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Abstract. The reduction of the CPU frequency and voltage is a well-known ap-
proach to improve energy consumption of memory-bound applications. This is
based on the conception that the performance of the main memory sees little or
no degradation at reduced processor clock speeds while power consumption de-
creases significantly improving the overall energy efficiency. We study this effect
on the Haswell generation of Intel Xeon processors as well as the ARMv7 gen-
eration of the 32-bit ARM big.LITTLE architecture. The goal is to analyse and
compare computational performance, energy consumption and energy efficiency
on a series of tasks, each focusing on different parts of the system and provide an
analysis and generalisation to other similar architectures.
The benchmark suit consists of compute and memory intensive benchmarks as
well as both single and multi-threaded scientific applications. The results show
that frequency and voltage scaling can significantly improve algorithms’ energy
efficiency. Up to 2.5× on ARM and 1.5× on Intel compared to the maximum
frequency. ARM is up to 2× more efficient than Intel.

Keywords: Haswell, ARMv7, Odroid XU4, k-Wave, LAMMPS, energy effi-
ciency.

1 Introduction

Nowadays, the energy efficiency of modem processors is becoming more and more
important next to the overall performance itself. Many programming tasks and problems
do cannot use the hardware very efficiently due to being memory or communication-
bound. Many clock cycles are wasted while waiting for data or a dependency conflict.
Therefore, it is often not beneficial to use faster chips to achieve better runtimes. In
this case, underclocking and undervolting, or employing slower low power processors
or accelerators may be much more efficient. Mainly because of the possibility to get
the same results using much less energy and often without any significant performance
penalties.
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An average Intel Xeon processor provides around 150–300 GFlop/s in double preci-
sion, with the Thermal Power Design (TDP) of 85–130 W. This gives roughly 2 GFlops/W
of peak energy efficiency. These chips consist of about 6–18 cores being the most
widely used CPUs in today’s high performance clusters and supercomputers, according
to the Top5001 ladder.

Searching for even better efficiency, mobile ARM processors have attracted a lot
of interest since their performance is comparable to the x86 CPUs. For example, an
ARM based development board Nvidia Tegra X12 and its GPU can provide 512 GFlop/s
while consuming only about 11 W of energy. This yields almost 50 GFlops/W in single
precision.

The Green5003 list provides a ranking of the most efficient supercomputers in the
world. The most efficient machine reaches almost 10 GFlops/W using the nVidia DGX-
1 system4. Current estimates indicate that processor efficiency will have to evolve to
50 GFlops/W for exascale machines to meet the realistic power budget of 20 MW.

Last but not least, an important reason to focus more on power efficiency is the re-
source allocation policy of supercomputing centers. Currently, resources are distributed
among users based on core-hours. The energy efficiency of users’ applications is de-
fined simply by the runtime, faster is almost always more efficient. The processors are
almost always running at the highest possible frequency, even when the application
being executed may not fully utilise the processors’ resources. This leads to a lot of
wasted energy. However, due to rapidly increasing energy demands of modern clusters,
the way the resources are allocated may change. Instead of using the core-hour metric,
the users will be charged based on consumed kWhs. Hand to hand with this approach,
users will be able to manually change hardware parameters such as frequency and volt-
age or shut down parts of the system. The SuperMUC5 supercomputer already provides
a frequency scaling options in the job scheduler for its users. The Taurus6 supercom-
puter additionally allows users to change the processor frequency dynamically during
job runtime. Taurus is able to measure the energy consumption of each of its Haswell
nodes using a built-in FPGA probe. This is going to put much more emphasis on energy
efficiency from both the software and hardware viewpoints. The hardware side will be
much more dynamic and the ways to use provided resources as efficiently as possible
will have to be exploited and optimised.

Much research effort in the area of the energy efficient computing makes use of the
Dynamic Voltage and Frequency Scaling (DVFS) to improve energy efficiency [1], [8],
[12], [6]. The incentive is often that a system’s main memory bandwidth is unaffected
by reduced clock speeds, while the power consumption decreases significantly. The
examples of memory-bound algorithms are sorting and searching algorithms, sparse
vector-matrix algebra or multidimensional fast Fourier transforms, assuming the input
data cannot fit into caches. These algorithms spend most of the time accessing the main

1 https://www.top500.org/
2 http://www.nvidia.com/object/tegra-x1-processor.html
3 https://www.top500.org/green500/
4 http://www.nvidia.com/object/deep-learning-system.html
5 https://www.lrz.de/services/compute/supermuc/
6 https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/SystemTaurus
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memory and their compute intensity is often very low. Besides DVFS, another approach
might be to switch off unneeded cores to save energy and let the others work at maxi-
mum frequency. However, this requires a direct hardware support.

This paper presents a study of DVFS and its impact on the energy efficiency. The
investigated architectures are the latest Haswell generation of x86 64 Xeon systems
from Intel and ARMv7 big.LITTLE architectures. A series of different benchmarks is
tested, ranging from synthetic compute and memory ones to scientific applications.

