
c© The British Computer Society 2016. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

doi:10.1093/comjnl/bxw001

Phrase-Structure Grammars: Normal
Forms and Reduction

Zbyněk Křivka1∗, Alexander Meduna1 and Petr Zemek2

1Faculty of Information Technology, Department of Information Systems, Brno University of Technology,
IT4Innovations Centre of Excellence, Božetěchova 2, Brno 612 66, Czech Republic

2AVG Technologies CZ, s.r.o., Holandská 879/4, Brno 639 00, Czech Republic
∗Corresponding author: krivka@fit.vutbr.cz

This paper establishes two new normal forms for phrase-structure grammars in which both context-
free rules and non-context-free rules are in prescribed forms. In addition, a limit is placed on the num-
ber of context-free rules. More specifically, the first form has 2 + n context-free rules, where n is the
number of terminals. Concerning non-context-free rules, each of them has the form AB → CD, where
A, B, C, D are nonterminals. The second normal form has always only two context-free rules—S → S#
and # → ε, where S is the start symbol, # is a nonterminal, and ε is the empty string. Regarding non-
context-free rules, each of them is of the form AB → XD, where A, B, D are nonterminals and X is a

nonterminal or a terminal.

Keywords: formal languages; phrase-structure grammars; normal forms

Received 22 March 2015; revised 3 December 2015
Handling editor: Fairouz Kamareddine

1. INTRODUCTION

Formal language theory has always studied how to turn gram-
mars into their equivalent versions with rules satisfying some
prescribed forms. These forms, customarily referred to as nor-
mal forms, frequently simplify dealing with the grammars in
question. More precisely, we can restrict our attention to the
grammars in normal forms without affecting their generative
power, and a restriction like this usually makes the proofs of
results about them easier. To illustrate this advantage, consider
phrase-structure grammars in Kuroda normal forms (see [1]).
Recall that a grammar is in this form if any rule is in one of
these forms:

AB → CD, A → BC, A → a or A → ε

where A, B, C, D are nonterminals, a is a terminal and ε is the
empty string (for brevity, we automatically assume that A, B, C,
D, a and ε have this meaning throughout the rest of this section).
As illustrated by the proofs of Theorems 1.2.5, 1.4.3, 1.4.4 and
1.5.13, Lemmas 2.3.2 and 2.4.3 in [2] and Theorem 4.7.23 in
[3], it is often convenient to make use of this form in order to
achieve some important results concerning regulated grammars.
The present paper continues with this important subject in terms
of phrase-structure grammars.

Formal language theory has already achieved several normal
forms for phrase-structure grammars (see [1, 4–8]); a survey of
some of these forms is to be found in [9, p. 180]. To give a more
detailed insight into these forms, we distinguish context-free
rules from non-context-free rules in these grammars. In order to
clarify what we mean by these two kinds of rules, we consider a
grammatical rule as a context-free rule if its left-hand side con-
sists of a single nonterminal; otherwise, it is a non-context-free
rule. Taking into account this distinction, we can next clas-
sify all the existing normal forms into the following three
groups—(a), (b) and (c).

(a) Non-context-free rules are turned into normal forms
while context-free rules are not; the number of any
rules is not limited. Indeed, concerning non-context-
free rules, there are some transformations that turn any
phrase-structure grammar into an equivalent phrase-
structure grammar in which all non-context-free rules
are in prescribed forms (see Theorem 1.4 on p. 180 in
[9], Theorem 9.2 on p. 82 in [10] and Exercise 2 on
p. 118 in [10]).

(b) Non-context-free rules are turned into normal forms
and their number is restricted; however, the number of
context-free rules is not restricted at all. That is, there are
some transformations that convert any phrase-structure

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, 2016

 The Computer Journal Advance Access published January 31, 2016
 by guest on February 2, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/

2 Z. Křivka et al.

grammar to an equivalent phrase-structure grammar
in which all non-context-free rules are in prescribed
forms, and their number is limited (see [6, 7]). None
of these transformations places any restrictions on the
number of context-free rules.

(c) There are transformations that turn any phrase-structure
grammar into an equivalent phrase-structure grammar
in which all rules are in prescribed forms (see [11–13]),
such as Kuroda and Penttonen normal forms (see [1, 5]).
None of these transformations places any restrictions on
the number of any rules.

