
Informal Proceedings of the 2016 IEEE 19th International Symposium
on Design and Diagnostics of Electronic Circuits & Systems (DDECS), 2016, pp. 32-37. ISBN 978-80-8086-256-5.

Modeling and Analysis of Fault-Tolerant Systems
by Means of UPPAAL SMC: Method and Benefits

Josef Strnadel
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence

Bozetechova 2, 612 66 Brno, Czech Republic
Email: strnadel@fit.vutbr.cz, Telephone: +420 541141211

Abstract—The paper presents a method of modeling and
analysis of fault-tolerant electronic systems by means of a novel
statistical model checking approach available in the UPPAAL
SMC tool. The method can be seen as an alternative to classical
analytic approaches based on instruments such as fault-tree or
Markov reliability models of the above-specified systems. Main
goal of the paper is to show that – taking the advantage of the
statistical model checking – the reliability analysis of systems
can be facilitated even for adverse conditions such as inconstant
failure (hazard) rate of inner system components. In the paper,
basic terms and principles related to modeling and analysis
of fault-tolerant systems are summarized, followed by a short
introduction to the UPPAAL SMC tool, its practical applicability
to analysis and modeling of basic fault-tolerant systems and
evaluation of the results achieved on basis of the tool.

I. INTRODUCTION

Technological, parametrical and other progress related to
electronic systems has resulted into the rapid expansion of
such systems into many application areas, including safety,
time and/or mission critical ones such as anti-lock breaking or
airbag control in cars, flight-crucial avionics, medical devices
like pacemaker, automated control of an industrial heavy
payload robot or a nuclear plant operation.

It is a common practice that a critical system must be
designed, constructed, realized and especially analyzed so that
– within a given degree of confidence interval or probability
interval – its predetermined, criticality-crutial properties (such
as a deadlock-free operation or high availability of provided
services) are guaranteed during the system operation yet before
the system starts to operate under real operating conditions.
This paper limits this complex problem to the design-time
modeling and analysis of selected reliability-related properties
of electronic systems.

This paper is organized as follows. Sections II-A and II-B
outline techniques applicable for that purpose, followed by a
sum of basic terms and principles related to fault tolerance
(II-C) and the UPPAAL SMC tool (II-D). Section III presents
our method based on the tool while Section IV summarizes
achieved results and finally, Section V concludes the paper.

II. PRELIMINARY

A. Model Checking

Various techniques can be utilized to check whether partic-
ular (typically, formally specified) properties are guaranteed
under a given model of a system; in this paper it is supposed

that so-called model checking (MC) [1] technique is utilized
for that purpose. Contrary to testing, MC is able to detect all
potential faults in a system and allows a designer to deal with
them in early phases of a system’s life cycle. MC has been
implemented in several powerful tools such as SPIN [2] or
SMV [3] being successfully applied in practice.

Classical MC techniques are binary (i.e. they check whether
the system satisfies a property or not). Indeed, in many
situations it is not enough to know whether something could or
could not happen; rather, one needs to have a precise estimate
of the time when some situation could arise. This motivated the
creation of a number of new, so-called timed MC techniques.
However, even though various optimizations and/or heuristics
exist (partial order, symbolic approach, BDDs, etc.), they
cannot avoid MC techniques from the state-space explosion
in general, because of the complexity of problems they solve.

B. Statistical Model Checking

To avoid an exhaustive exploration of the state-space of a
model, so-called statistical model checking (SMC) has been
proposed – and implemented in several tools such as PRISM
[4] or UPPAAL SMC [5] – as a compromise between testing
and classical (binary, exhaustive) MC techniques. Simulation-
based SMC methods are known to be far less memory/time
intensive than classical ones, and are oftentimes the only
option to approximate undecidable problems. Simply, SMC
is based on monitoring some simulations of the system and
their statistical processing (such as sequential hypothesis test-
ing or Monte Carlo simulation) to estimate the satisfaction
probability of a specified property under some degree of
confidence. The SMC approach has been applied to problems
that are far beyond the scope of classical MCs and has been
widely accepted in various areas such as biology [5], software
engineering [6], [7], aerospace applications [8], [9] or system
analysis [4], [10], [11], [12], [13].