2 Related Work

The Mont-Blanc project [10] based in Barcelona, Spain, has developed a high perfor-
mance parallel system based on the ARMv7 architecture and its Cortex-A15 cores. The
system was compared to a production supercomputer MareNostrum III composed of
the Intel Xeon Sandy Bridge architecture. A single node of Mont-Blanc is 9× slower
while saving 40% energy. MPI applications are 3.5× slower using the same number
of processes, but consuming 9% less energy. A single node of Mont-Blanc consumes
5.3 W and 9.5 W while idle or load, respectively. Very similar architectures are com-
pared in our paper, however, instead of focusing on MPI and GPUs, the emphasis is put
on single-threaded and multi-threaded applications.

The READEX project [11] is improving energy efficiency of applications in the
field of High Performance Computing by means of dynamic auto-tuning. This allows
users to automatically exploit the dynamic behaviour of their applications by adjusting
the hardware parameters to match the actual resource requirements. Their software con-
sists of 3 main parts, the Periscope Tuning Framework (PTF) for design time analysis,
the READEX Runtime Library (RRL) for tuning at runtime and the Score-P frame-
work for the instrumentation and measurements of HPC applications. The outcome of
the automatic READEX methodology is expected to be at least 50% of the manually
achievable gains. Similarly to READEX, the goal is to analyse and find the optimal
settings for a specific system running a given algorithm or its kernel. READEX exploits
dynamism during the application’s runtime on the Intel x86 64 architecture only. In this
paper, a static frequency is set for each run.

Choi et al. [3] conducted a microbenchmarking study of the time, energy and power
consumption on several existing platforms including modern GPUs, ARM (Arndale
dual-core Cortex-A15) and Intel processors (Nehalem and mobile Ivy-Bridge) and an
Intel Phi KNC accelerator. The dual-core ARM Cortex-A15 achieved 2.2 GFlops/W and
0.56 GB/W, Intel Nehalem achieved 0.62 GFlops/W and 0.14 GB/W using an architecture-
specific hand-tuned benchmark. Our paper focuses only on the ARM and Intel x86 ar-
chitectures, however, it provides a much wider set of benchmarks using actual scientific
HPC applications.

Huang et al. [7] analyse the energy consumption of both the compute (HPL) and
memory-bound (STREAM) problems on Haswell E5-2600 v3 architecture. The PAPI
RAPL framework [14] is used to track the energy consumption of different parts of
the system. The effect of different P-states, hyper-threading, socket power imbalance
and core affinity on power consumption and performance were analysed. The results
showed that different P-state settings provide up to 33% energy savings. Enabling the
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hyper-threading and core affinity improves energy efficiency by 19–48%. Minor power
imbalances can be observed between the two sockets. Compiler optimisations improved
the energy demands by 28.6%. Regarding to this paper, three different P-states are anal-
ysed in terms of performance and energy efficiency, threads and processes are always
pinned to the cores, maximum compiler optimisations are used and a wider range of
benchmarks is tested.

Hackenberg et al. [5] analyse a number of Haswell energy features, such as the en-
hanced RAPL implementation with better accuracy, integrated voltage and frequency
regulators for each core, lower and unpredictable clock frequency for workloads with
substantial amounts of AVX instructions and the P-state (voltage and frequency oper-
ation point) transition behaviour. The most important information for this paper is that
RAPL measurements were verified using several microbenchmarks avoiding interfer-
ence effects due to time synchronisation. The results show almost perfect correlation to
the total system power consumption (AC) measured with high-accuracy power meter.

The contribution of our paper is the comparison of two architectures on a unique set
of benchmarks. Two different methodologies are used for expressing the energy effi-
ciency. A unique hardware setup of the Samsung Odroid-XU47 kit, based on a more
powerful power supply, cooling and an accumulative power consumption sensor, is
utilised.

3 Investigated Systems

The system configurations, all the benchmarks were run on, are summarised in Table 1
and 2.

The operating system was Ubuntu 16.04 on both systems.
On Intel, the energy measurements were taken using the Intel Performance Counter

Monitor8 and its pcm-power module, which can directly access the Running Average
Power Limit Model Specific Registers (RAPL MSRs) of the CPU. It measures the en-
ergy consumption of three main components of each CPU - package, powerplane and
dram. The package measures the whole socket including the memory controller. Power-
plane only measures the cores themselves and dram measures the corresponding DRAM
modules. The powerplane measurements are not supported by the Haswell architecture.
The total power consumption in Watts was calculated as

7 http://www.hardkernel.com/main/products/prdt info.php?g code=G143452239825
8 https://software.intel.com/en-us/articles/intel-performance-counter-monitor

Table 1: Intel Haswell system hardware overview
Server Supermicro 7048GR-TR
Motherboard Supermicro X10DRG-Q

Processor 2× Intel Xeon E5-2620v3
TDP 2× 85 W, 2× 230.4 GFlop/s (SP, no Turbo),
2× 15 MB L3, 12× 256 KB L2, 12× 32 KB L1

RAM 2× 32 GB DDR4-2133 2× 59 GB/s, 2× 4 channels
Storage SSD Crucial MX200 250 GB
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Table 2: Samsung ARMv7 system hardware overview
Device Samsung Odroid-XU4