So far, formal language theory has not achieved any normal
forms for phrase-structure grammars so that all rules, includ-
ing both context-free and non-context-free rules, satisfy some
prescribed forms, and in addition, the number of context-free
rules is limited. To fill this gap, the present paper establishes
the following two normal forms:

(I) First, we explain how to turn any phrase-structure
grammar into an equivalent phrase-structure grammar
in which every context-free rule is of the form A → x,
where x is a terminal, a two-nonterminal string or ε. In
addition, the number of context-free rules as well as
the number of nonterminals that these rules contain is
limited to 2 + n, where n is the number of terminals.
Concerning non-context-free rules, each of them has
the form AB → CD.

(II) In the second normal form, phrase-structure grammars
have only two context-free rules—that is, the num-
ber of context-free rules is reduced independently of
the number of terminals as opposed to the first nor-
mal form. Specifically, we describe how to turn any
phrase-structure grammar into an equivalent phrase-
structure grammar that has two context-free rules of the
forms A → AB and B → ε. Consequently, these rules
contain only two nonterminals. Regarding non-context-
free rules, they all are of the form AB → XD, where X
is a nonterminal or a terminal.

These two new normal forms represent the most important
value of the present paper. When investigating phrase-structure
grammars, we can always restrict our attention to the grammars
that satisfy these forms without affecting their generative power.

The rest of the paper is organized as follows. First, Section 2
gives all the necessary terminology. Then, Section 3 establishes
the above-mentioned normal forms for phrase-structure gram-
mars. Finally, Section 4 concludes the paper.

2. PRELIMINARIES

We assume that the reader is familiar with formal language
theory (see [9]). For a set Q, card(Q) denotes the cardinality
of Q. For an alphabet (finite nonempty set) V , V∗ repre-
sents the free monoid generated by V under the operation of

concatenation. Members of V and V∗ are called symbols and
strings, respectively. The identity of V∗ is denoted by ε, referred
to as the empty string. Let V+ = V∗ − {ε}; algebraically, V+
is thus the free semi-group generated by V under the operation
of concatenation.

A phrase-structure grammar is a quadruple

G = (N , T , P, S),

where N and T are two disjoint alphabets, referred to as the
alphabet of nonterminals and terminals, respectively, S ∈ N
is the start symbol, and P ⊆ (N ∪ T)∗N(N ∪ T)∗ × (N ∪ T)∗ is
a finite relation called the set of rules. Let V = N ∪ T
and V is called the total alphabet. Each (x, y) ∈ P is writ-
ten as x → y throughout this paper. The direct derivation
relation over V∗, symbolically denoted by ⇒, is defined
as follows: uxv ⇒ uyv in G if and only if u, v ∈ V∗ and
x → y ∈ P. Let ⇒n and ⇒∗ denote the nth power of ⇒, for
some n ≥ 0, and the reflexive-transitive closure of ⇒, respec-
tively. The language of G is denoted by L(G) and defined as
L(G) = {w ∈ T∗ | S ⇒∗ w}. Two phrase-structure grammars
are equivalent if and only if they generate the same language.

Let G = (N , T , P, S) be a phrase-structure grammar. G is in
the Kuroda normal form (see [1]) if every rule in P is in one of
the following four forms:

(i) AB → CD, (iii) A → a

(ii) A → BC, (iv) A → ε,

where A, B, C, D ∈ N and a ∈ T .

Lemma 2.1 (see [1]). For every phrase-structure grammar G,
there is an equivalent phrase-structure grammar H in the
Kuroda normal form.

3. NEW NORMAL FORMS FOR
PHRASE-STRUCTURE GRAMMARS

In this section, we establish two new normal forms for phrase-
structure grammars.

Theorem 3.1. For any phrase-structure grammar, there is an
equivalent phrase-structure grammar having rules S → S# and
→ ε, where S is the start symbol and # is a newly introduced
nonterminal, and each of the other rules is in one of these forms

(i) AB → CD or (ii) A → a

where A, B, C, D are nonterminals and a is a terminal.

