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Abstract—We have reduced the number of lifting steps in the 

calculation of the two-dimensional discrete wavelet transform 

by factoring the underlying lifting scheme into a new spatial 

form. Compared with recently proposed non-separable 

structure, we have reduced also the number of operations. Our 

scheme is primarily designed for CDF 5/3 and CDF 9/7 

wavelets employed in JPEG 2000 image compression standard. 

In the result, our scheme requires only two steps for 2-D CDF 

5/3 transform compared to four steps in the original separable 

form or three steps in the recent non-separable scheme. 
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I.  INTRODUCTION 

The discrete wavelet transform (DWT) is a signal-
processing tool suitable as a basis for sophisticated 
compression algorithms. Particularly, JPEG 2000 is an image 
coding system based on such compression technique. JPEG 
2000 is the only accepted compression format for Digital 
Cinema conforming to Digital Cinema Initiatives (DCI) 
specification. 

In this paper, we reduce the number of lifting steps and 
memory barriers in the lifting scheme upon which DWT is 
built. This is very convenient for massively-parallel 
architectures [1] where the lifting steps are evaluated from 
the inputs to outputs in parallel. On these architectures, a 
delay of output signals is essentially determined by the 
number of the synchronization points. In comparison to the 
recently proposed non-separable lifting scheme [2], we have 
also reduced the number of arithmetic operations. Our work 
is directly focused on CDF 5/3 and CDF 9/7 wavelets 
employed in JPEG 2000 coding system. 

II. LIFTING SCHEME 

In this paper, we employ the well-known z-transform 
notation for the description of FIR filters. The transfer 
function of the two-dimensional FIR filter       

 is defined 

as 

             
        

           
  
     

     

where   refers to the horizontal axis and   to the vertical 
one. Moreover, to keep consistency with [3], [4], the 
                    denotes a filter transposed to the 
        . Due to the limited place, we have made a small 

abuse of notation. Instead of the full notation          we 
only use a shortened labeling, such as  . 

 
Figure 1.  2-D data-flow graphs of the discussed schemes. The order of the 

lifting steps is determined by the bottom numbers. The vertical lines 

indicate necessary memory barriers. 

 
The discrete wavelet transform has undergone a gradual 

development in the last few decades. Initially, Daubechies [5] 
constructed orthonormal bases of compactly supported 
wavelets. Subsequently, Cohen et al. [6] developed several 
families of symmetric biorthogonal wavelet bases referred to 
as CDF biorthogonal wavelets. In addition to such wavelets, 
Mallat [7] demonstrated the wavelet representation of images 
computed with a pyramidal algorithm based on convolutions 
with quadrature mirror filters. Finally, Sweldens [8], [9] 
presented the lifting scheme which sped up such 
decomposition. He showed how any discrete wavelet 
transform can be decomposed into a sequence of simple 
filtering steps. 

When we combine this scheme with Mallat's 2-D 
decomposition, we obtain a quadruple of wavelet 
coefficients (LL, HL, LH, HH). Now we focus on CDF 5/3 
wavelet using a factorization as specified by JPEG 2000 
standard. In this case, the two-dimensional transform 
employing such wavelet consists of two horizontal and two 
vertical lifting steps. For better understanding, this scheme is 
graphically illustrated in Fig. 1a (referred to as 
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Sweldens1995). The order of these steps is limited, but not 
strictly fixed. In this paper, we consider these steps as (1) 
horizontal step resulting into HL, HH; (2) horizontal step 
into LL, LH; (3) vertical step into LH, HH; and (4) vertical 
step into LL, HL. Considering the parallel evaluation and the 
data dependencies, a memory barrier have to be inserted 
between each two steps. These barriers form the major 
bottleneck of the overall computation. The entire 2-D 
transform is composed of 16 arithmetic (multiply-
accumulate) operations per output quadruple of coefficients 
contained in four lifting steps. Excluding the implicit barriers 
at the beginning and at the end of the scheme, three memory 
barriers are required in between these steps in total. As the 
scheme uses two-tap FIR filters 

  
 
 
   

    
    

   
      

        
   

the most complex operation is calculated over three operands. 
Note that   coefficient is used in step 1 and 3,   in step 2 
and 4. The scheme for CDF 9/7 comprises two such 
connected transforms. Note that the schemes presented in 
this paper works as well for asymmetric filters. 

