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Purpose: High intensity focused ultrasound (HIFU) provides a non-invasive salvage treatment

option for patients with recurrence after external beam radiation therapy (EBRT). As part of EBRT

the prostate is frequently implanted with permanent fiducial markers. To date, the impact of these

markers on subsequent HIFU treatment is unknown. The objective of this work was to systematically

investigate, using computational simulations, how these fiducial markers affect the delivery of HIFU

treatment.

Methods: A series of simulations was performed modelling the propagation of ultrasound pressure

waves in the prostate with a single spherical or cylindrical gold marker at different positions and

orientations. For each marker configuration, a set of metrics (spatial-peak temporal-average intensity,

focus shift, focal volume) was evaluated to quantify the distortion introduced at the focus. An analyti-

cal model was also developed describing the marker effect on the intensity at the focus. The model

was used to examine the marker's impact in a clinical setting through case studies.

Results: The simulations show that the presence of the marker in the pre-focal region causes reflec-

tions which induce a decrease in the focal intensity and focal volume, and a shift of the maximum

pressure point away from the transducer's focus. These effects depend on the shape and orientation of

the marker and become more pronounced as its distance from the transducer's focus decreases, with

the distortion introduced by the marker greatly increasing when placed within 5 mm of the focus.

The analytical model approximates the marker's effect and can be used as an alternative method to

the computationally intensive and time consuming simulations for quickly estimating the intensity at

the focus. A retrospective review of a small patient cohort selected for focal HIFU after failed EBRT

indicates that the presence of the marker may affect HIFU treatment delivery.

Conclusions: The distortion introduced by the marker to the HIFU beam when positioned close to

the focus may result in an undertreated region beyond the marker due to less energy arriving at the

focus, and an overtreated region due to reflections. Further work is necessary to investigate whether

the results presented here justify the revision of the patient selection criteria or the markers’ place-

ment protocol. © 2016 American Association of Physicists in Medicine [https://doi.org/10.1002/

mp.12044]
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1. INTRODUCTION

Prostate cancer is the most commonly occurring male cancer

and the second leading cause of cancer-related death in men

in the European Union (EU) and the United States of

America (USA).1,2 More specifically, in 2012 of all reported

cancer cases in men, prostate cancer accounted for 24.1% in

the EU, with a 10% mortality rate, and 28.3% in the USA,

with a 9.4% mortality.1 According to the American Cancer

Society, these rates are estimated to continue in 2016.3 These
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figures differ when viewed based on worldwide data, where

prostate cancer appears as the second most diagnosed cancer

in men with 1.1 million diagnosed cases in 2012 (14.8%) and

as the fifth cause of cancer-related death with 307 thousand

deaths (6.6%).1,4 Despite the lower incidence and mortality

rates from worldwide data, prostate cancer is still one of the

major malignancies affecting hundreds of thousands of men

each year and improving its diagnosis and treatment is of

great importance.

There is a range of available options for treating prostate

cancer with some of them having a curative intent and others

palliative. Selecting an appropriate therapy depends on sev-

eral factors, such as the stage of the tumor, biochemical indi-

cators (e.g. prostate specific antigen value), Gleason score,

other associated diseases, the patient’s age and life expec-

tancy, as well as the patient’s personal preference.5 For local-

ized or locally advanced prostate cancer, recommended

treatments for primary therapy include active surveillance,

radical prostatectomy (RP), external beam radiation therapy

(EBRT) and temporary (high-dose rate) or permanent (low-

dose rate) brachytherapy (BT) with or without additional

EBRT. These treatments may be offered independently or in

combination with hormonal therapy (androgen deprivation

therapy). In recent years, new minimally invasive modalities

have emerged and provide alternative treatment options with

the most notable being high intensity focused ultrasound

(HIFU) and cryosurgery.5–7

EBRT is an effective primary therapy option with good sur-

vival rates reported.8–10 It is estimated that 12–24% of patients

diagnosed with localized prostate cancer receive EBRT as a

primary treatment.11,12 Although numbers may differ depend-

ing on the definition of failure used, in approximately 30% of

these patients their cancer will recur8,13–16 with some studies

reporting even higher rates.14,17–20 For patients with local

recurrence after EBRT, depending on life expectancy and

tumor progression, an alternative (salvage) therapy may still be

appropriate in order to limit further progression of the disease

and metastasis.14,20 The four major options for re-treatment

available after EBRT failure are salvage RP, salvage BT, sal-

vage cryosurgery and salvage HIFU.15,16,19,21 Amongst these

methods, salvage RP is the most established treatment with

good oncological outcomes.15 However, it is associated with

high morbidity,14–16,18,19,22,23 thus, doctors may be reluctant to

recommend it, especially for patients with a short life

expectancy.14–16,19 The other three modalities provide a less

invasive alternative, with HIFU offering the least invasive

approach.20

HIFU has been the subject of many studies indicating its

potential as a primary treatment for locally confined prostate

cancer.24 Accurately determining the efficacy of this modality

is not easy, especially due to the inconsistency in reporting

biochemical failure and due to the absence of long-term

oncological outcomes.25,26 As a result and despite already

being in use in many centers across the world, HIFU is still

classified as an experimental treatment, for example, by the

European Association of Urologists (EAU).6 Nonetheless,

some studies report encouraging results for primary HIFU

treatment with low mortality rate, high metastasis-free sur-

vival rate, and acceptable side-effects comparable to other

minimally invasive modalities.24,26

Currently, only a limited number of studies report on the

efficacy and safety of HIFU as a salvage therapy after failure

of EBRT.5,15,27 Additionally, no prospective randomized tri-

als have been reported.27 Consequently, comparison of HIFU

with other conventional salvage modalities is difficult. Most

of the published investigations are retrospective stud-

ies,14,17,20,28,29 with only a few prospective series

reported.5,19,23 The majority of these studies report good local

cancer control, indicating the potential of HIFU as an effec-

tive salvage therapy for low- and intermediate-risk patients.

