
HLS-based Fault Tolerance Approach for

SRAM-based FPGAs

Jakub Lojda, Jakub Podivinsky, Martin Krcma, Zdenek Kotasek

Faculty of Information Technology, Brno University of Technology

Bozetechnova 2, 612 66 Brno, Czech Republic

Email: {ilojda, ipodivinsky, ikrcma, kotasek}@fit.vutbr.cz

Abstract—This paper presents an approach to fault-tolerant
systems design and synthesis based on High-level Synthesis
(HLS). A description and evaluation of the impacts of HLS
optimization methods are shown as well. The higher reliability
is achieved through modification of input description in the C++
programming language on which the HLS synthesis tools are
based on. Our work targets SRAM-based FPGAs, which are
prone to Single Event Upsets (SEUs). For the evaluation of
impacts of HLS optimization methods we use our evaluation
platform, which allows us to test fault tolerance properties of
the Design Under Test (DUT). The evaluation platform is based
on functional verification combined with fault injection.

Keywords—High Level Synthesis, CatapultC, Fault Tolerance,
Robot Controller.

I. INTRODUCTION

The increase of chip-level integration results in a higher
risk of failure. The number of digital systems is penetrating
into areas with high demand on reliability, such as medicine,
space, industry, is growing as well. Especially in such cases,
the reliability is very important, because the consequences
of failure can result in injury or heavy financial losses. One
of the main approaches of reliability increase is so called
fault avoidance. As the name indicates, the main goal is to
completely avoid failures in the system using the means of
more reliable parts, manufacturing processes etc., which is very
challenging and expensive. Another main approach is to use
so called fault tolerance [1]. Fault tolerance accepts the fact a
fault can appear, but the goal of this approach is to keep the
system functional even in the presence of faults, techniques
based on redundancy are used for this purpose.

Our research focuses on SRAM-Based Field Pro-
grammable Gate Arrays (FPGAs). FPGAs are composed of
reconfigurable blocks and interconnection network connect-
ing them together. The configuration is saved in the SRAM
memory as a bitstream. This results in higher sensitivity of
these types of FPGAs to Single Event Upsets (SEUs), which
are caused by charged particles [2] and can be repaired using
Partial Dynamical Reconfiguration (PDR) [3]. Many methods
to eliminate the impact of SEUs on SRAM-Based FPGAs exist,
this paper presents a new one.

The presented method is based on the High Level Synthesis
(HLS) which is a set of methods transforming a digital circuit
description into its RTL representation. At the beginning a
designer of the HLS approach prepares a description of the
digital circuit. As the input description does not usually contain
any information about the timing restrictions, it is up to the

synthesis process to infer all the timing information necessary
and up to the designer to specify additional constraints. The
main decisions such as setting a level of parallel computation
of a programming loop (full or partial unrolling) or pipelining
a programming loop with an Initiation Interval (II) specified
are still up to the designer. The II expresses a time between
repeated starts of a loop. The top of the design is considered an
infinite loop. When creating the specification that will be used
with HLS, the designer has to keep in mind this fact, e.g. when
using C++ as an input description, to use special template data
types from supplied library, which allows bit width to be set.

The main idea of HLS is to automate the process of a dig-
ital circuit description transformation to the RTL description.
As today projects start with some sort of specification and
usually an executable model is created, HLS offers an error
free way to transform the specification into the RTL description
with speeding up the process of design and verification,
because the input description can be for example written in
an ANSI C or C++ [4].

There are some methods using HLS to improve the level of
fault tolerance, for example authors of [5] present an approach
to error detection of arithmetic oriented data paths, which
operates at the scheduled Control/Data Flow Graph (CDFG).
As another example, the authors of [6] use HLS to synthesize
data paths with concurrent error detection ability. Both of these
methods operate on a different level, the method proposed by
us operates on the level of the description input source code.

II. HLS-BASED FAULT TOLERANCE

Our approach is to apply modifications to the specification
as the input of HLS. The modifications should produce the re-
sulting RTL description fault-tolerant with resources consumed
taken into account. As the modifications are done on the spec-
ification level, the result benefits from the advantages of HLS
and the set of modifications itself is easier to maintain as well.
Our method is based on the modification of the C++ language.
There are three types of places the modification can be done
at the level of C++ language: data types, arithmetic and logic
operations and flow control statements. Our research focuses
on finding a method to apply the proper type of modification to
the proper instance of the corresponding type while keeping the
resources consumed below a desired maximum. As the input
description is in the form of an executable code, a profiler tool
can be used to determine the frequency of function calls, which
could be a good guide to find out the candidates to apply fault
tolerance to. The Figure 1 shows the proposed flow.

978-1-5090-5602-6/16/$31.00 c© 2016 IEEE

297

C++

description
Pro ler

Modi cations

Fault-tolerant

description

High-level

synthesis
Fault-tolerant

RTL description

Fig. 1. The new FT approach.

III. EXPERIMENTS AND RESULTS

As our research is in preliminary stage, we focused on
experiments with unmodified specification of the robot con-
troller. In our actual experiments, we changed the optimization
parameters of the HLS methods and monitored changes in
the parameters of the resulting RTL designs. The parameters
monitored were the number of slices, slice registers and slice
Lookup tables (LUTs) occupied.

