
Radiation Impact on Mechanical Application Driven
by FPGA-based Controller

Jakub Podivinsky, Marcela Simkova, Zdenek Kotasek
Faculty of Information Technology, Brno University of Technology

Bozetechnova 2, 612 66 Brno, Czech Republic
Email: {ipodivinsky, isimkova, kotasek}@fit.vutbr.cz

Abstract—The aim of this paper is to present results of
preliminary experiments with our platform for testing the fault-
tolerance quality of electro-mechanical applications based on
FPGAs. Original work is presented in [1]. We demonstrate one
working example of such EM application that was evaluated using
our platform: the mechanical robot and its electronic controller in
an FPGA. In the experiments, the mechanical robot is simulated
in the simulation environment where the effects of faults injected
into its controller can be recognised. In this way, it is possible
to differentiate between the fault that causes the failure of the
system and the fault that only decreases the performance.

I. INTRODUCTION

In several areas, such as aerospace and space applica-
tions or automotive safety-critical applications, fault tolerant
electro-mechanical (EM) systems are highly desirable. In these
systems, the mechanical part is controlled by its electronic
controller. Currently, a trend is to add even more electronics
into EM systems. For example, in aerospace, extending of the
electronic part results in a lower weight that helps reduce the
operating cost [2]. The situation is similar in other sectors,
such as automotive [3].

It is obvious that the fault-tolerance methodologies are
targeted mainly to the electronic components because they
perform the actual computation. However, as the electronics
can be realized on different hardware platforms (processors,
ASICs, FPGAs, etc.), specific fault-tolerance techniques dedi-
cated for these platforms must be developed.

Our research is targeted to Field Programmable Gate
Arrays (FPGAs) as they present many advantages from the
industrial point of view. They can compute many problems
hundreds times faster than modern processors. Moreover, their
reconfigurability allows almost the same flexibility as pro-
cessors. FPGAs are composed of Configurable Logic Blocks
(CLBs) that are interconnected by a programmable intercon-
nection net. Every CLB consists of LUTs Look-Up Table that
realizes the logic function, a multiplexer and a flip-flop. The
configuration of CLBs and of the interconnection net is stored
in the SRAM memory.

The problem from the reliability point of view is that
FPGAs are quite sensitive to faults caused by charged particles
[4]. These particles can induce an inversion of a bit in the
configuration SRAM memory of an FPGA (or directly to
its internal flip-flops) and this may lead to a change in its
behaviour. Affecting SRAM or directly the flip-flops can be
seen as equivalent in possible consequences. This event is
called the Single Event Upset (SEU).

An important feature of FPGAs, which can be utilized
for reliability purposes after a fault (we consider SEUs) is
detected, is called Partial Dynamic Reconfiguration (PDR).
PDR can reconfigure the affected part of the FPGA (a faulty
module) and restore the electronic system into the correct
operation without interrupting other parts of the system. This
type of fault repair during the system runtime can be supported
by hardware redundancy architectures, such as Triple Modular
Redundancy (TMR) [5] or duplex system with Concurrent
Error Detection (CED) [6]. Sensitivity to faults (SEUs) and
the possibility of reconfiguration are the main reasons why so
many fault-tolerance methodologies inclined to FPGAs have
been developed and new ones are under investigation [7].

The paper is organized as follows. The goals of our
research and the scheme of the platform for estimating the
quality of EM applications can be found in Section II. The
architecture of our experimental design, the robot controller,
is provided in Section III. A description of the fault injection
process that is used for artificial injection of faults into the
robot controller can be found in Section IV. Results of the ex-
periments with the robot controller are available in Section V.
The future work that includes using functional verification
for automated evaluation of impacts of faults is presented in
Section VI. Finally, Section VII concludes the paper.

II. THE GOALS OF THE RESEARCH

From the above facts, we have identified two areas that we
would like to focus on in our research of fault-tolerant FPGA-
based systems controlling electro-mechanical applications.