C. Fault Tolerance

Fault tolerance (FT) [14] is typically based on some form
of redundancy utilized to extend system reliability by extra
resources; the redundancy may be in hardware, software, infor-
mation, time, or combinations thereof. For hardware and soft-
ware, the following types of redundancy can be distinguished:
static (sometimes called passive), dynamic (sometimes called
active), and hybrid.

c© 2016 Josef Strnadel. Informal Proceedings of 19th IEEE DDECS, 2016, pp. 32-37. 978-80-8086-256-5.

Informal Proceedings of the 2016 IEEE 19th International Symposium
on Design and Diagnostics of Electronic Circuits & Systems (DDECS), 2016, pp. 32-37. ISBN 978-80-8086-256-5.

1 2 3
3λ 2λ 1 2 3 4

3λC 2λ

3λ(1− C)

a) Triple modular redundancy (TMR) w.o. resp. with a single-point failure
on the left (TMRNSF) resp. right (TMR1SF) of the figure

1 2 3

4 5 6

7 8

3λ 2λ

F1(t)

2λ λ

F2(t)

λ

b) Triplex with successive degradation (TSD)

Fig. 1. Markov models of selected fault-tolerant (FT) systems based on static
redundancy (a) and dynamic reconfiguration by degradation (b) – (c), spares
(d) or both (e). λ is the permanent-failure rate, F (t), F1(t), F2(t) are utilized
to model the removal of a permanent fault and C is the ratio of faults not
being the single point of failure; more details can be found in [15]

Static redundancy masks faults e.g. by taking a majority
of the results being produced by three replicas of the same
module (Triple Modular Redundancy, TMR). For TMR, it is
typical that its replicas are operational (active) and the majority
is processed just by a voter, which is a single point of failure
(SPF). For dynamic redundancy, it is typical that on top of
a (primary) module being operational, one or more its spare
(backup) modules stays in active (hot), warm (standby) or
cold mode until the primary module fails (for that purpose,
each module must be associated with a corresponding error
detection circuitry able to signalize whether the module is
faulty or not); result of just one of the operational plus spare
modules is propagated to output – this is guaranteed by the
switch component. Thus, dynamic redundancy is based on
a sequence of the following steps: detection of a fault and
recovery from the fault. The detection step helps to (locally)
isolate the fault present in the primary module to avoid
propagation of its effects. In the recovery step, the faulty
module is replaced by one of its spare modules and then,
remaining system assets are reconfigured to operate with the
spare module instead of the faulty one.

Hybrid redundancy combines both static and dynamic re-
dundancy so that any disagreement among replicas – i.e., any
mismatch between modules’ outputs and the voting result –
leads to replacement of faulty replica(s) by spare(s) from the
common pool of spares, as long as the pool is not exhausted.

Typically, reliability of FT systems is modeled by means of
classical well-known instruments such as Markov models [14]
– for illustration, see Fig. 1 (find details in [15], please).

D. Concepts of Modeling in UPPAAL and UPPAAL SMC

UPPAAL [16] is a toolbox primarily designed for formal
verification of real-time (RT) systems modeled by (a network
of) Timed Automata (TA) extended with instruments such as
typed variables and channel synchronization. SMC extension
of UPPAAL (being denoted as UPPAAL SMC) has been
proposed [17] to avoid the state-space explosion w.r.t. checking
properties of an RT system model.

The modeling formalism of UPPAAL SMC is based on
a stochastical extension of the original TA formalism from
UPPAAL. On basis of the extension – called Stochastic Timed
Automata (STA) –, one can validate properties of a given deter-
ministic or stochastic system in given stochastic environment
or conditions such as radiation or aging. In the next, concepts
of (S)TA-based modeling are informally outlined.

First of all, it should be noted that a single TA [18] is formed
of at least the start state, being represented by two concentric
circles (for illustration, see state a in Fig. 2); a TA state is
called a location too. A transition between two locations (let
us say from a to b and denote it by a → b) is represented
by an oriented edge from a to b. Transition in Fig. 2a can
be made anytime (but the concrete time is unknown), while
transition in Fig. 2b – being conditioned by so-called guard
(where x is a variable of the clock type) – can be made if x
is 5 or later, but again: no upper bound is specified for x.