Since the birth of the lifting scheme, its efficient 
realization has been studied in many papers focused on 
various platforms. Chrysafis et al. [10] modified the 1-D 
scheme in the way that it enabled serial (online, pipelined) 
signal processing. Their approach was extended into 2-D in 
many papers, e.g. [11]. So far, the 2-D image must be 
processed twice – once in the horizontal and once in the 
vertical direction. In [11], the author focused on the 2-D 
transform in that he fused the vertical and horizontal pass 
into a single loop. However, it is still possible to identify the 
vertical and horizontal filtering steps. 

Recently, Iwahashi et al. [2]–[4] presented the non-
separable lifting scheme employing genuine spatial filtering 
steps 

  
 
  

   
   

       

       

                

   

  
 
  

   
   

      
   

      
   

       
     

     
    

   

   

In this scheme, it is no longer possible to distinguish the 
vertical and horizontal filtering. In their construction, the 
authors derived the non-separable 2-D scheme for CDF 5/3 
and subsequently CDF 9/7 transforms. As an initial step of 
CDF 5/3 transform, the input signal is split into quadruples 
(LL, HL, LH, HH). 


                 

                
 

Then, spatial lifting steps leading to the calculation HH 
coefficients are performed. This is followed by parallel 
computation of the HL and LH coefficients. In the third step, 
the LL coefficient is updated. Formally, these steps are 
described as          , where        are compressed 
into the matrix 

    

        

     

     
       

   

Note that the compressed notation is incorrect, however, 
used by the authors of [2]–[4]. The scheme is graphically 
illustrated in Fig. 1b (referred to as Iwahashi2007). As in the 
original scheme, a memory barrier must be inserted between 
each two steps. As the result, such scheme consists of 24 
arithmetic operations in three lifting steps separated by two 
explicit memory barriers. The most complex operation is 
calculated over 9 operands which leads to a performance 
issue. (This is because the number of operands is 
proportional to the data path with the maximum delay.) 
Again, the scheme for CDF 9/7 comprises two such 
connected transforms. 

Since this work is based on our previous work in [13], it 
should be explained what the difference between this work 
and previous work is. In [13], we have presented a block-
based method intended for graphics cards employing a 
scheme foregoing the scheme proposed in this paper. In this 
paper, we further reduce the number of arithmetic operations. 

III. PROPOSED METHOD 

Motivated by the work of Iwahashi et al. [4], we have 
reorganized the elementary lifting filters in order to obtain a 
highly parallelizable scheme. The main purpose of this 
modification is to minimize the number of memory barriers 
that slow down the calculation. As a result, we get several 2-
D FIR filters. 

The scheme we formed is composed of elementary filters 
       , and         given by 

  

  
  
  

  

   

         

         
         

         

   

 
 
 
 

  

 
  
 

  
  

   

where     denote filter parameters. 
The filters above are assembled into more complex 

operations. Our scheme consists of two halves between 
which a memory barrier is placed. The first half of the 
scheme uses the filters derived from         . Similarly, 
the second half uses the filters derived from         . 
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Finally, our scheme is composed of four operators 
referred to as    to   . Between the second    and third    
operator, the memory barrier must be inserted in order to 
properly exchange intermediate results. Thus,    and    form 
the first lifting step and    and    form the second one. Note 
that it is also possible to rewrite our scheme using six 
operators instead of four. It would be also possible to rewrite 
the scheme with just two operators, however, it is not 
possible to capture a retention of intermediate results in such 
case. Additionally, our scheme requires the induction of two 
auxiliary variables (the intermediate results) per each 
quadruple of coefficients LL, HL, LH, and HH. These 
auxiliary variables are denoted as         . Their initial as 
well as final values are not important. The scheme    
              describes the relation between input   and 
output   vectors. Note that in practical realizations, each 
single computing unit (e.g., thread) can be responsible of one 
such vector. The vectors are given by 


                        

                       
 

 
Figure 2.  Block diagram of the proposed scheme. The individual 

operators   are separated by the vertical lines. The memory barrier is 

placed in between    and   . 

