
An Executable Sequential Specification
for Spark Aggregation

Yu-Fang Chen1, Chih-Duo Hong1, Ondřej Lengál1,2(B), Shin-Cheng Mu1,
Nishant Sinha3, and Bow-Yaw Wang1

1 Academia Sinica, Taipei, Taiwan
2 Brno University of Technology, Brno, Czech Republic

lengal@fit.vutbr.cz
3 IBM Research, New Delhi, India

Abstract. Spark is a new promising platform for scalable data-parallel
computation. It provides several high-level application programming
interfaces (APIs) to perform parallel data aggregation. Since execution
of parallel aggregation in Spark is inherently non-deterministic, a natural
requirement for Spark programs is to give the same result for any execu-
tion on the same data set. We present PureSpark, an executable formal
Haskell specification for Spark aggregate combinators. Our specification
allows us to deduce the precise condition for deterministic outcomes from
Spark aggregation. We report case studies analyzing deterministic out-
comes and correctness of Spark programs.

1 Introduction

Spark [1,29,30] is a popular platform for scalable distributed data-parallel com-
putation based on a flexible programming environment with concise and high-
level APIs. Spark is by many considered as the successor of MapReduce [15,25].
Despite its fame, the precursory computational model of MapReduce suffers
from I/O congestion and limited programming support for distributed problem
solving. Notably, Spark has the following advantages over MapReduce. First,
it has high performance due to distributed, cached, and in-memory computa-
tion. Second, the platform adopts a relaxed fault tolerant model where sub-
results are recomputed upon faults rather than aggressively stored. Third, lazy
evaluation semantics is used to avoid unnecessary computation. Finally, Spark
offers greater programming flexibility through its powerful APIs founded in func-
tional programming. Spark also owes its popularity to a unified framework for
efficient graph, streaming, and SQL-based relational database computation, a
machine learning library, and the support of multiple distributed data storage
formats. Spark is one of the most active open-source projects with over 1000
contributors [1].

In a typical Spark program, a sequence of transformations followed by
an action are performed on Resilient Distributed Datasets (RDDs). An RDD
is the principal abstraction for data-parallel computation in Spark. It repre-
sents a read-only collection of data items partitioned and stored distributively.
c© Springer International Publishing AG 2017
A. El Abbadi and B. Garbinato (Eds.): NETYS 2017, LNCS 10299, pp. 421–438, 2017.
DOI: 10.1007/978-3-319-59647-1 31



422 Y.-F. Chen et al.

RDD operations such as map, reduce, and aggregate are called combinators. They
generate and aggregate data in RDDs to carry out Spark computation. For
instance, the aggregate combinator takes user-defined functions seq and comb:
seq accumulates a sub-result for each partition while comb merges sub-results
across different partitions. Spark also provides a family of aggregate combina-
tors for common data structures such as pairs and graphs. In Spark computation,
data aggregation is ubiquitous.

Programming in Spark, however, can be tricky. Since sub-results are com-
puted using- multiple applications of seq and comb across partitions concurrently,
the order of their applications varies on different executions. Because of indefi-
nite orders of computation, aggregation in Spark is inherently non-deterministic.
A Spark program may produce different outcomes for the same input on differ-
ent runs. This form of non-deterministic computation has other side effects.
For instance, the private function AreaUnderCurve.of in the Spark machine learn-
ing library computes numerical integration distributively; it exhibits numerical
instability due to non-deterministic computation. Consider the integral of x73

on the interval [−2, 2]. Since x73 is an odd function, the integral is 0. In our
experiments, AreaUnderCurve.of returns different results ranging from −8192.0 to
12288.0 on the same input because of different orders of floating-point compu-
tation. To ensure deterministic outcomes, programmers must carefully develop
their programs to adhere to Spark requirements.

Unfortunately, Spark’s documentation does not specify the requirements for-
mally. It only describes informal algebraic properties about combinators to ensure
correctness. The documentation provides little help to a programmer in under-
standing the complex, and sometimes unexpected, interaction between seq and
comb, especially when these two are functions over more complex domains, e.g.
lists or trees. Inspecting the Spark implementation is a laborious job since public
combinators are built by composing a long chain of generic private combinators—
determining the execution semantics from the complex implementation is hard.
Moreover, Spark is continuously evolving and the implementation semantics may
change significantly across releases. We therefore believe that a formal specifica-
tion of Spark combinators is necessary to help developers understand the program
semantics better, clarify hidden assumptions about RDDs, and help to reason
about correctness and sources of non-determinism in Spark programs.

Building a formal specification for Spark is far from straightforward. Spark
is implemented in Scala and provides high-level APIs also in Python and Java.
Because Spark heavily exploits various language features of Scala, it is hard to
derive specifications without formalizing the operational semantics of the Scala
language, which is not an easy task by itself. Instead of that, we have developed
a Haskell library PureSpark [4], which for each key Spark combinator provides
an abstract sequential functional specification in Haskell. We use Haskell as a
specification language for two reasons. First, the core of Haskell has strong formal
foundations in λ-calculus. Second, program evaluation in Haskell, like in Scala,
is lazy, which admits faithful modeling of Spark aggregation. Through the use
of Haskell we obtain a concise formal functional model for Spark combinators
without formalizing Scala.



An Executable Sequential Specification for Spark Aggregation 423

An important goal of our specification is to make non-determinism in various
combinators explicit. Spark developers can inspect it to identify sources of non-
determinism when program executions yield unexpected outputs. Researchers
can also use it to understand distributed Spark aggregation and investigate its
computational pattern. Our specification is also executable. A programmer can
use the Haskell APIs to implement data-parallel programs, test them on dif-
ferent input RDDs, and verify correctness of outputs independent of the Spark
programming environment. In our case studies, we capture non-deterministic
behaviors of real Spark programs by executing the corresponding PureSpark
specifications with crafted input data sets. We also show that the sequential
specification is useful in developing distributed Spark programs.