In some studies, the rate of complications reported is high,

with some adverse effects comparable to the other salvage

therapies. This presents a limitation for the use of HIFU as a

salvage therapy.23 However, it is interesting to observe that in

those studies where new refined treatment parameters were

introduced, dedicated to post-radiation salvage-HIFU treat-

ments, the side-effects were significantly reduced.14,19,23

Salvage treatment in a previously irradiated prostate is

technically challenging, and higher rates and more severe side

effects are expected. However, the positive effect of the new

treatment parameters introduced in some of the studies for

post-EBRT salvage-HIFU demonstrates that there is signifi-

cant opportunity for improving both the delivery of salvage-

HIFU treatment as well as patient selection. An aspect of sal-

vage HIFU that has been overlooked so far, and which may

affect the treatment’s safety and efficacy as well as patient

selection, is the presence of fiducial markers that are increas-

ingly introduced in the prostate as part of modern image-

guided radiotherapy (IGRT).30,31 To the best of our knowl-

edge, there are no studies investigating the effect of these

markers on the delivery of salvage-HIFU after EBRT, with

the exception of a small number of studies reporting on the

effect of permanent BT seeds on HIFU.32,33 The purpose of

this work was to perform an extensive quantitative investiga-

tion of the effect of fiducial markers on the propagation and

focusing of the ultrasound (US) waves when the beam path is

obstructed by an EBRT fiducial marker.

The fiducial markers are introduced in the prostate in

order to improve the accuracy of EBRT. They facilitate the

localization of the prostate, enable motion and deformation

tracking and act as reference points for distance measure-

ments as well as for registering images obtained from differ-

ent imaging modalities.30,31,34,35 Typically 3 radio-opaque

markers are implanted in the prostate before the patient

undergoes EBRT planning and remain permanently in the

prostate after the completion of the treatment.36,37 The mark-

ers are placed within the prostate gland using a transperineal

or transrectal approach with a needle holding one or two

markers, under the guidance of transrectal ultrasound (TRUS)

in a procedure similar to that of a biopsy.36,38 Although this

may differ between hospitals, the markers are typically placed

in the prostate base, mid-gland, and apex at a distance of

approximately 2 cm from each other and at least a 15� angle

between any fiducial triplets.36,39,40 Consequently, only a
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single marker is likely to be encountered by the HIFU beam

for any individual sonication.

There is a large range of commercially available markers

made from a variety of materials in different shapes and

dimensions.30,34,35,41 The most commonly used markers are

made of gold, making them visible in a variety of imaging

modalities, and have a cylindrical shape with their surface

appropriately shaped to minimize migration.30 Although less

frequent, spherical gold markers are also utilized.42,43 These

two shapes facilitate their insertion using a needle. More

recently, new types of markers have emerged that offer some

advantages but have yet to gain wide popularity. There are

three notable examples. First, carbon fiducials, which offer

better visibility and produce less artefacts on computed

tomography (CT) images. Second, metallic coils and strings

of markers on an absorbable strand, which may offer better

stability and localization since they stretch across the whole

gland. Finally, a new family of markers with a transponder

built-in to allow wireless tracking of their position in

real-time without the need for additional imaging of the

prostate.30

This work investigates the effect of a single gold marker

on the HIFU beam using numerical simulations based on a

model of the prostate containing a spherical or cylindrical

fiducial. For each marker shape, a series of simulations was

performed on a high performance computer (HPC) cluster to

evaluate the propagation of the HIFU beam in the prostate

when its path is obstructed by a single gold marker. The sim-

ulations used the open-source k-Wave44,45 toolbox developed

by our group for accurate modelling of the propagation of US

waves. The simulation results were also used to verify an ana-

lytical model developed for approximating the effect of the

marker on the intensity at the focus and for identifying a

region within which the marker has a significant impact on

the focusing. The study was performed in silico for several

reasons. First, computer simulations provide an effective and

low-cost method for investigating the key factors at play in

HIFU therapy delivery in a way that would be impractical,

costly, and possibly unethical in patients. Second, simulations

give access to a complete characterization of the acoustic

field parameters that are not accessible from an experiment.

Knowledge of these parameters is critical to understand and

quantify the effect of the markers.

2. METHODS

2.A. Clinical HIFU systems for prostate cancer

There are three approved transrectal HIFU treatment sys-

tems dedicated to prostate cancer and one transurethral device

currently in clinical trials. The transrectal systems are the

Sonablate 500 (SonaCare Medical LLC, Charlotte, NC,

USA), the Ablatherm II (EDAP TMS, Vaulx-en-Velin,

France), and the Focal One also developed by EDAP TMS.

The operation of these systems is based on similar principles.

They all deliver the treatment using a probe with an inte-

grated HIFU and imaging transducer, which is used

transrectally under US guidance to induce ablation of the tar-

geted region.24 On the other hand, the TULSA-PRO (PRO-

FOUND MEDICAL Corp., Toronto, Canada) delivers

transurethral ultrasound ablation of prostate cancer under

magnetic resonance imaging (MRI) guidance.46

The transducer model used in this work nominally fol-

lowed the specifications of the Sonablate 500 (SonaCare

Medical). This system is currently in use at University Col-

lege London Hospital (UCLH).47 The Sonablate 500 consists

of a console, a transrectal probe, and a cooling and degasing

module. The transducer is held at the tip of the probe by a

motorized system that allows it to move in the longitudinal

and transverse direction with a 90 degree treatment win-

dow.48 The transducer module itself consists of two dual-

mode (splitbeam) transducers stacked back-to-back capable

of both imaging at 6.3 MHz and treatment at 4 MHz. To

achieve this dual-mode operation, each side of the transducer

consists of two elements: a circular element at its center, ded-

icated to imaging, surrounded by an annular element, used

for treatment. Each side is manufactured with a different cur-

vature resulting in two fixed focal lengths (30 mm and

40 mm) by means of geometric focusing. This allows the

whole prostate gland to be treated using a single probe and

without the need for electronic beam steering. The current

dimensions of the transducer are 22 mm by 30 mm, noting

that earlier revisions of the system used a 22 mm by 35 mm

transducer. The dimensions of the earlier revision are fol-

lowed in this work.