Processor
Samsung Exynos5422 TDP ∼15 W, 4×4+4×2.8 GFlop/s (SP)

(4× Cortex-A15 + 4× Cortex-A7) 2×2 MB L2, 8×32 KB L1
RAM 2 GB LPDDR3 933MHz 14.9 GB/s, dual channel
Storage eMMC5.0 HS400 Flash Storage

package0 + dram0 + package1 + dram1 (1)

The Samsung Odroid-XU4 kit does not support any hardware counters for mea-
suring power consumption. The energy consumption was measured by the KCX-0179

USB meter connected in-between the power supply and the power connector of the
board to display actual electric voltage and current. The current is also accumulated
into mAh used to manually calculate the overall energy consumption. Each benchmark
ran long enough or was run multiple times in a loop to consume at least 20 mAh. The
average deviation caused by reading the display manually is about 5 %.

The original Odroid power supply is not sufficient during high loads, the voltage
dropped below 4.2V and the kit got frozen. A programmable power supply Diametral
P230R51D10 was used instead.

The original cooler is also also sufficient during high loads. It was replaced by
Primecooler PC-NBHP1, originally used for motherboards’ north bridges. The heat-
conducting tape was replaced by the Arctic Ceramique paste. This dramatically im-
proved the temperatures, however, due to the plastic heat spreader, 95 °C was often
reached and the processor began throttling under High Performance Linpack at 2000 MHz
on 4× Cortex-A15. This resulted in slightly poorer results in this particular test. All
other tests performed within the range of safe temperatures and did not alter the perfor-
mance. The complete hardware setup is shown in Fig. 1.

Our Haswell CPU supports frequencies ranging from 1.2 to 2.4 GHz, excluding the
Intel Turbo boost. To be able to manually set a chosen frequency, the Intel P-state driver
had to be replaced with the ACPI driver and the governor (power scheme for the CPU)
was set from balanced to userspace using the system’s cpupower utility. Similarly on
Odroid, the cpufreq-set utility was used to change the frequency.

All the benchmarks were compiled using the GNU Compiler Collection 5.3.0 com-
piler. The optimisation flags used for Haswell and ARM respectively were

-O3 -mavx2 -mtune=native -march=native (2)

-O3 -mfpu=neon-vfpv4 -mtune=cortex-a15 -march=armv7-a (3)

9 https://cdn.solarbotics.com/products/datasheets/kcx-017%20power%20bank%20testing.pdf
10 http://diametral.cz/ac-dc-zdroje/dc-regulovatelne-zdroje/laboratorni/laboratorni-zdroj-

p230r51d-2x-030v/4a-1x-5v/3a.html
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Fig. 1: A complete hardware setup for the Samsung Odroid-XU4 kit - the Diametral
P230R51D power supply, the Primecooler PC-NBHP1 cooler and the KCX-017 power
meter.

On Haswell, three main frequencies for all the cores were chosen to be bench-
marked, 1.2, 1.8 and 2.4 GHz. The Haswell architecture supports setting an individual
frequency for each core, however, this feature is not utilised because all the benchmarks
were run on all 2×6 cores. The single-threaded ones where the uniform frequency was
set to keep the results comparable. Intel Turbo boost was turned off. Voltages for all fre-
quencies were set automatically based on the default CPU stepping provided by Intel.
On Odroid, 200, 800 and 1400 MHz were chosen for both A7 and A15, in addition to
2000 MHz for A15. The Exynos processor supports switching off all the cores except
the first A7 core. However, using even a single core from either the A7 or A15 quadcore
cluster keeps the whole cluster running. Therefore switching off the A15 cluster only
proved beneficial. All benchmarks run on the A7 cluster were executed with the A15
cluster cores switched off to further isolate the A7 cores in terms of energy demands.

One parallel benchmark was parallelised using OpenMPI 1.8.4, the rest using OpenMP.
Each MPI process was bound to its core using the mpirun binding arguments, non-MPI
and serial processes were bound using the taskset system utility. If threading was used,
each thread was bound to its core using the GOMP CPU AFFINITY variable. All data
arrays were aligned using posix memalign to 64 bytes, which is the cache line width
on both architectures’ memory.

The number of floating point operations of each test run was obtained using the
PAPI [14] library and the PAPI SP OPS event for single precision and the PAPI -
DP OPS event for double precision floating point operations.
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Two different metrics of understanding the energy demands are used in this paper
called the overall and the net. The overall energy is the energy used by the whole sys-
tem, in our case summing the RAPL readings from sockets and DRAMs on Haswell, or
using the voltage and current readings from the USB meter on Odroid. The net energy
is the overall energy minus the energy the system would require to run for the same
amount of time in standby. This metric is marked H in the following tables. For exam-
ple, if the computation takes 10 s and the system’s power consumption is 10 W under
load and 2 W in idle, the overall energy demands are 100 Joules while the net energy
demands are 80 Joules. This way, we can isolate the algorithm’s energy requirements
from the system’s underlying overhead and also more accurately compare results across
different architectures. Similar metrics are used in the READEX project [11].