Proof. Let G = (N , T , P, S) be a phrase-structure grammar. By
Lemma 2.1, we may assume that G is in the Kuroda normal form.
Set T̄ = {ā | a ∈ T}. Without any loss of generality, we assume

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, 2016

 by guest on February 2, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Phrase-Structure Grammars: Normal Forms and Reduction 3

that N , T , T̄ and {#} are pairwise disjoint. Construct the phrase-
structure grammar

H = (N ′, T , P′
1 ∪ P′

2 ∪ P′
3, S)

as follows. Initially, set N ′ = N ∪ T̄ ∪ {#}, P′
1 = {S → S#,

→ ε} and P′
2 = {ā → a | a ∈ T}. P′

3 is constructed by
performing (1) through (5), given next:

(1) for each AB → CD ∈ P, where A, B, C, D ∈ N , extend
P′

3 by adding
AB → CD

(2) for each A → BC ∈ P, where A, B, C ∈ N , extend P′
3 by

adding
A# → BC

(3) for each A → a ∈ P, where A ∈ N and a ∈ T , extend
P′

3 by adding
A# → ā#

(4) for each A → ε ∈ P, where A ∈ N , extend P′
3 by adding

A# → ##

(5) for each A ∈ N , extend P′
3 by adding

A# → #A

Observe that by performing (1) through (4), for each rule from
P, we add one new rule into P′

3. In addition, by performing (5),
for every nonterminal from G, we add one new rule into P′

3.
Before proving that L(H) = L(G), let us give an insight

into the construction. We simulate G by H using the following
sequences of derivation steps.

First, by repeatedly using S → S#, we generate a proper num-
ber of #s. Observe that if the number of #s is too low, the deriva-
tion can be blocked since rules from (2) consume # during their
application. Furthermore, note that only rules from (4) and the
initial rule S → S# increase the number of #s in sentential forms
of H .

Next, we simulate an application of a rule in G by several
derivation steps in H . More specifically, by using rules from (5),
we can pass # to the left in the current sentential form at will.
Whenever # or B occurs as a neighbor of A, we can apply a rule
from (1), (2) and (4). We can also erase any occurrences of #
by using # → ε.

Then, to simulate rewriting according to rules of the form
A → a, we rewrite every occurrence of nonterminal A by non-
terminal ā by the application of rules from (3). Observe that
a premature application of a rule of this kind would block the
derivation in H because H could not move #s to the left in such
a sentential form.

To conclude the simulation, we rewrite the current sentential
form by rule # → ε and rules of the form ā → a to generate a
string of terminals.

To establish the identity L(H) = L(G), we prove four claims.
Claim 1 demonstrates that every w ∈ L(H) can be generated

in H in three parts; first, only nonterminals from N ∪ {#} are
generated, second, nonterminals from N are replaced by non-
terminals from T̄ , and then, all nonterminals are rewritten to
terminals by rules from P′

2. Claim 2 shows that we can arbi-
trarily generate and migrate #s to the left in sentential forms
of H during the first part. Claim 3 shows how derivations of G
are simulated by H . Finally, Claim 4 shows how derivations of
every w ∈ L(H) in H are simulated by G.

Set V = N ∪ T and V ′ = N ′ ∪ T . Define the homomor-
phism τ from V ′∗ to V∗ as τ(X) = X for all X ∈ V , τ(ā) = a
for all a ∈ T , and τ(#) = ε.

Claim 1. H can generate every w ∈ L(H) by this three-part
derivation

(i) S ⇒∗ α

(ii) ⇒∗ β

(iii) ⇒∗ w,

where a sentential form is in (N ∪ {#})∗ if and only if it occurs
within S ⇒∗ α, β ∈ (T̄ ∪ {#})∗ and w ∈ T∗.

Proof. Let w ∈ L(H). Thus, S ⇒∗ w. Note that no left-hand
side of a rule from P′

1 ∪ P′
3 contains any symbols from T̄ ∪ T .

As a result, we can rearrange the applications of the rules
during S ⇒∗ w so that

S ⇒∗ α ⇒∗ w

whereas only symbols from (N ∪ {#}) are produced during
S ⇒∗ α by using rules from P′

1 ∪ P′
3 excluding rules from

(3), so α ∈ (N ∪ {#})∗. Take α ⇒∗ w. We can rearrange this
derivation part in the following way. First, we replace all non-
terminals from N by using only rules from (3); apart from this,
we can erase some #s by # → ε. After this, we complete the
derivation by repeatedly applying rules from P′

2 ∪ {# → ε}.
In this way, we can change α ⇒∗ w to

α ⇒∗ β ⇒∗ w,

where β ∈ (T̄ ∪ {#})∗.
Putting together all the rearranged derivation portions above,

we obtain
S ⇒∗ α ⇒∗ β ⇒∗ w,

where α ∈ (N ∪ {#})∗, β ∈ (T̄ ∪ {#})∗ and w ∈ T∗. Hence, the
claim holds.

Claim 2. If S ⇒∗ uv in H , where u, v ∈ V ′∗, then S ⇒∗ u#v
in H.

