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ABSTRACT
The two-dimensional discrete wavelet transform has a huge num-
ber of applications in image-processing techniques. Until now, sev-
eral papers compared the performance of such transform on graphics
processing units (GPUs). However, all of them only dealt with lift-
ing and convolution computation schemes. In this paper, we show
that corresponding horizontal and vertical lifting parts of the lift-
ing scheme can be merged into non-separable lifting units, which
halves the number of steps. We also discuss an optimization strat-
egy leading to a reduction in the number of arithmetic operations.
The schemes were assessed using the OpenCL and pixel shaders.
The proposed non-separable lifting scheme outperforms the existing
schemes in many cases, irrespective of its higher complexity.

Index Terms— Discrete wavelet transform, image processing,
synchronization, graphics processors

1. INTRODUCTION

The discrete wavelet transform (DWT) has become a very popular
image-processing tool in recent decades. This popularity has re-
sulted in a development of fast algorithms on all sorts of computer
systems, including graphics processing units (GPUs). Although
the GPUs were originally optimized for the graphics rendering,
general-purpose computing became practical with advances of pro-
grammable shaders. Later, CUDA and related general-purpose
computing APIs were introduced, which brought wider possibilities
and allowed to ignore the underlying graphical concepts.

So far, several studies have compared the performance of var-
ious 2-D DWT computational approaches on GPUs. All of these
works are based on the most popular separable schemes (their oper-
ations are oriented horizontally or vertically) – the convolution and
lifting schemes. The lifting requires fewer arithmetic operations as
compared with the convolution, at the cost of introducing some data
dependencies. The number of operations should be proportional to
a transform performance. Interestingly, also the data dependencies
may form a bottleneck, especially on parallel architectures.

We show that the optimal scheme for a given architecture can
be obtained by fusing the corresponding lifting parts into a new non-
separable structure. More precisely, underlying operations cannot be
associated with horizontal nor vertical axes. In addition, we discuss
an approach where this non-separable scheme can be adapted to a
particular platform in order to reduce the number of operations. Our
reasoning is supported by experiments on GPUs using OpenCL and
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pixel shaders. The presented scheme is general, and it is not limited
to any specific type of DWT.

The rest of this paper is organized as follows. Section 2 formally
introduces the problem definition and presents the existing separable
approaches. Section 3 presents the proposed non-separable scheme
and discusses the optimization approach that reduces the number of
operations. Section 4 evaluates the performance in the pixel shaders
and OpenCL framework. Finally, Section 5 closes the paper.

2. BACKGROUND AND RELATED WORK

This section introduces some notations and definitions and also
briefly reviews papers that motivated our research. The z-transform
notation is used for the description of underlying one-dimensional
wavelet FIR filters. The transfer function of the filter (gk) is the
polynomial

G(z) =
∑
k

gk z
−k,

where the k refers to the time axis. Further, the one-dimensional
transforms are used in conjunction with two-dimensional signals.
For this case, the transfer function of the filter (gkm,kn) is defined
as the polynomial

G(zm, zn) =
∑
km

∑
kn

gkm,kn z−km
m z−kn

n ,

where the subscript m refers to the horizontal axis and n to the ver-
tical one. The G∗(zm, zn) = G(zn, zm) is a polynomial transposed
to a polynomial G(zm, zn). In this paper, a shortened notation G is
only written in order to keep the notation readable.

A discrete wavelet transform is a mathematical tool which is
suitable for the decomposition of a discrete signal into low-pass and
high-pass frequency components. The single-scale transform splits
the input signal into two components. As shown in [1], the transform
can be computed by a pair of filters, referred to as G0,G1, followed
by subsampling by a factor of two. Formally, the transform can also
be represented by the polyphase matrix[

G1
(o) G1

(e)

G0
(o) G0

(e)

]
, (1)

where the polynomials G(e) and G(o) refer to the even and odd terms
of G. This matrix defines the convolution scheme. Following the
instructions by [2], the convolution scheme in (1) can be factored
into a sequence ∏

K>k>0

[
1 U(k)

0 1

] [
1 0

P(k) 1

]
(2)
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of short filters, known as the lifting scheme. The filters employed in
(2) are referred to as the lifting steps. The first step P(k) in the kth
pair is referred to as the predict and the second one U(k) to as the
update. The lifting scheme reduces the number of operations by up
to half. Note that the superscript (k) is omitted in the text below.

Considering the GPUs, the processing of single or several trans-
form samples is mapped to independent processing units. The units
must use some sort of synchronization method (barrier) to avoid race
conditions. In the lifting scheme, the barriers are required before the
lifting steps. The barriers are indicated by the | symbol. For exam-
ple, M2|M1 are two adjacent lifting steps separated by the barrier.