During treatment, the ablation is given in blocks and can

be applied to the whole gland or focally to only the cancerous

lesion within the prostate. The ablated volume is pseudoellip-

soidal and its precise location is determined by the focal

length of the transducer. For each sonication, the ablated vol-

ume is on the order of 3� 3� 10 mm3. Multiple sonications

with slight overlap move sequentially through the prostate

with 3 s ‘on’ time exposures and 6 s ‘off’ time exposures.

The prostate is divided into six blocks, left and right with cor-

responding anterior, middle, and posterior blocks. The

40 mm focal length is used for anterior and middle block

treatment and the 30 mm probe for posterior block treatment.

Tissue destruction is produced by thermal, mechanical, and

cavitation effects to produce a clearly demarcated region of

coagulative necrosis.

2.B. Simulation setup

The simulations were performed using the open-source k-

Wave Toolbox.44 This solves a generalized version of the

Westervelt equation accounting for the combined effects of

nonlinearity, heterogeneous material properties, and acoustic

absorption following a frequency power law. The transducer

geometry was assumed to be a spherical section with

width Wt ¼ 22 mm, length Lt ¼ 35 mm, focal length

Rt ¼ 40 mm and without an imaging element included. The

simulations were performed using a regular Cartesian mesh

and the transducer was defined in the grid as a simply-

connected sphere with a single grid-point thickness truncated
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to the appropriate width and height. The discretized trans-

ducer model is shown in Fig. 1. The transducer was driven by

a f0 ¼ 1=T ¼ 4 MHz sinusoidal input signal, with surface

pressure p0 given by

p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Iavq0c0
p

: (1)

Here q0 and c0 are, respectively, the density and sound speed

of the background medium and Iav ¼ 4 W/cm2 is the time-

averaged source surface intensity. The value of Iav was

selected such that the focal intensity is of the order of magni-

tude reported for the Sonablate 500 (1000–2000 W/cm2).49,50

The total duration of the input signal was 60 ls, which

was equal to the total simulation time and long enough to

ensure the pressure had reached steady-state. To ensure stabil-

ity, a smaller time step dt was used for the simulations in

which a marker was introduced in the grid.45 The time step

for the homogeneous case (without marker) was given by

dt ¼ 0:33dx=c0, and for the heterogeneous case (with mar-

ker) by dt ¼ 0:066dx=c0, where dx is the spatial grid-spa-

cing. As a result, the total number of time steps was 5 times

higher for the heterogeneous simulations.

The physical dimensions of the simulation volume were

ðLx; Ly; LzÞ ¼ ð44:7; 29:4; 60:0Þ mm. This was discretized to

a regular Cartesian grid with dimensions ðNx;Ny;NzÞ, which
included a LPML ¼ 20 grid-points (pt) perfectly matched

layer (PML) at either end of each coordinate axis.51 The grid

spacing was uniform along all three coordinate axes and was

defined according to dx ¼ dy ¼ dz ¼ Lz=ðNz � 2LPMLÞ.
The background medium was assigned the material proper-

ties of the prostate (density: q0 ¼ 1050 kg/m3 and sound-

speed: c0 ¼ 1578 m/s), and the spherical or cylindrical

volume occupied by the marker was assigned the properties

of gold (density: qm ¼ 19300 kg/m3 and sound-speed:

cm ¼ 3240 m/s). Reference simulations were also performed

without the inclusion of a marker in order to record the char-

acteristics of an uninterrupted HIFU beam. Both sets of simu-

lations were nonlinear (nonlinearity parameter: B/A = 6.75)

and accounted for absorption following a frequency power

law of the form a0f
y0 where a0 ¼ 0:5 dB MHz�y0cm�1 and

y0 ¼ 1:1.

2.C. Marker placement

To investigate the effect of fiducials on the propagation

and focusing of the HIFU beam, each simulation included a

single spherical or cylindrical gold marker positioned at dif-

ferent coordinates, with the position of the transducer kept

fixed across all simulations. The spherical marker had a

3 mm diameter, whereas the cylindrical had a 3 mm height

and 1 mm diameter. The simulated positions for each marker

shape are shown in Fig. 2.
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FIG. 1. The discretized transducer model used in the simulations shown in

3D. [Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 2. The positions and orientations simulated for (a) the spherical markers with 3 mm diameter and (b)–(d) the cylindrical markers with 1 mm diameter

and 3 mm height. The simulated positions are shown superimposed on the maximum pressure field of a homogeneous medium. The markers were placed

on the zx plane which includes the transducer’s focal-point mf , indicated by the star-like marker. The cross-section of the transducer is also indicated at the

top of each figure. [Color figure can be viewed at wileyonlinelibrary.com]
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In order to reduce the number of simulations performed, the

center positions of the markers were limited to the xz plane at

y ¼ Ny=2. This plane includes the center of the focal region

which was expected at approximately mf ¼ ðNx=2;
Ny=2; bRt=dzcÞ, where m is a 3-dimensional (3D) vector

denoting the coordinates of any point in the grid. If the plane is

further divided into four quadrants with the origin at the focal

point, the simulated positions were limited to the top-right and

bottom-left quadrant as shown in Fig. 2(a). The choice of limit-

ing the tested marker positions into two quadrants on a single

plane was based on the assumption that any observed effect

will be approximately symmetric about the beam axis. Both

types of markers were positioned radially along the axes con-

necting the focal point to the transducer. The distance between

markers along each axis, as well as the angle between succes-

sive axes, were kept constant. Hence, the markers can be

grouped either with respect to the angle of the radial axis from

the beam axis (see Fig. 5(f) inset), or with respect to their dis-

tance from the focal-point (see Fig. 5(c) inset).

2.D. Quantifying marker effect

To systematically evaluate the effect of a single marker on

the focusing of the HIFU beam, four metrics were selected

and evaluated using the simulation results for each marker

position. These metrics were later compared to the corre-

sponding quantities obtained from a homogeneous simulation

without a marker.

The first quantity evaluated was defined to measure how

much the focus has shifted from its intended position. Let

mref denote the coordinates of the maximum-pressure point

extracted from a homogeneous simulation without a marker.