In Fig. 2c, time of staying in a is limited by so-called
invariant, i.e., a condition defined for a location; the transition
must be made before the invariant becomes false. In Fig. 2d,
a guard/invariant combination is utilized to model a transition
that can be made if x ≥ 5, but must be made if x ≤ 7,
i.e., the transition is possible if 5 ≤ x ≤ 7. Further TA-
related instruments related e.g. to communication via channels,
location types etc. are omitted herein because of the limited
scope of this paper and no meaning for planned illustrative
examples.

The above-mentioned principles as well as related non-
deterministic behavior of TAs (such as non-deterministic
choice among parallel transitions between the same locations)
are refined in STAs by stochastic ones, being briefly illustrated
in the next. For example, weight annotations on locations are
extended to model the staying in a location using a probability
distribution; e.g., in Fig. 3a, the staying in a (i.e., entering
b) is given by the exponential distribution with the rate (λ)
set to 1

2 . In Fig. 3b, the probabilistic uniform-distribution
choice between a → b (with probability 1

5) and a → c (with
probability 4

5) is modeled. Fig. 3c illustrates the following (so-
called stopwatch) concept able to determine the exact time that
has elapsed. In Fig. 3c, the clock x is reset in parallel with
setting a value (being produced by a user-defined function f)
to the delay variable of the clock type (during a → b) first;
then, staying in b cannot be longer than for delay units of time
being measured by x while delay is stopped (delay′ == 0)
in b. Finally, b→ c is possible just if x matches delay.

Properties of an STA-based model can be verified (checked)
using special queries a user can post in the UPPAAL SMC tool
w.r.t. model; queries from the following areas are supported:

• Probability estimation – a question in the form
Pr[bound](φ) is used to get the probability that some-

a b a b
x ≥ 5

a

x ≤ 7

b a

x ≤ 7

b
x ≥ 5

a) b) c) d)

Fig. 2. Illustration to basic TA terms: place, transition, guard, invariant

Informal Proceedings of the 2016 IEEE 19th International Symposium
on Design and Diagnostics of Electronic Circuits & Systems (DDECS), 2016, pp. 32-37. ISBN 978-80-8086-256-5.

thing (φ) – such as entering a state/place – happens under
the specified bound,

• Hypothesis testing – a question Pr[bound](φ) ≥ p can
be posted to check whether the probability of something
(φ) is greater or equal to a certain probability treshold
(p) under the specified bound,

• Probability comparison – a question in the form
Pr[bound1](φ1) ≥ Pr[bound2](φ2) can be posted to
check whether the probability of φ1 is greater or equal
to φ2 under the specified bound1, bound2,

where bound, bound1, bound2 define how to bound –
e.g. the number of – simulation steps (runs), φ, φ1, φ2
are assertions (formulas) to check and p is a real-number
value. E.g., for Fig. 3a one can post the Pr[<=3000](<>

STA.b) query to get the probability of eventual entering the
state b within 3000 units of the simulation time. A possible
(probabilistic) result of the query is vizualized in Fig. 4. For
further examples, please see [17].

III. PROPOSED METHOD

The method presented in this paper has been initially
inspired by [19] approach giving an idea of creating a model
of basic components for constructing FT systems to verify
properties of such systems by means of formal verification
in classical UPPAAL. However, the approach was based on a
timed – but deterministic – model and exhaustive verification
with binary (i.e., yes/no) answers to questions about properties.
We have decided to utilize a completely different approach,
allowing i) creation of probabilistic models (such as those from
Fig. 1) and ii) statistical model checking instruments to be
applied to our models. For the purpose, several models must
be created, e.g., by means of STAs supported by the UPPAAL
SMC tool – details to the models follow in the sections III-A,
III-B and III-C.