4 Benchmarks

Three main groups of benchmarks were tested: synthetic ones focusing on CPU and
memory, simple single-thread and parallel scientific applications.

The CPU’s attainable performance was tested using the High Performance Lin-
pack 2.2 [4] compiled with the ATLAS 3.10.311 library. The compilation of ATLAS
took over 24 hours on a single Odroid kit. The memory and cache subsystem was bench-
marked using LMBench 3 [9], which can measure read/write bandwidth and latency on
data of a chosen size.

The single-threaded benchmarks consisted of the Linpack benchmark, a recursive
quicksort, an iterative calculation of π using a continued fraction, and a recursive
Fibonacci series calculations. The quicksort focuses mainly on random data access
and can be considered a memory-bound problem for large input data. The π calculation
is a representative of common naive codes written by a non-HPC user. The Fibonacci
series is similarly naive and focuses on the stack usage and its implementation.

The multi-threaded algorithms consisted of LAMMPS [2], a molecular dynam-
ics simulator and its Fene bead/spring benchmark (polymer melt system with 32 000
atoms), the k-Wave toolbox [13], an ultrasound simulation toolkit based on a k-space
pseudospectral method, and a 2D heat propagation algorithm using the 4th order Finite
Difference Time Domain (FDTD) method in space and the 1st order in time.

5 Experimental Results

This section presents the results measured on both the Intel Haswell and ARMv7 archi-
tectures. Colours in tables represent the order of the particular result in a given group of
results (red being the worst, yellow being the median and green being the best, tables
with rows separated by a small vertical space have rows coloured separately.

5.1 Synthetic CPU and Memory Benchmarks

While Haswell being the most powerful CPU in the HPL benchmark, it is also the most
energy efficient chip in both the overall and net parameters (see Table 2). Generally, an
11 http://math-atlas.sourceforge.net/



8

Table 2: Performance, overall and net energy efficiency for High Performance Linpack.

4x Cortex-A7 4x Cortex-A15 2x 6-core Xeon E5-2620v3
200MHz 800MHz 1400MHz 200MHz 800MHz 1400MHz 2000MHz 1200MHz 1800MHz 2400MHz

GFlop/s 0.293 1.15 1.98 1.21 4.77 7.68 9.34 201 251 300

GFlops/W 0.111 0.316 0.458 0.563 0.923 0.895 0.532 1.37 1.54 1.47

1.10 1.45 1.47 1.50 2.23 1.46 0.686 2.20 2.23 1.95GFlops/W▼

worst best (each row coloured separately)

optimised compute-bound code which uses given resources efficiently should produce
a low number of stalls and NOP operations. The static power is reduced by shorter
runtimes and translating in a very good energy efficiency. Compute-bound problems
are therefore not going to be very efficient on low power systems such as ARMs. Intel’s
more complex architecture is more preferred.

The LMBench memory benchmark shows the bandwidth of all level caches scales
linearly with the frequency of the specific CPU (see Fig. 3 and the same data rearranged
in Table 4b). This is expected, as the caches’ frequency correspond to the core frequency
of both architectures. In the main memory, Haswell looses only 4–5% bandwidth when
downscaling the frequency by a factor of 2. The DRAM and memory controller fre-
quency does not scale down with the CPU, which should be a considerable advantage
mainly in memory-bound problems. On ARM, however, the DRAM bandwidth starts
to decrease significantly once the CPU frequency drops below the DRAM frequency,
which is 933 MHz. Above this point, the bandwidth is almost independent on the CPU
frequency scaling showing only a slight drop probably due to an imperfect clock divider.

Comparing the maximum overall bandwidth of a dual-socket Haswell, A15 and A7
quadcores, Haswell is 7× faster in L1 cache, 15× faster in the last level cache and 20×
faster in the main memory than A15. A15 is 4× faster in L1 cache, 2× faster in L2 cache
and 2.5× faster in the main memory than A7. These numbers roughly correspond to the
differences in power consumption and theoretical performance of the CPU.

The single-core bandwidth shows that Haswell’s performance drops almost 10×
across all cache levels and the main memory compared to employing all the 2×6 cores.
At least 10 cores is necessary to fully saturate the data transfers. Lowering the fre-
quency also negatively impacts the performance much more prominently. On ARM,
the caches’ bandwidth drops by a factor of unused cores, however, the main memory
bandwidth reaches almost 70% compared to using all cores. Using 2 cores (not shown
in the tables) saturates the main memory by almost 90% on both Cortexes. This fact
could be exploited on appropriate ARM architectures in heavy memory-bound appli-
cations where most of the cores could be switched off to improve energy-efficiency
without significant performance penalties.

The overall energy efficiency is presented in Table 4c. As long as data sits in caches,
the lowest frequency of Haswell performs the best, followed by A15 on 1400 MHz
and A7 on its maximum 1400 MHz. In the main memory, both Cortexes are the most
efficient right around the frequency of their DRAM module (933 MHz). Dropping the
frequency any lower results in a very poor efficiency mainly because of the increasingly
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Fig. 3: Bandwidth comparison of memory and cache data read using LMBench.

prominent drop in bandwidth, and also because the static power becoming dominant as
the computing time increases.