This point will be referred as the focal-point, or simply the

focus. Let also mmax denote the coordinates of the maximum-

pressure point extracted from a heterogeneous simulation

with a marker. Then, the focus-shift was calculated using

dshift ¼ kmmax �mrefk (2)

which is the Euclidean distance between mmax and mref .

The next set of metrics were based on the spatial-peak

temporal-average (SPTA) intensity (Ispta). For each simulated

marker position, this quantity was evaluated both at the coor-

dinates of the homogeneous focus (mref ) and the coordinates

of the maximum-pressure point (mmax). The two scalar values

(IsptaðmrefÞ � Ifocus and IsptaðmmaxÞ � Imax) were obtained

using

IsptaðmÞ ¼
1

nT

Z nT

0

p2ðm; tÞ

q0c0
dt (3)

where p(m, t) is the pressure time series at the coordinates of

the maximum-pressure point (m ¼ mmax) or the focus

(m ¼ mref ), n≥1 is a positive integer and T is the period of

the driving frequency. Evaluating Eq. (3) at mref for a homo-

geneous simulation gives the SPTA intensity of an uninter-

rupted beam denoted as Ihom. Comparison of Ifocus and Imax

with Ihom provides an indication of how much energy is redis-

tributed due to the presence of the marker. It is noted that

henceforth intensity will always refer to SPTA intensity.

Finally, to measure how the size of the focal region

changes when the marker is included compared to the homo-

geneous simulation, the �6 dB focal volume was calculated

for each simulation. This was obtained using

Vf ¼ N dx dy dz (4)

where N is the number of voxels for which IsptaðmÞ was

greater than 50% of Imax (the maximum intensity for that sim-

ulation). As the reference intensity changes for each simula-

tion, this metric does not give a direct indication of the

ablation volume. However, taken together with Imax, it pro-

vides a useful indication of the volume over which the acous-

tic energy is distributed.

The focusing metrics were evaluated using the final five

cycles of the pressure time-series and excluded the pressure

time-series recorded within the marker volume. In order to

reduce the size of the output from each simulation, the pres-

sure time-series was recorded within a sub-region of the grid

(see Table I) centered at the focal-point of the transducer

(mref ). Even with this restriction in place, the output file size

was approximately 0.5 TB per simulation.

TABLE I. Computational cost in terms of memory and simulation time associated with each grid-size.

Grid-size (pt3)

Homogeneous simulations Heterogeneous simulations

RAMa (GB) Inputb (MB) Outputb (GB)

Timec

(dd:hh:mm) RAMa (GB) Inputb (GB) Outputb (GB)

Timec

(dd:hh:mm)

S1 ¼ 384� 256� 512 10.5 2.9 0.7 00:00:10 11.9 4.1 2.0 00:00:39

S2 ¼ 768� 512� 1024 37.2 20.3 8.5 00:02:06 48.5 28.3 30.3 00:10:16

S3 ¼ 1152� 768� 1536 108.4 70.0 37.1 00:12:01 141.7 95.8 144.9 02:13:23

S4 ¼ 1536� 1024� 2048 246.4 165.2 108.4 01:16:07 331.9 225.9 445.9 08:11:38

S5 ¼ 2304� 1536� 3072 830.7 554.6 508.7 06:19:51 — — — —

aRandom access memory (RAM) requirements at each grid-size. MB = 220 bytes, GB = 230 bytes.
bSize of the input and output files of the simulation. At S1 the pressure is recorded in the output within a 96� 96� 192pt3 volume. These dimensions increase proportion-

ally to the grid-size, except from S5 where a smaller volume was used.
cTime required for completing a single simulation. May vary depending on the HPC’s workload. (dd:hh:mm) = (days:hours:minutes).
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2.E. Convergence test for grid-size selection

The grid-size required for the simulations was estab-

lished using a convergence test. In particular, because of

nonlinear wave propagation, some of the energy from the

fundamental frequency of the driving signal is shifted to

higher harmonics. For these harmonics to be captured by

the model, the physical domain must be appropriately dis-

cretized. For the numerical method used, waves can be

accurately propagated close to the Nyquist limit of two

grid-points per minimum wavelength. However, the energy

at higher frequency harmonics is not known a priori. As a

result, the choice of the grid-size will determine the num-

ber of harmonics that can be represented on the grid and

thus the accuracy with which the nonlinearity is captured.

On the other hand, increasing the grid-size translates to

higher computational requirements in terms of memory and

simulation time. Therefore, the selected grid-size was a

compromise between the number of supported harmonics

and the associated computational cost.

To determine the appropriate grid-size, homogeneous

and heterogeneous simulations were performed at increas-

ing grid dimensions. The configuration of these simulations

was as described in Section 2, with the heterogeneous sim-

ulation including a single spherical gold marker between

the focal-point and the transducer at (0,0,8) mm. Here, the

marker position is reported with respect to the coordinates

of the focal point. The grid-sizes tested are shown in

Table I, noting that a heterogeneous simulation at S5 was

not performed due to the extremely high memory require-

ments (> 1 TB of RAM). The physical dimensions of the

simulated domain were kept constant as described in Sec-

tion 2.B. For each simulation the five final cycles of the

pressure were extracted at the focal-point. The pressure

time-series was then used to evaluate the frequency spec-

trum and the intensity at the focal-point. The results from

the homogeneous convergence test are presented in Fig. 3

(analogous behavior was observed for the heterogeneous

set of simulations).