Proof. First, recall that by the application of S → S# there is
S ⇒ S# in H . Now, we study two cases.

(A) If uv ∈ (N ∪ {#})∗, we continue the derivation from
S# into uv# and then, by applying rules from (5), # can freely

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, 2016

 by guest on February 2, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

4 Z. Křivka et al.

migrate to the left through the sentential form as needed, so
uv# ⇒∗ u#v in H . Therefore,

S ⇒ S# ⇒∗ uv# ⇒∗ u#v

in H .
(B) Let uv /∈ (N ∪ {#})∗, so uv contains some symbols from

T̄ ∪ T . Let us reconsider Claim 1 and its proof modified so that
w = uv (no need to distinguish (ii) and (iii)) and α = u′v′ is the
last sentential form from (N ∪ {#})∗ in the derivation of uv in H .
Therefore,

S ⇒∗ α = u′v′ ⇒∗ uv

in H . Observe that by Claim 1 during u′v′ ⇒∗ uv H applies only
rules from (3), P′

2 and # → ε. Just like in the conclusion of (A),
we apply rules from (5) to obtain

S ⇒ S# ⇒∗ u′v′# ⇒∗ u′#v′

in H . As the final part of (B), we prove that

u′v′ ⇒∗ uv

in H made only by non-context-free rules from (3) and context-
free rules from P′

2 ∪ {# → ε} implies that we can make

u′#v′ ⇒∗ u#v

in H as well. It is easy to see that rules with their left-hand sides
entirely in either u′ or v′ can be applied in u′#v′ ⇒∗ u#v exactly
in the same way as in u′v′ ⇒∗ uv. Note that this holds for all
rules from P′

2 ∪ {# → ε} because these rules are context-free.
The last case to study is the application of non-context-free rules
from (3) of the form A# → ā# in α = u′v′ with u′ = u′′A and
v′ = #v′′. As

u′v′ = u′′A#v′′ ⇒ u′′ā#v′′ ⇒∗ uv

in H , then also

u′#v′ = u′′A##v′′ ⇒ u′′ā##v′′ ⇒∗ u#v

in H , so the claim holds.

Claim 3. If S ⇒k x in G, where x ∈ V∗, for some k ≥ 0, then
S ⇒∗ x′ in H , where τ(x′) = x.

Proof. This claim is established by induction on k ≥ 0.

Basis. Let k = 0. That is, S ⇒0 x in G. By the definition of ⇒n,
for n = 0, x = S. Thus, S ⇒0 S in G. Note that S ⇒0 S in H as
well.

Induction Hypothesis. For some k ≥ 0, S ⇒k x in G implies
that S ⇒∗ x′ in H such that x = τ(x′).

Induction Step. Let u, v ∈ N ′∗, A, B, C, D ∈ N and m ≥ 0.
Assume that S ⇒k y ⇒ x in G. By the induction hypothe-
sis, S ⇒∗ y′ in H with y = τ(y′). Let us show the simulation
of y ⇒ x in G by an application of several derivation steps in H
to get y′ ⇒+ x′ with τ(x′) = x. This simulation is divided into
the following four cases, (i) through (iv).

(i) Simulation of the application of AB → CD:

y′ = uA#mBv ⇒m u#mABv ⇒ u#mCDv = x′

in H using m derivation steps according to rules
A# → #A from (5), and concluding the derivation by
rule AB → CD from (1).

Consider the induction hypothesis for y = τ(u)Aτ(v) to
observe that uAv represents a sentential form in H . From this
observation, it follows that y′ = uA#v is also a sentential form
in H by Claim 2.

(ii) Simulation of the application of A → BC:

y′ = uA#v ⇒ uBCv = x′

in H using rule A# → BC from (2);
(iii) simulation of the application of A → a:

y′ = uA#v ⇒ uā#v = x′

in H using rule A# → ā# from (3);
(iv) simulation of the application of A → ε:

y′ = uA#v ⇒ u##v = x′

in H using rule A# → ## from (4).

Thus, the claim holds.

Claim 4. If S ⇒k x′ in H , where x′ ∈ V ′∗, for some k ≥ 0,
then S ⇒∗ x in G with x = τ(x′).

Proof. This claim is established by induction on k ≥ 0.

Basis. For S ⇒0 S in H , there is S ⇒0 S in G.

Induction Hypothesis. For some k ≥ 0, S ⇒k x′ in H implies
that S ⇒∗ x in G such that x = τ(x′).