Regarding this notation, the individual steps are defined 
as follows. For better understanding, the hypothetical signal-

processing block diagram of this scheme is shown in Fig. 2. 
In addition, the operations are graphically illustrated in Fig. 
1c (referred to as Kula2016). The figure shows that our 
scheme is based on the Iwahashi2007 scheme. However, 
unlike the Iwahashi2007, we have broken the middle step 
into two parts and merged these parts into remaining two 
steps. Note that operators    and    are represented by the 
first lifting step and operators    and    by the second one. 
One can easily verify the correctness of our scheme by 
comparing the top left     submatrix of          (which 
corresponds to LL, HL, LH, and HH) with the matrix 
      . 

TABLE I.  PARAMETERS OF THE DISCUSSED 2-D LIFTING SCHEMES 

VALID FOR CDF 5/3 WAVELET. 

 
 
Compared with [4], the total number of operations has 

been reduced from 24 to 18 for the CDF 5/3 wavelet. The 
calculation of CDF 9/7 transform comprises two such 
connected transforms between them another barrier is placed. 
In total, such a calculation contains three explicit memory 
barriers. 

IV. EVALUATION 

Quantitative comparison for CDF 5/3 wavelet of all the 
methods discussed is provided in Table I. The columns 
describe: number of lifting steps, number of arithmetic 
operations, maximum number of operands per the lifting step 
result (the complexity of steps), and number of memory cells 
per the coefficient quadruple (inclusive). For CDF 9/7 
wavelet, the number of lifting steps and thus the number of 
operations must be doubled. In general, the schemes can be 
used for any lifting factorization with two-tap filters. 

The original Sweldens1995 scheme provides the best 
choice in terms of arithmetic operands as well as their 
complexity. However, it requires three explicit 
synchronization points (memory barriers) for CDF 5/3 
wavelet. This can be an issue for parallel processing. The 
recently proposed Iwahashi2007 scheme uses the highest 
number of operations of all schemes. On the other hand, it 
requires only two synchronizations for CDF 5/3 wavelet and 
does not need any additional memory. In numbers, this 
scheme reduces the number of lifting steps to 75 %. Finally, 
the proposed Kula2016 scheme provides a trade-off in the 
number of operations. Moreover, for CDF 5/3 wavelet, only 
one barrier is needed for its realization. In comparison to the 
original scheme, this scheme reduces the number of lifting 
steps to 50 % only. 

To evaluate the proposed scheme, we decided to use 
high-performance GPUs programmed using the OpenCL 
framework. Considering the image processing, we map 
overlapping image tiles onto work-groups. Each thread is 
responsible for a single quadrature of transform coefficients 
(LL, HL, LH, and HH). At the beginning of the computation, 
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Sweldens1995 4 16 3 4

Iwahashi2007 3 24 9 4

Kula2016 (this paper) 2 18 4 6
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the input image is placed into global memory. The tiles are 
then transferred into local memory. After the computation, 
the results are copied back into the global memory. 

The evaluation was performed on two high-end GPUs 
(AMD Radeon HD 6970 and HD 5870), both equipped with 

1 GB GDDR5 memory. The AMD Radeon HD 6970 
contains 1 536 processors (384 VLIW4 processors) clocked 
at 880 MHz (memory at 1 375 MHz). The AMD Radeon HD 
5870 comprises 1 600 processors (320 VLIW5) clocked at 
850 MHz (memory 1 200 MHz). On both of the cards, 
variable length VLIW instructions are executed using blocks 
of 64 threads. 

We have examined the performance of the schemes. 
Only the transform performance was measured, without the 
influence of memory throughput. The presented results are 
the average of ten measurements. The results are shown in 
Fig. 3. The horizontal axes are in a logarithmic scale and the 
vertical ones express the pure transform throughput. The 
Iwahashi2007 scheme performs even worse than the original 
separable Sweldens1995 scheme. It is not surprising, as the 
scheme exhibits highest number of operations. 

V. CONCLUSIONS 

We have factored the 2-D lifting scheme of CDF 5/3 
wavelet into two spatial lifting steps. Our scheme reduces the 
number of lifting steps and memory barriers. In general, the 
barriers are the major bottleneck of parallel computations. 
Compared to recently proposed non-separable structure, our 
scheme also reduces the number of arithmetic operations. 
The scheme for CDF 9/7 can be obtained as two such 
connected schemes. 

A key idea behind the factorization is to group 
corresponding one-dimensional lifting steps into joint two-
dimensional non-separable form. Future work, we would like 
to do, comprises adaptation to other wavelets, possibly in 
more dimensions. 
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Figure 3.  A transform performance (without the memory throughput) on AMD 6970 and AMD 5870. 
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