As shown in Fig. 3, by increasing the grid-size, a higher

number of harmonics is supported and the effects of non-

linear propagation are more accurately captured. At the

lowest grid-size S1 only the fundamental frequency is sup-

ported, thus, the pressure waveform is a pure sinusoid but

with a reduced amplitude. As the grid-size increases, the

higher frequencies supported capture the nonlinear steepen-

ing of the wave and the amplitude of the pressure wave-

form increases. As the grid-size increases the pressure

waveform also converges. Beyond the 6th harmonic

(24 MHz), which is close to the maximum frequency sup-

ported by S4, the amplitude of the higher harmonics

becomes extremely small in comparison to the fundamental

frequency. Also, the intensity at S5 changes only by 1.79%

from its value at S4. On the other hand, the computational

cost increases dramatically when switching to S5 (� 7 days

vs. � 2 days) making multiple simulations impractical even

on the large computing cluster used for this study. Having

in mind the trade-offs described here, the remaining simu-

lations were performed at S4. It is noted that, with more

than 10 billion grid points, the simulation at S5 is one of

the largest ultrasound simulations of its kind performed to

date.52
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respective response at the highest grid-size S5 simulated in this study. The grid dimensions are detailed in Table I. The vertical dotted lines indicate the maximum

supported frequency at the corresponding grid-size. As the grid-size increases, a higher number of harmonics is supported and the effects of non-linear propaga-

tion are more accurately captured by the model. [Color figure can be viewed at wileyonlinelibrary.com]
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2.F. Simulation deployment

The simulations were performed using the MPI version of

k-Wave52,53 on the IT4Innovations’ Salomon HPC based at

the National Supercomputing Center at VSB-Technical

University of Ostrava in the Czech Republic. The actual hard-

ware utilized for each simulation comprised of 144 cores and

768 GB of RAM (6 nodes with two Intel Xeon E5-2680v3

processors, each equipped with 24 cores and 128 GB RAM,

interconnected by a 7D Enhanced hypercube Infiniband net-

work). For the S5 simulation, 9 nodes were utilized. Table I

summarizes the memory and simulation-time requirements

for a single homogeneous and heterogeneous simulation at

each grid-size. At S4, the output of a single heterogeneous

simulation was 445.9 GB. With a total of 143 marker posi-

tions tested, the simulations generated � 63 TB of output

data and required � 5 million core-hours to run. After the

completion of the simulations, the output data was processed

in Matlab to evaluate the various metrics quantifying the

effect of the marker as described in Section 2.D.

3. SIMULATION

A total of 143 marker positions were simulated: 113 with a

spherical marker and 30 with a cylindrical marker at three

orientations. Figure 4 provides a visual description of the

simulations performed to determine the marker effect on the

HIFU beam. Figure 4(a) shows the maximum pressure field

as recorded across the whole domain when the HIFU beam

propagates in a homogeneous medium. The inset is a visual-

ization of the �6 dB focal volume. The metrics extracted

from this simulation serve as a reference for comparison to

assess how placing a marker in the path of the beam deterio-

rates the focusing. Figure 4(b)–4(d) demonstrate how the

maximum pressure field and the focal volume changes when

a marker is introduced and gradually moved away from the

focal-point. Figure 4(b) shows the dramatic effect of the mar-

ker when placed very close to the focal-point, while Figs.

4(c)–4(d) illustrate how the marker effect decreases as its dis-

tance from the focal-point increases. Finally, Fig. 4(d) shows

that beyond a certain distance, focusing is re-established with

the marker effect becoming less pronounced.

The metrics extracted for each marker position can be used

to quantitatively study the marker’s effect. Figures 5 and 6

show the evaluated metrics for the spherical and cylindrical

gold markers respectively. For both sets of plots, the metrics

are plotted along the axes connecting the focal-point to the

transducer. The metrics are plotted with respect to the dis-

tance of the marker from the focal-point, with the positive

direction indicating that the marker is positioned toward the

transducer.

Figures 5(a) and 5(b) show how the intensity (which is

proportional to the rate of heat deposition) changes with mar-

ker position at the maximum-pressure point (mmax) and at the

focus (mref ), respectively. When the spherical marker is posi-

tioned very close to the focus, the intensity reduces dramati-

cally. However, as the marker moves away from the focal-

point and towards the transducer, the intensity increases. As

an indication, at 11.5 mm and 8.5 mm the intensity at the

focal-point is reduced by 10% and 20% respectively. Moving

the marker further away from the focus, both intensities con-

tinue to gradually increase and eventually converge to approx-

imately Ihom, indicating that focusing has been re-established

fully.

A slightly different behavior is observed when the marker

is positioned at exactly the focus (mref ) of the transducer. It is

clear from Fig. 5(b) that practically no energy reaches the

intended focal position. On the other hand, Fig. 5(a) shows

that the maximum intensity more than doubles due to the

reflections caused by the marker, which redirect the energy to

the pre-focal region. This is due to the large impedance differ-

ence between the background medium (prostate) and the
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FIG. 4. Maximum pressure field of (a) a homogeneous simulation and (b)–(d) three heterogeneous simulations for three marker positions. The insets have dimen-

sions 39398 mm and are visualizations of the �6 dB focal-volume (dashed outline) evaluated using Eq. (4) and the spherical marker (solid-line circle). For each
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marker (gold), which results in a high reflection coefficient

(R = 0.91). When the marker is gradually shifted in the nega-

tive direction, the intensity at the maximum Imax and the

focus Ifocus quickly converge to the homogeneous value Ihom
with no significant reflections observed beyond approxi-

mately �4 mm.

Figure 5(d) illustrates the effect of the marker on the

position of the maximum pressure (mmax) relative to the

focal-point (mref ). When the marker is positioned at a dis-

tance between �4 mm and 8 mm from the focal-point, a

shift in the focus is observed of up to approximately 5.5

mm. The distortion caused by the marker can also be

observed by looking at the variation in the size of the focal

volume in Fig. 5(e) and the insets in Fig. 4. When the mar-

ker is placed at a distance from the focus between �4 mm

and 8 mm, the focal volume decreases as its position

moves closer to the focal-point, indicating its negative

effect on the beam. The markers placed along the four

outer radial axes seem to diverge from this behavior. As

those markers move towards the focus from the positive
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direction, the decrease in focal volume is first preceded by

a sharp increase. This is likely due to refocusing caused by

reflections and diffraction around the marker. Moving the

marker beyond �4 mm and 8 mm causes the focal volume

to gradually converge back to its homogeneous value, indi-

cating that focusing is re-established.