Table 4d shows the net energy efficiency. This metric almost completely suppresses
the effect of static power and computing time on the energy demands. Lower frequen-
cies become more favourable and even the lowest frequency is very often the most
efficient one on all architectures. This metric suits both Cortexes better. The more effi-
cient A7 as its overhead of the static power is more prominent due to the whole kit being
measured for energy demands whereas only sockets’ and DRAMs’ hardware counters
are taken into account on Haswell.

5.2 Single-Threaded Algorithms

All benchmarks run on a single core only (performance in Fig. 5) and therefore the
overhead energy (mainly the static power) becomes much more significant (upper blue-
coloured bars in Fig. 6). The overall energy (upper blue and bottom green bar pairs)
is the lowest at the maximum frequency on all architectures except A15 being a bit
more efficient calculating the Fibonacci and quicksort benchmarks on 1400 MHz. The
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(a) Bandwidth (single core)
GB/s 1x Cortex-A7 1x Cortex-A15 1x 1-core Xeon E5-2620v3

Data Size 200MHz 800MHz 1400MHz 200MHz 800MHz 1400MHz 2000MHz 1200MHz 1800MHz 2400MHz
16 KB 1.01 4.12 7.32 2.87 11.9 21.8 29.8 35.3 52.9 70.6

64 KB 0.633 2.73 4.66 1.34 5.52 10.4 14.4 23.3 35.0 46.6

256 KB 0.553 2.29 4.10 1.33 5.48 9.63 13.8 17.0 25.5 35.2

1 MB 0.261 0.536 0.643 1.32 5.46 9.60 13.7 14.4 21.7 29.0

4 MB 0.230 0.450 0.518 0.853 2.51 3.15 3.45 14.5 21.7 29.0

16 MB 0.230 0.454 0.516 0.790 2.38 2.95 3.38 10.7 14.0 16.4

64 MB 0.229 0.455 0.516 0.794 2.33 2.96 3.38 7.3 8.4 9.9

(b) Bandwidth (all cores)
GB/s 4x Cortex-A7 4x Cortex-A15 2x 6-core Xeon E5-2620v3

Data Size 200MHz 800MHz 1400MHz 200MHz 800MHz 1400MHz 2000MHz 1200MHz 1800MHz 2400MHz
16 KB 4.08 16.6 29.2 12.2 49.9 87.5 125.0 395 592 790

64 KB 4.05 16.5 29.1 11.8 32.9 55.9 121.7 424 635 847

256 KB 2.45 10.0 17.6 3.06 12.5 22.5 35.3 413 643 858

1 MB 0.974 2.12 2.53 3.04 12.4 21.8 31.2 281 420 557

4 MB 0.835 1.62 1.95 1.24 4.03 5.09 5.65 205 310 419

16 MB 0.838 1.66 1.97 1.02 3.39 4.28 4.68 176 264 348

64 MB 0.816 1.70 2.00 1.02 3.39 4.31 4.68 89.1 91.8 92.5

(c) Overall energy efficiency (all cores)
GB/W 4x Cortex-A7 4x Cortex-A15 2x 6-core Xeon E5-2620v3

Data Size 200MHz 800MHz 1400MHz 200MHz 800MHz 1400MHz 2000MHz 1200MHz 1800MHz 2400MHz
16 KB 2.39 7.92 12.0 3.58 10.8 13.2 9.17 14.9 10.6 8.00

64 KB 2.33 8.30 11.5 3.52 7.12 8.12 9.31 15.5 11.0 8.37

256 KB 1.34 4.77 6.91 0.917 2.94 3.67 3.01 14.9 11.1 8.43

1 MB 0.490 0.913 0.975 0.954 2.73 3.30 2.61 9.14 6.56 4.96

4 MB 0.389 0.701 0.763 0.348 0.865 0.868 0.624 6.04 4.19 3.11

16 MB 0.396 0.777 0.698 0.284 0.694 0.653 0.512 4.10 2.60 2.24

64 MB 0.417 0.745 0.746 0.275 0.740 0.739 0.513 0.411 0.324 0.263

(d) Net energy efficiency (all cores)
4x Cortex-A7 4x Cortex-A15 2x 6-core Xeon E5-2620v3

Data Size 200MHz 800MHz 1400MHz 200MHz 800MHz 1400MHz 2000MHz 1200MHz 1800MHz 2400MHz
16 KB 31.8 39.9 44.3 22.4 31.2 26.6 12.9 20.9 18.1 16.0

64 KB 39.0 42.7 39.2 23.3 20.8 15.7 13.3 21.7 18.8 16.7

256 KB 12.8 24.2 22.9 6.37 10.2 8.06 4.51 20.9 18.9 16.9

1 MB 2.77 3.33 3.09 9.48 8.21 6.65 3.89 12.8 11.2 9.91

4 MB 1.63 2.60 2.50 1.78 2.48 2.01 1.10 8.45 7.12 6.23

16 MB 1.73 3.66 1.89 1.39 1.83 1.33 0.895 5.74 4.42 4.48

64 MB 2.54 2.82 2.21 1.18 2.20 1.72 0.900 0.644 0.609 0.579

GB/W▼

worst best (each row coloured separately)