The 2-D transform is defined as a tensor product of 1-D trans-
forms. Consequently, the transform splits the signal into a quadruple
of wavelet coefficients. Following the paper of [1], the 1-D trans-
forms are applied in both directions sequentially. By its nature, this
scheme can be referred to as the separable convolution. The calcu-
lations in a single direction are performed in a single step (two steps
in total). The scheme can be described as

NV
∣∣NH

∣∣,
where NH is 1-D transform in horizontal direction and NV is in ver-
tical one. For the well-known Cohen-Daubechies-Feauveau (CDF)
wavelet with 9/7 samples, these matrices are illustrated in Fig. 1
(horizontal part only). Particularly, the filters in the figure are of sizes
9 and 7 taps. Note that the color balls correspond to the quadruple
of wavelet coefficients.

Fig. 1. Separable convolution for the CDF 9/7 wavelet (horizontal
part only). Appropriately chosen pairs of matrix rows are depicted
in separate subfigures. The arrows denote a multiply–accumulate
operation (multiplication by a real constant) and they are pointing to
the destination operand. Note that some arrows overlap the others.

Another scheme widely used for 2-D transform is the separable
lifting. Similarly to the convolution, the predict and update lifting
steps can be applied in both directions sequentially. Moreover, hori-
zontal and vertical steps can be arbitrarily interleaved thanks to linear
nature of the filters. In this paper, the scheme is defined as

SV
U

∣∣ SH
U

∣∣TV
P

∣∣TH
P

∣∣,

(a) TH
P (b) SHU

Fig. 2. Separable lifting scheme (horizontal part only) for the
CDF 5/3 and 9/7 wavelets.

wherein the predict steps T always precede the update S ones. This
mapping corresponds to a single P and U pair of lifting steps from
(2). For multiple pairs, the scheme is separately applied to each such
pair. To describe 2-D matrices, the lifting steps must be migrated
into two dimensions as G = G(zm, zn) = G(zm). The individual
steps are then defined as

TH
P =

 1 0 0 0
P 1 0 0
0 0 1 0
0 0 P 1

 ,

TV
P =

 1 0 0 0
0 1 0 0
P∗ 0 1 0
0 P∗ 0 1

 ,

SH
U =

 1 U 0 0
0 1 0 0
0 0 1 U
0 0 0 1

 ,

SV
U =

 1 0 U∗ 0
0 1 0 U∗

0 0 1 0
0 0 0 1

 .

For the CDF wavelets, the matrices are also illustrated in Fig. 2 (hor-
izontal part only).

Until now, several papers compared the performance of the sep-
arable lifting and separable convolution schemes on GPUs. Ex-
emplarily, the [3] compared these schemes on GPUs using pixel
shaders. The authors mapped data to 2-D textures, constituted by
four floating-point elements. They concluded that the separable con-
volution is more efficient than the separable lifting scheme in most
cases. They further noted that fusing several consecutive kernels
might significantly speed up the execution, even if the complexity of
the resulting fused pixel program is higher.

To illustrate the problem more widely, also several other papers
are discussed. Kucis et al. compared the performance of several
recently published schedules (either the convolution or lifting) for
computing the 2-D DWT using the OpenCL framework. In more de-
tail, the work compares a convolution-based algorithm [4] against
several lifting-based methods [5, 6] in the horizontal part of the
transform. The authors concluded that the lifting-based algorithm
of [5] is the fastest method. Furthermore, [6] compared the perfor-
mance of their separable lifting-based method against a convolution-
based method. They concluded that the lifting is the fastest method.
The authors also compared the performance of implementations in
CUDA and pixel shaders, based on the work of [3]. The CUDA
implementation proved to be the faster choice. In this regard, they
noted that a speedup in CUDA occurs because the CUDA effectively
makes use of on-chip memory. This use is not possible in pixel
shaders, which exchange the data using off-chip memory. Without
providing further details, other important approaches can be found
in the papers of [7, 8, 9], and most recently in [10].

In our previous works [11, 12], we introduced several non-
separable schemes for calculation of 2-D DWT. In this paper, we
take the most promising scheme and adapt it to particular platforms.
Moreover, differences and similarities between the non-separable
scheme and their separable competitors are homogeneously dis-
cussed. All schemes are also analyzed and evaluated.
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3. PROPOSED SCHEME AND OPTIMIZATION

The existing approaches did not study the possibility of a partial fu-
sion of lifting polyphase matrices. This section presents an alterna-
tive non-separable scheme for the calculation of the 2-D DWT.