Placing the marker close to the focus also causes the focal-

volume to split from a single region [Fig. 4(a)] into multiple

smaller volumes of high pressure [Fig. 4(b)], which may

induce heating at undesired locations. Figure 5(f) shows the

ratio between the second (V2) and first (V1) largest connected

components of the �6 dB volumes for each marker position.

The ratio between the two volumes increases as the marker is

positioned closer to the focus. When the marker is placed

away from the focal-point the size of V2 reduces to zero

demonstrating that any secondary regions of high pressure

are eliminated.

Figure 5(c) offers an alternative perspective on the effect

of the marker on the intensity at the focus. In this case, the

markers are grouped together with respect to their distance

from the intended focus. Therefore, each curve corresponds

to a fixed distance from the focus. The intensity is plotted

with respect to the angle between the z-axis passing

through the focus and the radius connecting the center of

the marker with the focus. The markers outside the HIFU

beam are denoted with squares whereas those inside the

beam are denoted with dots. This plot shows that, as long

as the marker is positioned inside the HIFU beam, its effect

on the intensity remains approximately the same when its

distance from the intended focus is kept constant. The fig-

ure also demonstrates the large reduction in intensity due

to the markers closer to the focus (positive angles), how-

ever, as the angle increases, their effect on the intensity

reduces since they move outside the HIFU beam. For the

markers beyond the focus (negative angles), a small

increase in intensity can be seen which reduces as their dis-

tance from the focus increases in the negative direction.

The analogous behavior is observed for the focus shift and

focal volume.

To investigate the effect of marker shape, another set of

simulations was performed using a single gold cylindrical

marker. A total of 30 simulations were executed: 10 marker

positions were simulated along the z-axis passing through the

focal-point with 3 orientations for each position as shown in

Fig. 2(b)–2(d). The orientation in Fig. 2(b) is the most likely

to be encountered in practice because of the procedure with

which the markers are inserted. The simulations were

restricted to a single radial axis in order to limit the number

of simulations executed. This restriction was justified based

on the observation that the effect of the spherical marker

remains constant at a fixed distance from the focal-point as

demonstrated in Fig. 5(c).

For each position of the cylindrical marker, the same set of

metrics were calculated. Comparison of the plots in Fig. 6

with the corresponding plots in Fig. 5 suggests that the cylin-

drical marker distorts the HIFU beam in the same manner as

the spherical marker. Namely, as the marker moves closer to

the focal-point, the intensity and focal-volume decrease while

the shift in the focus increases. It is also interesting to observe

that marker orientation has an effect. For example, in terms

of the intensity at the focal-point, the orientation parallel to

the beam’s axis has the smallest impact since the surface area

encountered by the wave is the smallest, but it has the largest

focus shift since the maximum pressure point occurs close to

the base of the marker furthest from the focus. For the

remaining two orientations, the metrics in Fig. 6 vary in a

similar manner. This is likely due to their projected areas on

the HIFU beam being similar.

4. GEOMETRIC MODEL

The results discussed above suggest that the distortion

introduced by the marker is dominated by strong reflections.

This is not surprising due to the large density difference

between the background medium and gold, which results in a

high reflection coefficient at the interface of the two materi-

als. Additionally, the impact of the different marker orienta-

tions suggests a dependence on the surface area of the marker

encountered by the wave. Based on these observations and

with the aim of providing a faster and more efficient method

for estimating the effect of different markers, a simple analyti-

cal model was derived which evaluates the focal intensity by

considering the effect of a single marker.

Figure 7 defines the various parameters of the model

assuming a spherical marker. More specifically, it shows the

HIFU beam of the geometric model (solid-yellow line),

whose size is determined by the focal length of the transducer

Rt, its width Wt and its length Lt. Figure 7 also shows a

cross-section of the beam with a spherical-strip shape (solid-

green line), which is tangential to the point on the marker fur-

thest from the focus. The cross-section has a length Lw and

width Ww with a radius Rw. The circle indicates a cross-sec-

tion of the spherical marker with diameter d and its center at

a distance r from the focal-point. It is noted that, although a

spherical marker is considered as an example here, the model

can be adapted to any other shape.

With reference to Fig. 7, let Ihom denote the intensity at the

focal-point of an uninterrupted beam (evaluated from a

homogeneous simulation), Aw the total area of the beam’s

cross-section and Am the projected area of the marker on the

cross-section (red-solid line). Then, the intensity at the focus

(mref ) when the beam is obstructed by a marker is approxi-

mately given by

Ifocus � Ihom 1�
Am

Aw

� �

: (5)

The values of Am and Aw vary according to the distance of the

marker from the focal-point. Additionally, Am changes

depending on the marker’s shape and its orientation. Thus,

evaluating Eq. (5) requires a single homogeneous simulation

to obtain Ihom and then calculation of the areas Am and Aw.

This is a significant improvement in terms of computation

time since, after obtaining Ihom from a single homogeneous

simulation, the time required for evaluating Eq. (5) is
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negligible compared to simulations. The model omits wave

propagation due to diffraction or refraction and accounts only

for perfect reflection. It also assumes that the energy lost only

depends on the shape of the marker, its distance from the

transducer’s focus and the shape of the cross-section of the

beam tangential to the marker.

The total area of the beam’s cross-section Aw can be

approximated as the area of a sector of a spherical strip

Aw ¼ hRwWw (6)

where h is the angle defining the sector of the strip in radians,

Ww is the width of the strip and Rw is the radius of the sphere

on which the strip lies. As shown in Fig. 7, in this example

h ¼ 2 arcsinðLt=ð2RtÞÞ and Rw ¼ r þ d=2, since a

spherical marker is assumed here, and Ww ¼ RwWt=Rt

¼ ðr þ d=2ÞWt=Rt. Substituting in Eq. (6) yields

Aw ¼
2Wtðr þ d=2Þ2arcsinðLt=ð2RtÞÞ

Rt

: (7)

Calculating Aw for a different marker shape only requires

obtaining a value for Rw with the rest of the steps remaining

unchanged.