The next step of our experiment will include the monitoring
of the impact of optimization parameters on the susceptibility
to failures. The susceptibility to failures will be tested using
our Evaluation Platform for Testing Fault Tolerance Method-
ologies [7], which is based on functional verification and
fault injection [8]. The Evaluation Platform uses robot and
its robot controller as an experimental system. The goal of
the mission of the robot is to find a way through a maze. In
these experiments, we swapped the robot control unit, which
was originally implemented in VHDL, for a new one, which
is synthesized using HLS methods.

The transformation from the description to the RTL level
will be made with different optimization preferences set. In
this way, we get four different robot controllers, which we
are going to evaluate on the Evaluation Platform as a part of
our future research. Hundreds of verification runs will be done
for each robot controller. Each verification run comprises one
passage of the robot through one maze, which is chosen at
the beginning of the experiments and remains the same for all
verification runs. During verification run a random fault will
be injected and the ability of the robot controller to find the
right path in the maze will be explored. As a result we will
get a number of successful goal achievements for each of the
robot controllers. This way the susceptibility to failures will
be examined.

The Figure 2 shows the resource requirements for each
of the four robot controller units synthezised with different
parameters set. The first and the second set of parameters,
denoted as noopt-area and noopt-latency, include area and
latency optimizations with no additional requirements added.
As can be seen, the results are almost equal, which may be
caused by relatively small design size. The third one, pipeline1-
area, includes the main loop pipelined with II set to 1 and
the overall goal set to area. The fourth one, unroll2-area,
contains the main loop partially unrolled with the level of
parallel computation set to 2. As can be seen, the unrolled
loop requires more resources as the pipelined one, but it is
slightly faster.

The future experiments will be targeted to applying pre-
sented modifications which will lead to increased reliability
of the robot controller. We will evaluate a susceptibility of
modified robot controller to the faults and compare it with the
versions without fault tolerance modifications. We will also

Fig. 2. Comparison of resources consumed for each variant of the HLS
synthesized robot controllers.

try to evaluate different modifications of robot controller on
achieved level of fault tolerance.

IV. CONCLUSIONS AND FUTURE RESEARCH

In this paper we introduced a newly emerging approach
to achieve a certain level of fault tolerance with the usage
of HLS. A brief outline to this approach was presented. The
experiments described are still in work-in-progress state, as a
part of our preliminary work results describing resources con-
sumed to implement various versions of our robot controller
unit were shown.

The goal of our future work is to apply various fault
tolerance mechanisms to the input description and evaluate
the level of fault tolerance achieved in comparison with the
additional resources consumed. The objective of our research
is to improve this principle to make it generally usable and
show its usability on another applications or benchmarks.

ACKNOWLEDGEMENTS

This work was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sustain-
ability (NPU II); project IT4Innovations excellence in science
- LQ1602, ARTEMIS JU under grant agreement no 621439
(ALMARVI) and BUT project FIT-S-14-2297.

REFERENCES

[1] I. Koren and C. M. Krishna, Fault-Tolerant Systems. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2007.

[2] D. White, “Considerations surrounding single
event effects in fpgas, asics, and processors,”
http://www.xilinx.com/support/documentation/white papers/
wp402 SEE Considerations.pdf, Mar. 2012, accessed: 2016-09-15.

[3] XILINX, “Partial Reconfiguration User Guide,”
http://www.xilinx.com/support/documentation/sw manuals/xilinx14 1/
ug702.pdf, Apr. 2012, accessed: 2016-09-15.

[4] M. Fingeroff, High-level synthesis blue book. Xlibris Corporation, 2010.

[5] K. A. Campbell, P. Vissa, D. Z. Pan, and D. Chen, “High-level synthesis
of error detecting cores through low-cost modulo-3 shadow datapaths,”
in Proceedings of the 52Nd Annual Design Automation Conference,
ser. DAC ’15. New York, NY, USA: ACM, 2015, pp. 161:1–161:6.
[Online]. Available: http://doi.acm.org/10.1145/2744769.2744851

[6] A. Antola, V. Piuri, and M. Sami, “High-level synthesis of data paths
with concurrent error detection,” in Defect and Fault Tolerance in VLSI

Systems, 1998. Proceedings., 1998 IEEE International Symposium on,
Nov 1998, pp. 292–300.

[7] J. Podivinsky, O. Cekan, J. Lojda, and Z. Kotasek, “Verification of Robot
Controller for Evaluating Impacts of Faults in Electro-mechanical Sys-
tems,” in Digital System Design (DSD), 2016 19th Euromicro Conference

on. IEEE, 2016, pp. 487–494.

[8] M. Straka, J. Kastil, and Z. Kotasek, “SEU Simulation Framework
for Xilinx FPGA: First Step Towards Testing Fault Tolerant Systems,”
in 14th EUROMICRO Conference on Digital System Design. IEEE
Computer Society, 2011, pp. 223–230.

298