Fig. 4: Memory and cache data read bandwidth and energy efficiency using LMBench.

cause is, similarly to the previous synthetic benchmarks but even more noticeable in this
case, the static power of the system. Having only one core working and the other ones
idling, the static power becomes the most dominant energy consumer and any decrease
in frequency only prolongs the runtime and the system energy overhead problem.
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512×512 grid, recursive Fibonacci series calculating the 47th element, π calculation
iteratively for 5 × 109 iterations and recursive quicksort sorting 150 000 000 elements.
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Fig. 6: Energy efficiency of single-threaded algorithms (bottom green part shows the
net energy, blue and green together the overall, green arrow points to the lowest net en-
ergy of a given benchmark, black arrows points to the lowest overall energy) - Linpack
using 4096 repetitions on 512×512 grid, recursive Fibonacci series calculating the 47th

element, π calculation iteratively for 5 × 109 iterations and recursive quicksort sorting
150 000 000 elements.

The net energy, shown as green bars, can benefit from frequency scaling because
it suppresses the effect of the static power, specifically on Intel, where each frequency
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(a) Performance
GFlop/s 4x Cortex-A7 4x Cortex-A15 2x 6-core Xeon E5-2620v3
Grid Size 200MHz 800MHz 1400MHz 200MHz 800MHz 1400MHz 2000MHz 1200MHz 1800MHz 2400MHz

0.140 0.527 0.847 0.352 1.33 2.10 2.66 29.3 36.8 43.8
0.146 0.483 0.755 0.382 1.46 2.08 2.88 33.2 44.3 51.8
0.063 0.250 0.446 0.144 0.571 0.955 1.29 2.91 4.87 6.15

1283 (112 MB)
2563 (896 MB)
2573 (907 MB)

(b) Overall energy efficiency
GFlops/W 4x Cortex-A7 4x Cortex-A15 2x 6-core Xeon E5-2620v3
Grid Size 200MHz 800MHz 1400MHz 200MHz 800MHz 1400MHz 2000MHz 1200MHz 1800MHz 2400MHz

0.074 0.223 0.284 0.148 0.332 0.304 0.174 0.295 0.283 0.290
0.074 0.189 0.253 0.163 0.373 0.330 0.200 0.296 0.262 0.229
0.035 0.113 0.155 0.065 0.165 0.162 0.096 0.030 0.044 0.042

1283 (112 MB)
2563 (896 MB)
2573 (907 MB)

(c) Net energy efficiency
4x Cortex-A7 4x Cortex-A15 2x 6-core Xeon E5-2620v3

Grid Size 200MHz 800MHz 1400MHz 200MHz 800MHz 1400MHz 2000MHz 1200MHz 1800MHz 2400MHz
0.575 0.732 0.681 0.536 0.605 0.429 0.211 0.561 0.445 0.421
0.451 0.526 0.608 0.617 0.698 0.485 0.247 0.509 0.363 0.290
0.371 0.432 0.390 0.296 0.348 0.246 0.121 0.059 0.077 0.061

GFlops/W▼

1283 (112 MB)
2563 (896 MB)
2573 (907 MB)

worst best

Fig. 7: The k-Wave simulation toolbox (the k-space pseudospectral method).

drop results in a linear decrease in power demands. A15 is the most efficient around
800–1400 MHz and A7 at 800 MHz. A7 is overall the most efficient core.

5.3 Multi-Threaded Algorithms

The last group of benchmarks represents parallel algorithms corresponding to common
HPC workloads.

The k-Wave toolbox [13] is based on the k-space pseudospectral method, which
is characterised by high accuracy, fast convergence and a low number of grid points
per wavelength. The 3D fast Fourier transforms are computed using the FFTW12 3.3.4
library.

Performance-wise, Haswell achieves more than 50 GFlop/s, which is about 15% of
Linpack’s performance. A15 is capable of almost 2.9 GFlop/s, almost a third of Lin-
pack, and A7 achieves 0.85 Gflop/s, almost half of Linpack’s performance. The CPUs
are limited by the main memory bandwidth, and as the less powerful architecture is
used, the performance is much closer to its theoretical limit. This can be observed even
more prominently on the FDTD method.

Table 7b shows all three CPUs behaving similarly in terms of the peak energy
efficiency, achieving around 0.3 GFlops/W, A15 being the most efficient running at
800 MHz. Intel’s efficiency drops considerably using the prime domain size of 2573

(which is the worst case scenario and should be avoided), breaking the vectorisation
and memory access patterns. Since the code is unable to be vectorised on ARM, be-
cause the FFTW library did not provide a support for Neon vectorisation at the time of
writing this paper, A15’s and A7’s drops are not so significant.

12 http://www.fftw.org/



13

Table 8: Performance (double precision), overall and net energy efficiency comparison
using the LAMMPS molecular dynamics simulator and its Fene benchmark.