Our main contributions are summarized below:

– We present formal, functional, sequential specifications for key Spark aggre-
gate combinators. The PureSpark specification consists of executable library
APIs. It can assist Spark program development by mimicking data-parallel
programming in conventional environments.

– Based on the specification, we investigate and identify necessary and sufficient
conditions for Spark aggregate combinators to produce deterministic outcomes
for general and pair RDDs.

– Our specification allows to deduce the precise condition for deterministic out-
comes from Spark aggregation.

– We perform a series of case studies on practical Spark programs to validate our
formalization. With PureSpark, we find instances of numerical instability in
the Spark machine learning library.

– Up to our knowledge, this is the first work to provide a formal, functional spec-
ification of key Spark aggregate combinators for data-parallel computation.

2 Preliminaries

Let A be a non-empty set and � : A × A → A be a function. An element i ∈ A
is the identity of � if for every a ∈ A, it holds that a = i � a = a � i. The
function � is associative if for every a, a′, a′′ ∈ A, a � (a′ � a′′) = (a � a′) � a′′;
� is commutative if for every a, a′ ∈ A, a � a′ = a′ � a. The algebraic structure
(A,�) is a semigroup if � is associative. A monoid is a structure (A,�,⊥) such
that (A,�) is a semigroup and ⊥ ∈ A is the identity of �. The semigroup (A,�)
and monoid (A,�,⊥) are commutative if � is commutative.

Haskell is a strongly typed purely functional programming language. Simi-
lar to Scala, Haskell programs are lazily evaluated. We use several widely used
Haskell functions (Fig. 1). fst and snd are projections on pairs. null tests whether
a list is empty. elem is the membership function for lists; its infix notation is
often used, as in 0 ‘elem‘ []. (++) concatenates two lists; it is used as an infix
operator, as in [False] ++ [True]. map applies a function to elements of a list.
reducel merges elements of a list by a given binary function from left to right.
foldl accumulates by applying a function to elements of a list iteratively, also



424 Y.-F. Chen et al.

Fig. 1. Basic functions

from left to right. concat concatenates elements in a list. concatMap applies
a function to elements of a list and concatenates the results. lookup finds the
value of a key in a list of pairs. filter selects elements from a list by a predicate.

In order to formalize non-determinism in distributed aggregation, we define
the following non-deterministic shuffle function for lists:

shuffle! :: [α] → [α]
shuffle! xs = ... −− shuffle xs randomly

A random monad can be used to define random shuffling. Instead of explicit
monadic notation, we introduce the chaotic shuffle! function in our presentation
for the sake of brevity. Thus, shuffle! [0, 1, 2] evaluates to one of the six possible
lists [0, 1, 2], [0, 2, 1], [1, 0, 2] [1, 2, 0], [2, 0, 1], or [2, 1, 0] randomly. Using shuffle!,
more chaotic functions are defined.
map! :: (α → β) → [α] → [β]
map! f xs = shuffle! (map f xs)

concatMap! :: (α → [β]) → [α] → [β]
concatMap! f xs = concat (map! f xs)

Chaotic map! shuffles the result of map randomly, concatMap! concate-
nates the shuffled result of map. For instance, map! even [0, 1] evaluates
to [False,True] or [True,False]; concatMap! fact[2, 3] evaluates to [1, 2, 1, 3] or
[1, 3, 1, 2] where fact computes a sorted list of factors (note that the two sub-
sequences [1,2] and [1,3] are kept intact).



An Executable Sequential Specification for Spark Aggregation 425

repartition! :: [α] → [[α]]
repartition! xs = let ys = shuffle! xs ...

in yss −− ys == concat yss

The function repartition! shuffles a given list and partitions the shuffled list into
several non-empty lists. For instance, repartition! [0, 1] results in [[0], [1]], [[1],

[0]], [[0, 1]], or [[1, 0]]. The chaotic function can be implemented by a random
monad easily; its precise definition is omitted here.

3 Spark Aggregation

Resilient Distributed Datasets (RDDs) are the basic data abstraction in Spark.
An RDD is a collection of partitions of immutable data; data in different parti-
tions can be processed concurrently. We formalize partitions by lists, and RDDs
by lists of partitions.

type Partition α = [α] type RDD α = [Partition α]

The Spark aggregate combinator computes sub-results of every partitions in
an RDD, and returns the aggregated result by combining sub-results.
aggregate :: β → (β → α → β) → (β → β → β) → RDD α → β
aggregate z seq comb rdd = let presults = map! (foldl seq z) rdd

in foldl comb z presults

More concretely, let z be a default aggregated value. aggregate applies foldl seq
z to every partition of rdd. Hence the sub-result of each partition is accumulated
by folding elements in the partition with seq. The combinator then combines
sub-results by another folding using comb.

Note that the chaotic map! function is used to model non-deterministic inter-
leavings of sub-results. To exploit concurrency, Spark creates a task to compute
the sub-result for each partition. These tasks are executed concurrently and
hence induce non-deterministic computation. We use the chaotic map! function
to designate non-determinism explicitly.

A related combinator is reduce. Instead of foldl, the combinator uses reducel
to aggregate data in an RDD.
reduce :: (α → α → α) → RDD α → α
reduce comb rdd = let presults = map! (reducel comb) rdd

in reducel comb presults

Similar to the aggregate combinator, reduce computes sub-results concurrently.
The chaotic map! function is again used to model non-deterministic computa-
tion.