The first one is that methodologies are validated and
demonstrated only on simple electronic circuits implemented
in FPGAs. For instance, methodologies focused on the memory
in [8] are validated on simple memories without the additional
logic around. In [9], the fault-tolerance technique is presented
only on a two-input multiplexer, one simple adder and one
counter. However, in real systems different types of blocks
must be protected against faults at the same time and must
communicate with each other. Therefore, a general evaluation
platform for testing, analysis and comparison of alone-working
or cooperating fault-tolerance methodologies is needed.

As for the second area of the research and the main
contribution of our work, we feel that it must be possible
to check the reactions of the mechanical part of the system
if the functionality of its electronic controller is corrupted
by faults. It is either done in simulation or in a physical
realization. In our opinion, it is important to find a relation

2015 4th MEDIAN Workshop

13



between the level of functional corruption of the electronic
controller and the corruption of the mechanical functionality
in the EM applications (i.e. between the robot controller and
the simulated mechanical robot).

According to the identified problems we have formulated
our goal in the following way:

To develop an evaluation platform based on the
FPGA technology for checking the resilience of EM
applications against faults.

Under the term EM application we understand a mechan-
ical device and its electronic controller implemented in an
FPGA. In our experiments, these components are represented
by a robot device and its controller, which drives the movement
of a robot in a maze. We have implemented the evaluation
platform that consists of three basic parts (as you can see in
Figure 1):

• the Virtex5 FPGA board, where the robot controller
is situated after the synthesis and the place and route
process,

• the simulation environment Player/Stage [10] for
checking responses of the mechanical device to in-
structions from the robot controller,

• the external fault injector (PC) which inserts faults into
the robot controller [11].

Computer

Robot Simulation 

Environment 

(Player/Stage)

Fault Injector

Virtex 5 FPGA Board

FPGA with Robot 

Controller

JTAG

Fig. 1. The platform for testing fault-tolerance methodologies.

III. THE ROBOT CONTROLLER - STRUCTURE AND
PRINCIPLES

In Figure 2, the block diagram of the implemented robot
controller is available. The control unit is connected to the PC
with simulation environment (SEPC) via the Interface Block.
Through this block, data from the simulation are received and
in the opposite direction, instructions about the movement of
the robot are sent back. The robot controller is composed of
various blocks, their function is described in [12]. Here, we
only summarize the main characteristics of every component.
The central block of the robot controller is a bus through
which the communication between blocks is accomplished.
The Position Evaluation Unit (PEU) calculates the position
of the robot in the maze and provides them to other units as
coordinates x and y. The Barrier Detection Unit (BDU) uses
four sensors and provides information about the distance to the
surrounding barriers as four-bit vector. Map updating provided
by the Map Unit (MU) is based on the information about the
position of the robot and the four-bit barriers vector. The Map
Memory Unit (MMU) stores the information about the up-to-
date map. Path Finding Unit (PFU) implements simple iteration

SEPC

Wishbone 

MASTER

Position Evaluation Unit

(PEU)

Engine 

Control 

Module

(ECM)

Path Finding Unit

(PFU)

PEU Wishbone SLAVE

Wishbone BUS

SEPC

Interface 

Block

PEU Finite State Machine

Barrier Detection Unit

(BDU)

BDU Wishbone SLAVE

BDU Finite State Machine

ECM 

Queue

PFU Wishbone MASTER

MU Wishbone MASTER

MU Finite State Machine

Map Unit

(MU)

Map Memory Unit

(MMU)
MMU 

Interface

MMU 

Interface

Robot Controller

Fig. 2. The block diagram of the robot controller.

algorithm for finding a path through the maze. The mechanical
parts of the robot are driven by the setting of the speed in
the required direction of the movement by the Engine Control
Module (ECM).

The robot controller is designed as a complex system
with specific components that will allow testing and validat-
ing various types of individual or cooperating fault-tolerance
methodologies focused on FPGAs. The controller contains
combinational and sequential circuits, finite state machines,
memories or buses.

IV. EVALUATION OF RELIABILITY BY FAULT INJECTION

During testing the resilience of systems against faults,
waiting for their natural appearance is not feasible. A typical
reason is the Mean Time Between Failures (MTBF) parameter
that can be in the order of years. The most popular techniques
to artificially accelerate fault occurrence are based on fault
injection.

