ∈ R,
so

uA〈p1p2 . . . pn〉aw ⊢M ux〈o1o2 . . . on〉w ⊢k
M u′〈q1q2 . . . qn〉w

′,

and the claim holds for k + 1, too. Therefore, Claim 17 holds.

Claim 18. If
u〈p1p2 . . . pn〉w ⊢i

M u′〈q1q2 . . . qn〉w
′,

then (up1w, p2, . . . , pn) ⊢i
Γ (u′q1w

′, q2, . . . , qn), where u, u′ ∈ Γ∗

1, w,w
′ ∈ Σ∗, pi, qi ∈

Qi, 1 ≤ i ≤ n, and 〈p1p2 . . . pn〉, 〈q1q2 . . . qn〉 ∈ Q.

Proof. The proof is made by induction on i ≥ 0.
Basis: For i = 0, we have that

u〈p1p2 . . . pn〉w ⊢0
M u〈p1p2 . . . pn〉w

implies (up1w, p2, . . . , pn) ⊢0
Γ (up1w, p2, . . . , pn), so the claim holds for i = 0.

Induction Hypothesis: Suppose that the claim holds for all 0 ≤ i ≤ k, for some
k ≥ 0.

Induction Step: If

uA〈p1p2 . . . pn〉aw ⊢M ux〈o1o2 . . . on〉w ⊢k
M u′〈q1q2 . . . qn〉w

′,

then there exists a rule A〈p1p2 . . . pn〉a → x〈o1o2 . . . on〉 ∈ R, which implies that
there must exist words p1p2 . . . pn, o1o2 . . . on ∈ Ψ ∪ F1F2 . . . Fn, and rules Ap1a →
xo1 ∈ R1, pj → oj ∈ Rj , 2 ≤ j ≤ n, in Γ, so

(uAp1aw, p2, . . . , pn) ⊢Γ (uxo1w, o2, . . . , on) ⊢
k
Γ (u′q1w

′, q2, . . . , qn),

and the claim holds for k + 1, too. Therefore, Claim 18 holds.

From Claim 17 and Claim 18, it immediately follows that for every w ∈ Σ∗,

(S1s1w, s2, . . . , sn) ⊢∗

Γ (γf1, f2 . . . , fn) iff S1〈s1s2 . . . sn〉w ⊢∗

M γ〈f1f2 . . . fn〉;
(S1s1w, s2, . . . , sn) ⊢∗

Γ (q1, q2, . . . , qn) iff S1〈s1s2 . . . sn〉w ⊢∗

M 〈q1q2 . . . qn〉;
(S1s1w, s2, . . . , sn) ⊢∗

Γ (f1, f2, . . . , fn) iff S1〈s1s2 . . . sn〉w ⊢∗

M 〈f1f2 . . . fn〉;

where γ ∈ Γ∗

1, qi ∈ Qi, fi ∈ Fi, 1 ≤ i ≤ n. Therefore, L(M)x = L(Γ)x, and Lemma
16 holds.

Lemma 19. Let x ∈ {f, ε, fε} and n ≥ 1. For every PDA, M , there exists an
SCASn, Γ = (M1,M2, . . . ,Mn,Ψ), where M1 is a PDA, and M2 through Mn are
FAs, such that L(Γ)x = L(M)x.

15

Proof. Let x ∈ {f, ε, fε}. Let M = (Q,Σ,ΓM , R, s, S, F) be a PDA. For n = 1,
Γ = (M,Q), and the lemma holds immediately. For some n ≥ 2, we construct an
SCASn,

Γ = (M1,M2, . . . ,Mn,Ψ),

where M1 is a PDA, and Mi is an FA, for all 2 ≤ i ≤ n, such that L(Γ)x = L(M)x,
in the following way.

1. Set M1 = M .

2. For every 2 ≤ i ≤ n, set Mi = ({si},Σ, {si → si}, si, {si}).

3. Set Ψ = Q{s2s3 . . . sn}.

Thus, for every w ∈ Σ∗,

(Ssw, s2, . . . , sn) ⊢∗

Γ (γf, s2, . . . , sn) iff Ssw ⊢∗

M γf ;
(Ssw, s2, . . . , sn) ⊢∗

Γ (q, s2, . . . , sn) iff Ssw ⊢∗

M q;
(Ssw, s2, . . . , sn) ⊢

∗

Γ (f, s2, . . . , sn) iff Ssw ⊢∗

M f ;

where γ ∈ Γ∗

M , q ∈ Q, f ∈ F . Therefore, L(Γ)x = L(M)x, and Lemma 19 holds.