A. Probability distribution models

First, probability distribution models must be created to
model various failure rates. Basically, it is not a problem
to create almost any time-dependent failure rate function;
however, because of limited space in this paper, we have
decided to present just a simplified model of the typical
bathtub curve. The curve consists of several regions – such as
early (infant mortality), constant, aging, wear out, break in –
each representing different progress of the failure rate. In fact,
those regions seems to be enough to show that by means of
STAs, it is possible to cover a wide range of very different rate
functions. The skeleton of our STA-based model of the bathtub
curve is vizualized in Fig. 5, where x is the clock-type variable,

a

1 : 2

b

a

b

c

1

4
a b

x ≤ delay &&
delay′ == 0

c
x = 0,

delay = f()
x == delay

a) b) c)

Fig. 3. Illustration to basic STA terms: place, transition, guard, invariant

Fig. 4. Illustration to probability of entering b (left) and cumulative probability
with confidence intervals (right) of that for the STA model from Fig. 3a

EARLY, CONST and WEAR-OUT are probability weights,
EXP RATE is a rate of the exponential probability distribution
and TFROM

CONST , TTO
CONST , TFROM

WOi
, TTO

WOi
, i = 1, . . . , n, are

constants specific to a particular bathtub-part shape.
Basically, a separete branch exists in the model for each

region in the curve. From the initial state, the STA can transit
into one of the three consecutive states (starting a particular
branch), each being enabled with different probability – typi-
cally, very small values of probability are utilized for the early
and wear out regions of the curve, while high value is utilized
for its constant-rate region. Interval in which a fault of a given
rate is allowed to appear can be limited later in the particular
branch.

For example, a failure from the early-rate region can occur
rarely – this is guaranteed by the low (EARLY) probability
weight – and with the exponential probability distribution
given by the EXP RATE parameter; a failure from the
constant-rate region can occur more often – that is defined
by the high (CONST) probability weight –, but with its
rate uniformly distributed in the < TFROM

CONST , T
TO
CONST >

interval with a lower resp. upper bound defined by a guard
resp. invariant (see Fig. 2d). Alike, the probability distribution
for the wear-out region can be formed e.g. using a chain of
consequent, properly-shaped uniform distributions of a failure
occurence.

B. Fault generation models

In the next step, it is necessary to model fault generators.
A fault generator is required to produce a fault with times
of its occurence being defined by a probability distribution
model (such as from III-A) of the rate corresponding to the
fault. When the time comes for the occurence of a fault in a
system, the fault is introduced so that an instance of the STA
(representing the corresponding behavioral model of the fault
– for such a model, see III-C) is dynamically created. To create
a fault dynamically, the spawn keyword must be utilized in
STA.

C

EXP RATE

x ≤ TTO
WO1

x ≤ TTO
CONST

end

...

x ≤ TTO
WOn

EARLY

CONST

WEAR-OUT

x ≥ TFROM
CONST

x ≥ TFROM
WO1

x ≥ TFROM
WOn

Fig. 5. Idea of composing a probability distribution model by means of STAs
in the UPPAAL SMC tool (bathtub failure rate example)

Informal Proceedings of the 2016 IEEE 19th International Symposium
on Design and Diagnostics of Electronic Circuits & Systems (DDECS), 2016, pp. 32-37. ISBN 978-80-8086-256-5.

This kind of modeling is very close to the reality – after
its introduction to a system, a fault can remain there for a
predetermined time and then disappear and never show again
or occur/disappear repeatedly (timing may vary accross faults
of the same type) or, a fault may last until it is removed.
In Fig. 6, an example of dynamic creation of faults with rates
described using a) exponential resp. b) constant, i.e. uniformly
distributed, failure rates is illustrated; for the bathtub case, the
spawn construction will be applied to the end state of the
STA from Fig. 5.

a) fdef [N].ttf

spawn fault(gid),
factive[gid] + +

b) x ≤ fdef [N].ttf

spawn fault(gid),
factive[gid] + +

x = 0

Fig. 6. Illustration to dynamic creation of faults with rates described using
a) exponential resp. b) constant failure rates. factive[gid] is utilized as a
counter of the number of active faults dynamically created by the generator
identified by gid. For better readability, fid[gid] is substituted by N

Let it be noted there that a fault is of a given type (see
Listing 1) allowing to create multiple fault definitions in
fdef [] (see Listing 2).