For a spherical marker, its projected area Am on the tan-

gential cross-section of the beam, as indicated in Fig. 7 (red-

solid line), has a spherical-cap shape whose surface area is

given by

Am ¼ 2pRwhc (8)

where Rw is the radius of the sphere on which the spherical

cap lies and hc is the cap’s height. In this example,

Rw ¼ r þ d=2 as explained above and hc ¼ Rw � Rw

cos/, where / = arcsin(d/(2r)). Substituting in Eq. (8) then

gives

Am ¼ 2p r þ
d

2

� �2

1� cos arcsin
d

2r

� �� �� �

: (9)

Analogous arguments hold for evaluating the projected area

Am for the cylindrical marker, or any other marker shape.

The effect of both the spherical and cylindrical marker

on the intensity at the focal-point as predicted by Eq. (5) is

compared with the simulation results in Figs. 5(b) and 6(b)

respectively (denoted by the solid-lines). To quantify the

agreement of the model with the simulated intensity at the

focus (Ifocus), the root-mean-square relative error (RMSRE)

was evaluated along the beam axis to which the other axial

responses converge to and it is shown in Table II. The

model slightly underestimates the marker’s effect and

becomes less accurate for marker positions closer to the

focus, but overall it confirms the assumption that

TABLE II. Exclusion zone radius evaluated using the geometric model

defined in Eq. (5) for different types of markers and orientations.

Marker type

Dimensions

(mm)a
Orientation

(degrees)b
Distance

(mm)c
RMSRE

(%)d

Spherical 1 — 2.3 —

Spherical 2 — 4.5 —

Spherical 3 — 6.8 15.7

Cylindrical 391 0� 5.0 8.1

Cylindrical 391 45� 5.7 18.2

Cylindrical 391 90� 5.3 22.8

aDimensions are: diameter for spherical marker, height 9 diameter for cylindrical

marker.
bAngle measured on xz plane between the central radial axis connecting the focus

to the transducer and the symmetry axis of the cylinder.
cThe distance from the focal-point towards the transducer at which the intensity

drops by 30%, which is equivalent to approximately a 50% reduction in lesion

volume, calculated using Eq. (5).
dRoot-mean-square relative error (RMSRE) of the intensity at the focus (Ifocus)

between the simulated values along the beam axis and those evaluated using the

geometric model.
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FIG. 7. The parameters of the geometric model defined in Eq. (5) assuming

a spherical marker. The parameters are shown on (a) the xz, (b) the yz and (c)

xy planes. [Color figure can be viewed at wileyonlinelibrary.com]
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reflections are the dominating effect causing the observed

distortion. This suggests that Eq. (5) can be used to

approximate the marker effect for arbitrary shapes without

the necessity of performing time-consuming and

computationally intensive simulations.

Table II provides an indicative list of distances from the

focal-point at which the intensity drops by 30%, which is

equivalent to approximately a 50% reduction in lesion vol-

ume, for different dimensions of cylindrical and spherical

markers. The listed distances were evaluated using the analyt-

ical model in Eq. (5). Considering that the effect of a marker

within the ultrasound beam remains the same at a fixed dis-

tance from the focal-point, Table II may be used to define a

region around the focal-point within which the marker’s

impact on the beam is significant and thus may affect the

delivery of the HIFU treatment. An example of such an exclu-

sion zone is shown in Fig. 4(a) for the 3 mm spherical mar-

ker, where the radius of the exclusion zone from the focus

was extracted from Table II and its lateral width was evalu-

ated using four times the beam width (4� 1:41c0=f0Rt=Lt
� 2:6 mm). The region defined by these boundaries may be

used to evaluate whether a particular region in the prostate

can be effectively treated using transrectal HIFU when a mar-

ker obstructs the beam.

5. CASE STUDIES

The results presented in the previous sections suggest

that the marker distorts the HIFU beam with its effect

increasing the closer it is positioned to the focus. To exam-

ine how these results might be applied in a clinical setting,

four datasets have been retrospectively selected of patients

with recurrent prostate cancer after failed EBRT, which

were eligible for salvage-HIFU at UCLH. Three cases were

selected in which the presence of the marker may affect the

treatment and one case in which the marker is not expected

to impose any risk. As shown in Fig. 8, for each patient

three images from different modalities are presented co-

registered. In each of these images, a contour identifies the

region targeted during the treatment and a dot indicates the

assumed position of a 391 mm cylindrical marker. Due to

the difficulty in locating the exact marker position of the

medical images, the marker positions were added in soft-

ware retrospectively based on standard insertion protocols.

The outline of the exclusion zone is also shown with its

radius extracted from Table II for the cylindrical marker at

45� and its orientation determined by the likely direction of

propagation of the HIFU beam indicated by the dashed

line. Table III provides details of the four case-studies

including the post-operative outcome with regards to any

recurrence and its position for comparison with the

modelled outcome.

For the first patient, the marker is close to the rectal

wall and inside the region targeted during the treatment.

Having in mind the strong reflections induced when posi-

tioned close to the focus, the marker may cause two side-

effects. Firstly, the reflected wave may cause secondary

regions of high pressure on the rectal wall, and secondly,

the region in the top part of the exclusion zone may not

receive enough energy to be adequately treated. Reviewing

the patient’s post-operative outcome confirmed (Table III),

a recurrence in the lateral position of the lesion consistent

with possible disruption from the position of the fiducial

marker. In the second example, the marker is positioned

near the upper edge of the region to be treated. In this

case, the reflections due to the marker may cause exces-

sive heating of regions in the bottom part of the exclu-

sion zone, although this is unlikely to affect overall

treatment efficacy. The clinical outcome was once again

consistent with the modelling outcome. Although the

patient developed a recurrence it was in the midline, some

distance away from the marker, and thus the recurrence is

likely due to either an inadequate surgical margin taken

during the HIFU treatment or due to incomplete cell kill.