Theorem 20. For every L ∈ CF, there is an SCASn Γ containing a PDA and
n− 1 FAs as its components such that L = L(Γ)x, where n ≥ 1 and x ∈ {f, ε, fε}.

Proof. This theorem follows from Lemma 16 and Lemma 19.

Theorem 21. For every L ∈ LIN, there is an SCASn Γ containing a one-turn
PDA and n − 1 FAs as its components such that L = L(Γ)x, where n ≥ 1 and
x ∈ {f, ε, fε}.

Proof. Let L ∈ LIN and n ≥ 1. Let x ∈ {f, ε, fε}. Then, there exists a one-
turn PDA,M , such that L is accepted by M . FromM , as is demonstrated in Lemma
19, construct an SCASn, Γ, such that L(M)x = L(Γ)x. Thus, Γ has only one PDA
as its component, which must be a one-turn PDA.

Conversely, let Γ be an SCASn with at most one one-turn PDA and arbitrary
number of FAs as its components. Let x ∈ {f, ε, fε}. By Lemma 16, there exists
a PDA, M , such that L(Γ)x = L(M)x. By Definition 1, if only one turn is possible
to perform in some PDA component of Γ, then no more than one turn is possible to
perform in Γ. Therefore, from the construction of M from Γ in Lemma 16, it follows
that M must be a one-turn PDA, which implies that L(M)x ∈ LIN.

Corollary 22. For every L ∈ L (dPDA)x, where x ∈ {f, ε, fε}, there is an
dSCASn Γ containing a PDA and n−1 FAs as its components such that L = L(Γ)y,
where n ≥ 1 and y ∈ {f, ε, fε}.

Proof. Observe that both Lemma 16 and Lemma 19 also hold for deterministic
variants of SCASns and PDAs (see their proofs).

16

5. Concluding Remarks

The result stating that state-synchronized automata systems are computational com-
plete is expectable, because Theorem 1 says that they can be simply transformed
into well-known computational complete model. Theorem 12 demonstrates that even
nondeterministic state-synchronized automata systems with one-turn pushdown au-
tomata are computational complete. For the deterministic case, we state the follow-
ing conjecture, which we have not been able to verify rigorously, however.

Conjecture 1. Let n ≥ 2. Then, there exists a recursively enumerable language
that cannot be accepted by any dSCASn such that all its components are one-turn
PDAs.

6. Acknowledgements

This work was supported by the European Regional Development Fund in the
IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070), the TAČR
grant TE01020415, and the BUT grant FIT-S-14-2299.

7. References

[1] Čermák M., Meduna A.; n-Accepting restricted pushdown automata systems, in:
13th International Conference on Automata and Formal Languages, Computer and
Automation Research Institute, Hungarian Academy of Sciences, Nýıregyháza, 2011,
pp. 168–183.

[2] Chomsky N.; Three models for the description of language, IRE Transactions on
Information Theory, 2(3), 1956, pp. 113–124.

[3] Csuhaj-Varjú E., Dassow J., Kelemen J., Păun Gh.; Grammar Systems: A Grammat-

ical Approach to Distribution and Cooperation, Gordon and Breach, London, 1994.

[4] Csuhaj-Varjú E., Mart́ın-Vide C., Mitrana V., Vaszil G.; Parallel communicating

pushdown automata systems, International Journal of Foundations of Computer Sci-
ence, 11(4), 2000, pp. 631–650.

[5] Harrison M.A.; Introduction to Formal Language Theory, Addison-Wesley, Boston,
1978.

17

[6] Kučera J.; On state-synchronized automata systems, in: Drahanský M., Orság F.
(eds.), Proceedings of the 19th Conference STUDENT EEICT 2013, Faculty of Infor-
mation Technology Brno University of Technology, Brno, 2013, pp. 216–218.

[7] Mart́ın-Vide C., Mateescu A., Mitrana V.; Parallel finite automata systems commu-

nicating by states, International Journal of Foundations of Computer Science, 13(5),
2002, pp. 733–749.

[8] Meduna A.; Automata and Languages: Theory and Applications, Springer, London,
2000.

[9] Meduna A.; Simultaneously one-turn two-pushdown automata, International Journal
of Computer Mathematics, 2003(80), 2003, pp. 679–687.

[10] Meduna A., Lukáš R.; Multigenerative grammar systems, Schedae Informaticae, 2006,
pp. 175–188.