Listing 1. Basic components of a fault in our model
1 typedef struct { // fault:
2 t_ftype ft; // - type: 0-perm., 1-tran., 2-int.
3 t_pdist pdist; // - probab. distr.: 0-uni., 1-exp.,
4 // 2-norm., 3-bathtub, 4-early, ...
5 t_ttf ttf; // - time to fault: 0, 1, ...
6 } t_sFault;

Listing 2. Illustration to declaration of an array with fault definitions
1 const t_sFault fdef[t_nfault] = {
2 // ft pdist ttf array-index
3 {1, 0, 100}, // 0
4 {0, 0, 500}, // 1
5 {1, 1, 1}, // 2
6 {1, 1, 5} // 3
7 };

The mapping fid[] (see Listing 3) is needed to make a
relation between the definition of a fault and the generator.

Listing 3. Example to mapping of a fault generator onto an index to fdef[]
1 // generator indexes: 0 1 2 ...
2 t_nfault fid[t_ngen] = { 0, 1, 1 }; // fdef[] indexes

C. Fault behavior models

After a fault is introduced into a system, it can behave in
a way that can be defined by a special STA. In Fig. 7, a
skeleton of the behavioral model for intermittent, permanent
and transient types of faults is illustrated, focusing to the
branch for transient faults. A transition from the initilal state
is enabled for a particular fault type (FINTER, FPERM or
FTRAN). In the next state, a branch for modeling duration of
the fault is selected (PUNI resp. PEXP for uniform/constant
resp. exponential probability distribution of the durations,
based on the STA design patterns from Fig. 2d resp. Fig. 3a).

Before reliability models (such as those from Fig. 1) can be
created on basis of the above-mentioned modeling techniques,
an instrument able to signalize the occurence of a fault is

C

CC...

x ≤
fdef [N].ttf

fdef [N].ttf......

fdef [N].ft
== FPERM

fdef [N].ft
== FTRAN

fdef [N].ft
== FINTER

fdef [N].pdist
== PUNI

exit(),
factive[gid]−−

fdef [N].pdist
== PEXP

exit(),
factive[gid]−−

Fig. 7. Illustration to the behavioral model of a fault. After its duration
is over, a dynamically created transient fault removes itself from a system
by calling exit() and decrementing the number (factive[gid]) of active
faults introduced by the same generator. For better readability, fid[gid] is
substituted by N

needed to make the construction of reliability models as
straightforward as possible.

In our approach, we have based the signalization mechanism
on the STA from Fig. 8. The mechanism relies on sending
a message via the broadcast channel named fail while at
least one active fault exists that has been produced by the
corresponding fault generator (identified by gid). Such an STA
is created for each fault generator in a system. If ! resp. ?
follows the channel name (i.e., fail! resp. fail? is associated
with a transition) then a message is sent resp. expected via the
fail channel reserved for a fault generator.

D. Reliability models

In the next, a method for construction of reliability models
by means of the above-mentioned modeling techniques is de-
scribed. To create a reliability model, definitions of considered
faults must be prepared (such as in Listing 2) first in fdef [].
Then, a decision about the number of fault generators – each
able to produce a fault of a given definition – must be made
and stored into fid[]. Let it be noted that it is possible to
create multiple generators for the same fault definition; for
example, in Listing 3 three generators are utilized, where
generator identified by gid = 0 is associated with the fault
definition fdef [gid] = (1, 0, 100), i.e. a transient fault with
probability of its ocurence uniformly distributed over 100 units
of time while generators identified by gid = 1 and gid = 2
are associated with fdef [gid] = (0, 0, 500), i.e. a permanent
fault with uniform probability distribution over 500 units of
time.

Once STA-based models for the fault generator, fault be-
havior and fault signalization are created, process of creation
of a reliability model can be started. In the next, an idea of
such a process is discussed in the form of a straightforward
transformation from the classical models from Fig. 1. Because
of the limited space in this paper and simplicity of the
transformation, the resulting STA-based models are omitted
herein. Key principle w.r.t. our model relies on replacing λ –
or similar probabilistic quantity such as F (t), F1(t), F2(t),

x ≤ 1

factive[gid] ≤ 0
x = 0

factive[gid] > 0
fail[gid]!, x = 0

Fig. 8. Illustration to a fault signalization mechanism

Informal Proceedings of the 2016 IEEE 19th International Symposium
on Design and Diagnostics of Electronic Circuits & Systems (DDECS), 2016, pp. 32-37. ISBN 978-80-8086-256-5.