Sub-results of different partitions are computed in parallel, but the aggre-
gate combinator still combines sub-results sequentially. This can be further par-
allelized. Observe that several sub-results may be available simultaneously from
distributed computation. The Spark treeAggregate combinator applies comb to
pairs of sub-results concurrently until the final result is obtained. In addition to
concurrent computation of sub-results, treeAggregate also combines sub-results
from different partitions in parallel.



426 Y.-F. Chen et al.

In our specification, two chaotic functions are used to model non-
deterministic computation on two different levels. The map! function models
non-determinism in computing sub-results of partitions. The apply! function
(introduced below) models concurrent combination of sub-results from differ-
ent partitions. It combines two consecutive sub-results picked chaotically, and
repeats such chaotic combinations until the final result is obtained. Observe
that the computation has a binary-tree structure with comb as internal nodes
and sub-results from different partitions as leaves.
apply! :: (β → β → β) → [β] → β
apply! comb [r] = r
apply! comb [r, r’] = comb r r’
apply! comb rs = let (ls’, l’, r’, rs’) = ... −− rs == ls’ ++ [l’, r’] ++ rs’

in apply! comb (ls’ ++ [comb l’ r’] ++ rs’)

treeAggregate:: β → (β→α→β) → (β→β→β) → RDD α → β
treeAggregate z seq comb rdd = let presults = map! (foldl seq z) rdd

in apply! comb presults

The treeReduce combinator optimizes reduce by combining sub-results in
parallel. Similar to treeAggregate, two levels of non-deterministic computation
can occur.
treeReduce :: (α → α → α) → RDD α → α
treeReduce comb rdd = let presults = map! (reducel comb) rdd

in apply! comb presults

Pair RDDs. Key-value pairs are widely used in data parallel computation. If
the data type of an RDD is a pair, we say that the RDD is a pair RDD. The
first and second elements in a pair are called the key and the value of the pair
respectively.
type PairRDD α β = RDD (α, β)

In a pair RDD, different pairs can have the same key. Spark provides combi-
nators to aggregate values associated with the same key. The aggregateByKey
combinator returns an RDD by aggregating values associated with the same key.
We use the following functions to formalize aggregateByKey:

hasKey :: α → Partition (α, β) → Bool
hasKey k ps = case (lookup k ps) of

Just → True
Nothing → False

hasValue :: α → β → Partition (α, β) → β
hasValue k val ps = case (lookup k ps) of

Just v → v
Nothing → val

addTo :: α → β → Partition (α, β) → Partition (α, β)
addTo key val ps = foldl (λr (k, v) → if key == k then r else (k, v):r) [(key, val)] ps

The expression hasKey k ps checks if key appears in a partition of pairs. hasValue
k val ps finds a value associated with key in a partition of pairs. It evaluates to the
default value val if key does not appear in the partition. The expression addTo
key val ps adds the pair (key, val) to the partition ps, and removes other pairs with
the same key.



An Executable Sequential Specification for Spark Aggregation 427

The aggregateByKey combinator first aggregates all pairs with the value z

and the function mergeComb in each partition. If values vs are associated with
the same key in a partition, the value foldl mergeComb z vs for the key is pre-
aggregated. Since a key may appear in several partitions, all pre-aggregated
values associated with the key across different partitions are merged using
mergeValue.

aggregateByKey :: γ → (γ → β → γ) → (γ → γ → γ) → PairRDD α β → PairRDD α γ
aggregateByKey z mergeComb mergeValue pairRdd =

let mergeBy fun left (k, v) = addTo k (fun (hasValue k z left) v) left
preAgg = concatMap! (foldl (mergeBy mergeComb) []) pairRdd

in repartition! (foldl (mergeBy mergeValue) [] preAgg)

In the specification, we accumulate values associated with the same key by merge-

Comb in each partition, keeping a list of pairs of a key and the partially aggregated
value for the key. Since accumulation in different partitions runs in parallel, the
chaotic concatMap! function is used to model such non-deterministic compu-
tation. After all partitions finish their accumulation, mergeValue merges values
associated with the same key across different partitions. The final pair RDD can
have a default or user-defined partitioning. Since a user-defined partitioning may
shuffle a pair RDD arbitrarily, it is in our specification modeled by the chaotic
repartition! function.

Pair RDDs have a combinator corresponding to reduce called reduceByKey.
reduceByKey merges all values associated with a key by mergeValue, following
a similar computational pattern as aggregateByKey. Note that every key is
associated with at most one value in resultant pair RDDs of aggregateByKey
or reduceByKey.
reduceByKey :: (β → β → β) → PairRDD α β → PairRDD α β
reduceByKey mergeValue pairRdd =

let merge left (k, v) = case lookup k left of Just v’ → addTo k (mergeValue v’ v) left
Nothing → addTo k v left

preAgg = concatMap! (foldl merge []) pairRdd
in repartition! (foldl merge [] preAgg)

Spark also provides a library, called GraphX, for a distributed analysis of graphs.
See [12] for a formalization of some of its key functions.

4 Deterministic Aggregation

Having deterministic outcomes is desired from all aggregation functions. If
a function may return different values on different executions, the function is
often not implemented correctly. A program with explicit assumptions on the
input data is also desirable. Otherwise, the program may work correctly on
certain data sets but produce unexpected outcomes on others where implicit
assumptions do not hold [27]. We now investigate conditions under which Spark
aggregation combinators always produce deterministic outcomes. Proofs of the
given lemmas can be found in [12]. Proofs of some crucial lemmas have also been
formalized using Agda [4].