By combining the corresponding horizontal and vertical steps
of the separable lifting scheme, the non-separable lifting scheme is
formed. The number of operations has slightly been increased. The
scheme consists of a spatial predict and spatial update step, thus two
steps in total for each pair of the original lifting steps. For each pair
of P and U, the scheme follows from

SU

∣∣TP

∣∣,
where

TP =

 1 0 0 0
P 1 0 0
P∗ 0 1 0
PP∗ P∗ P 1

 ,

SU =

 1 U U∗ UU∗

0 1 0 U∗

0 0 1 U
0 0 0 1

 .

Note that the spatial filters in PP∗ and UU∗ may be computationally
demanding, depending on their sizes. For the CDF wavelets, the
scheme is graphically illustrated in Fig. 3.

(a) TP (b) TP

(c) SU (d) SU

Fig. 3. Non-separable lifting scheme for the CDF wavelets.

An important observation can be made regardless the underlying
platform. A very special form of the operations guarantees that the
processing units never access the results belonging to their neigh-
bors. These operations comprise only constants. Since the convolu-
tion is a linear operation, the polynomials can be collected out from
the original matrices, and calculated in a different step. The original
polynomials are split as P = P0 + P1 and U = U0 + U1. The P0

and U0 are the constants. As a next step, the P0 and U0 are sub-
stituted into the separable lifting scheme. On the contrary, the P1

and U1 are kept in the original non-separable lifting scheme. These
two steps are then computed without any barrier. The observation is
exploited to adapt the scheme for a particular platform.

The schemes for the shaders and OpenCL exploit the above-
described observation with P0, U0 polynomials. Implementations

in the shaders map input and output data to 2-D textures. There is no
possibility to retain results in registers, and the results are exchanged
through textures in off-chip memory. Considering the OpenCL im-
plementations, the image is divided into overlapping blocks and on-
chip memory shared by all threads in a block is utilized to exchange
the results. Additionally, some results are passed in registers.

Table 1. Steps and arithmetic operations for the optimized schemes.
(a) CDF 5/3

scheme steps operations
OpenCL shaders

separable convolution 2 20 22
separable lifting 4 16 16

non-separable lifting 2 18 18

(b) CDF 9/7

scheme steps operations
OpenCL shaders

separable convolution 2 56 58
separable lifting 8 32 32

non-separable lifting 4 36 36

This paper explores the performance for two frequently used
wavelets, namely, CDF 5/3 and CDF 9/7 [13]. Their fundamental
properties are listed in Table 1. Note that the number of operations
is commonly proportional to a transform performance. Additionally,
the number of steps correspond to the number of synchronizations
on parallel architectures, which also form a performance bottleneck.

4. EVALUATION

The experiments were performed on GPUs of two biggest vendors
using the OpenCL and pixel shaders. Only a transform performance
was measured, usually in GB/s (gigabytes per second). The host
system does not help in the calculation. Only results for two cards
(AMD Radeon HD 6970, NVIDIA Titan X) are shown due to limited
space. Their technical parameters are summarized in Table 2.

The implementations were created using the DirectX HLSL and
OpenCL. The HLSL implementation is used on the NVIDIA Titan
X, whereas the OpenCL implementation on the AMD 6970. The re-
sults of the performance comparison are shown in Fig. 4. The non-
separable lifting schemes always outperform the separable lifting.
Similar results were also achieved on other cards, especially consid-
ering the shaders. Looking at the experiments with the pixel shaders,
some transients can be seen at the beginning of the plots. We con-
cluded that these transients are caused by a suboptimal use of cache
system, or alternatively by some overhead made by the graphics API.

Table 2. Description of the GPUs used for the evaluation.

label AMD 6970 NVIDIA Titan X

model Radeon HD 6970 Titan X (Pascal)

multiprocessors 24 28
total processors 1 536 3 584
performance 2 703 GFLOPS 10 157 GFLOPS

bandwidth 176 GB/s 480 GB/s
on-chip memory 32 KiB 96 KiB
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Fig. 4. Performance (gigabytes per second) for both CDF wavelets.

5. CONCLUSIONS

This paper introduced and discussed non-separable lifting scheme
for computation of the 2-D discrete wavelet transform on modern
GPUs. As an option, an optimization strategy leading to a reduction
in the number of arithmetic operations was presented. Using this
strategy, the introduced scheme was adapted on the OpenCL frame-
work and pixel shaders. The implementations were then evaluated
using GPUs of two biggest vendors. At least for the CDF wavelets,
the non-separable lifting scheme exhibit mostly a better performance
than their separable competitors.

We reached the following conclusion. Fusing several consecu-
tive steps of the schemes might significantly speed up the execution,
irrespective of their higher complexity. Note that all of the schemes
are general and they can be used on any discrete wavelet transform.
In future work, we plan to tackle with multi-scale transforms.
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