Fz(t), W1(t), W2(t) from Fig. 1 – in a Markov model by
waiting for a message on the fail channel (Fig. 9).

a)
1 2

λ

b)
1 2

fail[N]?

Fig. 9. Principle of converting a Markov model (a) to an STA model (b). N
identifies a generator producing a fault the edge is sensitive to

With no impact to the generality, all important design
patterns w.r.t reliability models can be presented over a simple
TMR model from Fig. 1a. Basically, a separate fault generator
is needed for each of independent faults (TMRNSF from
Fig. 1a, Fig. 10a) – in such a case, separate fault signalization
mechanisms are available. On the contrary, signalization of
the same fault can be utilized e.g. to model a SPF (TMR1SF

from Fig. 1a, Fig. 10b).
STA-based versions of the TMR are depicted in Fig. 10.

In a), the 1 → 2 transition is utilized to wait for a reception
of a signal over three channels, i.e., fail[i], i = 1, 2, 3, each
belonging to one of the three replicas in the TMR system.
If a fail signal is received on a particular channel then the
corresponding value of i is stored into failed to identify the
failed replica. The consecutive 2 → 3 is sensitive just to a
failure in replicas identified by i = 1, 2, 3, i 6= failed, i.e., it
is sensitive just to a failure of the remaining two replicas. The
same principle is applied in the case b), extended to model a
SPF by means of a probabilistic choice made at the end of the
transition outgoing from 1 ,i.e., after one of the three replicas
fails; then, TMR can either operate in a two-replica mode (if
it transits to 2; here, it operates in the same way as in the a)
case) or it can be a subject to a SPF and fail (if it goes to 4).

IV. EVALUATION

To show practical applicability of our above-mentioned
modeling techniques and its benefits, we have decided to
present few results produced on basis of our models (see Fig.
11, Fig. 12).

A. Selected Results

The results from Fig. 11 were produced on basis of the
model-checking query Pr[<= 100](<> sta.end), being ap-
plied consequently to special cases of the Fig. 5; sta is the
name of an STA representing the bathtub model. It can be
seen that STA-based models are able to cover all regions of
the bathtub, allowing us to analyze reliability under different
fault rate scenarios.

The results from Fig. 12 have been achieved on basis of sev-
eral queries, details of which follows; in all cases, one simula-
tion run has been performed, which is denoted by simulate 1

1 2 3

i : int[1, 3]
fail[i]?
failed = i

i : int[1, 3]
fail[i]?
i 6= failed

1 2

4

3
i : int[1, 3]
fail[i]?
failed = i

C

100-C
i : int[1, 3]
fail[i]?
i 6= failed

a) b)

Fig. 10. STA-based realization of the TMR models from Fig. 1:
a) TMRNSF , b) TMR1SF . C is probability that a fault is not SPF

a)

b)

c)

d)

e)

f)

Fig. 11. Illustration to probability (left column) and cumulative probability
(right column) with confidence intervals for selected failure rates models
realized by means of UPPAAL SMC: a) bathtub, b) early (infant mortality),
c) constant, d) aging, e) wear out, f) break-in

at the beginning of the queries. For a) – d), the query simulate
1 [<= N]{numOf(fault), n fin/K} has been utilized with
N = 200 resp. N = 2000 for a), b) resp. c), d) and K = 1,
50, 100, 200 for a), b), c), d). For 12e) resp. f), simulate 1
[<= 1000]{numOf(fault), 2 ∗ n fperm, n ftrans} resp.

a) b)

c) d)

e)

f)

Fig. 12. Results produced on basis of various declarations of fid[]: a) { 0 },
b) { 0, 2, 3 }, c) { 0, 1, 3 }, d–f) { 0, 0, 1, 1, 2, 3 }. In a)–d), an evolution of
the number of all incomming faults (n fin) and of faults in the system
(numOf(fault)) are visualized. In e), a relation among the number of
permanent (2∗n fperm), transient (2∗n ftran) and all faults is depicted.
In f), an evolution of the number of active faults (facti) produced by a
particular fault generator (indexed by i = 0, 2, . . . , 5) is visualized

Informal Proceedings of the 2016 IEEE 19th International Symposium
on Design and Diagnostics of Electronic Circuits & Systems (DDECS), 2016, pp. 32-37. ISBN 978-80-8086-256-5.

simulate 1 [<= 2000]{factive[0], 10 + factive[1], 20 +
factive[2], 30+factive[3], 40+factive[4], 50+factive[5]}
queries have been utilized.