428 Y.-F. Chen et al.

We first show how to deal with non-deterministic behaviors in the aggregate
combinator. Consider a variant of the formalization of aggregate from Sect. 3:
aggregate’::β → (β → α → β) → (β → β → β) → RDD α → β
aggregate’ z seq comb rdd = let presults = perm (map (foldl seq z) rdd)

in foldl comb z presults

Observe that we changed the application of the chaotic map! function with an
application of the permutation perm after the regular map function. The function
composition perm(map ...) is a concrete instantiation of map!, that is, a function
that permutes its list argument. Notice that perm can be pushed inside map:

perm (map f xs) == map f (perm xs).

Assume that rdd was obtained from a list xs by splitting and permuting, that is,
rdd == perm’ (split xs) where split :: [α] → [[α]] satisfies xs == (concat . split) xs.
We can therefore rewrite the computation of presults in aggregate’ to
let pres = perm (map (foldl seq z) (perm’ (split xs))),

After pushing perm inside map, we obtain
let pres = map (foldl seq z) ((perm . perm’) (split xs)).

Since perm . perm’ is also a permutation perm”, we have
let pres = map (foldl seq z) rdd’

where rdd’ is another RDD obtained from xs by splitting and shuffling. Let us
call (deterministic) instances of repartition! as partitionings. As a consequence,
we focus only on proving if calls to aggregateD defined below have deterministic
outcomes for different partitionings of a list into RDDs:
aggregateD:: β → (β → α → β) → (β → β → β) → RDD α → β

aggregateD z seq comb rdd = let pres = map (foldl seq z) rdd
in foldl comb z pres

Moreover, we define deterministic versions of reduce

reduceD :: (α → α → α) → RDD α → α

reduceD comb rdd = let presults = perm (map (reducel comb) rdd)
in reducel comb presults

and also treeAggregateD and treeReduceD in a similar way.
In the following, given a function f that takes an RDD as one of its parameters

and contains a single occurrence of the chaotic map! (respectively concatMap!)
function, we use fD to denote the function obtained from f by replacing the
chaotic map! (respectively concatMap!) with a regular map (respectively con-
catMap). A similar reasoning can show that it suffices to check whether calls to
fD have deterministic outcomes for different partitionings on a list into RDDs.

For better readability, standard mathematical notation of functions is used
in the rest of this section. We represent a Haskell function application f x1 . . .
xn as f(x1, . . . , xn).



An Executable Sequential Specification for Spark Aggregation 429

4.1 aggregate

In this section, we give conditions for deterministic outcomes of calls to the
aggregate combinator aggregate(z, seq ,⊕, rdd) for z ::β, seq ::β×α → β, ⊕ ::β×
β → β, and rdd ::RDD α. We first define what it means for calls to the aggregate

combinator to have deterministic outcomes.
Definition 1. Calls to aggregate(z, seq ,⊕, rdd) have deterministic outcomes if

aggregateD(z, seq ,⊕, part(L)) = foldl(seq , z, L) (1)

for all lists L and partitionings part.

Conventionally, aggregate is regarded as a parallelized counterpart of foldl.
For example, the sequential aggregate function in the standard Scala library
ignores the ⊕ operator and is implemented by foldl. This is why we characterize
deterministic aggregate as foldl in Definition 1. Our characterization, however,
does not cover all aggregate calls that always give the same outputs. In particular,
it does not cover an aggregate call where ⊕ is a constant function, which is,
however, quite suspicious in a distributed data-parallel computation and should
be reported.

We give necessary and sufficient conditions for aggregate calls to have
deterministic outcomes in several lemmas, culminating in Corollary 1. The
first lemma allows us to check only conditions on seq and ⊕ over all pos-
sible pairs of lists instead of enumerating all possible partitionings on lists.
For brevity, we use 〈p1〉 for foldl(seq , z, p1), and img()foldl(seq , z) for the
image of foldl(seq , z, L) for any list L. That is, img(foldl(seq , z)) = {y |
there is a list L such that foldl(seq , z, L) = y}.

Lemma 1. Calls to aggregate(z, seq ,⊕, rdd) have deterministic outcomes iff:
1. (img(foldl(seq , z)),⊕, z) is a commutative monoid, and
2. for all lists p1, p2 :: [α], 〈p1 ++ p2〉 = 〈p1〉 ⊕ 〈p2〉.

Note that condition 2 in Lemma 1 is equivalent to saying that 〈·〉 is a list
homomorphism to the monoid (img(foldl(seq , z)),⊕, z) [6].

The lemma below further helps us reduce the need of testing conditions over
all possible pairs of lists to conditions over elements of α × img(foldl(seq , z)).

Lemma 2. Let ⊕ be associative on γ = img(foldl(seq , z)) and z be the identity
of ⊕ on γ. The following are equivalent:

1. for all lists p1, p2 :: [α],
〈p1 ++ p2〉 = 〈p1〉 ⊕ 〈p2〉, (2)

2. for all elements d ::α and e :: γ,

seq(e, d) = e ⊕ seq(z, d). (3)

Summarizing the lemmas, we get the following corollary:

Corollary 1. Calls to aggregate(z, seq ,⊕, rdd) have deterministic outcomes iff
1. (img(foldl(seq , z)),⊕, z) is a commutative monoid and
2. for all d ::α and e :: img(foldl(seq , z)), it holds that seq(e, d) = e ⊕ seq(z, d).



430 Y.-F. Chen et al.

4.2 reduce

This section explores conditions for deterministic outcomes of calls to
reduce(⊕, rdd) for ⊕ ::α×α → α and rdd ::RDD α. We use the function reduceD

defined in the introduction of Sect. 4. For reduce, we assume that for any non-
empty list, all partitions of its partitioning are non-empty (otherwise the result
of reduce is undefined).

We define deterministic outcomes for reduce as follows.

Definition 2. Calls to reduce(⊕, rdd) have deterministic outcomes if

reduceD(⊕, part(L)) = reducel(⊕, L) (4)

for all lists L and partitionings part.