Induction Step. Let u, v ∈ V ′∗, A, B, C, D ∈ N and ā ∈ T̄ .
Assume that S ⇒k y′ ⇒ x′ in H . By the induction hypothesis,
S ⇒∗ y in G such that y = τ(y′). Let us examine the following
eight possibilities of y′ ⇒ x′ in H :

Next, we establish statements (i) through (viii). Observe that
statements (i), (vi) and (vii) follow from the fact that τ(#) = ε.

(i) y′ = uSv ⇒ uS#v = x′ in H : By zero steps, G performs

τ(y′) = y = τ(uSv)
⇒0

τ(uS#v) = τ(uSv) = x = τ(x′)

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, 2016

 by guest on February 2, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Phrase-Structure Grammars: Normal Forms and Reduction 5

(ii) y′ = uABv ⇒ uCDv = x′ in H : According to (1), G
performs

y = τ(u)ABτ(v)
⇒

τ(u)CDτ(v) = x

(iii) y′ = uA#v ⇒ uBCv = x′ in H : According to the source
rule in (2), G performs

y = τ(u)Aτ(#v)
⇒

τ(u)BCτ(#v) = τ(u)BCτ(v) = x

(iv) y′ = uA#v ⇒ uā#v = x′ in H : According to the source
rule A → a in (3), G performs

y = τ(u)Aτ(#v)
⇒

τ(uā#v) = τ(u)aτ(v) = x

(v) y′ = uA#v ⇒ u##v = x′ in H : By the corresponding
rule A → ε, G performs

y = τ(u)Aτ(#v)
⇒

τ(u##v) = τ(uv) = x

(vi) y′ = uA#v ⇒ u#Av = x′ in H : In G,

y = τ(uA#v) = τ(u)Aτ(#v)
⇒0

τ(u#)Aτ(v) = x

(vii) y′ = u#v ⇒ uv = x′ in H : In G,

y = τ(u#v)
⇒0

τ(uv) = x

(viii) y′ = uāv ⇒ uav = x′ in H : In G,

y = τ(uāv) = τ(u)aτ(v)
⇒0

τ(u)aτ(v) = x

Thus, the claim holds.

Next, we establish the identity L(H) = L(G). Consider
Claim 3 with x ∈ T∗. Then, S ⇒∗ x in G implies that S ⇒∗ x
in H , so L(G) ⊆ L(H). Consider Claim 4 with x′ ∈ T∗. Then,
S ⇒∗ x′ = τ(x′) in H implies that S ⇒∗ x = τ(x′) in G, so
L(H) ⊆ L(G). Hence, L(H) = L(G).

Observe that H has the form described in Theorem 3.1. Thus,
this theorem holds.

From the construction given in the proof of Theorem 3.1, we
obtain the following corollary concerning the number of nonter-
minals and rules in the resulting grammar.

Corollary 3.1. Let G = (N , T , P, S) be a phrase-structure
grammar in the Kuroda normal form. Then, there is an equiva-
lent phrase-structure grammar,

H = (N ′, T , P′, S),

which satisfies properties (a), (b) and (c), given next.

(a) H satisfies the normal form from Theorem 3.1;
(b) card(N ′) = card(N) + card(T) + 1;
(c) card(P′) = card(P) + card(T) + card(N) + 2.

Proof. Let G = (N , T , P, S) be a phrase-structure grammar in
the Kuroda normal form. Introduce a phrase-structure grammar,
H = (N ′, T , P′, S), in the following way. Let N ′, T and S have
the same meaning as in the proof of Theorem 3.1. Set P′ = P′

1 ∪
P′

2 ∪ P′
3, where P′

1, P′
2 and P′

3 are defined just like in the proof of
Theorem 3.1, which implies that H defined in this way is equiva-
lent to G and that H satisfies the normal form from Theorem 3.1.
Examine the proof of Theorem 3.1 to see that (b) and (c) hold.

Consider Corollary 3.1. If we drop the requirement that in the
non-context-free rules, each symbol is a nonterminal, then we
can reduce the number of context-free rules from card(T) + 2
to two.

Theorem 3.2. For any phrase-structure grammar, there is an
equivalent phrase-structure grammar having rules S → S# and
→ ε, where S is the start symbol and # is a newly introduced
nonterminal, and each of the other rules is of the form

AB → XD

where A, B, D are nonterminals and X is a nonterminal or
terminal.