4x Cortex-A7 4x Cortex-A15 2x 6-core Xeon E5-2620v3
200MHz 800MHz 1400MHz 200MHz 800MHz 1400MHz 2000MHz 1200MHz 1800MHz 2400MHz

GFlop/s 0.046 0.142 0.191 0.080 0.265 0.374 0.439 2.93 4.21 5.10

GFlops/W 0.023 0.057 0.062 0.037 0.073 0.067 0.039 0.042 0.044 0.042

0.132 0.177 0.140 0.130 0.136 0.103 0.051 0.125 0.094 0.070GFlops/W▼

worst best (each row coloured separately)

k-Wave’s net energy efficiency (Table 7c) shows A7 as the most efficient at 800 MHz,
followed by A15 also at 800 MHz and Haswell at 1200 MHz. Haswell is much closer
to ARM compared to the FDTD method mainly because the raw performance is much
higher using k-Wave.

LAMMPS is the only benchmark presented using MPI instead of a threading and
double precision floating point arithmetic. The main difference is that ARMv7 does not
support the double precision vectorisation, its 128-bit NEON registers support only a
single precision. LAMMPS is a typical example of a problem with mutual interactions
of a high number of independent and relatively simple elements. The performance of
this algorithm class is often lower, however it should theoretically benefit even more
from frequency scaling and the usage of low power architectures.

Performance-wise (see Table 8), Haswell achieves more than 5 GFlop/s, while A15
is about 11× slower and A7 is roughly 25× slower. Overall energy efficiency on A15
and A7 is about 1.5–2× better than on Haswell, which is the biggest difference of all
the presented benchmarks. Net energy efficiency is the best on A7, followed by A15
and Haswell being the least efficient.

The FDTD’s performance overview is shown in Table 9a. FDTD is an example of a
memory-bound problem because the number of operations per one byte of data is rel-
atively low characterised by local data sharing only (no global information is needed),
good scalability and a low number of cache misses.

In terms of performance, the dual-socket Haswell is almost 4–5× faster than A15,
which is 2-3× more powerful than A7. While in the HPL benchmark, Haswell was
more than 30× faster than A15, the difference in memory-bound applications shrinks
quite dramatically. The 5122 domain size does not fit into the L2 cache (two separate
matrices are allocated for even and odd iterations and two matrices for heat conductivity
properties of each point) of both Cortexes (2 MB) and the performance drop is quite
radical. However, in the case of Haswell, exceeding the L3 cache size (15 MB) with the
10242 domain size does not hinder the performance. The 20482 and 40962 sizes were
also tested (not shown in the table for the sake of brevity) and the performance stayed
around the 20 GFlop/s mark, most likely because of the help of prefetcher.

Table 9b displays the energy efficiency across all CPUs and domain sizes. A7 is the
most efficient, capable of more than 0.6 GFlops/W running at 1400 MHz. A15’s best
frequency is between 800–1400 MHz, for Intel it is its highest - 2400 MHz.

The net energy efficiency, presented in Fig. 9c, shows A7 as the most efficient reach-
ing 2.2 GFlops/W running at 800 MHz. A15 is about half as efficient as A7, running the



14

(a) Performance
GFlop/s 4x Cortex-A7 4x Cortex-A15 2x 6-core Xeon E5-2620v3
Grid Size 200MHz 800MHz 1400MHz 200MHz 800MHz 1400MHz 2000MHz 1200MHz 1800MHz 2400MHz

0.238 0.990 1.75 0.475 1.95 3.42 4.81 10.2 12.9 16.0
0.219 0.846 1.34 0.479 1.98 3.44 4.91 11.5 16.8 22.3
0.171 0.637 1.04 0.320 1.24 1.89 2.20 10.5 16.1 20.0
0.112 0.439 0.731 0.209 0.802 1.29 1.53 9.15 15.0 19.8

1282 (256KB)
2562 (1MB)
5122 (4MB)
10242 (16MB)

(b) Overall energy efficiency
GFlops/W 4x Cortex-A7 4x Cortex-A15 2x 6-core Xeon E5-2620v3
Grid Size 200MHz 800MHz 1400MHz 200MHz 800MHz 1400MHz 2000MHz 1200MHz 1800MHz 2400MHz

0.135 0.485 0.651 0.223 0.561 0.551 0.338 0.156 0.164 0.173
0.120 0.396 0.470 0.222 0.581 0.547 0.319 0.174 0.210 0.234
0.097 0.301 0.366 0.140 0.343 0.319 0.178 0.162 0.201 0.208
0.061 0.205 0.257 0.094 0.237 0.241 0.142 0.140 0.185 0.200

1282 (256KB)
2562 (1MB)
5122 (4MB)
10242 (16MB)

(c) Net energy efficiency
4x Cortex-A7 4x Cortex-A15 2x 6-core Xeon E5-2620v3

Grid Size 200MHz 800MHz 1400MHz 200MHz 800MHz 1400MHz 2000MHz 1200MHz 1800MHz 2400MHz
1.07 2.20 1.76 1.07 1.19 0.819 0.413 0.527 0.454 0.375
0.787 1.55 1.15 1.03 1.26 0.807 0.383 0.576 0.563 0.490
0.766 1.20 0.902 0.538 0.698 0.485 0.226 0.559 0.539 0.434
0.363 0.797 0.633 0.397 0.518 0.389 0.186 0.472 0.483 0.403

GFlops/W▼

1282 (256KB)
2562 (1MB)
5122 (4MB)
10242 (16MB)

worst best

Fig. 9: The Finite Difference Time Domain method - 4th order in space, 1st order in
time.

most efficiently at 800 MHz. Intel is the least efficient giving best results at its lowest
frequency - 1200MHz.