We reduce the problem of checking if reduce has deterministic outcomes to
the problem of checking if aggregate has deterministic outcomes by the following
lemma.
Lemma 3. Calls to reduce(⊕, rdd) have deterministic outcomes iff calls to
aggregate(Nothing, seq ′,⊕′, rdd) have deterministic outcomes, where seq ′ and
⊕′ are as follows:

seq’ x y = case x of
Nothing → Just y
Just x’ → Just (x’ ⊕ y)

(⊕’) x y = case (x, y) of (Nothing, y’) → y’
(x’, Nothing) → x’
(Just x’, Just y’) → Just (x’ ⊕ y’) .

Combining Corollary 1 and Lemma 3, we get the condition for deterministic
outcomes of reduce(⊕, rdd) calls.

Corollary 2. Calls to reduce(⊕, rdd) have deterministic outcomes iff (α,⊕) is
a commutative semigroup.

4.3 treeAggregate and treeReduce

This section gives conditions for deterministic outcomes of calls to the following
two aggregate combinators:

1. treeAggregate(z, seq ,⊕, rdd) for z ::β, seq ::β × α → β, ⊕ ::β × β → β, and
rdd ::RDD α; and

2. treeReduce(⊕, rdd) for ⊕ ::α × α → α, rdd ::RDD α.

Different from aggregate and reduce, the tree variants have another level of
non-determinism modeled by apply!. The chaotic function effectively simulates
non-deterministic computation with a binary-tree structure (Sect. 3).

To define calls to treeAggregate and treeReduce to have deterministic out-
comes, we use the functions treeAggregateT and treeReduceT obtained by
adding an explicit deterministic instantiation of apply! to treeAggregateD and
treeReduceD.



An Executable Sequential Specification for Spark Aggregation 431

Definition 3. Calls to treeAggregate(z, seq ,⊕, rdd) and treeReduce(⊕, rdd)
have deterministic outcomes if

treeAggregateT(apply , z, seq ,⊕, part(L)) = foldl(seq , z, L) (5)

and
treeReduceT(apply ,⊕, part(L)) = reducel(⊕, L) (6)

respectively for all lists L, partitionings part, and instantiations apply of apply !.

The following two propositions state necessary and sufficient conditions for
the treeAggregate and treeReduce combinators to have deterministic outcomes.

Proposition 1. Calls to treeAggregate(z, seq ,⊕, rdd) have deterministic out-
comes iff calls to aggregate(z, seq ,⊕, rdd) have deterministic outcomes.

Proposition 2. Calls to treeReduce(⊕, rdd) have deterministic outcomes iff
calls to reduce(⊕, rdd) have deterministic outcomes.

4.4 aggregateByKey and reduceByKey

We proceed by investigating conditions for the following combinators on pair
RDDs:

1. aggregateByKey(z, seq ,⊕, prdd) for z :: γ, seq :: γ ×β → γ, ⊕ :: γ × γ → γ, and
prdd ::PairRDD α β; and

2. reduceByKey(⊕, prdd) for ⊕ ::β × β → β and prdd ::PairRDD α β.

We define an auxiliary function filterkey that obtains a list of all values associated
with the given key from a list of pairs.
filterkey :: α → [(α, β)] → [β]
filterkey [] = []
filterkey k (k, v):xs = v:(filterkey k xs)
filterkey k ( , ):xs = filterkey k xs

Deterministic outcomes of calls to aggregateByKey are now defined using the
function aggregateByKeyD as follows.

Definition 4. Calls to aggregateByKey(z, seq ,⊕, prdd) have deterministic
outcomes if

lookup(k, aggregateByKeyD(z, seq ,⊕, part(L))) = foldl(z, seq ,filterkey(k, L))

for all lists L of pairs, partitionings part, and keys k.

Finally, the following proposition states the conditions that need to hold for
calls to aggregateByKey to have deterministic outcomes.

Proposition 3. Calls to aggregateByKey(z, seq ,⊕, prdd) have deterministic
outcomes iff calls to aggregate(z, seq ,⊕, rdd) have deterministic outcomes.



432 Y.-F. Chen et al.

We define when calls to reduceByKey have deterministic outcomes via
reduceByKeyD.

Definition 5. Calls to reduceByKey(⊕, prdd) have deterministic outcomes if

lookup(k, reduceByKeyD(⊕, part(L))) = reducel(⊕,filterkey(k, L))

for all list L of pairs, partitioning part, and key k.

Proposition 4. Calls to reduceByKey(⊕, prdd) have deterministic outcomes
iff calls to reduce(⊕, rdd) have deterministic outcomes.

4.5 Discussion

Our conditions for deterministic outcomes are more general than it appears.
In addition to scalar data, such as integers, they are also applicable to RDDs
containing non-scalar data, such as lists or sets. In our extended set of case
studies, we will prove deterministic outcomes from a distributed Spark program
using non-scalar data [12].

Corollary 1 gives necessary and sufficient conditions for calls to aggregate to
have deterministic outcomes. Instead of checking whether aggregate computes
the same result on all possible partitionings on any list for given z, seq , and
comb, the corollary, instead, allows us to investigate properties for all elements
of img(foldl(seq , z)) × img(foldl(seq , z)) and α × img(foldl(seq , z)). Our precise
conditions reduce the need of checking all partitionings to checking all elements
of Cartesian products. It appears that deterministic outcomes from calls to com-
binators can be verified automatically. The problem, however, remains difficult
for the following reasons:

(a) The domain img(foldl(seq , z)) can be infinite and in general not computable.
(b) Even if α and img(foldl(seq , z)) are computable, seq and ⊕ may not be

computable. Näıvely enumerating elements in α and img(foldl(seq , z)) would
not work.

(c) Testing equality between elements of img(foldl(seq , z)) can be undecidable.