Proof. Let G = (N , T , P, S) be a phrase-structure grammar.
By Lemma 2.1, we may assume that G is in the Kuroda nor-
mal form. Reconsider the proof of Theorem 3.1. Observe that
we can obtain H in this new normal form by omitting P′

2 and
modifying Step (3) in the following way:

(3) for each A → a ∈ P, where A ∈ N and a ∈ T , extend P′
3

by adding
A# → a#

The rest of the proof is analogous to the proof of Theorem 3.1,
so it is left to the reader.

4. CONCLUSION

As already pointed out, the most important value of these results
consists in the achievement of new normal forms for phrase-
structure grammars so all their rules satisfy some prescribed
forms, and in addition, the number of their context-free rules
is limited. As a result, in the future, whenever investigating
phrase-structure grammars, formal language theory can
simplify the investigation by narrowing its attention to the

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, 2016

 by guest on February 2, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

6 Z. Křivka et al.

grammars satisfying these forms without affecting their gener-
ative power.

Apart from this key value, the achieved results might be
of some other interest, too. They demonstrate that while any
reduction of the number of nonterminals in context-free rules
is ruled out in terms of some grammars, it is achievable in
terms of other grammars. For instance, recall that in terms of
context-free grammars, no reduction like this is possible (see
[14]). At a glance, one might expect a similar result in terms of
the number of nonterminals occurring in context-free rules of
phrase-structure grammars. Surprisingly, this is not the case as
follows from Theorem 3.2, proved above. Indeed, with only two
nonterminals S and # occurring in two context-free rules—that
is, S → S# and # → ε, the phrase-structure grammars keep
their generative power unchanged.

By no means, the present paper closes the vivid investiga-
tion of normal forms for phrase-structure grammars with a
limited number of nonterminals. Perhaps most importantly,
so far, formal language theory has not answered whether
any phrase-structure grammar can be turned into an equivalent
phrase-structure grammar in which all rules are in normal forms
and, simultaneously, the number of its nonterminals is limited.

ACKNOWLEDGEMENTS

The authors deeply thank all the three anonymous referees for
their invaluable comments and suggestions.

FUNDING

This work has been supported by the IT4IXS—IT4Innovations
Excellence in Science project (LQ1602), the BUT FIT FIT-
S-14-2299 grant and the TAČR TE01020415 grant.

REFERENCES

[1] Kuroda, S.Y. (1964) Classes of languages and linear-bounded
automata. Inf. Control, 7, 207–223.

[2] Dassow, J. and Păun, G. (1989) Regulated Rewriting in For-
mal Language Theory. EATCS Monographs on Theoretical
Computer Science 18. Springer, Berlin.

[3] Meduna, A. and Zemek, P. (2014) Regulated Grammars and
Automata. Springer, New York.

[4] Kolář, D. and Meduna, A. (2002) Homogenous grammars with
a reduced number of non-context-free productions. Inf. Process.
Lett., 2002, 253–257.

[5] Penttonen, M. (1974) One-sided and two-sided context in formal
grammars. Inf. Control, 25, 371–392.

[6] Geffert, V. (1988) Context-Free-Like Forms for the Phrase-
structure Grammars. Proc. Mathematical Foundations of
Computer Science’88, Carlsbad, Czechoslovakia, August 29–
September 2, pp. 309–317. Springer, Berlin.

[7] Geffert, V. (1991) Normal forms for phrase-structure grammars.
RAIRO Inf. Théor. Appl., 25, 473–496.

[8] Révész, G. (2012) Introduction to Formal Languages. Dover
Publications, New York.

[9] Rozenberg, G. and Salomaa, A. (eds) (1997) Handbook of For-
mal Languages, Vol. 1: Word, Language, Grammar. Springer,
New York.

[10] Salomaa, A. (1973) Formal Languages. Academic Press,
London.

[11] Smith, W.B. (1970) Error detection in formal languages. J. Com-
put. Syst. Sci., 4, 385–405.

[12] Révész, G. (1974) Comment on the paper “Error detection in
formal languages”. J. Comput. Syst. Sci., 8, 238–242.

[13] Penttonen, M. (1972) A normal form for context-sensitive gram-
mars. Ann. Univ. Turku. Ser. AI, 156, 1–12.

[14] Gruska, J. (1969) Some classifications of context-free languages.
Inf. Control, 14, 152–179.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, 2016

 by guest on February 2, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

	1 Introduction
	2 Preliminaries
	3 New Normal Forms for Phrase-Structure Grammars
	4 Conclusion