Therefore, to simulate the effects of faults in the FPGA,
it could be done by a direct change of the configuration
bitstream which is loaded into the configuration memory. For
this purpose, a fault injector [11] was implemented which
allows to modify single or multiple specified bits of the
bitstream in order to simulate single and multiple faults.

For effective testing of fault effects on a system composed
of several blocks, we need to determine the block in which
the fault will be injected. In the case of injecting faults into
the whole FPGA we are not sure which block is affected,
or if the useful part of the bitstream is hit. The list of bits
representing each component can be obtained through several
steps by using the PlanAhead [13] tool for the layout of the
components on the FPGA. The knowledge about component
layout allows us to use the RapidSmith [14] tool for analysing
the design. This tool is able to generate a list of the bitstream
bits that correspond to the identified areas of the FPGA, while
we know what components are configured into particular area.
The disadvantage of such approach is that this process provides
only a list of bitstream bits that correspond to Lookup Tables
(LUTs).

2015 4th MEDIAN Workshop

14



V. EXPERIMENTS WITH THE ROBOT CONTROLLER

The aim of the experiment is to identify which parts of
the robot controller are vulnerable to faults. The flow of the
experiment is displayed in Figure 3. At first, we initiate the
environment of the robot in simulation. As the first scenario,
we chose a small maze with 8x8 fields. Subsequently, the robot
controller is initiated. Then the robot starts to search a path
to the end position. At this point, the fault injection takes
place. We generate randomly an LUT of every unit of the
robot controller into which the fault will be injected. Thanks
to the Rapidsmith, just the corresponding bits of the bistream
are inverted. Faults are injected one after another until the
robot starts to behave incorrectly. We were monitoring (1) the
number of faults that led to the malfunction of the robot and
(2) how the behaviour of the robot was changed.

Fault Injection

Maze 
Initialization

Start Position

End Position

Robot Controller 
Initialization

Monitoring of 
Impact of Faults

Fig. 3. The flow of one experiment.

The results of the experiments are shown in Table I. In
the first column, the list of components of the robot controller
is provided. In the second column, the total number of bits
of the bitstream that belong to the LUTs of corresponding
components is shown. The following three columns represent
the number of injected faults into particular components which
caused incorrect behaviour of the robot. The first number is
minimum, the second number is median and the last number is
maximum of faults that led to failure. Injecting faults into all
bits of the bitstream would be very time-consuming, because
behaviour was monitored manually. Therefore, we utilise the
statistic evaluation. 20 experimental runs were performed for
each component (320 experimental runs in total). The last
column of the table contains the state of the robot that was
evaluated as the wrong behaviour.

TABLE I. THE EXPERIMENTAL RESULTS.

Components Bits of bitstream Number of injected faults Consequence
Min Median Max

PEU 21 632 2 6 12 freezing
PEU FSM 2 112 >80 - >80 -
PEU WB 2 112 41 - >80 freezing
BDU 320 2 6 21 freezing
BDU FSM 2 752 3 6 34 freezing
BDU WB 2 176 3 9 28 freezing
SEPC INF 1 216 2 3 7 freezing
SEPC WB 9 088 2 3 7 freezing
ECM 25 664 1 2 7 freezing
PFU 7 488 3 6 12 deadlock
PFU WB 7 424 2 3 9 freezing
MU 11 840 1 2 3 crashing
MU FSM 1 280 1 3 5 freezing
MU WB 7 680 1 3 6 freezing
MMU 3 008 1 3 6 freezing
WB BUS 5 056 1 3 6 freezing

The statistical data from the measures are also demon-
strated in Figure 4. It is a quartile chart that for each component
shows the minimum, the first quartile (25%), median, the

second quartile (75%) and maximum of the measured number
of injected faults that led to the failure. One interesting
conclusion arises from the graph. The incorrect behaviour did
not appear immediately after the first injection of a fault. We
can conclude that some bits of the bitstream, despite they
are identified as related to the robot controller, are not used
to store a useful information. This can be seen particularly
in components PEU FSM and PEU WB. There are several
explanations of this, e.g. not all inputs of LUTs are employed
or not all states of FSMs are visited during the computation.
Nevertheless, we realised that some components contain more
critical bits than others and thus they should be preferred while
hardening against faults.