Given seq ::β × α → β, recall that img(foldl(seq , z)) is a subset of β. A sound
but incomplete way to avoid (a) in practice is to test the properties of ⊕ on all
elements of β instead. If a counterexample is found for some elements of β, the
counterexample may not be valid in a real aggregate call because it may not
belong to img(foldl(seq , z)). In practical cases, the sets α and β are finite (such as
machine integers) and equality between their elements is decidable. Even for such
cases, checking if outcomes of aggregate are deterministic is still difficult since
seq and ⊕ might not terminate for some input. In many real Spark programs,
however, seq and ⊕ are very simple and thus computable (for instance, with only
bounded loops or recursion). A semi-procedure to test these conditions might
work on such practical examples.



An Executable Sequential Specification for Spark Aggregation 433

5 Case Studies

We evaluated advantages of our PureSpark specification on several case stud-
ies. In this section, we first analyze a Spark implementation of linear classifica-
tion. Using the treeAggregate specification and its criteria for deterministic out-
comes, we construct inputs yielding non-deterministic outcomes from the Spark
implementation. Second, we analyze an implementation of a standard scaler and
find a non-deterministic behavior there, too. Yet more case studies are provided
in [12].

5.1 Linear Classification

Linear classification is a well-known machine learning technique to classify data
sets. Fix a set of features. A data point is a vector of numerical feature values. A
labeled data point is a data point with a discrete label. Given a labeled data set,
the classification problem is to classify (new) unlabeled data points by the labeled
data set. A particularly useful subproblem is the binary classification problem.
Consider, for instance, a data set of vital signs of some population; each data
point is labeled by the diagnosis of a disease (positive or negative). The binary
classification problem can be used to predict whether a person has the particular
disease. Linear classification solves the binary classification problem by finding
an optimal hyperplane to divide the labeled data points. After a hyperplane is
obtained, linear classification predicts an unlabeled data point by the half-space
containing the point. Logistic regression and linear Support Vector Machines
(SVMs) are linear classification algorithms.

Consider a data set {(�xi, yi) : 1 ≤ i ≤ n} of data points �xi ∈ R
d labeled by

yi ∈ {0, 1}. Linear classification can be expressed as a numerical optimization
problem:

min
�w∈Rd

f(�w) with f(�w) = ξR(�w) +
1
n

n∑

i=1

L(�w; �xi, yi)

where ξ ≥ 0 is a regularization parameter, R(�w) is a regularizer, and L(�w; �xi, yi)
is a loss function. A vector �w corresponds to a hyperplane in the data point
space. The vector �wopt attaining the optimum hence classifies unlabeled data
points with criteria defined by the objective function f(�w). Logistic regression
and linear SVM are but two instances of the optimization problem with objective
functions defined by different regularizers and loss functions.

In the Spark machine learning library, the numerical optimization problem
is solved by gradient descent. Very roughly, gradient descent finds a local min-
imum of f(�w) by “walking” in the opposite direction of the gradient of f(�w).
The mean of subgradients at data points is needed to compute the gradient of
f(�w). The Spark machine learning library invokes treeAggregate to compute
the mean. Floating-point addition is used as the comb parameter of the aggre-
gate combinator. Since floating-point addition is not associative, we expect to
observe non-deterministic outcomes (Proposition 1).



434 Y.-F. Chen et al.

Consider the following three labeled data points: −1020 labeled with 1, 600
labeled with 0, and 1020 labeled with 1. We create a 20-partition RDD with
an equal number of the three labeled data points. The Spark machine learn-
ing library function LogisticRegressionWithSGD.train is used to generate a logistic
regression model to predict the data points −1020, 600, and 1020 in each run.
Among 49 runs, 19 of them classify the three data points into two different
classes: the two positive data points are always classified in the same class, while
the negative data point in the other. The other 30 runs, however, classify all three
data points into the same class. We observe similar predictions from SVMWith-

SGD.train with the same labeled data points. 37 out of 46 runs classify the data
points into two different classes; the other 9 runs classify them into one class.
Interestingly, the data points are always classified into two different classes by
both logistic regression and linear SVM when the input RDD has only three
partitions. As we expected from our analysis of the function, non-deterministic
outcomes were witnessed in our Spark distributed environment.

5.2 Standard Scaler
Standardization of data sets is a common pre-processing step in machine learn-
ing. Many machine learning algorithms tend to perform better when the training
set is similar to the standard normal distribution. In the Spark machine learn-
ing library, the class StandardScaler is provided to standardize data sets. The
function StandardScaler.fit takes an RDD of raw data and returns an instance of
StandardScalerModel to transform data points. Two transformations are available
in StandardScalerModel. One standardizes a data point by mean, and the other
normalizes by variance of raw data. If data points in raw data are transformed by
mean, the transformed data points have the mean equal to 0. Similarly, if they
are transformed by variance, the transformed data points have the variance 1.

The StandardScaler implementation uses treeAggregate to compute statis-
tical information. It uses floating-point addition to combine means of raw
data in different partitions. As in the previous use case, since floating-point
addition is not associative, StandardScaler does not produce deterministic out-
comes (Sect. 4.3). In our experiment, we create a 100-partition RDD with values
−1020, 600, 1020 of the same number of occurrences. The mean of the data set is
(−1020×n+600×n+1020×n)/(3n) = 200 where n is the number of occurrences
of each value. The data point 200 should therefore be after standardization trans-
formed to 0. In 50 runs on the same data set in our distributed Spark platform,
StandardScaler transforms 200 to a range of values from −944 to 1142, validating
our prediction of a non-deterministic outcome.