6 Conclusion

In this paper, the effect of voltage and frequency scaling on performance and energy
efficiency was studied comparing the Intel Xeon Haswell and ARMv7 big.LITTLE
architectures. Two different techniques for measuring energy efficiency were presented,
the overall and the net, isolating only the algorithm’s energy demands.

The results showed that frequency scaling can bring significant energy savings
mainly on the ARM architecture (1.5–2× on the optimal frequency compared to the
maximum one). While Intel processors can also benefit from the frequency scaling, the
profit is not so significant due to the higher energy demands for the rest of the system
(the static power), mainly the DRAM modules and also lower flexibility regarding the
frequency range.

The Samsung Odroid-XU4 board on the other hand provides a very flexible range
of frequencies and a much lower energy overhead required to power the system around
the processor. Overall, the lower range of frequencies does not prove to be efficient
on any set of benchmarks. The ”sweet spot” for both the Cortex-A7 and Cortex-A15
quadcores lies around the frequency of its DRAM, which is 933 MHz, providing better
energy efficiency than the Haswell processors.

In High Performance Linpack, the peak performance of the dual-socket Haswell is
30× better than the Cortex-A15 quadcore. However, in parallel scientific applications,
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the difference shrank to about 5–15×, which results in a better performance to purchase
price ratio in favour of ARM ($70 for the ARM kit vs. 2× $500 for only the Haswell
processors).

Table 3 presents a 10-year lifetime comparison of all architectures running the
LAMMPS simulator using the most energy-efficient setting. For ∼30× more energy
consumed, Haswell provides ∼20× better performance.

Table 3: 10-year lifetime comparison running LAMMPS using the most overall energy-
efficient setting (A7 1400 MHz, A15 800 MHz, Haswell 1800 MHz), considering ¤0.2
for 1 kWh.

Processor Energy [MJ] Electricity costs [¤] PFlops

4× Cortex-A7 0.975 194 60.2
4× Cortex-A15 1.16 232 83.6
2×6 Haswell 29 900 5 970 1 330

Table 4: Comparison of the overall energy efficiency and performance relative to 4×
Cortex-A15. For each benchmark and architecture, the most energy efficient frequency
is chosen. The same frequency is then used to compare performance (higher number is
better).

Algorithm
Overall energy efficiency Performance

4×A7 4×A15 2×6 Haswell 4×A7 4×A15 2×6 Haswell

HPL 0.496 1 1.67 0.415 1 52.6
LMBench 16 KB (L1) 0.909 1 1.13 0.334 1 4.51
LMBench 1 MB (L2) 0.295 1 1.83 0.116 1 9.41
LMBench 64 MB (Main) 1.01 1 0.555 0.588 1 26.3
Linpack (single core) 1.29 1 0.204 0.259 1 3.04
Fibonacci (single core) 1.42 1 0.109 0.398 1 3.18
π (single core) 0.904 1 0.221 1.01 1 2.47
Quicksort (single core) 0.931 1 0.137 0.668 1 3.38
k-Wave 1283 0.855 1 0.889 0.637 1 22.5
k-Wave 2563 0.678 1 0.796 0.517 1 22.7
k-Wave 2573 0.939 1 0.267 0.781 1 8.53
LAMMPS 0.849 1 0.603 0.721 1 15.9
FDTD 1282 1.16 1 0.308 0.897 1 8.21
FDTD 2562 0.809 1 0.403 0.677 1 11.3
FDTD 5122 1.07 1 0.606 0.839 1 16.1
FDTD 10242 1.07 1 0.833 0.567 1 15.3

Average 0.918 1 0.660 0.589 1 14.1
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Table 4 shows a complete comparison of all architectures and benchmarks relative to
4× Cortex-A15. For each benchmark, each architecture runs at the most overall energy-
efficient frequency, and then, using the same frequency, the performance is compared.
For example, in the HPL benchmark Haswell provides 1.67× more GFlops per Watt,
while the performance is 52.6× better (251 GFlop/s at 1800 MHz vs. 4.77 GFlop/s at
800 MHz). The dual-socket Haswell is the most energy efficient in the synthetic bench-
marks - HPL and LMBench, on average the efficiency is 0.66× worse than A15’s for
14.1× better performance. Overall, Odroid is more energy-efficient in most of the pre-
sented benchmarks, but for the price of a significant performance drop.

The results presented in this paper can be used to save energy on similar systems.
However, our study focuses only on single shared memory ”nodes”, leaving further
measurements of power and energy on similar distributed systems for future work,
which will focus on distributed ARMv8 clusters provided by the Mont-Blanc project.
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Sourouri, M., Kumaraswamy, M., Chowdhury, A., Jahre, M., Diethelm, K., Bouizi, O., Mian,
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