0

5

10

15

20

25

30

35

Fig. 4. The quartil graf of the results of experiments.

The proportional representation of consequences is dis-
played in Figure 5. The most common consequences of
injected faults which are presented in table are Freezing on
place, Deadlock, Crashing into a wall and some others. As
can be deduced from the chart, the most common consequence
is Freezing on place. We can also conclude that stopping of
the robot is not so critical as for example, a collision with
the wall. This conclusion can be very critical and useful for
different kinds of EM applications.

78%

11%

7%
4%

Freezing on place (78%) Crashing into a wall (11%)

Deadlock (7%) Other (4%)

Fig. 5. Typical consequences of injected faults on the mission of the robot.

VI. THE USE OF FUNCTIONAL VERIFICATION FOR
AUTOMATED EVALUATION OF FAULT IMPACTS

For extensive testing of the behaviour of the robot or any
other EM system placed into our evaluation platform, we need
to examine various test scenarios. After application of proper
stimuli, we can prove the correctness and accuracy of the
behaviour of the system with respect to the specification. The
manual check of outputs of the system for these stimuli is
difficult as it requires a full control from the user. The user
is responsible for running the test environment, generating
stimuli and also analysing the outputs of the system. All these
activities are time-demanding and therefore, it is not possible

2015 4th MEDIAN Workshop

15



to test the system thoroughly within a reasonable time. It is
necessary to apply some kind of automation. An extended
technique for automated checking of the correctness of the
system is called verification. We decided to use an approach
called functional verification, as this type of verification fits
best to our experiments. Functional verification [15] is the
process of verifying that a model of the system, also called
DUT or Design Under Test, complies with the specification
by monitoring inputs (stimuli) and outputs in simulation.
Moreover, the DUT outputs are compared to the outputs of
the reference model. On the basis of the compared outputs a
discrepancy between the two models can be detected and thus
an error in the systems can be discovered.

To be able to inject faults into the FPGA while performing
functional verification, we must carry out verification directly
in the FPGA (not in the simulation as usually). Advantageously
we can use and modify hardware accelerated verification that
uses an FPGA as the acceleration board. An example of such
accelerator is the framework HAVEN [15]. The extension
of our evaluation platform with the support of functional
verification is shown in Figure 6. The DUT (in our case the
robot controller) will be placed in the FPGA. The outputs from
the FPGA are compared to the outputs of the reference model
and they represent also the inputs that are propagated to the
simulation of the mechanical part. Thus, the output of the DUT
stimulates the movement of the mechanical part of the robot
in the simulated maze. The inputs for the FPGA and for the
reference model are data from the sensors of the mechanical
part of the robot.

DUT

(Electronic Part)

Reference Model

=

Simulation of 

Mechanical Part

Driver Monitor

FPGA

Fault Injection
OK?

FAIL?

Fig. 6. Functional verification involvement in our platform with the fault
injection.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced the evaluation platform for es-
timating reliability of FPGA designs. As our research focuses
on testing EM applications, we presented the experimental
design which is composed of the mechanical robot and its
electronic controller situated in the FPGA. The robot controller
contains a variety of components. During the experiments,
random faults were artificially injected into these components
and we were monitoring the impact of these faults on the
behaviour of the robot in the simulation environment. These
experiments showed that some faults have an impact on the
behaviour of the robot, and others do not have. According to
this result we were able to identify the parts/components of
the robot controller that need to be hardened by some fault-
tolerance techniques.

In addition, we have recognised from the experiments
that some kind of automation is unavoidable in our future
experiments, especially in the early phases of testing. The

reason is that monitoring the behaviour of system in simulation
is very time-demanding. Therefore, we have already prepared
an innovative extension of our platform - interconnection of
fault injection and functional verification environment.

ACKNOWLEDGMENT

This work was supported by the following projects:
National COST LD12036, project Centrum excelence
IT4Innovations (ED1.1.00/02.0070), EU COST Action
IC1103 ”MEDIAN” and BUT project FIT-S-14-2297.