B. Benefits

Benefits of utilizing modeling instruments proposed in this
paper can be summarized as follows. First, our models are
scalable and our solution is open to additions – proposed
models can be easily extended to further types of fault
rates, behavior types etc. Second, statistical model checking
engine in the UPPAAL SMC tool can be utilized to simply
and quickly check key properties (such as probability that
something, like a failure, may happen) w.r.t. a system being
modeled. Third, transformation of existing reliability models
(such as widely-utilized Markov models) is straightforward
and there is no need to solve any system of equation by your
own. It can be concluded that the benefits represent a very
good prerequisite for rapid prototyping as well as reliability
analysis of FT systems under various fault scenarios.

V. CONCLUSION

In the paper, a method of modeling and analysis of FT
systems by means of the STAs and SMC approach supported
by the UPPAAL SMC tool has been presented. The method
can be seen as an alternative to classical analytic approaches
based on instruments such as Markov reliability models of the
above-specified systems.

Further activity w.r.t. topic of the paper can be seen espe-
cially in i) applying the proposed method to complex, practical
FT systems, systems with dynamic redundancy and hybrid
(i.e., discrete/analog) systems, ii) reliability analysis throught
multiple bathtub regions and of particular system classes such
as memories, CPU cores or operating system kernels and
iii) analyzing an impact of multiple faults of same/different
type to reliability of an FT system equipped by particular FT
techniques.

ACKNOWLEDGMENT

This work was supported by the Ministry of Education,
Youth and Sports from the National Programme of Sustain-
ability (NPU II) project ”IT4Innovations excellence in science
– LQ1602”, by the European Regional Development Fund in
the ”IT4Innovations Centre of Excellence” (OP VaVpI) project
No. CZ.1.05/1.1.00/02.0070 and the inner university project
No. FIT-S-14-2297 (Architecture of parallel and embedded
computer systems).

REFERENCES

[1] C. Baier and J.-P. Katoen, Principles of Model Checking, ser.
Representation and Mind. MIT Press, 2008. [Online]. Available:
https://mitpress.mit.edu/books/principles-model-checking

[2] G. J. Holzmann, “The model checker spin,” IEEE Transactions on
Software Engineering, vol. 23, pp. 279–295, 1997.

[3] K. L. McMillan, “Symbolic model checking: An approach to
the state explosion problem,” Ph.D. dissertation, Pittsburgh, PA,
USA, 1992, uMI Order No. GAX92-24209. [Online]. Available:
http://www.kenmcmil.com/pubs/thesis.pdf

[4] M. Kwiatkowska, G. Norman, and D. Parker, “Prism: Probabilistic
model checking for performance and reliability analysis,” SIGMETRICS
Perform. Eval. Rev., vol. 36, no. 4, pp. 40–45, Mar. 2009. [Online].
Available: http://doi.acm.org/10.1145/1530873.1530882

[5] A. David, K. G. Larsen, A. Legay, M. Mikucionis, D. B. Poulsen, and
S. Sedwards, “Statistical model checking for biological systems,” Int.
J. Softw. Tools Technol. Transf., vol. 17, no. 3, pp. 351–367, Jun. 2015.
[Online]. Available: http://dx.doi.org/10.1007/s10009-014-0323-4

[6] C. Dubslaff, S. Klüppelholz, and C. Baier, “Probabilistic model checking
for energy analysis in software product lines,” in Proceedings of the
13th International Conference on Modularity, ser. MODULARITY ’14.
New York, NY, USA: ACM, 2014, pp. 169–180. [Online]. Available:
http://doi.acm.org/10.1145/2577080.2577095

[7] R. Calinescu, C. Ghezzi, K. Johnson, M. Pezze, Y. Rafiq, and G. Tam-
burrelli, “Formal verification with confidence intervals to establish
quality of service properties of software systems,” IEEE Transactions
on Reliability, vol. PP, no. 99, pp. 1–19, 2015.

