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Abstract—The aim of this paper is to present a new platform
for evaluating impact of faults on electro-mechanical systems
based on SRAM-based FPGAs. Functional verification together
with the fault injector serve as a tool for the fault tolerance
evaluation. The article demonstrates the use of the verification
environment for evaluating impacts of faults in electro-mechanical
systems. Our system consists of mechanical robot and its elec-
tronic controller implemented into FPGA. The experimental
results gained from the verification process are also presented
and discussed in the paper.
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I. INTRODUCTION

Digital systems play an important role in our lives. They
are used in industry, medicine and other safety critical sectors.
Not only the loss of a huge amount of money, but also the
loss of human lives may occur in case of their failure. The
current trend is that the complexity rises, which leads to an
increased susceptibility to faults. The approach called Fault
tolerance [1] is the ability of a system to continue performing
its correct function even in the presence of unexpected faults.
There have been many fault-tolerant methodologies inclined,
among others, to Field Programmable Gate Arrays (FPGAs)
developed and new ones are under investigation [2], because
FPGAs are becoming more popular due to their flexibility and
re-configurability. The second reason why so many techniques
are inclined to FPGAs is their sensitivity to faults and ability
to be reconfigured in the case of fault occurrence. The config-
uration of FPGAs is stored as a bitstream in SRAM memory.
The problem is that FPGAs are quite sensitive to faults caused
by charged particles. This particle can induce inversion of a
bit in bitstream and this may lead to a change in its behaviour.
This event is called Single Event Upset (SEU).

It is important to evaluate these techniques. Various ap-
proaches to the evaluation of fault tolerance exist, some of
them are performed on a theoretical level, for example, a
simulation method for SEU emulation is presented in [3].
Another approach is in the use of fault injection directly to
the design implemented in FPGA. Special evaluation boards
are developed for these purposes, one is presented in [4].
The systems implemented as fault-tolerant often consist of
two parts - an electronic one and a mechanical one. The
mechanical part is controlled by its electronic controller. It
can be stated that such areas exist in which electro-mechanical
applications are implemented as fault-tolerant - aerospace and
space applications can serve as an example. We feel that for
electro-mechanical systems it must be possible to check the
reactions of the mechanical component if the functionality of
its electronic controller is corrupted.

The basic concepts of our evaluation platform were pre-
sented in [5]. Based on previous experiments we found func-
tional verification [6] as an appropriate technique for evalua-
tion impact of faults. Functional verification checks whether
a hardware system satisfies a given specification. The main
principle of functional verification is to compare the outputs
of verified circuits with those of the reference model. Different
coverage metrics are defined in order to assess that the design
has been adequately exercised. These include code coverage
which gives information about how many lines and how many
times expressions and branches are executed.

Our experimental platform (see Figure 1) is composed of
a few components running on a computer or on an FPGA
evaluation board: 1) software part of verification environment
running on computer, 2) software simulation environment
for robot simulation (Player/Stage) running on computer, 3)
robot controller implemented to FPGA, and 4) external fault
injector [7] running on a computer. The connection between
a computer and an FPGA is realized by JTAG and Ether-
net. JTAG interface is used for fault injection and FPGA
programming. The software and hardware part of verification
environment are connected through Ethernet.
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Fig. 1. The structure of the experimental platform.

The fault injector [7] which allows us to simulate real
faults in FPGA is based on the SEU generation outside of
the FPGA (in PC), so it is not targeted to a specific FPGA
board. The process of the SEU generation is divided into
four steps: 1) specifying the location of the fault injection,
2) reading the related part of the configuration bitstream, 3)
the SEU generation (i.e. the inversion of the specified bit of
the bitstream), and 4) applying the bitstream using Partial
Dynamic Reconfiguration (PDR) without stopping the FPGA.

The process of the fault impact evaluation is divided into
three phases. In the first phase, we use the simulation-based
functional verification where the VHDL description of the
electronic robot controller is verified. In this phase, testing
whether the robot controller works correctly according to
the specification is done. In this phase we acquire a set of
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verification scenarios (different mazes with different start and
goal positions) that will be used in the subsequent phase.
The second phase consists of the verification of the robot
controller implemented into FPGA with the scenarios obtained
during the previous phase and uses a previously implemented
fault injector. The analysis of the faults which corrupted the
mechanical part is the goal of the third phase. The outputs are
evaluated verification scenarios supplemented by information
about injected faults and its impact on the electronical and
mechanical part. Various strategies of fault injection may be
used in this phase (e.g. one fault for one verification run or
multiple faults in the same functional unit).

II. EXPERIMENTS AND RESULTS

The outputs of the first phase experiments are: 1) the
electronic part without bugs (robot controller), 2) the list of
the used verification scenarios, and 3) achieved coverage. We
used mazes which differ in their dimensions, we chose 7x7,
15x15 and 31x31 cells. With the growing size of the maze
the number of steps that the robot must go through increases.
Resizing the maze from 7x7 to 15x15 cells led to a slight
increase of code coverage. When increasing the size of maze
to 31x31 cells, the coverage was not changed. Such studies
show that the 15x15 cells maze is the proper size for the next
phase of fault impact evaluation process.

For the second phase experiments, fault injection is used.
No fault tolerance methodology implemented in the robot
controller for these experiments was used and the goals of
the experiment are: 1) detailed reliability analysis of the robot
controller and its functional units, and 2) demonstration that
the evaluation platform can be used for the fault tolerance eval-
uation. The function of used robot controller which consists
of various blocks is described in [8].

We have decided to perform 50 and 100 verification runs
and inject one fault into one functional unit (single fault)
during one verification run. The robot controller consists of
16 functional units which leads to 1600 evaluation runs. The
results of our experiments are shown in Figure 2. The bar
chart expresses a percentage number of faults with their impact
on the robot and its controller. Faults that cause a failure of
electronic, but do not cause any collision of mechanical part
are usually leading to the robot stop, which is more safety
situation than collision. As can be seen some anomalies in the
results of the experiments exist, some of functional units are
more prone to the faults than others, but the average number of
faults with the impact on electronic part is around 60%. This
is especially important for future applications of fault-tolerant
methodologies. A system designer obtains the information
which blocks need more attention from a reliability point of
view. The chart also shows that results ale similar for both 50
and 100 verification runs.

Fig. 2. Impact of faults on electro-mechanical system.

III. CONCLUSIONS AND FUTURE RESEARCH

In this work, we introduced a new evaluation platform
for testing fault tolerance methodologies targeted to FPGAs.
This platform is composed of several components running on
the FPGA and on the computer. The main advantage and
novelties of our platform is that we can monitor impact of
faults on the electronic part, but also on mechanical part of
the experimental electro-mechanical system. The functional
verification technique is used as the main tool for monitoring
impact of fault. We do not use classical simulation based ver-
ification environment, but the evaluated electronic component
is running on the FPGA. The performed experiments were also
briefly mentioned and described. During the second phase, the
reliability analysis was done by means of the fault injection
into the FPGA. The result is the ratio of faults that caused an
incorrect output of the electronic controller and also number
of faults that causes a collision of mechanical part.

The goal of our future work is to apply various fault
tolerance methodologies on the robot controller and evaluate
them with our evaluation platform. For example, we plan to
construct our robot controller as a fault tolerant neural network.
We will focus on testing fault tolerance methodologies targeted
to FPGAs in the context of electro-mechanical systems and
applications which is often the way of using fault-tolerant
electronic controllers. As the final result of our reserarch,
generally usable principles for testing fault tolerance properties
of electromechanical systems will be defined.
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