REFERENCES

[1] J. Podivinsky, O. Cekan, M. Simkova, and Z. Kotasek, “The evaluation
platform for testing fault-tolerance methodologies in electro-mechanical
applications,” in Digital System Design (DSD), 2014 17th Euromicro
Conference on. IEEE, 2014, pp. 312–319.

[2] S. Cutts, “A collaborative approach to the more electric aircraft,” in
Power Electronics, Machines and Drives, 2002. International Confer-
ence on (Conf. Publ. No. 487), June 2002, pp. 223–228.

[3] G. Leen and D. Heffernan, “Expanding automotive electronic systems,”
Computer, vol. 35, no. 1, pp. 88–93, Jan 2002.

[4] M. Ceschia, M. Violante, M. Reorda, A. Paccagnella, P. Bernardi,
M. Rebaudengo, D. Bortolato, M. Bellato, P. Zambolin, and A. Can-
delori, “Identification and classification of single-event upsets in the
configuration memory of SRAM-based FPGAs,” Nuclear Science, IEEE
Transactions on, vol. 50, no. 6, pp. 2088–2094, 2003.

[5] C. Bolchini, A. Miele, and M. D. Santambrogio, “TMR and Partial
Dynamic Reconfiguration to Mitigate SEU Faults in FPGAs,” in DFT
’07: Proceedings of the 22nd IEEE International Symposium on Defect
and Fault-Tolerance in VLSI Systems. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 87–95.

[6] J. Emmert, C. Stroud, B. Skaggs, and M. Abramovici, “Dynamic
Fault Tolerance in FPGAs via Partial Reconfiguration,” in FCCM ’00:
Proceedings of the 2000 IEEE Symposium on Field-Programmable
Custom Computing Machines. Washington, DC, USA: IEEE Computer
Society, 2000, pp. 165–170.

[7] J. A. Cheatham, J. M. Emmert, and S. Baumgart, “A Survey of Fault
Tolerant Methodologies for FPGAs,” vol. 11, no. 2. New York, NY,
USA: ACM, 2006, pp. 501–533.

[8] N. Rollins, M. Fuller, and M. Wirthlin, “A comparison of fault-tolerant
memories in sram-based fpgas,” in Aerospace Conference, 2010 IEEE,
2010, pp. 1–12.

[9] M. Naseer, P. Sharma, and R. Kshirsagar, “Fault tolerance in fpga archi-
tecture using hardware controller - a design approach,” in Advances in
Recent Technologies in Communication and Computing, 2009. ARTCom
’09. International Conference on, 2009, pp. 906–908.

[10] B. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project:
Tools for multi-robot and distributed sensor systems,” in Proceedings
of the 11th international conference on advanced robotics, vol. 1, 2003,
pp. 317–323.

[11] M. Straka, J. Kastil, and Z. Kotasek, “Seu simulation framework for
xilinx fpga: First step towards testing fault tolerant systems,” in 14th
EUROMICRO Conference on Digital System Design. IEEE Computer
Society, 2011, pp. 223–230.

[12] J. Podivinsky, M. Simkova, and Z. Kotasek, “Complex Control System
for Testing Fault-Tolerance Methodologies,” in Proceedings of The
Third Workshop on Manufacturable and Dependable Multicore Archi-
tectures at Nanoscale (MEDIAN 2014). COST, European Cooperation
in Science and Technology, 2014, pp. 24–27.

[13] N. Dorairaj, E. Shiflet, and M. Goosman, “Planahead software as a
platform for partial reconfiguration,” Xcell Journal, vol. 55, no. 68-71,
p. 84, 2005.

[14] C. Lavin, M. Padilla, P. Lundrigan, B. Nelson, and B. Hutchings, “Rapid
prototyping tools for fpga designs: Rapidsmith,” in Field-Programmable
Technology (FPT) 2010, Dec 2010, pp. 353–356.

[15] M. Simkova and O. Lengal, “Towards beneficial hardware acceleration
in haven: Evaluation of testbed architectures,” Lecture Notes in Com-
puter Science, vol. 2013, no. 7857, pp. 266–273, 2012.

2015 4th MEDIAN Workshop

16