6 Related Work

MapReduce modeling and optimization. In the MapReduce (MR) compu-
tation, various cost and performance models have been proposed [16,18,25,31].
These models estimate the execution time and resource requirements of MR jobs.
Karloff et al. developed a formal computation model for MR [21] and showed



An Executable Sequential Specification for Spark Aggregation 435

how a variety of algorithms can exploit the combination of sequential and par-
allel computation in MR. We are not aware of a similar work in the context of
Spark. To the best of our knowledge, our work is the first to address the problem
of formal, functional specification of Spark aggregation. Verifying the correct-
ness of a MR program involves checking the commutativity and associativity of
the reduce function. Xu et al. propose various semantic criteria to model com-
monly held assumptions on MR programs [28], including determinism, partition
isolation, commutativity, and associativity of map/reduce combinators. Their
empirical survey shows that these criteria are often overlooked by programmers
and violated in practice. A recent survey [27] has found that a large number of
industrial MR programs are, in fact, non-commutative. Recent work has pro-
posed techniques for checking commutativity of bounded reducers automati-
cally [13]. Because it is non-trivial to implement high-level algorithms using the
MR framework, various approaches to compute optimized MR implementations
have been proposed [17,23,24]. Emoto et al. [17] formalize the algebraic con-
ditions using semiring homomorphism, under which an efficient program based
on the generate-test-aggregate programming model can be specified in the MR
framework. Given a monolithic reduce function, the work in [23] tries to decom-
pose reduce into partial aggregation functions (similar to seq and comb in this
paper) using program inversion techniques. Mold [24] translates imperative Java
code into MR code by transforming imperative loops into fold combinators using
semantic-preserving program rewrite rules.

Numerical Stability under MapReduce. Several works try to scale up
machine learning algorithms for large datasets using MapReduce [14,25]. To
achieve numerically stable results across multiple runs [5,26], for example, pre-
venting overflow, underflow and round-off errors due to finite-precision arith-
metic, a variety of techniques are proposed [26]: generalizing sequential numeri-
cal stability techniques to distributed settings, shifting data values by constants,
divide-and-conquer, etc. We showed that simulating machine learning algorithms
using our specification enables early detection of points of numerical instability.

Relational Query Optimization. Relational query optimization is an exten-
sively researched topic [11,20]: the goal is to obtain equivalent but more efficient
query expressions by exploiting the algebraic properties of the constituent oper-
ators, for instance, join, select, together with statistics on relations and indices.
For example, while inner joins commute independent of data, left joins commute
only in specific cases. Query optimization for partitioned tables has received less
attention [2,19]: because the key relational operators are not partition-aware,
most work has focused on necessary but not sufficient conditions for query equiv-
alence. In contrast, we investigate determinism of Spark aggregate expressions,
constructed using partition-aware seq and comb combinators. We describe neces-
sary and sufficient conditions under which these computations yield deterministic
results independent of the data partitions.

Deterministic Parallel Programming. In order to enable deterministic-
by-default parallel programming [7–10,22], researchers have developed several



436 Y.-F. Chen et al.

programming abstractions and logical specification languages to ensure that
programs produce the same output for the same input independent of thread
scheduling. For example, Deterministic Parallel Java [7,8] ensures exclusive
writes to shared memory regions by means of verified, user-provided annotations
over memory regions. In contrast, deterministic outcomes from Spark aggrega-
tion depend on algebraic properties like commutativity and associativity of seq
and comb functions and their interplay.

7 Conclusion

In this paper, we give a Haskell specification for various Spark aggregate com-
binators. We focus on aggregation of RDDs representing general sets, sets of
pairs, and graphs. Based on our specification, we derive necessary and sufficient
conditions that guarantee deterministic outcomes of the considered Spark aggre-
gate combinators. We investigate several case studies and use the conditions to
predict non-deterministic outcomes. Our executable specification can be used
by developers for more detailed analysis and efficient development of distributed
Spark programs. We also believe that our specifications are valuable resources
for research communities to understand Spark better.

There are several future directions. The conditions for deterministic out-
comes of aggregate combinators could be used for: (i) creating fully mechanized
proofs for properties about data-parallel programs; (ii) developing automatic
techniques for detecting non-deterministic outcomes of data-parallel programs;
and (iii) synthesizing deterministic concurrent programs from sequential specifi-
cations. We have formalized the proofs of some crucial lemmas in Agda [4]. Using
Scalaz [3], verified Haskell specifications can be translated to Spark programs to
ensure determinism by construction.

Acknowledgement. This work was supported by the Czech Science Foundation
(project 17-12465S), the BUT FIT project FIT-S-17-4014, the IT4IXS: IT4Innovations
Excellence in Science project (LQ1602), and Ministry of Science and Technology,
R.O.C. (MOST projects 103-2221-E-001-019-MY3 and 103-2221-E-001-020-MY3).

References

1. Apache Spark. https://github.com/apache/spark
2. IBM DB2 Version 9.7. Partitioned Tables. https://ibm.biz/BdHyYR
3. The Scalaz project. https://github.com/scalaz
4. PureSpark. https://github.com/guluchen/purespark
5. Bennett, J., Grout, R., Pebay, P., Roe, D., Thompson, D.: Numerically stable,

single-pass, parallel statistics algorithms. In: CLUSTER, pp. 1–8 (2009)
6. Bird, R.S.: An introduction to the theory of lists. In: Broy, M. (eds) Logic of Pro-

gramming and Calculi of Discrete Design. NATO ASI Series (Series F: Computer
and Systems Sciences), vol. 36, pp. 5–42. Springer, Heidelberg (1987)

7. Bocchino Jr., R.L., Adve, V.S., Dig, D., Adve, S.V., Heumann, S., Komuravelli,
R., Overbey, J., Simmons, P., Sung, H., Vakilian, M.: A type and effect system for
deterministic parallel Java. In: OOPSLA, pp. 97–116 (2009)

https://github.com/apache/spark
https://ibm.biz/BdHyYR
https://github.com/scalaz
https://github.com/guluchen/purespark