The third patient, demonstrates another extreme case in

which the marker is positioned near the lower bound of

the treatment area. Here the reflected wave may induce

heating in areas outside the desired treatment region

within the bottom part of exclusion zone and leave the

top part of the exclusion zone inadequately treated. In this

case, recurrence of the tumor was again observed which,

although not entirely in the predicted field of recurrence,

it may have been influenced by the presence of the mar-

ker. In the final example, the marker is positioned away

from the intended treatment region, thus, it is not

expected to affect the treatment. This is confirmed by the

post-HIFU MRI with no residual tumor within the treat-

ment zone.

6. SUMMARY AND DISCUSSION

Gold fiducial markers are commonly used as part of the

IGRT procedure during EBRT for men with localized or

locally advanced prostate cancer. These markers remain per-

manently implanted in the prostate. Thus, they may affect

the efficacy and safety of the subsequent use of HIFU

treatment as a salvage therapy in case of local cancer recur-

rence. This work investigated the impact on the HIFU

beam of a single spherical or cylindrical gold fiducial mar-

ker through a series of simulations performed using the

open-source k-Wave Toolbox. For each marker configura-

tion, four metrics were evaluated to quantify its impact on

the beam. By comparing these metrics with their corre-

sponding values from a homogeneous simulation, it is evi-

dent that the distortion introduced by the marker increases

as its distance from the transducer’s focus decreases and

depends on the marker’s shape.

Assuming perfect reflections, an analytical model was

developed based on geometric arguments, which estimates

the impact of the marker on the intensity at the focus. Using

the model, which is in good agreement with the simulated

results, it is possible to identify the boundaries of a region

around the focus within which the presence of a marker will

lead to an intensity drop below an acceptable threshold. For
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FIG. 8. Diagnostic images of four prostate-cancer patients. From left to right, the images are T2-weighted, apparent diffusion coefficient (ADC), and dynamic-

contrast enhanced (DCE) magnetic resonance images (MRI). For each patient the three images are co-registered and show the targeted treatment region (solid-

line contour), the position of a 391 mm cylindrical gold marker (dot marker), the exclusion zone (dashed outline) for a cylindrical marker at 45� and the direction

of propagation of the HIFU-beam (dashed straight line). The exclusion zone is positioned such that the focus of the transducer coincides with the position of the

marker and it is aligned with the direction of propagation of the HIFU beam. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE III. Clinical characteristics of the patients with recurrent prostate cancer after failed EBRT included in the case study.

Case Cancer stage Locationa
Lesion

volume Salvage HIFU treatment plan Outcome

Possible

marker effect

Case 1 Intermediate risk Gleason

3+4 prostate cancer

Right PZ apex 1 cc Quadrant ablation, 4 cm and 3 cm blocks Infield failure - lateral

recurrence

Yes

Case 2 Intermediate risk Gleason

3+4 prostate cancer

Left PZ mid to

apex extending

across midline

2.3 cc Extended left hemi-ablation HIFU infield failure -

midline recurrence at edge

of treatment zone

No

Case 3 Intermediate risk Gleason

3+4 prostate cancer

Right PZ 1.1 cc Right subtotal hemi-ablation

in 4 cm, 3 cm and 3 cm blocks

Infield failure at site

of marker

Yes

Case 4 Intermediate risk Gleason

3+4 prostate cancer

Right anterior TZ 0.8 cc Right quadrant ablation

in 4 cm and 3 cm blocks

No recurrence No

aPZ: peripheral zone, TZ: transitional zone.
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example, as shown in Table II, placing a 391 mm marker

within approximately 5 mm of the focus in the pre-focal

region will induce an intensity drop of more than 30% of the

homogeneous value, which will cause a reduction in the vol-

ume of the ablated region. As examined in Fig. 8 using scans

of prostate cancer patients, this region around the marker can

be divided into two parts: an undertreated region due to less

energy arriving above the focus and an overtreated region due

to reflections below the focus. Both effects may be undesir-

able depending on the location of the marker. Moreover, there

is evidence that the region of recurrence after EBRT is the

main tumor (index lesion).54 Therefore, the results of this

study may justify avoiding the index lesion during fiducial

marker placement. Although a degree of accuracy was

observed between the position of the marker and the site of

recurrence, the cohort consisted only of four patients, thus

extracting firm conclusions is difficult. Further work using

larger retrospective and prospective cohorts is necessary to

further develop and validate the model to allow its utilization

in clinical practice. Such a study will aim to reveal the per-

centage of affected patients by the results of this study and

whether the marker’s impact can justify the exclusion of some

patients from salvage-HIFU or the revision of the placement

protocol of fiducial markers during EBRT. Experimental

measurements on ex vivo tissue phantoms with implanted

markers are also needed to confirm these results.

While investigating the distortion introduced by the mar-

ker, the study has omitted some additional factors which

may affect the significance of the marker’s impact on the

treatment. Firstly, as discussed in Section 2.A., the Sonab-

late 500 probe, on which the transducer model was based,

includes an imaging transducer which was not taken into

account in the simulations. Although this is expected to

affect the intensity at the focus (for the same source surface

intensity), it is unlikely to change the distortion introduced

by the marker. Similarly, since the operation of the other

existing transrectal and transurethral HIFU systems is based

on the same principles, using a different transducer model is

not expected to affect the behavior of the marker observed

here. Second, only the effect on the intensity at the focus

(which correlates with heating rate) has been investigated.

However, in practice, additional heating may occur due to

absorption within the marker and viscous relative motion

between the marker and surrounding tissue. These effects,

combined with the multiple sonications used during a treat-

ment, may help to counteract the reduced heating due to the

lower intensity. It is also unclear from this work whether

cavitation, which is triggered by large negative pressures, is

reduced due to the presence of the marker. Finally, although

other types of markers exist (see Section 1), only gold mark-

ers have been considered. However, given that all the materi-

als used have greater impedance than the prostate, using

other types of markers is unlikely to change the behavior

observed here. A scenario in which the treatment may be

severely affected is when a large number of marker-like ele-

ments are introduced in the prostate. Such a situation occurs

during salvage-HIFU after failed (low-dose) brachytherapy,

where a large number of seeds are permanently implanted in

the prostate. Extending the insights of this work for the

brachytherapy case and exploring other factors which may

affect the distortion introduced by the marker, will be the

subject of future work.
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