[8] K. Hoque, O. Ait Mohamed, Y. Savaria, and C. Thibeault,
“Early analysis of soft error effects for aerospace applications
using probabilistic model checking,” in Formal Techniques for
Safety-Critical Systems, ser. Communications in Computer and
Information Science, C. Artho and P. C. lveczky, Eds. Springer
International Publishing, 2014, vol. 419, pp. 54–70. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-05416-2 5

[9] Y. Lu, Z. Peng, A. A. Miller, T. Zhao, and C. W. Johnson,
“How reliable is satellite navigation for aviation? checking availability
properties with probabilistic verification,” Reliability Engineering &
System Safety, vol. 144, pp. 95 – 116, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0951832015002252

[10] N. Benes, B. Buhnova, I. Cerna, and R. Oslejsek, “Reliability
analysis in component-based development via probabilistic model
checking,” in Proceedings of the 15th ACM SIGSOFT Symposium
on Component Based Software Engineering, ser. CBSE ’12. New
York, NY, USA: ACM, 2012, pp. 83–92. [Online]. Available:
http://doi.acm.org/10.1145/2304736.2304752

[11] A. Basu, S. Bensalem, M. Bozga, B. Delahaye, and A. Legay,
“Statistical abstraction and model-checking of large heterogeneous
systems,” International Journal on Software Tools for Technology
Transfer, vol. 14, no. 1, pp. 53–72, 2012. [Online]. Available:
http://dx.doi.org/10.1007/s10009-011-0201-2

[12] Z. Peng, Y. Lu, A. Miller, C. Johnson, and T. Zhao, “A probabilistic
model checking approach to analysing reliability, availability, and main-
tainability of a single satellite system,” in Modelling Symposium (EMS),
2013 European, Nov 2013, pp. 611–616.

[13] P. Swain, P. Bhaduri, and S. Nandi, “Probabilistic model checking
of ieee 802.11 ibss power save mode,” Int. J. Wire. Mob. Comput.,
vol. 7, no. 5, pp. 465–474, Sep. 2014. [Online]. Available:
http://dx.doi.org/10.1504/IJWMC.2014.064818

[14] I. Koren and C. M. Krishna, Fault-Tolerant Systems. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2007.

[15] B. Ricky W. and J. Sally C., “Techniques for mod-
eling the reliability of fault-tolerant systems with the
markov state-space approach,” Tech. Rep., 1995. [On-
line]. Available: http://shemesh.larc.nasa.gov/fm/papers/Butler-RP-
1348-Techniques-Model Rel-FT.pdf

[16] G. Behrmann, A. David, and K. Larsen, “A tutorial on uppaal,” in
Formal Methods for the Design of Real-Time Systems, ser. Lecture
Notes in Computer Science, M. Bernardo and F. Corradini, Eds.
Springer Berlin Heidelberg, 2004, vol. 3185, pp. 200–236. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-30080-9 7

[17] A. David, K. Larsen, A. Legay, M. Mikuionis, and D. Poulsen, “Uppaal
smc tutorial,” International Journal on Software Tools for Technology
Transfer, vol. 17, no. 4, pp. 397–415, 2015. [Online]. Available:
http://dx.doi.org/10.1007/s10009-014-0361-y

[18] R. Alur and D. L. Dill, “A theory of timed automata,” Theor. Comput.
Sci., vol. 126, no. 2, pp. 183–235, Apr. 1994. [Online]. Available:
http://dx.doi.org/10.1016/0304-3975(94)90010-8

[19] M. Zhang, Z. Liu, C. Morisset, and A. Ravn, “Design and verification
of fault-tolerant components,” in Methods, Models and Tools for
Fault Tolerance, ser. Lecture Notes in Computer Science, M. Butler,
C. Jones, A. Romanovsky, and E. 0.5em minus 0.4emSpringer
Berlin Heidelberg, 2009, vol. 5454, pp. 57–84. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-00867-2 4