An Executable Sequential Specification for Spark Aggregation 437

8. Bocchino Jr., R.L., Heumann, S., Honarmand, N., Adve, S.V., Adve, V.S., Welc,
A., Shpeisman, T.: Safe nondeterminism in a deterministic-by-default parallel lan-
guage. SIGPLAN Not. 46(1), 535–548 (2011)

9. Budimlic, Z., Burke, M.G., Cavé, V., Knobe, K., Lowney, G., Newton, R., Palsberg,
J., Peixotto, D.M., Sarkar, V., Schlimbach, F., Tasirlar, S.: Concurrent collections.
Sci. Program. 18(3–4), 203–217 (2010)

10. Burnim, J., Sen, K.: Asserting and checking determinism for multithreaded pro-
grams. Commun. ACM 53(6), 97–105 (2010)

11. Chaudhuri, S.: An overview of query optimization in relational systems. In: PODS
1998 (1998)

12. Chen, Y., Hong, C., Lengál, O., Mu, S., Sinha, N., Wang, B.: An executable sequen-
tial specification for Spark aggregation arXiv:1702.02439 [cs.DC] (2017)

13. Chen, Y.-F., Hong, C.-D., Sinha, N., Wang, B.-Y.: Commutativity of reducers. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 131–146. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46681-0 9

14. Chu, C., Kim, S.K., Lin, Y., Yu, Y., Bradski, G.R., Ng, A.Y., Olukotun, K.: Map-
Reduce for machine learning on multicore. In: NIPS, pp. 281–288 (2006)

15. Dean, J., Ghemawat, S.: MapReduce: a flexible data processing tool. Commun.
ACM 53(1), 72–77 (2010)

16. Dörre, J., Apel, S., Lengauer, C.: Modeling and optimizing MapReduce programs.
Concurrency Comput. Pract. Experience 27(7), 1734–1766 (2015)

17. Emoto, K., Fischer, S., Hu, Z.: Generate, test, and aggregate. In: Seidl, H. (ed.)
ESOP 2012. LNCS, vol. 7211, pp. 254–273. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-28869-2 13

18. Herodotou, H., Babu, S.: Profiling, what-if analysis, and cost-based optimization
of MapReduce programs. Proc. VLDB Endowment 4(11), 1111–1122 (2011)

19. Herodotou, H., Borisov, N., Babu, S.: Query optimization techniques for parti-
tioned tables. In: SIGMOD 2011, pp. 49–60 (2011)

20. Ioannidis, Y.E.: Query optimization. ACM Comput. Surv. 28(1), 121–123 (1996)
21. Karloff, H., Suri, S., Vassilvitskii, S.: A model of computation for MapReduce. In:

SODA, pp. 938–948 (2010)
22. Leijen, D., Fähndrich, M., Burckhardt, S.: Prettier concurrency: Purely functional

concurrent revisions. In: Haskell, pp. 83–94 (2011)
23. Liu, C., Zhang, J., Zhou, H., McDirmid, S., Guo, Z., Moscibroda, T.: Automating

distributed partial aggregation. In: SoCC, pp. 1:1–1:12 (2014)
24. Radoi, C., Fink, S.J., Rabbah, R.M., Sridharan, M.: Translating imperative code

to MapReduce. In: OOPSLA, pp. 909–927 (2014)
25. Sakr, S., Liu, A., Fayoumi, A.G.: The family of MapReduce and large-scale data

processing systems. ACM Comput. Surv. 46(1), 11:1–11:44 (2013)
26. Tian, Y., Tatikonda, S., Reinwald, B.: Scalable and numerically stable descriptive

statistics in SystemML. In: ICDE, pp. 1351–1359 (2012)
27. Xiao, T., Zhang, J., Zhou, H., Guo, Z., McDirmid, S., Lin, W., Chen, W., Zhou, L.:

Nondeterminism in MapReduce considered harmful? an empirical study on non-
commutative aggregators in MapReduce programs. In: Companion Proceedings of
ICSE, pp. 44–53 (2014)

28. Xu, Z., Hirzel, M., Rothermel, G.: Semantic characterization of MapReduce work-
loads. In: IISWC, pp. 87–97 (2013)

29. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstrac-
tion for in-memory cluster computing. In: NSDI, pp. 15–28 (2012)

http://arxiv.org/abs/1702.02439
http://dx.doi.org/10.1007/978-3-662-46681-0_9
http://dx.doi.org/10.1007/978-3-642-28869-2_13
http://dx.doi.org/10.1007/978-3-642-28869-2_13


438 Y.-F. Chen et al.

30. Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X.,
Rosen, J., Venkataraman, S., Franklin, M.J., Ghodsi, A., Gonzalez, J., Shenker, S.,
Stoica, I.: Apache spark: a unified engine for big data processing. Commun. ACM
59(11), 56–65 (2016)

31. Zhang, Z., Cherkasova, L., Verma, A., Loo, B.T.: Performance modeling and opti-
mization of deadline-driven Pig programs. ACM Trans. Auton. Adapt. Syst. 8(3),
14:1–14:28 (2013)


	An Executable Sequential Specification for Spark Aggregation
	1 Introduction
	2 Preliminaries
	3 Spark Aggregation
	4 Deterministic Aggregation
	4.1 aggregate
	4.2 reduce
	4.3 treeAggregate and treeReduce
	4.4 aggregateByKey and reduceByKey
	4.5 Discussion

	5 Case Studies
	5.1 Linear Classification
	5.2 Standard Scaler

	6 Related Work
	7 Conclusion
	References


